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Abstract
The initial linear instability growth of two-dimensional plane wakes and jets
is investigated, by temporal two-dimensional global modes, and local spatial
stability analysis. Comparisons are also made to experiments, direct numerical
simulations, and methods designed for weakly-non-parallel flows. The studies
proceed through three different flow setups with increasing complexity.

The first flow analysed is a convectively unstable liquid sheet surrounded
by a stagnant or co-flowing gas. The experimentally measured growth rates are
found to be in excellent agreement with spatial stability calculations, if the air
boundary layer is taken into account, and not otherwise. The stabilizing effect
of moderate air co-flow is quantified in the numerical study, and the governing
parameters found to be the speed difference between water and air, and the
shear from air at the water surface (inversely proportional to the air boundary
layer thickness).

The second flow case is a one-phase confined wake, i.e. a wake in a channel.
The effect of confinement (wall distance) on the global stability of wakes is
analysed by linear global modes, and compared to the results from DNS and
weakly-non-parallel theory. At Re = 100, confinement is globally stabilizing,
mostly due to a faster development towards a parabolic profile for confined
flows. The stabilizing effect of confinement almost disappears at Re ≈ 400.
However, when the structural sensitivity of the wakes is analysed by an adjoint-
based approach, fundamental differences are seen in the global wavemakers of
confined and unconfined wakes at Re ≈ 400.

The third and most complex flow case is immiscible two-fluid wakes and
jets. A parallel multi-domain spectral code is developed, where the kinematic
and dynamic conditions on the interface are imposed as coupling conditions. It
is shown that intermediate values of surface tension can destabilize stable wakes
and jets. In addition, surface tension has a considerable influence on the global
oscillation frequency and spatial shape of the global mode for unstable wakes.
The character of the mode is gradually changed from a wake instability to a
global shear layer instability. Both symmetric and antisymmetric modes are
encountered for both wakes and jets, depending on the strength of the surface
tension (value of the Weber number) and the flow case.
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Preface

This thesis considers numerical studies of global and local hydrodynamic insta-
bilities in wake and jet flows. The first part, Overview, contains an introduction
to the field, and sets the present work into a broader context. The second part,
Papers, consists of six papers. The papers are adjusted to comply with the
present thesis format, but their contents have not been altered compared to
published or submitted versions, except for minor corrections. The included
papers are:

Paper 1 Outi Tammisola, Atsushi Sasaki, Fredrik Lundell, Masaharu
Matsubara & L. Daniel Söderberg:
Stabilizing effect of surrounding gas flow on a plane liquid sheet. Journal
of Fluid Mech. 672 (2011), 5–31.

Paper 2 Outi Tammisola, Fredrik Lundell, Armin Wehrfritz, Philipp
Schlatter & L. Daniel Söderberg:
Global linear and nonlinear stability of viscous confined plane wakes
with co-flow. Journal of Fluid Mech. 675 (2011), 397–434.

Paper 3 Outi Tammisola, Fredrik Lundell & L. Daniel Söderberg:
Effect of surface tension on global modes of confined wake flows. Phys.
Fluids 23 (2011), 014108.

Paper 4 Matthew Juniper, Outi Tammisola & Fredrik Lundell:
Comparison of local and global stability properties of confined wake
flows. To appear in Journal of Fluid Mech.

Paper 5 Outi Tammisola:
Oscillatory sensitivity patterns for global modes in wakes. Submitted.

Paper 6 Outi Tammisola, Fredrik Lundell & L. Daniel Söderberg:
Surface tension induced global destabilisation of plane jets and wakes.
To be submitted.

May 2011, Stockholm

Outi Tammisola
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Overview and summary





CHAPTER 1

Introduction

Gases and liquids are also called fluids1. The motion of a fluid around a
solid body generates friction and lift forces on the body (e.g. drag and
lift on an airplane). Fluids and particles are transported in pipelines and
channels, where the consistency of the outgoing flow and the required
pressure drop are important. Many industrial processes involve mixing
of two fluids, e.g. the liquid and the air in sprays, the fuel and the
oxidizer in a combustion engine, different pulp streams in papermaking
or flows in food and agriculture industry.

The mixing efficiency is inherently related to the time-dependent
flow patterns, i.e. the unsteadiness of the flow. Imagine that you have
just poured milk into a cup of coffee. If the flow just rotates slowly
around with almost constant velocity, there is practically no mixing.
However, you take the spoon and make small and fast rotations, thereby
creating vortices of many different sizes that mix up the two liquids very
efficiently.

Strictly speaking, the liquid and air in sprays never mix but remain
always as separate phases due to the surface tension between them.
They are therefore called immiscible to each other. The apparent ”mix-
ing” in this case is due to the breakup of the liquid into drops. Coffee and
milk on the other hand are miscible, and build a homogeneous mixture
at the end.

The motion of a fluid can be represented by its velocity distribution
in time and space. Most often, a fluid can be treated as a continuous
medium2, and the laws of Newton governing its motion are formulated
in the Navier-Stokes equations, knowing its viscosity3 and initial state4.

1Sometimes, a flow of solid particles can also be described as a ”fluid”.
2The exception is rarified gases.
3In fact, many real fluids involving small particles are non-Newtonian, so that their viscosity
is related to the velocity field, often in a way that is unknown. The attempt to find this
relation for suspensions is a vital field of research today.
4in terms of the initial velocity, pressure, density and temperature.

1
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Figure 1.1. The flow of a fibre suspension through a paper
machine nozzle, from where it enters air as a thin liquid sheet.
One aim of the sharp contraction is to drag apart fibre flocs.
Figure from Lundell et al. (2011).

However, the complication comes in that the most known flows are un-
stable, drifting away from steady solutions to periodic or chaotic ones,
with many different time and spatial scales to resolve. Chaotic flows
with a continuous range of scales are called turbulent, and only a few
of those can be accurately computed today (even in a statistical sense),
despite the huge increase of computational power the last decades.

The pattern of the transition from a steady to an unsteady state
depends on the nature of the instability of the flow. For example, the
breakup of a liquid jet into small drops in a spray is initiated by the
growth of small waves on its surface5. By influencing the wave growth,
the breakup can be either delayed or promoted. This thesis deals with
the initial growth of surface waves and other hydrodynamic instabilities.
The type of flows under study are wakes and jets, inspired by the paper
manufacturing process.

5The details of the final breakup and the resulting drop distribution are complicated, and
out of scope of this thesis.
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Figure 1.2. The jet from the paper machine nozzle finally
hits two permeable wires. As the water flows through, the
fibres remain and build a ”fibre mat”. The structure of this
fibre network is important for the properties of the final paper
sheet. Figure from SPCI Summer Meeting 2007.

1.1. Jets and wakes in paper manufacturing

This paper you are holding in your hand right now is made of cellulose
fibres. However, its flat surface is not created by just pressing fibres
together — in that case it would hardly be possible to print anything
on it. To be able to get a homogeneous structure, we start with a
suspension of approximately 99 % water and 1% fibres. In a paper
machine, this suspension flows through structures that either generate
mixing for homogeneous fibre distribution, or accelerate the flow to drag
apart the dense structures the elongated fibres tend to form together,
called fibre flocs.

The suspension finally flows through a converging nozzle, the head-
box (figure 1.1), from which it enters air as a thin liquid sheet. The
sheet is typically 1 cm thick and 10 m wide. After a short distance this
sheet hits one or enters between two permeable screens, wires, where
water flows through and fibres remain (figure 1.2). Here the ”paper is
made” — the fibre network on the wires resembles the structure of the
final paper. The structure is also influenced by subsequent stages, where
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water

air

Unconfined liquid sheet 
instability

Confined wake/jet instability

Figure 1.3. The hydrodynamic instabilities occurring near
the papermachine nozzle — 1) vortex shedding behind the
vanes (or a possible jet instability in the case of water filled
AQ-vanes) and 2) waves in the surface of the liquid sheet sur-
rounded by stagnant air. Confinement means near-lying walls.

the paper is pressed and dried. The pressing and drying section is more
than ten times longer than the wire section — so much energy is spent
on taking out the water that we put the fibres into in the first place!
The water is necessary in order to distribute the fibres homogeneously.
A more detailed description about the different stages of the papermak-
ing process can be found in Lundell, Söderberg & Alfredsson (2011);
Norman, Engström & co-authors (2005).

Imagine now that we wish to make a paper with different layers —
e.g. put some fine fibres on the surfaces, but less costly and unbleached
rough fibres in the middle to save both money and environment. Inside
the headbox, different pulp streams could in principle be separated by
solid plates, vanes (figure 1.3). However, after the vanes we get wakes,
regions with locally lower velocity. Wakes are known to be susceptible
for oscillations (for a flow behind a cylinder, these oscillations are the
famous von Kármán vortex street, see Sec. 3.1). Furthermore, when the
liquid sheet moves through the air, waves appear on its surface. Both
flow instabilities, in the wakes and in the sheet (figure 1.3), cause the
pulp streams to mix with each other, and distort the layers in the final
paper.
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The wake alone might be stabilised by base bleed — building a small
channel inside the vane from which water flows out at the vane end
turning the wake into a more stable jet, a region with a locally higher
velocity. The concept is called an AQ-vane. But even so, we have the
surface waves on the liquid sheet interface. It is not known how the
different kinds of instabilities will interact and how to achieve the most
stable flow conditions for the liquid sheet.

1.2. Scope and structure of the thesis

This thesis aims to contribute to the understanding and control of insta-
bilities in plane wake and jet flows. This includes both one-fluid flows,
and those where two immiscible fluids with different velocities meet and
”mix”. The focus is on the occurrence of self-sustained oscillations thr-
ough so-called global instabilities. The precise meaning of the concept
will be clarified in the following chapters.

The instability in two-phase wakes and jets is governed by many
parameters: velocities, densities and viscosities of the two fluids, and
the strength of the surface tension, to name a few. We expect the
present work to solve a piece of this puzzle, by increasing the fundamen-
tal understanding in the field. The method of linear global modes has
been implemented for immiscible two-phase flows and carefully evalu-
ated for one-phase flows. At present, the parameters occurring in the
papermachine are not reachable, but at sight the findings might help to
understand whether or not global modes can occur in papermaking.

The thesis is organized as follows: The first part (Overview and
summary) with nine chapters contains an introduction to the subject,
methods, results and conclusions. Chapter 2 gives a basic introduction
to global and local stability. The next two chapters present relevant
results from the literature, for one-phase (Ch. 3) and immiscible two-
fluid wakes and jets (Ch. 4). The rest of the overview deals with the
present work. The flow cases under study are presented in Ch. 5, and
the numerical methods used in Ch. 6. The main results are summarized
in Ch. 7, and the conclusions and an outlook are found in Ch. 8. The
last chapter (Ch. 9) quantifies the work division between authors in the
manuscripts in the second part.

The second part (Papers) consists of six papers. Paper 1 deals with
the local stability of a plane liquid jet in air, papers 2, 4 and 5 with the
global stability of confined wakes, and paper 3 and 6 with the global
stability of immiscible wakes and jets with surface tension.



CHAPTER 2

Basic stability concepts

Global self-sustained oscillations of flows are an area of interest for exper-
imental as well as theoretical work. The ultimate goal is to characterise
whether a flow behaves as a noise amplifier returning towards the basic
state when the disturbance level is lowered, or if the flow is an oscillator
and continues to amplify the noise even if the source is removed. Be-
low the main theoretical framework around the self-sustained oscillators,
i.e. globally unstable flows, that will be used in other parts of this thesis
is summarised. Methods and theory behind studies of noise amplifier
flows are also touched on, since the liquid sheet in Paper 1 of this thesis
belongs to this category.

2.1. Linear global stability

When a flow problem has only time-independent boundary conditions,
it would seem natural to always observe a steady flow field. If the flow is
incompressible, the candidate for a steady flow field should then satisfy
the steady incompressible variant of the Navier-Stokes equations, i.e.
the law of motion for a Newtonian fluid:

Uj
∂Ui

∂xj
= −

∂P

∂xi
+

1

Re

∂Ui

∂xj∂xj
(2.1)

∂Uj

∂xj
= 0, (2.2)

in tensor notation, where i = 1, 2, 3 denotes the spatial coordinate (x,
y or z), and Re = ρ∗U∗L∗/µ∗ is the Reynolds number. The equations
here are brought into the nondimensional form, where the velocities
are scaled with an appropriate reference velocity scale U∗, the spatial
coordinates with a length scale L∗, and ρ∗ denotes the density and µ∗

the dynamic viscosity of the fluid.

However, this solution is not necessarily observed in reality, unless
all initial flow states go towards the steady solution. In reality, the
flow starts from a different state (e.g. when the flow fills a pipe for

6
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the first time), and more importantly, there are always disturbances,
such as sound waves, vibrations or surface imperfections, that are not
accounted for in the equations above1. Depending on the stability of the
steady solution above, the flow might develop towards this solution (if
the steady state it asymptotically stable), or migrate away from it (if
the steady state is unstable) until it reaches a different, time-dependent
state.

Linear stability investigates the stability of the steady state (Ū , P ),
against small amplitude deviations (ū, p). The overbars denote vectors,
and are related to the tensor notation as Ū = (Ui, i = 1, 2, 3). The total
flow field (the steady flow and deviation) can then be written as:

Utot,i(x, y, z, t) = Ui(x, y, z) + ui(x, y, z, t), (2.3)

Ptot(x, y, z, t) = P (x, y, z) + p(x, y, z, t). (2.4)

In the following, the steady part denoted by capital letters will be called
the base flow and the deviation with lowercase letters a disturbance.
This disturbance is introduced directly into the flow field and should be
distinguished from the disturbance sources mentioned above; we do not
address the receptivity process by which for example the sound waves or
surface imperfections are transformed into small deviations (ū, p). We
rather assume that small noise with all shapes and frequencies is always
available, and investigate what kind of noise a particular steady state is
unstable to.

The division of terms (2.3–2.4) is introduced into Navier-Stokes
equations:

∂ui

∂t
+ Uj

∂Ui

∂xj
+ Uj

∂ui

∂xj
+ uj

∂Ui

∂xj
+ uj

∂ui

∂xj
=

−
∂P

∂xi
−

∂p

∂xi
+

1

Re

∂Ui

∂xj∂xj
+

1

Re

∂ui

∂xj∂xj
(2.5)

∂Uj

∂xj
+
∂uj

∂xj
= 0. (2.6)

Since the base flow satisfies Eq. (2.1–2.2), all terms with only capital
letters cancel each other. Further, the linear stability assumes that
the disturbance is so small that the nonlinear term in the disturbance
(uj

∂ui
∂xj

) can be neglected. We are left with the linearized Navier–Stokes

1or in the case of surface roughness, in the boundary conditions
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equations (LNSE):

∂ui

∂t
+ Uj

∂ui

∂xj
+ uj

∂Ui

∂xj
= −

∂p

∂xi
+

1

Re

∂ui

∂xj∂xj
(2.7)

∂uj

∂xj
= 0. (2.8)

Now, we have an equation for the disturbance (lowercase letters) as
a variable, and the base flow (uppercase letters) as known coefficients,
and we would like to know which disturbances are amplified in time by
extracting energy from the steady flow, and which ones just decay. The
coefficients (steady flow) are independent of time, so we can Fourier-
transform in time:

ui = ûi(x, y, z)e−iωt, (2.9)

and similarly for pressure and possible other disturbance quantities (such
as the unsteady interface displacement in interfacial flows). Here, i =√
−1 and ω = ωr+iωi is thus a complex number. The Fourier-transformed

LNSE will now take the form:

−iωûi + Uj
∂ûi

∂xj
+ ûj

∂Ui

∂xj
= −

∂p̂

∂xi
+

1

Re

∂ûi

∂xj∂xj
(2.10)

∂ûj

∂xj
= 0. (2.11)

These can be seen as the kinematic equations for a small sinusoidal
oscillation around the steady state, with an oscillation frequency ωr and
an exponential growth or decay in time with exponent ωi. A disturbance
with an arbitrary ω and an arbitrary spatial shape does not satisfy
these equations. Mathematically, this becomes as an eigenvalue problem,
where ω is an eigenvalue, and each possible ω comes together with its
corresponding eigenfunction q = (¯̂u, p̂), giving the spatial shape of the
disturbance oscillating with this particular ω. The equations can be
written formally as:

Λq = −iωBq, (2.12)

where Λ is a linear operator acting on q to produce all the spatial terms
in Eq. (2.10–2.11), and Bq = ¯̂u . After spatial discretisation, Λ and
B become matrices, q a vector, and the problem can be solved with
standard methods for eigenvalue computations (Sec. 6.2).

The collection of ω for which a solution exists is called the spectrum.
A spectrum can have both a discrete part, where eigenvalues are sepa-
rated from each other by a certain finite distance, and a continuous part,
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where the possible solutions form a curve or a surface. Strictly speak-
ing, one should invert a Fourier integral (or an infinite sum) over all
ω, weighted depending on the initial condition, to obtain the predicted
dynamical behaviour of the flow. However, one can often gain enough
information by looking at a discrete subset of the spectrum. How this set
should be chosen, depends on the physical character of the disturbances,
and will be clarified further in sections 2.2 and 2.3.

Equations (2.9–2.11) above are general and yield the stability for
base flows of any space dimension. When the base flow is plane two-
dimensional, we can Fourier-transform also in the cross-stream (z-) di-
rection :

ui = ûi(x, y)eβz−iωt, (2.13)

where β is a real number; it is inappropriate to assume spatial growth
in a coordinate direction where the base flow vanishes. In this thesis,
we further assume that β = 0, i.e. that the disturbances at the onset of
the instability are two-dimensional:

ui = ûi(x, y)e−iωt. (2.14)

In the latter case, the governing equation then simplifies to two space
dimensions, i.e. i = 1, 2 in Eq. (2.10–2.11).

If Ansatz (2.9) is applied on a three-dimensional base flow, one ob-
tains three-dimensional global modes. Correspondingly, if Ansatz (2.13)
or (2.14) is applied, one obtains two-dimensional global modes, which is
the case in this thesis.

For flows where the disturbance structure is wave-like in the stream-
wise direction, and the length scale of the base flow variations in the
streamwise direction is much longer than the disturbance wavelength, it
is possible to do a further simplification using the local spatio-temporal
theory and one-dimensional eigenfunctions, described in the next sec-
tion. We shall also see that for disturbances that take the form of
wave packets convected downstream, the local theory provides a more
straightforward physical description of the disturbance.

2.2. Local spatiotemporal analysis

For base flows with one dominating velocity component, approximations
of the flow behaviour can be found based on one-dimensional eigenfunc-
tions of the local velocity profile in each streamwise position. This locally
parallel flow assumption means that all streamwise base flow gradients
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a) c)b)

Figure 2.1. Classification of the local stability of a flow in
terms of an impulse response: (a) stable, (b) convectively un-
stable, (c) absolutely unstable. Figure and classification from
Huerre & Monkewitz (1990).

are neglected in the equations:

Ū = (U(y), 0, 0), (2.15)

and then the disturbance can be Fourier-transformed also in x-direction,
resulting in the ansatz:

ui = ûi(y)eiαx−iωt+βz . (2.16)

This leads to the local linear stability equations:

−iωû + iαUû +
∂U

∂y
v̂ = −iαp̂ +

1

Re

(

−α2û + D2û
)

, (2.17)

−iωv̂ + iαUv̂ = −Dp̂ +
1

Re

(

−α2v̂ + D2v̂
)

, (2.18)

iαû + Dv̂ = 0, (2.19)

where D = ∂
∂y , D2 = ∂2

∂y2 , û is the streamwise and v̂ the vertical distur-
bance velocity.

Here we will only address two-dimensional base flows, but the theory
can be extended to three-dimensional flows as well. For two-dimensional
base flows, β is again a real wavenumber. However, to allow for spatial
growth of the disturbance in the streamwise direction, α needs to be
a complex number. Its real part (αr) is inversely proportional to the
streamwise wavelength of the disturbance, and the imaginary part αi

is the spatial growth rate (in the streamwise direction). The appro-
priate method for analysis of the flow depends on the character of the
instability, as explained below.

To classify different kinds of oscillations in the local setting, (Briggs
1964; Huerre & Monkewitz 1990) introduced the concept of absolute and
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convective instability related to the linear impulse response of flows (Fig.
2.1). Here, a flow field is disturbed locally at one streamwise point at
one instant in time, and the development of the generated wave packet
is investigated. If the amplitude of the linear impulse response grows
without a limit, but at the same time is convected downstream from
the source, the flow is locally convectively unstable (figure 2.1 b). If the
impulse response grows without a limit and is not convected away as
t → ∞, the flow is locally absolutely unstable (figure 2.1 c). For flows
with weak streamwise gradients of the base flow, i.e. weakly non-parallel
flows, a large enough region of local absolute instability shall give rise
to the same unstable two-dimensional linear global mode as obtained
from Ansatz 2.14 (Huerre & Monkewitz 1990), and the frequency and
shape of the global mode can be approximated through a local theory.
The theory is originally formulated for the Ginzburg-Landau equation, a
one-dimensional model equation for Navier-Stokes equations, but gives
reasonably good results for many real flows.

The global mode can be determined from local analysis by the fol-
lowing procedure. Equations (2.17–2.19) relate ω and α to each other,
which is called a dispersion relation. The local absolute frequency ω0 is
given by a saddle point of the dispersion relation in the complex ω-α-
plane (remember that both are complex-valued), such that ∂ω/∂k = 0,
and the so-called Briggs criterion is satisfied (Briggs 1964). The pre-
dicted frequency of the linear global mode is then obtained by an an-
alytic continuation of the dispersion relation into the complex plane in
the streamwise coordinate x and finding a point such that ∂ω0/∂X = 0,
where X is complex. If the growth rate ωi in this saddle point is positive,
then the flow is predicted to have an unstable linear global mode. The
frequency and growth rate of the global mode are predicted by this sad-
dle point, and the spatial shape can also be extracted by some further
elaboration (as is done in Paper 4 in this thesis). Details of this analysis
are out of the scope of the present work. The procedure might sound
very abstract. Fortunately, points of local absolute instability are rela-
tively easy to find in practice by standard methods (for basic principles,
see e.g. Huerre & Monkewitz (1990)).

The connection to local analysis shows also that if a flow supports
waves with zero group velocity, this can lead to an unstable linear global
mode2. If the flow is once locally disturbed, the wavepacket issuing

2Other mechanisms can also create global instabilities, such as recirculation and pressure
feedback in cavity flows.
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from this location never leaves the flow domain, but continues to grow
exponentially even when the original source is removed, until nonlinear
effects come into play and saturate its amplitude to a certain finite level.
It is important to notice that many unsteady flows do not support zero
group velocity waves. The boundary layer on a flat plate and one-phase
mixing layer are known examples, but there are numerous other such
flows.

So, how does the local analysis treat the instability in flows that are
not absolutely unstable, but convectively unstable? The noise in the
environment is most often not restricted to an impulse, but is continu-
ously present, at many different frequencies. How the flow responds to
small-amplitude forcing at a certain frequency is decided by the spatial
stability analysis. In this analysis, one decides a priori the value of a
real frequency ω, while a complex wavenumber α is sought, allowing for
spatial exponential growth in the streamwise direction (depending on
the sign of αi). Then the equations constitute a nonlinear eigenvalue
problem for α, which can also be solved by standard methods (Schmid
& Henningson 2001). Then, the mode with most negative αi can be
followed as a function of ω, to decide for which frequencies the spatial
growth is maximum. Those frequencies (and corresponding wavelengths
αr) are then assumed to dominate the flow.

Note that spatial stability has no significance for flows with an unsta-
ble global mode (a large enough region of absolute instability). The max-
imal amplitude reached by the spatial growth depends on the streamwise
length of the flow domain. If one frequency is amplified exponentially in
time, it will finally overcome the maximal spatial growth for any domain
of finite extent.

2.3. Transient growth of global modes and convective
instability

A peculiarity of the global modes obtained by solving the full linear
problem is that they become increasingly nonorthogonal for more par-
allel base flows (e.g. high Reynolds numbers). This means that there
might be transient growth — during a long time, the sum of the modes
can grow faster in amplitude than any individual modes, before the ex-
ponential growth of the least stable mode takes over. The transient
growth makes it possible, although cumbersome, to study convectively
unstable flows by looking at a sum of many stable global eigenmodes.
This was done for the Blasius boundary layer by Ehrenstein & Gallaire
(2005), who by animating a sum of modes in the global spectrum got
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structures that propagated downstream and increased in amplitude at
the same time, resembling in shape the Tollmien-Schlichting waves found
in their local spatial analysis. Closely related to the transient growth
is the notion of an optimal initial condition — the initial sum of modes
that will result to the largest amplification of energy after a certain time.
This can be calculated at the same time with the transient growth —
for details, see Schmid & Henningson (2001). For the Blasius boundary
layer, the optimal initial condition was seen to consist of a combination
of Tollmien-Schlichting waves and streamwise tilted structures experi-
encing transient growth through the so-called Orr mechanism (Åkervik,
Ehrenstein, Gallaire & Henningson 2008). In general, a large number
of global eigenmodes are needed to correctly determine the dynamics of
convectively unstable flows, and without a priori knowledge of the flow,
their streamwise boundary conditions are ambiguous. For these reasons,
other methods are often preferred.

2.4. Sensitivity

Non-normality of the global modes is also connected to the sensitivity
of the eigenvalue to structural perturbations of the system matrix. The
region where the spectrum is most sensitive to small local perturbations
can be identified by invoking the concept of structural sensitivity (Gian-
netti & Luchini 2007), based on the eigenfunctions of the linear global
stability problem and its adjoint problem3. One can show that if a local
perturbation with a fixed amplitude is introduced into the linearized mo-
mentum equations, the largest movement of the eigenvalue occurs when
the perturbation is placed inside the region where direct and adjoint
eigenmodes overlap, i.e. the wavemaker region4 (Giannetti & Luchini
2007). A consequence regarding the numerical solution is that the lin-
ear problem must be well resolved inside the wavemaker region, and
naturally, that the wavemaker region must be inside the computational
domain.

Physically, a sensitivity of the eigenvalues for changes in the flow
field can be exploited to control the flow. The arbitrary structural per-
turbations have been further developed by Marquet, Sipp & Jacquin
(2008) to yield specifically the sensitivity to base flow modifications.
Furthermore, the presence of a small control cylinder in the flow field

3The adjoint equations are presented in Sec. 6.4.
4The term wavemaker is also used in the context of the local weakly non-parallel method
(Sec. 2.2), for the streamwise location of the complex saddle point determining the global
mode frequency. This is not what is meant here.
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has been modelled as a steady volume force by Marquet, Sipp & Jacquin
(2008), and both steady and unsteady force by Pralits, Brandt & Gi-
annetti (2010). Other means of passive flow control could potentially
be modelled in similar ways. The formulations are linear in terms of
the base flow modification, which has two immediate consequences: the
forcing needs to be of a small amplitude, and only local forcing can be
investigated. Any mechanism requiring a certain spatial extent or struc-
ture of the forcing cannot be treated, nor interactions between several
mechanisms.

It should be noted that an adjoint-based sensitivity approach was
introduced earlier by Hill (1992), to model specifically the effect of a
small control cylinder inserted in a cylinder flow, and the derivation
seems to be equivalent to the ones of Marquet et al. (2008) and Pralits
et al. (2010). However, the expressions given by Giannetti & Luchini
(2007) and Marquet et al. (2008) are also applicable for other flow cases.

2.5. Local nonlinear theory

In parallel to the linear global modes always taking into account the
whole domain, another idea has developed the during the recent years
from the front concept, where the oscillating flow field is divided into
two parts — an upstream part which can be considered as linear, and
a downstream part which is in the bifurcated state, experiencing a non-
linear oscillation. If this division can be done, could it be possible to
predict the nonlinear frequency by looking at the linear stability prop-
erties in the ”last linear point”? This attempt resulted in the concept of
nonlinear absolute instability, defined in terms of the nonlinear impulse
response: if the trailing edge of a saturated nonlinear wave train induced
by any finite amplitude perturbation at t = 0 is moving downstream,
the instability is nonlinearly convective. If the trailing edge is moving
upstream, it is nonlinearly absolute.

In the local nonlinear theory for the Ginzburg-Landau equation with
variable coefficients, the frequency of the nonlinear oscillation is selected
by the frequency of the point separating the locally linearly convec-
tively unstable and locally linearly absolutely unstable point, ωca (Pier &
Huerre 2001). So in this sense, this theory returns to the early concepts
in Huerre & Monkewitz (1990), previously introduced to simplify the
linear global mode problem. The nonlinear elephant mode rises steeply
with the same shape as the spatial downstream propagating k−-wave
towards the onset point of local absolute instability, where it saturates.
It has been demonstrated recently that slowly spatially developing flows
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might support this kind of nonlinear global mode. The results are fur-
ther described in Ch. 3.

2.6. Concluding remarks

In this chapter, different complementary (and sometimes competing!)
approaches on the stability analysis of flows have been presented. Some
useful methods are left out since they are not referred to in this thesis.
In particular, the parabolized stability equations (PSE) for studies of
convective instability and the weakly nonlinear theory around linear
global modes for studies of global instability should be included to make
the list complete.

The relation between local and global methods presented in this
section can be summarized as follows. Obviously, some base flows de-
velop too fast in any direction to be characterised by local methods only
taking into account one velocity component. Then either linear global
modes or fully nonlinear simulations must be used. This also applies
to flows where a three-dimensional disturbance is more amplified than
any two-dimensional disturbance — these cases are often not accounted
in the local analysis (where Squire’s theorem is valid, see e.g. Schmid
& Henningson (2001)). But on the other hand, in the cases where the
streamwise direction of a 2D flow is more homogeneous, the global modes
might be too non-orthogonal to give a good picture of the flow. In par-
ticular, convective instabilities, and global oscillations in almost parallel
but strongly nonlinear flows, are hard to represent using linear global
modes. In these cases, there is hope that local methods might be both
cheap and useful.

All the methods in this section deal with predicting stability be-
haviour of the flow based on the steady solution only. This should be
distinguished from structure identification of the final nonlinear flow
field; for that purpose, a time-dependent flow field can be projected into
a set of POD modes (Berkooz, Holmes & Lumley 1993), Fourier modes
(Rowley, Colonius & Basu (2002) or Paper 1 in this thesis) or Koopman
modes (Rowley, Mezic, Bagheri, Schlatter & Henningson 2009)5. The
purpose of the methods of stability analysis presented in the current
section is partly to predict the stability of the flow when the whole time-
dependent flow field is unknown, and partly to understand the physical
mechanisms behind the initial growth of instabilities in different flows.

5An approximate linear method to do structure identification and sometimes gain insight
into linear dynamics in nonlinear flows will be mentioned in Sec. 3.3.



CHAPTER 3

Global stability of one-phase wakes

In this chapter, some classical results and newer developments on global
instability of one-phase wakes are presented. One-phase jets are not
described, since they are most often globally stable at moderate Rey-
nolds numbers. For confined jets at high Reynolds numbers, separation
bubbles at the wall can create instabilities that could potentially have a
global origin (Villermaux & Hopfinger (1994); Malm, Schlatter & Hen-
ningson (2011)). Results for other shear flows are touched upon in Sec.
3.4 about global modes in complex geometries.

3.1. Cylinder wake

A plane wake behind a circular cylinder is known to become unsteady
at a critical Reynolds number Re ≈ 47 − 49, and start to shed two-
dimensional, alternating vortices in the wake region. The unsteady flow
oscillates periodically in time around its mean, and the resulting vortex
pattern is called the von Kármán vortex street. The nondimensional os-
cillation frequency or Strouhal number is defined as St = Ud/ν, where
d is the cylinder diameter and U the (uniform) inflow velocity. The
Strouhal number lies in the range St = 0.1 − 0.2 for a two-dimensional
vortex street. Transition to three-dimensional vortex shedding is ob-
served around Re ≈ 180 (Williamson 1996).

The transition from a steady flow to vortex shedding is theoretically
classified as a Hopf bifurcation (e.g. Noack & Eckelmann (1994)), the
onset of which can be tracked from the destabilization of a linear global
mode. Due to the importance of the wake behind a cylinder in engi-
neering applications and its computational simplicity at low Reynolds
numbers, this flow has been a test case for many conceptual studies of
wake instabilities and global modes in general. In this section, a few
works on cylinder wakes that will be referred to in Part II of this thesis
are presented.

16
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3.1.1. Passive control of cylinder wakes

In the experiments of Strykowski & Sreenivasan (1990), the dynamics
of a cylinder wake was modified by inserting a much smaller control
cylinder in the near-wake region. They showed that placing the control
cylinder in certain spatial regions could suppress the vortex shedding,
and determined the limits of the stabilizing region for different Rey-
nolds numbers up to Re = 701. The effect was always observed in the
near-wake region. The oscillations were never suppressed if the control
cylinder was placed further downstream from the large cylinder than four
(large cylinder) diameters, neither further upstream than one diameter.

The effect was first modelled theoretically in the often overlooked
work of Hill (1992)2. He modelled the small cylinder as a force, with a
steady component acting on the base flow, and an unsteady component
acting on the disturbance. Then he considered changes in the eigenvalue
due to small changes in base flow and disturbance due to both the steady
and unsteady part of the force, by linearizing the equations with respect
to these changes and projecting to the adjoint global modes (equations
presented in Sec. 6.4 of this thesis). He obtained regions where the con-
trol cylinder should be placed in order to stabilize the flow, for different
Reynolds numbers. The regions and their development with Reynolds
number were qualitatively similar to Strykowski & Sreenivasan (1990),
although a quantitative agreement was not reached.

The adjoint-based sensitivity approach has been rediscovered in dif-
ferent forms by several authors in the recent years, as described in Sec.
2.4. Here, we look into results for a circular cylinder. The structural
sensitivity of a cylinder wake to small perturbations in the momentum
equations was examined in the work of Giannetti & Luchini (2007), who
also compared this with the stabilizing region of Strykowski & Sreeni-
vasan (1990). A qualitative similarity was found for Re ≈ 50. They
also gave an expression for the sensitivity to an arbitrary volume forc-
ing. If the force model for the small cylinder of Hill (1992) is inserted
into this expression, one gets an expression identical to Hill (1992) for
the unsteady part of the cylinder effect, which indicates that the two
approaches are equivalent.

1The largest value of Re for which the vortex shedding could be suppressed depended on
the diameter of the control cylinder. In the same paper, an example of suppressed vortex
shedding is shown for Re = 90, with diameter ratio 7 between the original and control
cylinders.
2I would like to thank Vassilis Theofilis for pointing out the significance of this reference for
me.
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The sensitivity to a steady volume force (i.e. a volume force acting on
the base flow) was rediscovered by Marquet et al. (2008) for a stationary
cylinder. Pralits et al. (2010) included both the steady and unsteady
forces for a rotating cylinder. Beside presenting sensitivity maps for the
change in growth rate and frequency as functions of forcing position,
Marquet et al. (2008) also modelled a small control cylinder as a steady
force. Their approach seems to be equivalent to the one of Hill (1992)
regarding the steady part, apart from a different choice of constants
in the drag model. The stabilizing regions given by Marquet et al.
(2008) without a model for the unsteady force give better agreement
with experimental results than Hill (1992) for some parameter values,
and worse for others. This could indicate that the model for the unsteady
force in Hill (1992) should be developed further, although the reason
could also be that the linear theory based on small modifications (Sec.
2.4) is only approximately valid.

A different experiment on cylinder wake control was made by Unal &
Rockwell (1987). They inserted a long splitter plate along the centerline
of a cylinder wake, and measured the vortex formation length depending
on the position of the leading edge of this plate. The vortex formation
length gives the distance from the cylinder to the first vortex, and was
shown to be inversely proportional to the amplitude of the near-wake
velocity oscillations. According to Williamson (1996), the vortex forma-
tion length has generally been found to be inversely proportional to the
maximum of velocity fluctuations.

For Re = 142 in Unal & Rockwell (1987), the oscillations were sup-
pressed in when the (nondimensional) distance L between the wake and
the cylinder was shorter than L = 3. For larger distances (L > 3), the
plate did not alter the wake structure. For higher Reynolds numbers
however (Re = 785 and Re = 3645), the vortex formation length os-
cillated as a function of the splitter plate position, i.e. it had several
successive local maxima and minima with changing plate position, also
quite far downstream (the last minimum shown in the paper occurs at
x = 13.5). This shows that the fluctuations of the velocity field are af-
fected by the presence of the plate, which the authors suggest is due to a
weaker absolute instability for this higher Reynolds number. This result
indicates that wakes at higher Reynolds numbers can to some extent be
controlled by interference in the assumably convectively unstable flow
region downstream. Also, the effect of this interference has successive
minima and maxima in space. The amplitude of the pressure signal in



3.1. CYLINDER WAKE 19

the splitter plate position does not seem to have any successive minima
and maxima, however.

3.1.2. Confined cylinder wakes

The mixing and heat transfer in a channel flow can be increased by in-
serting small cylinders in the channel. Therefore, wakes behind a cylin-
der confined between two walls parallel to the direction of the incoming
flow, have also been studied extensively.

Experiments on wake instability behind cylindrical rods confined
in a channel were performed by Shaw (1971), Davis, Moore & Purtell
(1984) for a rectangular cross-section of the rods, and by Richter &
Naudascher (1976) for a circular cross-section. The inflow velocity to
the channel was kept fixed, while the cylinder-to-channel diameter ratio
was varied from 0.05 to 0.35 (Shaw 1971) and 0.167 to 0.5 (Richter &
Naudascher 1976). All studies report a substantial increase in the non-
dimensional frequency for confined flows compared to unconfined ones,
up to 12 %. The Reynolds numbers in these studies cover a broad range,
from Re = 100 (Davis et al. 1984) to Re = 106 (Richter & Naudascher
1976), so the increase of frequency with confinement can assumed to be
universal.

When it comes to stability, Richter & Naudascher (1976) report
an increased amplitude of the lift-force oscillations with confinement,
which could be coupled to destabilisation. Furthermore, a DNS study
of cylinders with a quadratic cross-section by Suzuki, Inoue, Nishimura,
Fukutani & Suzuki (1994) reported that the critical Reynolds number
(based on the cylinder height) increased with confinement; if, instead,
Re was based on total channel height, the trend was the opposite. The
same was found by Davis et al. (1984) at low cylinder Reynolds numbers,
but for Re ≈ 750 and higher, confinement increased the amplitude of
the lift oscillations regardless the definition of the Reynolds number.

It should be noted that both the geometrical constraints, definition
of the Reynolds number on the incoming flow, and the absence of co-flow,
lead to that the results for cylinder wakes are not directly applicable to
co-flow wakes, the flow case investigated in Papers 2, 4 and 5 of this
thesis. One would however intuitively expect a similar behaviour for
co-flow wakes at high enough Reynolds numbers.
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3.1.3. Nonlinear absolute instability of cylinder wakes

The review of Chomaz (2005) reports results for a parallel wake that
is globally linearly stable, but in DNS produces a vortex shedding with
a frequency in agreement with the local nonlinear theory (Sec. 2.5).
Such departures in well converged global stability limits of real nonpar-
allel flows3 are not yet known to the author of this thesis, but the final
nonlinear oscillation often differs in shape and frequency from the linear
global mode.

To see which one of the theories for weakly non-parallel flows is more
relevant for characterising the saturated nonlinear oscillation, Pier &
Huerre (2001) compared two different frequency predictions for the wake
behind a cylinder: the saddle point frequency ωs (local linear weakly-
nonparallel theory) and ωca(local nonlinear theory).

In a marginally unstable case, the oscillation frequency practically
coincided with ωs and departed from ωca by more than 20 %, thus val-
idating a linear approach. When the Reynolds number was increased
beyond onset, the local linear frequency ωs gradually departed from the
nonlinear frequency observed in DNS. However, ωca approached the ob-
served frequency and coincided with it around Re = 180, just beyond
the onset of three-dimensional oscillations. At that point the deviation
from ωs was 50 %. This demonstrates the possibility of local linear
analysis to predict frequencies in the globally nonlinear regime.

A similar analysis was made for a low-density jet numerically by
Lesshafft, Huerre, Sagaut & Terracol (2006) and experimentally by Hall-
berg & Strykowski (2006). This flow admits an absolutely unstable inlet
profile, so a transition point from locally convective to locally absolute
instability is not present. The local nonlinear theory conjectures instead
that if the absolutely unstable region is large enough, a nonlinear global
oscillation will be observed with the absolute frequency at the inlet.
Both studies found a reasonable agreement with that frequency.

Both theories are based on the local framework. However, the flow
becomes more parallel with increasing Re, so according to the weakly
nonparallel theory, ωs should gradually approach the frequency of a lin-
ear global mode. Therefore, if a linear global mode (ansatz 2.13) would
be computed, it would probably also depart from the DNS frequency for
high Re, as ωs above does.

3Here, the term ”real flows” refers to spatially developing base flows obtained by solving the
steady Navier-Stokes equations (Eq. 2.1–2.2), as opposed to artificial parallel base flows.
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3.2. Co-flow wakes

Already Huerre & Monkewitz (1990) addressed the appearance of ab-
solute instability in co-flow (or counterflow) wakes and jets. The jets
and wake base flows were symmetric with respect to the centerline, and
both the inner and the outer stream had plug flow (i.e. uniform) veloc-
ity profiles. Furthermore, the analysis was fully inviscid. It was shown
that uniform density wakes and jets can have absolute instability, and
that this absolute instability is enhanced by a high velocity difference
between the two streams (or equivalently, a high absolute value of the
shear ratio, presented in Sec. 3.2.1).

A way to control the wake behind a flat plate is based on this idea.
By blowing air/liquid out of the plate so that the velocity ratio be-
tween the wake and the free stream decreases, the oscillations can be
suppressed. In agreement with the basic theory presented in Huerre &
Monkewitz (1990), base bleed is known to be mostly stabilizing (e.g.
Wood (1967); Wong (1985); Schumm, Berger & Monkewitz (1994)).

Hammond & Redekopp (1997) made direct numerical simulations for
asymmetric and symmetric wakes behind a flat plate, with and without
suction at the trailing edge. They showed that a high enough suction
speed stabilized the global mode. With suction, the velocity difference
at the inlet increases, but the wake region shortens, and can at the end
no longer sustain a global mode.

3.2.1. Confined co-flow wakes

The effect of confinement on the absolute instability of wakes and jets,
represented by the same type of symmetric model profiles as in the pre-
vious studies, was conducted by Juniper (2006). The stability analysis
was still inviscid, and the base flow profile step-like, with zero shear layer
thickness and without wall boundary layers.

Juniper (2006) parameterized the flow in terms of two nondimen-
sional numbers, termed h and Λ, characterizing wall distance and ve-
locity ratio of inner and outer streams, respectively. For a more precise
definition and an illustrative figure, the reader is directed to Sec. 5.1,
where nondimensional parameters of the present work are introduced.

It was shown that in the inviscid limit, uniform density wakes are
most absolutely unstable when h = 1, a case where the wall distance
is twice the wake thickness. In a recent paper (Rees & Juniper 2010),
the analysis was extended to viscous stability of velocity profiles with
a finite shear layer thickness, although the slip condition on the wall
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was retained for both the base flow and the (linear) disturbance in the
stability analysis. The destabilising effect of confinement observed in the
inviscid case was still present, but somewhat weaker for viscous wakes,
and the most absolutely unstable case occurred at a larger wall distance
than for inviscid wakes.

The analyses above are made on model velocity profiles, but they
can be extended to spatially developing flows in the weakly nonparallel
flow theory described in Sec. 2.2, as is done in Paper 4 of this thesis.

3.3. Linearisation around the nonlinear mean flow

In some works (e.g. Hammond & Redekopp (1997) and Camarri & Gi-
annetti (2007)), the nonlinear mean flow is used as a base flow for a lin-
ear stability analysis, rather than the steady solution to Navier-Stokes
equations. There might be two reasons to use such an approach. First,
in some cases it can be easier to obtain the mean flow than to solve
the steady Navier-Stokes equations, e.g. from already performed direct
numerical simulations (as in Hammond & Redekopp (1997)), Reynolds-
averaged Navier-Stokes (RANS), or even from measurements. Second,
one might try to involve some nonlinearities in the linear computations,
to obtain information on structures and frequencies occurring in the fi-
nal nonlinear flow field, instead of the initially growing disturbances.
Camarri & Giannetti (2007) did the latter, searching for the inversion
point of vortices observed in the nonlinear DNS of confined wakes by per-
forming a global linear analysis around the nonlinear mean flow. They
explained the observed structures based on the changes in the mean flow
due to nonlinear diffusion.

Naturally, this approach can only be expected to work when there
is a clear separation of scales, and the global mode does not actively
interact with its harmonics. It might also be necessary to include the
effect of the nonlinear diffusion on the mode itself, by introducing an
appropriate eddy viscosity model, which has been done in the local linear
stability around a mean flow in a turbulent boundary layer (Hoyas &
Jimenez (2006), and later refined by Pujals, Garcia-Villalba, Cossu &
Depardon (2009)).

For the mean flow approach to be really consistent, one should also
get a neutrally stable global mode as a result. If the global mode around
a mean flow still has a positive growth rate, it obviously does not rep-
resent a saturated oscillation. It was shown by Sipp & Lebedev (2007)
that the mean flow approach for a cavity yields only global modes with
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strongly positive growth rates and frequencies far from the observed
nonlinear frequencies, while for the wake behind a cylinder it yields a
neutrally stable mode with a frequency close to the nonlinear one. Both
cases were made without an eddy viscosity model.

Obviously, more work is required before any definite conclusions are
drawn on the usefulness and applicability of stability methods based on
the mean flow. It might be argued that the physical information poten-
tially gained is not worth the effort, and that it is more reliable to extract
the nonlinear frequencies and structures directly from a nonlinear sim-
ulation. There is, however, a great need for methods for predicting the
behaviour of flows without exact knowledge of the actual time-dependent
flow fields, not the least in industry.

3.4. Linear global modes in complex geometries

With increasing computational power, we have seen global modes in
more and more complicated flows. Development of numerical methods
to handle large eigenvalue problems has also stimulated this field. With
iterative Krylov subspace methods it is possible to recover a large num-
ber of the least stable modes of large systems. Memory requirement
during the computation is still a problem, which might be helped either
by solving the system in parallel, like in the present work, or by using
a time-stepping method based on a linear Direct Numerical Simulation
code. The former numerical approaches is further described in Ch. 6.

The practical requirements on the code can have large differences
depending of the Reynolds number, geometry and dimensionality of the
ansatz (2.14 respective 2.13 or 2.9). The typical size of the global mode
problem increases from Gb to Tb when going from two to three dimen-
sions. For complex geometries, the boundary conditions and varying
resolutions needed in different regions can be considerably more difficult
to implement than for simple, almost rectangular geometries. For this
reason, existing direct numerical simulation codes are often the tool of
choice to compute linear global modes in complex geometries or three-
dimensional flows.

Three-dimensional global modes (using ansatz 2.9) have recently
been computed by a time-stepping method for a few flow cases, for
example the jet in cross-flow (Bagheri, Schlatter, Schmid & Henningson
(2009), Ilak, Schlatter, Bagheri & Henningson (2011)). This is the only
possible approach for three-dimensional base flows. Two-dimensional
global modes with an inclusion of a spanwise periodicity (Eq. 2.14) are
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also sometimes called ”three-dimensional global stability”, although the
computational requirements are similar to those of (Eq. 2.13), and many
works using the latter approach can be found. Some of the more recent
ones are the compressible global modes of a cold supersonic jet (Nichols
& Lele 2011), and the same ones of swept Hiemenz flow (Mack & Schmid
2011).

The inclusion of a spanwise wavenumber (2.14) can be very rele-
vant in cases where the first bifurcation is not a priori known to be
two-dimensional. Laminar two-dimensional separation bubbles behind
sharp (e.g. Barkley, Gomes & Henderson (2002)) and smooth (e.g. Mar-
quet, Lombardi, Chomaz, Sipp & Jacquin (2009)) backward-facing steps,
and in a boundary layer (e.g. Theofilis, Hein & Dahlmann (2000)) are
known examples of flows, where spanwise periodic global modes always
seem to be more amplified than purely two-dimensional global modes.
The spanwise periodic modes were also destabilized for lower values of
recirculation (Barkley et al. (2002) and Theofilis et al. (2000)) than the
purely two-dimensional ones, due to a lift-up mechanism.



CHAPTER 4

Stability of two-fluid immiscible shear flows

When streams of two different fluids with different velocities meet, a
two-phase shear layer, a wake or a jet is formed. Section 4.1 deals with
axisymmetric wakes and jets. This background is necessary to highlight
the similarities and differences to plane wakes and jets, which are the
main topic of this thesis. Section 4.2 presents more thoroughly the ba-
sics of instability of plane shear layers, wakes and jets. Only immiscible
fluids are studied in this thesis, and the review below reflects this basic
assumption. Miscibility effects have been investigated by e.g. Govin-
darajan (2004) regarding the local stability of two-fluid plane Poiseuille
flow, Selvam, Merk, Govindarajan & Meiburg (2007) for core-annular
flow, and d’Olce, Martin, Rakotomalala, Salin & Talon (2009), Selvam,
Talon, Lesshafft & Meiburg (2009) for absolute instability of miscible
coaxial flows.

4.1. Coaxial wakes and jets with surface tension

The stability of a cylindrical liquid jet injected into gas or another liquid
is one of the fundamental problems in fluid mechanics, and is of impor-
tance in a large number of applications including ink jet printing, spray
atomization, and emulsification in microchannels. The reason is that
the instability directly controls the breakup to droplets and the follow-
ing droplet size distribution. The section is divided into two parts. First,
we look at the classical case of a high-speed liquid jet surrounded by gas.
Second, we see how absolute instability occurring in certain low-speed
liquid jets surrounded by another liquid can be related to flow patterns
of the jet.

4.1.1. Liquid jets surrounded by gas at high Reynolds numbers

The first theoretical stability study of liquid jets was made already by
Rayleigh (1878). He showed analytically that a cylindrical liquid jet in
the absence of ambient fluid is unstable to all wavelengths longer than
its circumference. The assumption of a liquid jet in vacuum was made

25
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to imitate the situation where the liquid jet is surrounded by a medium
with a much lower density, i.e. a gas. Since the growth rate of this
Rayleigh instability was maximum for a wavelength slightly longer than
the circumference, the liquid jet would according to Rayleigh (1878)
break into droplets with a diameter comparable to the jet diameter1.
Later, Weber (1931) extended the study to take into account the liquid
viscosity, and the density of the ambient fluid. He postulated that while
Rayleigh instability dominates for high surface tension and low velocity
difference between liquid and ambient fluid (low Weber numbers), in
other flow regimes the aerodynamic shear from the ambient fluid is more
important for the stability. It was shown by Taylor (1962) that when
the inertia of the surrounding gas is dominant (high Weber numbers),
a liquid jet will break up into droplets substantially smaller than its
diameter. This flow regime is utilized in air-blasted atomization, where
a high speed gas is blown in parallel with the liquid jet, to obtain a rapid
breakup of the jet into small drops.

The problem of the original theory of Weber (1931) was that it
seemed to greatly underpredict the growth rates and overpredict the
break-up lengths seen in experiments. Sterling & Sleicher (1975) im-
proved the theory with partial success. They proved indirectly that
relaxation destabilized the flow — by deriving a parameter to account
for the relaxational effect, and by comparing the fit to experiments for
various lengths of the inlet pipe. Another new feature that Sterling &
Sleicher (1975) considered was the viscosity of the ambient gas. This
was done by a semi-empirical correction of the normal stress at the jet
surface, considering the pressure in a shearing flow over a wavy cylin-
der. The conclusion was that the viscosity of the ambient gas had a
stabilising effect.

The effects described above form the basic ingredients of all further
research on liquid jets surrounded by gas at moderate to high Reynolds
numbers, and are introduced for comparison with planar liquid sheets
later on. The literature on cylindrical liquid jets is rich. The theoret-
ical studies have been extended towards nonlinear stability (e.g. Yuen
(1968), Chaudhary & Redekopp (1980)), absolute instability (e.g. Leib
& Goldstein (1986)), and various other physics such as electrohydrody-
namic instability (Mestel 1994).

1It should be noted that the drop formed from a liquid cylinder of length 2πr has the radius
1.67r. Also, the most unstable wavelength is slightly larger than the jet circumference.
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4.1.2. Absolute instability of liquid-liquid jets

Coaxial jets formed when two different liquids meet and mix inside a
channel appear in chemical processing, microemulsification and polymer
extrusion (Guillot, Colin, Utada & Ajdari 2007). Liquids often have
higher viscosities than gases, and more equal densities than one gas
and one liquid, and the assumption of one phase being inviscid and/or
dynamically less important might not apply. In such cases, both phases
need to be modelled (Meister & Scheele 1967). Visualisations of different
flow patterns for a confined oil-in-water jet, including both axisymmetric
and sinusoidal oscillations, rapid atomisation and steady straight jets,
can be seen in Charalampous, Hardalupas & Taylor (2010).

Opposite to the inviscid flow regime, many of the liquid-liquid jets
(and some of the liquid-gas jets such as ink jets) occur in the low Rey-
nolds number (or Stokes flow) regime; the cases connected to micromix-
ing of several liquids and production of small droplets have grasped much
attention lately (e.g. Barrero & Loscertales (2007); Joanicot & Ajdari
(2005); Cubaud & Mason (2006); Guillot et al. (2007)). Two distinct
flow regimes can be observed for liquid-liquid jets at low Reynolds num-
bers: dripping, where the jet breaks up to droplets directly at or close to
the nozzle, and jetting, where the jet remains steady for a few diameters
or even does not break up at all (Meister & Scheele 1968). In the case of
jetting, depending of the density and viscosity ratio between inner and
outer flows, the jet either expands or contracts before breakup. Since
the droplets produced are of similar size as the local jet circumference,
the droplet size is controlled by the inner and outer flow rates in jetting,
but not in dripping.

It should be mentioned that the physics of instability in micromixing
flows is very different from the conventional shear flow instability (Ch.3).
Close to the zero Reynolds number limit, the advective terms can be
neglected, and all production mechanisms where fluctuations extract
energy from the mean flow shear are simply absent. In particular, the
growth of unstable global modes in shear flows tend to depend on a
competition between energy production (from the base flow gradients)
and advection with the base flow velocity, but for low Reynolds numbers
both these terms are very small.

Despite the differences compared to conventional shear flows, in the
study of Guillot et al. (2007), dripping was seen to be connected to
the appearance of local absolute instability in the flow. The limit be-
tween dripping and jetting in their experiments was accurately predicted
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by the appearance of absolute instability of the inlet flow profile in a
very simplified model, neglecting inertia and radial gradients of both
flows (and naturally, using the locally parallel flow assumption). The
inlet profile became absolutely unstable for We < 1. Later, Utada,
Fernandez-Nieves, Gordillo & Weitz (2008) showed experimentally and
computationally that a liquid jet surrounded by a more viscous liquid
could be convectively unstable at the inlet but become absolutely un-
stable downstream and start to produce drops. This was attributed to
the expansion of the liquid jet into the more viscous liquid, and the
consequent deceleration and decrease of Weber number to We < 1.

Absolute instability to lateral disturbances, i.e. waves with a nonzero
azimuthal wavenumber, was considered by Herrada, Ferrera, Montanero
& Gañán-Calvo (2010), who also relaxed the assumption of zero Rey-
nolds number. This led to a different form of absolute instability, the
sinuous oscillations called whipping. The whipping prevented the jetting
regime to be reached for some of the high-viscosity jets.

Similar transitions between different flow patterns have been ob-
served in numerical simulations of related, but more complicated flow
configurations, such as the flow in a micro-fluidic T-junction (Gupta &
Kumar 2010), and diverging microchannels (Cubaud & Mason 2006).

Since regions of absolute instability exist for the microjets, the tran-
sition from jetting to dripping could be controlled by a destabilization
of a linear global mode. The approach presented in this thesis for plane
two-dimensional two-phase jets would apply to axisymmetric flows as
well, but require the derivation of a new set of interfacial boundary
conditions. The concept of absolute instability does not apply in any
straight-forward manner to three-dimensional flows, which necessitates
either the computation of three-dimensional linear eigenmodes or the
use of structure identification methods such as POD modes (Berkooz
et al. 1993).

4.2. Plane wakes, jets and shear layers with surface tension

Plane wakes and jets are in one way fundamentally different from the
cylindrical ones: a plane liquid interface increases its surface area when
perturbed, so surface tension acting alone will try to return the in-
terface to its unperturbed position. Hence, there is no counterpart
to Rayleigh instability (Sec. 4.1.1) for planar jets and wakes, i.e. no
convective instability caused purely by surface tension. Basics of the
convective shear layer instability of two fluids, starting from effects in
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Kelvin-Helmholtz setup, will be presented in section 4.2.1. Absolute
instability of plane wakes, jets and mixing layers is introduced in the
following section (4.2.2), and section 4.2.3 concentrates on the plane
liquid sheet surrounded by gas at moderate Reynolds numbers.

4.2.1. Convective instability of two-fluid shear layers

A shear flow where one upper and one lower fluid stream move with
different (free stream) velocities is called a shear layer. The shear layers
usually support a convective instability. If both layers are assumed to
have uniform mean velocities, and an inviscid stability analysis is made,
one obtains the Kelvin-Helmholtz instability. The growth rate of the
Kelvin-Helmholtz instability is linearly proportional to the wavenum-
ber, so the growth rate goes to infinity when the wavenumber increases
(i.e. when the wavelength decreases). For real shear layers, the growth
rate curve follows the Kelvin-Helmholtz line at low wave numbers α,
but departs from it at high wavenumbers, at a value dependent on the
shear layer thickness (Rayleigh 1984). The point of departure (or al-
ternatively, the point where the flow becomes stable) is then called the
cut-off wavenumber.

Density ratio can easily be included in the Kelvin-Helmholtz setup,
with the intuitively apparent conclusion that having the heavier fluid
on top (unstable stratification) enhances the instability, while a lighter
fluid on top (stable stratification) reduces the tendency of the flows to
mix and is therefore stabilizing (Drazin & Reid 1981).

If surface tension alone is included in the local Kelvin-Helmholtz
problem, it will act as a stabilizing mechanism and damp the Kelvin-
Helmholtz instability for short wavelengths, thus introducing a cut-off
wavelength similarly to a finite shear layer thickness. This is the domi-
nating effect for viscous shear layers as well.

Viscosity alone, without any density gradients or surface tension, can
create shear layer instabilities. Yih (1967) noticed that plane Couette
and Poiseuille flows became linearly unstable at any Reynolds number
with an appropriately chosen viscosity stratification. One explanation
Yih (1967) provided was that the mean flow profile with viscosity strat-
ification had an inflection point. This shows that a viscosity jump at an
interface not only can promote, but can sometimes be the main source
of a shear layer instability.

Kelvin-Helmholtz stability is inviscid, but a viscosity ratio can be
included implicitly by chosing the slopes of the velocity profiles in each
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layer so that the continuity of shear stress is satisfied. This piecewise-
linear setup was investigated by e.g. Boeck & Zaleski (2005), for a stably
stratified configuration of two fluids of moderate to high density ratios
(”liquid” vs. ”gas”). They showed that in addition to the usual Kelvin-
Helmholtz instability, the shear layer in the more dense fluid (”liquid”)
was inviscidly unstable, and that this instability could excess the one of
the Kelvin-Helmholtz mode if not damped by surface tension. The effect
occurred for high Weber numbers at high density ratios, such as water-
to-air. This result also shows that the effects of density and viscosity
ratio and surface tension can be coupled.

The most natural way to study the effect of viscosity gradients is still
by including the viscosities of both fluids in the model. This was also
made by Yecko, Zaleski & Fullana (2002) and Boeck & Zaleski (2005) for
the same setup, and both identified three modes. The first one was called
the H-mode, with an inviscid origin of either type mentioned above. The
others were the liquid TS2 mode and the gas TS mode. As the name says,
the origins of the two latter modes were in the boundary layers of the
liquid and the gas, respectively. If the gas-to-liquid viscosity ratio was
small enough, the growth rate of the liquid TS mode could exceed that of
the inviscid mode. This effect was suggested to partly explain the higher
growth rates and most unstable wavenumbers observed in round jet
atomisation experiments, than what would be obtained with the inviscid
piecewise-linear profile. On the other hand, the fully viscous stability
computations of a liquid sheet in the atomization regime by Lozano,
Barreras, Hauke & Dopazo (2001) and later spatial computations by
Altimira, Rivas, Ramos & Anton (2010) do not reveal several unstable
modes.

In conclusion, the stability of shear layers of two different fluids is far
more complicated than the stability of one-phase shear layers: it involves
several parameters that can have coupled or independent effects on the
stability, depending on the flow regime.

4.2.2. Absolute instability of two-fluid shear layers, jets and wakes

Absolute instability of wakes and jets with uniform velocities and densi-
ties in each layer (i.e. plug flow) was considered first by Yu & Monkewitz
(1990). They concluded that absolute instability of a jet is promoted if
the jet has a lower density than the surrounding flow, and the opposite
applies for a wake. This behaviour was also observed in jet experiments

2TS=Tollmien-Schlichting
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Figure 4.1. Definition of a varicose i.e. symmetric (left) and
a sinuous i.e. antisymmetric (right) mode in terms of the dis-
placements of the two interfaces of a jet or a wake.

of e.g. Sreenivasan, Raghu & Kyle (1989) and Yu & Monkewitz (1993),
and is today considered to be general knowledge.

One-phase inviscid mixing layers are convectively unstable. How-
ever, surface tension can induce absolute instability in the Kelvin-Helm-
holtz setup as shown by Rees & Juniper (2009). Furthermore, for in-
viscid wakes and jets with plug flow profiles, a certain degree of surface
tension considerably lowers the critical shear ratio for the onset of ab-
solute instability, for both wakes and jets. This is especially clear for
the symmetric (varicose) modes (see Fig. 3 for the definition of sym-
metry/antisymmetry). The increase in absolute instability is by Rees
& Juniper (2009) attributed to the interface acting like an elastic sheet
between the fluids, creating a way for information to be transported up-
stream. Rees & Juniper (2009) also mention that high enough surface
tension stabilizes both varicose and sinuous modes.

The mechanism is strongest when densities of the two liquids are
comparable, and cannot create absolute instability for e.g. high density
jets, such as a water sheet in air. It was shown by Turner, Healey,
Sazhin & Piazzesi (2011) that finite shear layer thickness, modelled with
a broken-line profile, increases absolute instability and can move the
absolute stability limit to somewhat lower density ratios, of the order
1/2. Söderberg (2003) has shown that a viscous relaxational water sheet
in air can also be absolutely unstable. The special case of a liquid sheet
(convective and absolute instability) will be investigated further in the
next section.

4.2.3. Liquid sheets surrounded by gas at moderate Reynolds numbers

A thin planar liquid jet is called a liquid sheet. As was already men-
tioned, liquid sheets do not possess Rayleigh instability. This was shown
by Squire (1953), using the same assumptions as Rayleigh (1878) for the
liquid cylinder. However, when there is a velocity difference between the
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liquid sheet and the gas (cmp. aerodynamic shear by Weber (1931) for
the cylindrical jet), a complex interplay of inertia, capillary and viscous
forces will decide the stability or form of the instability.

Hagerty & Shea (1955) studied the local temporal stability of an
inviscid liquid sheet surrounded by an inviscid stationary gas. They
concluded that:

1. the only modes possible were symmetric (varicose) or antisym-
metric (sinuous) (Fig. 3),

2. the instability was of aerodynamic nature, i.e. caused by a velocity
difference between water and air, and

3. surface tension always acted as a stabilising force.

These main conclusions are mostly valid for viscous liquid sheets as
well. Li & Tankin (1991) added the viscosity of the liquid, and found
two instability modes — firstly, the aerodynamic instability of an invis-
cid nature which was not affected by Reynolds number, and secondly a
viscosity-enhanced instability mode for low Reynolds and Weber num-
bers (We ≈ 0.1). The latter mode was not found in a later spatial
analysis (Li 1993). For high Weber numbers (We >> 1), the more
common case where the aerodynamic instability dominates, they found
that the liquid viscosity stabilised the flow and shifted the instability to
longer wavelengths.

The first spatio-temporal analysis, searching for absolute instabil-
ity for a viscous liquid sheet surrounded by inviscid gas, was made by
Lin, Lian & Creighton (1990) 3. They found a curious phenomenon - a
pseudo-absolute instability for the sinuous mode for Weber numbers be-
low unity, which means that the linear impulse-response does not vanish
in any streamwise point in time, but always remains bounded. This in-
stability had zero frequency and infinite wavelength. Later the analysis
was refined by Li (1993). The conclusions are summarised below:

1. for We < 1 the sheet is pseudo-absolutely unstable, otherwise
convectively unstable,

2. for We >> 1, and ρ̃We << 1, where ρ̃ is the gas-to-liquid density
ratio, the convective instability is sinuous, and the liquid viscosity
reduces the spatial growth rate and wavenumber,

3Before this, there had been other similar analyses disregarding the ambient fluid.
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3. for We >> 1 and ρ̃We >> 1 sinuous and varicose instability are
of the same magnitude,

4. for varicose instabilities the liquid viscosity always reduces the
spatial growth rate and wavenumber.

Some authors believe that the pseudo-absolute instability indicates
algebraic absolute instability that could explain an explosive rupture
of the liquid sheet for low We (de Luca 1999). However, a physical
interpretation of absolute instability with a vanishing wavenumber and
frequency is somewhat unclear, and the mathematical background has
also been questioned (Luchini 2004).

Liquid viscosity does not only affect the disturbances, but also the
mean flow development. An important consequence is the relaxation of
the velocity profile, for both a liquid sheet and a cylindrical jet (Sterling
& Sleicher 1975). When the sheet emerges from a nearly straight chan-
nel, the velocity profile at the channel outlet is not uniform, but closer
to parabolic. When the sheet enters into gas or vacuum, due to the
free surface, the velocity relaxes towards a uniform profile. Due to con-
servation of mass and momentum, the jet also contracts in this process
(cmp. cylindrical liquid-liquid-jets in Sec. 4.1.2). First, we investigate
the temporal instability of relaxational liquid jets.

Hashimoto & Suzuki (1991) studied a relaxational liquid jet, and
found fine interfacial waves with a wavelength smaller than the sheet
thickness near the nozzle, as opposed to the inviscid instabilities that
would occur for long wavelengths for their parameter values. They tried
to explain the waves by a temporal stability analysis disregarding the
ambient gas, and found two sinuous and two varicose modes in the cal-
culations. Söderberg & Alfredsson (1998) extended the study to viscous
ambient gas experimentally and numerically, with local temporal and
spatial approaches. They found a fifth unstable mode, which was sin-
uous. The most unstable mode found in the experiments could be ex-
plained by looking at a linear combination of two of the sinuous modes.

Regions of genuine absolute instability (not pseudo-absolute) close
to the nozzle of a relaxational liquid sheet were found by Söderberg
(2003). His water sheet emerged from a straight channel, and in the
stability analysis he assumed a parabolic profile at the channel outlet,
i.e. the inlet of the stability computation. The sheet thickness at the
inlet was held constant (0.55 mm) and he varied the inlet velocity. This
means that the Reynolds and Weber number changed simultaneously.
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Figure 4.2. Region of absolute instability for an 0.55 mm
thick water jet in air, as a function of Re and We (note that
these are coupled). Figure from Söderberg (2003).

The resulting boundary of absolute instability as a function of x/Re and
Re can be seen in figure 4.2 by projection of the three-dimensional curve
to that plane. The absolutely unstable region then extends from the inlet
to the projection of the line. For low Reynolds numbers Re ! 200 the
whole sheet is absolutely unstable, as is expected since then We < 1. For
higher Reynolds (and Weber) numbers there is a finite region of absolute
instability, that moves closer to the inlet with Reynolds number. For
Re = 1000 the region only extends to approximately 5 sheet thicknesses
from the inlet.

Lozano et al. (2001) made experiments where a co-flowing air stream
was blown with different velocities in parallel to a liquid sheet, aimed
at understanding the atomization process. The air velocity was conse-
quently at least 10 times larger than the sheet velocity. They found that
the air boundary layer thickness damped the disturbances, and reduced
the wavelength and growth rate. They also compared their temporal
stability calculations to experiments, but the agreement was only mod-
est.
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In addition, many flow visualisations have been made during the
years, in order to shed some light on the breakup process (e.g. Mansour
& Chigier (1991); Park, Huh, Li & Renksizbulut (2004)), which is more
complicated for the sheet than for a cylindrical jet — first the sheet
breaks up into ligaments and then drops, with unpredictable sizes. The
details of this process are of great interest for spray applications. The
most unstable mode is generally sinuous, and it is not intuitively clear
why this would lead into break-up, since the water surfaces oscillate in
phase, preserving their distance to each other. Some recent theories
and future challenges in this field are summarized in the last section of
Eggers (2011).



CHAPTER 5

Flow cases in the present work

Here, the flow cases studied in the papers of the thesis are briefly intro-
duced, to make it possible to understand Ch. 6 and 7. The parameter
values differ in different manuscripts, but a basic division can be made
as follows: the single-phase co-flow wakes (Sec. 5.1) are the topic of Pa-
pers 2, 4 and 5, the wakes and/or jets with surface tension (Sec. 5.2) of
Paper 3 and 6, and the liquid sheets (Sec. 5.3) of Paper 1.

5.1. Single-phase co-flow wakes

The first flow case is a two-dimensional plane wake with one single fluid.
The base flow is assumed to be invariant in the spanwise (z)-direction,
and the streamwise and vertical coordinates are denoted by x and y,
respectively.

The base flows for single-phase wakes have a symmetric inlet profile
consisting of one inner stream of lower velocity and two outer streams
of higher velocity (Fig. 5.1). Both flow streams have uniform velocity
profiles1. This inlet profile was chosen since it generates a strong in-
stability, and has been used in a previous inviscid wake study (Juniper
2006).

In the following, dimensional quantities are denoted by stars. The
dimensional parameters are given in Fig. 5.1. The inner flow quantities
are marked with subscript 1, and the outer flow quantities with subscript
2.

The inlet profile is fixed, but the base flow develops in the streamwise
direction due to viscous diffusion. The flow is assumed to be surrounded
by walls in the vertical direction, located at y∗ = ±(h∗

1 + h∗
2). In most

of the cases under study, a no slip condition is set at the walls, and the
flow approaches a parabolic profile downstream. An example of such a
flow field is seen in Fig. 5.2. Note that the viscous development gives

1The corners are slightly smoothened when spectral element method is used to compute the
base flow, to prevent numerical oscillations.
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Figure 5.1. The inlet profile of a co-flow wake with dimen-
sional parameters.

rise to a recirculation region at x ≈ 1 − 3, even though both streams
have a positive streamwise velocity at the inlet. Such a backflow region
appears for some of the wakes, but not for all.

The flow can be conveniently parameterized in terms of the inlet pro-
file. Following Juniper (2006), we have the shear ratio Λ characterizing
the ratio between shear and momentum:

Λ =
(U∗

1 − U∗
2 )

(U∗
1 + U∗

2 )
, (5.1)

and the confinement parameter:

h =
h∗

2

h∗
1

. (5.2)

In addition, the viscous problem involves the Reynolds number:

Re =
U∗

2 h∗
1

ν∗
, (5.3)

where ν∗ is the kinematic viscosity of the fluid.

Our Reynolds number characterizes a wake surrounded by a free
stream with velocity U∗

2 , being confined with vertical plates, so that the
free stream velocity is not altered by confinement. The average of inner
and outer velocities (U∗

1 +U∗
2 )/2 is commonly used as the velocity scale in

other works. Both definitions focus on the wake properties. Depending
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Figure 5.2. A co-flow wake baseflow: (a) The streamwise
velocity field in colorscale. A few local velocity profiles are
drawn in white on top of the picture. (b) Streamlines in the
region x = 0 − 20. Re = 100, Λ−1 = −1.2, h = 2.33.

on the type of confinement, a Reynolds number based on the channel
width and channel mean velocity could also be relevant.

5.2. Wakes and jets with surface tension

The second flow case has the same type of inlet profile as the wakes
in the previous section (Fig. 5.1). Now, the inner and outer streams
represent two different fluids that meet at x = 0. In Paper 6 we also
extend the studies to configurations where U∗

2 < U∗
1 , i.e. jets.

The reference velocity is always the faster moving fluid: U∗
ref = U∗

2
for wakes, and U∗

ref = U∗
1 for jets. The Reynolds number is now defined

as:

Re =
U∗

refh∗
1

ν∗
, (5.4)

In addition, surface tension appears on the interfaces between the fluids,
characterized by the Weber number We:

We =
ρ∗U∗

refh∗
1

γ∗
, (5.5)
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Figure 5.3. Example base flows for wakes and jets with sur-
face tension: (a) Jet (Re = 316, Λ−1 = 1.5, h = 1): The
streamwise velocity field in colorscale. (b) Jet: streamlines in
the region x = 0–20. The streamlines for the inner flow are
solid, for the outer flow dashed. (c) The same as (a), but for
a wake (Re = 316, Λ−1 = −1.4, h = 1). (d) The same as (b)
but for the wake.

where ρ∗ is the density and γ∗ the surface tension coefficient between
the fluids.

Both fluids are assumed to have the same density (and viscosity), to
make surface tension the only new parameter compared to the single-
phase wakes (Sec. 5.1). This configuration is not as physically strange as
it might seem at first sight. Surface tension is a chemical property, and
does not require a density or viscosity difference between the fluids; e.g.
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Figure 5.4. The facility used for experiments in Paper 1.
The computations are also based on the experimental flow con-
ditions.

the configuration of mineral oil on water is immiscible and has surface
tension, despite the fluids having similar densities.

A representative jet base flow is shown in Fig. 5.3 (a)–(b) and a
wake base flow in Fig. 5.3 (c)–(d). None of the base flows shown has
recirculation bubbles (cmp. Fig. 5.2 b). Recirculation occurs for some
of the flows under study, but is not important for the stability of wakes
and jets with surface tension.

5.3. Liquid sheet

A liquid sheet is a plane two-dimensional liquid jet (invariant in the z-
direction). However, its physics is quite different from the other two flow
cases (previous subsections), since the density of the liquid sheet is much
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Figure 5.5. The streamwise velocity of a base flow field used
for computations. The interface between water and air is flat,
and given by the black dashed line. Local velocity profiles in
a few streamwise position are drawn in white.

higher than the density of the surrounding gas. The liquid sheet in this
thesis is a water sheet surrounded by either stagnant or co-flowing air.
The flow velocity is of the order 1–10 m/s, which makes the Reynolds
number for the sheet much higher than in the other two flow cases.

In Paper 1, the liquid sheet is studied through both experiments and
computations, so even if this thesis focuses on the numerical part, the
experimental setup is introduced in Fig. 5.4. It has one inner nozzle
for water, and two symmetrically placed outer nozzles for air. Both the
water and the air streams have a sharp contraction before the exits,
which aims at creating uniform velocity profiles at the nozzle exit. Pitot
tube measurements have confirmed that the boundary layers of the water
profile just outside the nozzle are fairly thin. Since the density of water
is much higher than the density of air, the water profile is even more
uniform downstream.

In the computations, a uniform profile is assumed in water, while
the growing boundary layers in air need to be modelled. The computa-
tions are local, so only knowledge of the local velocity profile(s) in the
measurement area is required. The local air boundary layer shape can
be obtained from a similarity solution of the boundary layer equations,
with the free stream velocities of air and water as the vertical bound-
ary conditions. The boundary layer thickness is then determined using
the nozzle exit as the virtual leading edge. An alternative method to
determine the air boundary layer profile is also used in Paper 1, and it
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is shown that for the same boundary layer thickness both models give
very similar results. The streamwise base flow velocity field from the lat-
ter model is shown in colorscale in Fig. 5.5, with a few velocity profiles
drawn with white lines on top.

The Reynolds and Weber number for the sheet are based on the
liquid quantities:

Re =
U∗

l a∗

ν∗l
, (5.6)

We =
ρ∗l U

∗2
l a∗

γ∗
, (5.7)

where the subscript l denotes liquid, a∗ is the half thickness of the liquid
sheet and γ∗ the surface tension coefficient between water and air. They
are of the order Re ≈ 3000 and We ≈ 300 for the current experiments.
These are the common nondimensional numbers for a liquid sheet in
stagnant gas, and are adopted for the present work where the gas co-
flow speed is moderate2.

2In atomisation studies the gas has at least one order of magnitude higher velocity than the
liquid. Thus, in atomisation it is more common to concentrate on the gas quantities, or at
least use the velocity difference between liquid and gas as the velocity scale.



CHAPTER 6

Governing equations and numerical solution

All papers in this thesis are concerned with linear stability, with the divi-
sion into a steady base flow (capital letters) and disturbance (lowercase
letters) (Eq. 2.3–2.4). All flows in the present work are two-dimensional.
The disturbance is computed from the global ansatz (Eq. 2.13), except
in Paper 6. Hereafter, we name the variables for the streamwise and
vertical velocities as U1 = U and U2 = V , and similarly for ûi.

6.1. Base flows

Here, the methods to obtain base flows are presented, except from the
base flows for the liquid sheet study (Paper 1), which are obtained di-
rectly from similarity solutions1.

The wake and jet base flows are solutions to the two-dimensional
variant of the time-independent Navier-Stokes equations (Eq. 2.1–2.2).
The flow configuration (Sec. 5.1) is symmetric in the vertical direction,
and the base flow is computed in the region y > 0. The computational
domain with boundary conditions is illustrated in Fig. 6.1.

The inlet profile (Fig. 5.1) becomes in the dimensional form:

1. for wakes:

U(y) =

(

Λ−1 + 1
)

(Λ−1 − 1)
for y < 1, U(y) = 1 for y > 1. (6.1)

2. for jets:

U(y) = 1 for y < 1, U(y) =

(

Λ−1 − 1
)

(Λ−1 + 1)
for y > 1. (6.2)

In the spectral element code Nek5000, the infinite gradients of the
inlet profile are replaced by sharp but continuous gradients, to avoid
numerical oscillations (see Paper 1).

1The similarity solution of the so-called Stokes’ model is obtained analytically, and the equa-
tion for the Sakiadis model is solved by a shooting method.
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L
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Figure 6.1. Illustration of the computational domain for
wake and jet base flows. The inlet profile shown is shown
for a wake.

At the walls, a no slip boundary condition is set (except in some
cases in Paper 4, where a slip condition is tested for comparison). The
length of the base flow domain Lb is always chosen longer than the stabil-
ity domain Ls, to eliminate effects from the outlet boundary condition
(typically, if Ls = 200, then Lb = 250). Thus, any standard outflow
condition will suffice. A Neumann condition for velocities (and zero
pressure) is set in Nek5000, and a vanishing normal stress in COMSOL
Multiphysics.

Two codes are used to compute base flows in this work, presented in
the two coming subsections. The spectral element code Nek5000 is used
in most studies, in combination with the FLUPACK spectral stability
code. COMSOL Multiphysics is used for both the base flows and the
structural sensitivities in Paper 5 (with a validation against Nek5000
and FLUPACK), and in a few verifications of the results in the other
studies.

6.1.0a. Nek5000. The code Nek5000 is based on a spectral-element method
(SEM). Spectral element methods combine some properties of finite el-
ement methods (FEM) and spectral methods.

Each spectral element is rectangular, or a suitable coordinate map-
ping of a rectangle, as in spectral methods. The basis functions inside
each element consist of Legendre polynomials in two space dimensions,
of the order N for velocity, and N − 2 for pressure, where typically
N ≥ 6; they are the Lagrangian interpolants based on the Gauss-
Lobatto-Legendre (GLL) quadrature points (compare to Gauss-Lobatto-
Chebyshev points in the Chebyshev spectral method). Continuity of the
velocity field over element boundaries is obtained by matching the veloc-
ities there. Thus, the derivatives of the velocity field are not continuous.
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As for FEM, the equations are cast into a weak form, and the inte-
grated residual is minimized. It can be shown that the method has a
spectral convergence in N (so-called p-refinement), and the convergence
of a high order FEM method with respect to the number of elements
(h-refinement).

The wake base flows are obtained simply by starting from a zero
initial condition, and integrating the equations forward in time until a
steady state is reached. The only instabilities in these flows are anti-
symmetric, and are eliminated by imposing a symmetry condition at
the centerline (Fig. 6.1). The steadiness of the flow can be verified by
checking the difference of successive iterates in a suitable norm. In this
work, the time tend = 500 was seen to be sufficient.

6.1.0b. COMSOL Multiphysics. COMSOL Multiphysics software provides
several different modes, where the dynamical equations are already pro-
grammed, and the physical model can be built by only creating a ge-
ometry and specifying the relevant physical parameters (such as density
and viscosity in fluid dynamics) and boundary conditions. Also, general
PDE modes are provided, where the governing equations and boundary
conditions can be specified by the user. Several different options and set-
tings are available regarding both the mesh, elements and solvers, and
the choices below are not further optimized than what was necessary.

For the base flow computations with COMSOL Multiphysics, the
Fluid Dynamics mode is used, in a steady incompressible formulation.
The mesh consists of triangular elements with node points in corners
and in the middle of each edge, and the shape functions are the cor-
responding Lagrangian second-order interpolants for velocities, but the
first order for pressure. The integration is performed with a quadrature
rule of the order double of the element (shape function) order, and the
boundary conditions are discretized using pointwise constraints with the
same point order as the element order.

A damped Newton method is chosen to find the stationary solu-
tion. The Newton Method is a general method to find zeros of nonlinear
equation systems f(U) = 0, based on a linearized problem: Ui+1 = δU ,
where J(Ui)δU = −f(Ui), and J is the local Jacobian of f . The New-
ton method converges quadratically if the initial guess U0 is close enough
to the solution (see any standard textbook in applied numerical meth-
ods). The damping factor λ is used to adjust the convergence rate, and
thereby the sensitivity to the initial guess (λ = 1 gives the ordinary
Newton method). Error estimates from successive iterations are used
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(modified Newton correction). If the error increases between two itera-
tions, the value of λ is decreased. The method stops when the relative
error of the solution vector in a weighted euclidean norm falls below
the given convergence criterion. Note that this means that the local
error is typically much smaller than the constraint. In the present work,
the value 10−6 is typically used, leading to convergence in less then 10
iterations.

6.1.1. Base flows for wakes and jets with surface tension

For wakes and jets with surface tension, the position of the interface
between the two fluids in the base flow needs to follow a streamline.
The curvature of the streamlines for our jet and wake flows is so small
that the pressure gradient caused by surface tension are typically two
orders of magnitude smaller than the other pressure gradients occurring
in the flow field. This assumption can be verified a posteriori.

Therefore, base flows computed without surface tension provide a
good approximation for the actual wake and jet base flows. For sim-
plicity, all base flows in the present work are computed without surface
tension. The model might be less appropriate for very large values of
surface tension We−1 > 1, and in the immediate vicinity of the contact
line at x = 0, y = 1. However, a precise modeling of the inlet conditions
(including splitter plates) and the contact line are out of scope of the
present work.

Note that despite the assumption of a small curvature for the base
flow, surface tension is very important for the global modes. The curva-
ture of the wavy interface depends on the wavelength, and the gradients
of the capillary forces caused by the waviness have the same length scale
as the global mode.

6.2. Numerical algorithms for solving eigenvalue problems

In the computation of global modes, we need to solve eigenvalue prob-
lems of the form:

Aq = λBq, (6.3)

where Bq = (u,v, 0) and λ = −iω. Due to the appearance of the
matrix B, this is a generalized eigenvalue problem, but can be solved with
slight modifications of the methods originally developed for standard
eigenvalue problems of the form:

A′x = λx, (6.4)
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which will be discussed here. The primes will be dropped for conve-
nience.

Most of the eigenvalue algorithms available today are based on the
power iteration. It can be shown that if any vector2 x0 is repeatedly
multiplied by the matrix A, it will converge to the eigenvector xmax

corresponding to the eigenvalue of largest magnitude λmax. So, the
basic algorithm of power iteration becomes:
q0=starting vector, ε chosen, x1 = x0 + 2ε, k = 1,
while (||xk −xk−1|| > ε): xk+1 = Axk, xk+1 = xk+1/||xk+1||, k =
k + 1,
where the norm ||.|| is chosen appropriately. When the eigenvector has
converged, the eigenvalue can be extracted from the Rayleigh quotient :

λmax =
xH

maxAxmax

xH
maxxmax

.

Unfortunately, the largest magnitude eigenvalue is of a very small
interest in stability computations. It is the most unstable eigenvalues
that are our target. It is easily shown that the eigenvalue closest to
a certain complex number σ = σr + iσi (a shift) can be obtained by
power iteration with the matrix (A − σI)−1, where I is the identity
matrix. The shift can then be chosen to have a large imaginary part,
to hopefully catch the most unstable eigenvalue. In this inverse power
iteration with shifts, the matrix inverse is not actually formed, but the
multiplication xj+1 = (A− σI)−1xj is obtained by solving the equation
system: (A − σI)xj+1 = xj . The shift can also be updated during the
iterations if desired, to give a faster convergence.

Power iteration (inverse or direct) gives only one eigenvector at a
time, which becomes very expensive if a whole spectrum is desired.
Methods for computing several eigenvectors at once are discussed next.

Similarly to power iteration, if a starting matrix X with p indepen-
dent columns is multiplied by A repeatedly, its columns will converge
to the subspace spanned by the p eigenvectors of A, from which the p
largest magnitude eigenvalues of A can be reconstructed. However, in
the process X becomes very ill-conditioned, since all its columns con-
verge to the first eigenvector at different rates, and are therefore highly
non-orthogonal. A smart way to avoid this is to perform a so-called
QR-factorization of the matrix X at each iteration: XQ = QR, where

2The starting vector expanded in the eigenvector basis needs to have a component along
the largest eigenvector, but usually the numerical errors are enough to introduce such a
component. There are also other ways to ensure this.
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Q is a unitary matrix (i.e. a matrix with orthonormal columns) and
R is upper triangular. As a bonus, upon convergence, the eigenvalues
of A appear on the diagonal of R. If X and A are of the same size
(all eigenvalues and eigenvectors of A computed), then the process is
called QR-iteration. Usually, the matrix A is first brought into upper
Hessenberg form with zeros below the first subdiagonal, before starting
the actual QR-iterations. The first step requires O(n3) operations for a
matrix of size n×n, but is non-iterative, and the cost of the subsequent
QR-iterations is then O(n2).

The QR-algorithm converges very fast, but it has two drawbacks:
it does not preserve a possibly sparse structure of the original matrix
(which could enable the use of sparse arithmetics), and is difficult to
parallelize efficiently. A method that both preserves the structure of the
original matrix and is parallelizable is the Arnoldi algorithm (Arnoldi
1951).

The Arnoldi algorithm creates an approximate upper Hessenberg
form of the first m columns of A iteratively, with only matrix-vector
products with A (and vector-vector products). This approximation is
called the Arnoldi-factorization. An Arnoldi factorization of size m is
defined as:

AVm = VmHm + fmeT
m,

such that Vm is a unitary matrix (i.e. a matrix with orthonormal columns)
of size n × m, Hm is an upper Hessenberg matrix of size m × m, and
VH

mfm = 0, and em,j = δmj (Sorensen 1996). The columns of Vm are
called Arnoldi vectors. They are computed one at a time, by the proce-
dure in table 1, explained below.

In step (1) a new vector is obtained by multiplying the previous
vector with A (cmp. power iteration). In step (2), the new vector is
orthogonally projected to each of the previous eigenvectors, and the
components along the previous vectors are substracted from the new
vector in step (3). In step (4), the new vector is normalized to 1. Steps
(2–4) are the classical Gram-Schmidt orthogonalization, maintaining the
matrix V unitary. The step (5) updates the subdiagonal entry of H.

The eigenvalues of the upper Hessenberg matrix H can be easily
obtained by e.g. Givens rotations (as in the QR-method), and are called
Ritz values, and the corresponding eigenvectors are Ritz vectors. It can
be shown that the Ritz values θ are actually Rayleigh quotients of the
Ritz vectors y, with respect to the matrix A: θ = yHAy/yHy.
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v0=starting vector with unit norm
V = v0, H = empty.
for k=1,m

w = Avk−1 (1)
vk = w
for j=1,k

hk(j)=v(j−1)Hw (2)
vk = vk − hk(j)v(j−1) (3)

end for
fk=vk

vk=vk/||vk|| (4)
if (k < m) then

hk(k+1)= ||vk|| (5)
V=(V,vk)

end if
H=(H,hk)
end for

Table 1. Principle of the k-step Arnoldi factorization

The number of Arnoldi vectors needed to approximate well a particu-
lar eigenvalue might be very large, and is impossible to know a priori. An
observation is that if the starting vector used to build the Arnoldi factor-
ization has components only along m eigenvectors, then the columns of
Vm will span the subspace corresponding to these vectors, and the Ritz
values are then exactly the corresponding eigenvalues of A (compare to
the matrix R in the QR-factorization). By successively restarting the
Arnoldi factorization with a better starting vector, based on e.g. residual
information from a previous step, one can thus obtain a better factoriza-
tion. In these restarting steps, spurious eigenvalues resulting from that
the columns of Vm are slightly nonorthogonal can also be filtered out
by e.g. DGKS correction (Sorensen 1996).

Now, we return to the generalized eigenvalue problem (Eq. 6.3). If
a shift σ is desired, the governing equation becomes:

(A− σB)q = (−iω − σ)Bq.

This leads to the following changes in the algorithm:
(A− σB)w=Bivk−1 (1)
hk(j)=v(j−1)HBw (2)
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With a singular matrix B (Sorensen 1996), as is the case in the dis-
cretized Eq. 6.5–6.7 here, infinite eigenvalues appear, and a purification
needs to be performed to purge these. This purification is built in natu-
rally in the implicitly restarted Arnoldi algorithm with shifts (Sorensen
1996), available in the open-source software package ARPACK.

In this work, two different codes are used to solve the stability prob-
lem, FLUPACK and COMSOL Multiphysics, presented in the next sec-
tion. Both codes take advantage of parallel respective serial versions of
ARPACK3 when computing the eigenvalues.

6.3. Global stability of wakes

The equations (2.10–2.11) with Ansatz (2.13) can be written out as:

−U
∂û

∂x
− V

∂û

∂y
− û

∂U

∂x
− v̂

∂U

∂y

−
∂p̂

∂x
+

1

Re

(

∂2û

∂x2
+
∂2û

∂y2

)

= −iωû, (6.5)

−U
∂v̂

∂x
− V

∂v̂

∂y
− û

∂V

∂x
− v̂

∂V

∂y

−
∂p̂

∂y
+

1

Re

(

∂2v̂

∂x2
+
∂2v̂

∂y2

)

= −iωv̂, (6.6)

∂û

∂x
+
∂v̂

∂y
= 0. (6.7)

The next step is the choice of discretization. For the present work,
the FLUPACK4 code with a spectral discretization has been developed
(Sec. 6.3.1), but also COMSOL Multiphysics FEM code (Sec. 6.3.2) is
used to some extent.

The system also needs boundary conditions to be complete. Since
the base flow is symmetric, it can be easily shown that symmetric and
antisymmetric modes can be computed separately in the linear prob-
lem. Therefore, only the upper half of the domain is used, and on the
centerline we set for antisymmetric modes:

û(x, 0) =
∂v̂

∂y
(x, 0) = p̂(x, 0) = 0. (6.8)

3The parallel version is called PARPACK.
4The name of FLUPACK refers to fluid-dynamical eigenvalue computations.
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and for symmetric modes:

∂û

∂y
(x, 0) = v̂(x, 0) = 0. (6.9)

The p-condition is needed for antisymmetric modes, since the v-condition
in this case already follows from the u-condition through incompressibil-
ity on the boundary.

At the wall we set a no slip condition:

û = v̂ = 0. (6.10)

The streamwise boundary conditions are not as straight-forward.
The natural boundary condition for a global mode is to decay when
x → ±∞. The amplitude of the global mode thus vanishes at some point,
but its extent is not known a priori. Further, inappropriate boundary
conditions can alter the dynamics of the flow, by causing a false desta-
bilization (see e.g. Appendix A of Paper 2). Thus, it should be assured
that at least all the unstable eigenvalues remain unchanged with change
of locations of the outer boundaries.

At the inlet, we set a homogeneous Dirichlet condition (no slip):

û = v̂ = 0. (6.11)

Since the inlet condition might also affect the global modes, an exten-
sional region is tested in some cases, described in Appendix A of Pa-
per 1 and Paper 5. The purpose is to allow the global mode to decay
more smoothly, but without generating new instabilities, so an artifi-
cial splitter plate needs to be inserted between the flow streams. An
implementation of this ”damping region” exist for both FLUPACK and
Comsol. When the effect of the inlet condition is small, it is safe to skip
the extensional region, and set the Dirichlet condition above at x = 0.

Different outlet boundary conditions are used in different parts of
this thesis. For the wakes in Paper 2 and 4, we use the Neumann con-
dition:

∂û

∂x
=
∂v̂

∂x
= 0. (6.12)

The more physical ”stress-free” boundary condition (e.g. Giannetti &
Luchini (2007)) is used in Paper 5:

−p̂ +
1

Re

∂û

∂x
=
∂v̂

∂x
= 0. (6.13)

With the stress-free condition, shorter domains are required for conver-
gence than with the Neumann condition.
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Additional conditions are required in FLUPACK to eliminate the up
to eight spurious pressure modes (the exact number depending on the
boundary conditions) inherent in the spectral discretization.

6.3.1. Stability in FLUPACK

In FLUPACK, equations (6.5–6.7) are discretized in space by a spectral
method, using Chebyshev-polynomials in both streamwise and vertical
directions:

û(x, y) ≈
Nx
∑

i=1

Ny
∑

j=1

cijφ
i(x)φj(y) (6.14)

where φk is the kth Chebyshev polynomial. The values of the unknown
coefficients cij are obtained by requiring the discretized equations to be
satisfied exactly at the Nx × Ny collocation points, which are selected
as the Gauss-Lobatto points to assure an exponential convergence rate
(Weideman & Reddy 2000). A linear transformation of the domain from
[−1, 1] × [−1, 1] to [0, Lx] × [0, h1 + h2] is applied in the wake problem.
Finally, the global differentiation matrices become Kronecker products
of differentiation matrices in one spatial direction and identity matrices
in the other spatial direction (see Weideman & Reddy (2000)).

In global eigenvalue computations, a main issue is the storage of the
system matrix A, of size (3 × Nx × Ny)2. The steps (1) and (2) in the
Arnoldi algorithm require that we can solve equation systems, and per-
form matrix multiplications, with A. There are ways to circumvent the
building and storage of the matrix, by performing these operations by
means of a linear DNS (e.g. Barkley, Gomes & Henderson (2002)). This
was not appropriate here, since the goal of the development of FLU-
PACK has been to solve global stability problems in interfacial flows,
described in the next section, and a good linear (also in terms of the
interface displacement) DNS code for interfacial flows was not available.

In FLUPACK, the matrix is instead built and stored in pieces on
different processors, and parallel matrix routines based on MPI are uti-
lized. The distribution of the matrix between processors is made fol-
lowing the so-called square block-cyclic distribution, based on BLACS
processor grids, which is required by the library ScaLAPACK, since it
has proven to be the most efficient way for equation system solution. To
illustrate this way of distributing the matrix, let us take as the following
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matrix as an example:

M =

















1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60

















Assume now that have a BLACS grid of 3 × 2 processors,:

p00 p01 p02

p10 p11 p12

and want to create a block-cyclic representation with a (square)
block size 2. First, we divide the matrix M into submatrices of size
2 × 2. Then, we distribute the first three blocks of the uppermost ”row
of blocks” to processors p00, p01 and p02. The second three blocks of
the first block row are again distributed to the same processors in the
same order. Note that this means that each processor gets blocks that
are separated from each other in the original matrix (by distance 2xnr.
of rows in the BLACS grid in this case). The next ”row of blocks” is
distributed to processors p10, p11 and p02 in the same way, and the third
”row of blocks” again to p00, p01 and p02.

When the process is completed, each processor obtains the following
matrices:

M00 =









1 2 7 8
11 12 17 18
41 42 47 48
51 52 57 58









M01 =









3 4 9 10
13 14 19 20
43 44 49 50
53 54 59 60









M02 =









5 6
15 16
45 46
55 56









M10 =

[

21 22 27 28
31 32 37 38

]

M11 =

[

23 24 29 30
33 34 39 40

]

M12 =

[

25 26
35 36

]

It is this matrix that each processor will pass to the parallel equation
system solver in ScaLAPACK, together with the BLACS grid.

If the matrix M can be built serially (like in the above example), it
is easy to extract the necessary blocks and distribute to the processors.
However, when a wholly parallel solution is desired, the matrices Mij

need to be built on the processors without knowledge of the total matrix
M . To be able to do this automatically for arbitrary numbers of grid



54 6. GOVERNING EQUATIONS AND NUMERICAL SOLUTION

points requires some care, especially in the implementation of boundary
conditions.

In FLUPACK, the block size is taken equal to Nx, the number of grid
points in the x-direction. The blocks are numbered per row and column.
Each processor gets information of which blocks is needs, and then calls
a subroutine to build exactly those block numbers. The subroutine
builds the local parts of all differentiation matrices, which depend on
Nx, Ny, possible stretching functions, and the block row and column.
After this, the differential equation can be programmed as usual. At last,
the relevant part of the boundary conditions are also incorporated into
the matrix block. This implementation makes it easy to change both
the discretization method, the governing equations, and the boundary
conditions.

When the local matrices are built, a LU-factorization is performed by
ScaLAPACK, and the Arnoldi loop can start. In FLUPACK, the same
parallelization is used for the Arnoldi vector as for the ScaLAPACK
solution vector, for convenience. In principle, different processor grids
can be used for Arnoldi and ScaLAPACK, so that the Arnoldi vector
would be distributed between all processors. Savings in computational
time would be marginal, since most of the wall-clock time is spent in
ScaLAPACK operations. Also, dividing the Arnoldi vector between all
processors would pose severe restrictions for the choice of grid points,
since PARPACK requires the parts of the Arnoldi vector on different
processors to be equally long.

The BLACS processor grid needs to be chosen by the user. From
computational point of view, quadratic grids are preferable. Each sub-
matrix needs to be small enough to be stored on one processor (with
some margin due to the other variables, that are vectors). PARPACK
poses the above mentioned restriction leading to that 3×Ny needs to be
dividable by the number of processor rows in the current implementation
of FLUPACK.

6.3.2. Stability in COMSOL Multiphysics

In COMSOL Multiphysics, the global modes can also be computed in
the Fluid Dynamics mode. In the present work however, they are com-
puted in the PDE Coefficient mode, where the adjoint equations and
the adjoint base flow equations presented in Sec. 6.4.1 can be easily
programmed as well. The mesh is tetrahedral, and second order La-
grangian elements are used for velocity, and the first order for pressure,
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with quadrature orders the double of those. COMSOL uses ARPACK
for the eigenvalue computations, and the direct UMFPACK solver for
the equation systems.

The version of COMSOL Multiphysics used is serial5. Also, COM-
SOL has not yet proven to be suitable for the interfacial global mode
problems we aim at solving (Sec. 6.5). The advantages of COMSOL are
the flexibility of FEM, and in some situations, the spatially even point
distribution.

6.4. Structural sensitivity of wakes

The exact definitions of the different sensitivity measures can be found
in Paper 5. Here, we focus on the numerical implementation. At this
stage, it is sufficient to know that in addition to the linear global modes,
we need to compute the adjoint linear global modes

[u+, v+, p+] = [û+(x, y), v̂+(x, y), p̂+(x, y)]e−iω+t, (6.15)

governed by the equation:

−U
∂u+

∂x
− V

∂u+

∂y
+ u+∂U

∂x
+ v+∂V

∂x

+
∂p+

∂x
−

1

Re

(

∂2u+

∂x2
+
∂2u+

∂y2

)
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∂u+

∂x
+
∂v+

∂y
= 0. (6.18)

The boundary conditions of the adjoint problem depend on the
boundary conditions of the direct problem. The derivation is easily
made for all sets of boundary conditions used in this thesis. For the
principle of derivation, see e.g. Marquet et al. (2008) or Pralits et al.
(2010).

The adjoint boundary conditions, with the stress-free outlet bound-
ary condition of the direct problem in Paper 5 (Eq. 26) are:

5COMSOL Multiphysics can be run in parallel, but is not available on the clusters used in
the present work.
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1. A no slip condition on all solid boundaries:

û+ = v̂+ = 0. (6.19)

2. An antisymmetry condition on the centerline:

û+(x, 0) =
∂v̂+

∂y
(x, 0) = p̂(x, 0) = 0. (6.20)

3. At the outlet:

p̂+ −
1

Re

∂û+

∂x
− Uû+ = 0. (6.21)

−
1

Re

∂v̂+

∂x
− Uv̂+ = 0. (6.22)

It can be shown that the eigenvalues ω+ of the adjoint system (with
the correct boundary conditions) are complex conjugates of the direct
system (Eq. 6.5–6.7). This is however only true in the continuous limit.
Thus, the agreement of ω and ω+ serves as a nice resolution check of
the discretized problem.

In addition, to obtain the sensitivity to a volume force, we need to
solve for the adjoint base flow (Ū+, P+), satisfying:
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(6.23)
∂U+

i

∂xi
= 0, (6.24)

with the following boundary conditions (again, see Marquet et al. (2008)
or Pralits et al. (2010) for the derivation principle):

1. A no slip condition on all solid boundaries:

U+ = V + = 0. (6.25)

2. A symmetry condition on the centerline:

∂U+

∂y
(x, 0) = V +(x, 0) = 0, (6.26)

and the outlet boundary condition:

P+ +
1

Re

∂U+

∂x
+ UU+ − û∗û+ = 0, (6.27)
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+ UV + − û∗v̂+ = 0. (6.28)
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6.4.1. Solution of the adjoint equations in FLUPACK and Comsol

The adjoint linearized Navier-Stokes equations (Eq. 6.16–6.18) are dis-
cretized in the exactly same way as the direct linearized Navier-Stokes
equations (Eq. 6.5–6.7), both in FLUPACK (Sec. 6.3.1) and in Comsol
(Sec. 6.3.2). This is the virtue of methods, where the governing equa-
tions and boundary conditions are easily manipulated.

The adjoint base flow equations are solved only in Comsol. A sta-
tionary formulation in the PDE Coefficient Form is used for this purpose.

6.5. Global stability of wakes and jets with surface tension

In computations with two fluids separated by an interface, each fluid
naturally satisfies the governing equations (6.5–6.7), and wall (Eq. 6.10)
and centerline (Eq. 25 or 6.9) boundary conditions. At the inlet, we keep
the Dirichlet condition (Eq. 24). In Paper 3, the Neumann condition
(Eq. 6.12) is set at the outlet, but for the jets in Paper 6, another
condition was seen to be more appropriate. A fringe region, where the
disturbance is gradually set to zero through a volume force, gave the
correct stability limits for shorter domains than the Neumann condition.

In addition, a set of coupling conditions need to be satisfied on the
interface between the two fluids. This requires both a multi-domain
implementation, described in Sec. 6.5.1.

Let us denote the fluid closest to the centerline with index (1) and the
fluid closest to the wall(s) with index (2). The conditions for the total
flow field at the interface between fluids (1) and (2) are, in dimensional
form:
(1–2) all velocity components are continuous at the interface:

U (1 )∗
tot ,i = U (2 )∗

tot ,i , (6.1)

(3) the tangential stresses are continuous at the interface:

εijkn
∗
tot ,j (τ

(1 )∗
tot ,km − τ (2 )∗

tot ,km)n∗
tot ,m = 0, (6.2)

and
(4) there is a surface tension induced jump in the normal stress:

n∗
tot ,i(τ

(1 )∗
tot ,ij − τ (2 )∗

tot ,ij )n
∗
tot ,j = −γ∗s∗tot , (6.3)

where γ∗ is the surface tension coefficient, n∗
tot ,j the surface normal,

τ (k)∗
tot ,ij is the total stress tensor with pressure included, and s∗tot is the
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total surface divergence operator defined as:

s∗tot =
∂n∗

tot ,j

∂x∗
j

. (6.4)

Here, the direction of the surface normal n∗
tot is given by the location

of the interface Htot , and thus we also need an equation for Htot . This
comes from the assumption that the interface moves together with the
fluid particles on the interface:

∂(y∗ − H∗
tot)

∂t∗
+ U∗

tot ,j
∂(y∗ − H∗

tot)

∂x∗
j

= 0. (6.5)

We cannot keep the time derivative of H∗
tot, when solving the eigen-

value problem. As for the other variables, it also needs to be Fourier
transformed. Thus, we introduce:

H∗
tot(x, t) = H∗(x) + η∗(x, t),

where H∗ is the position of the interface for the base flow, and η∗ a small
displacement.

The formulation of the linearized boundary conditions implemented
in FLUPACK is valid for arbitrary density and viscosity ratios. Here,
they are merely stated for density and viscosity ratios of unity, and
by exploiting the fact that the base flow is computed without surface
tension (for a derivation, see appendix A of Paper 6):

û(1 )
i = û(2 )

i (6.6)

(

−p̂(1 ) + p̂(2 )
)

δijNj +
2

Re

(

ê(1 )
ij − ê(2 )

ij

)

Nj =

−
1

We

(

Ni
∂n̂′

j

∂xj
+ n̂′

i
∂Nj

∂xj

)

(6.7)

−iωη̂ +
∂H

∂x
û + U

∂η̂

∂x
+
∂H

∂x

∂U

∂y
η̂ − v̂ −

∂V

∂y
η̂ = 0, (6.8)

where n̂′ =
[

(

−f − ∂H
∂x g
) ∂η̂
∂x , g ∂η̂∂x

]

, êij = 1
2( ∂ûi
∂xj

+ ∂ûj

∂xi
), and f = ϕ|∂η

∂x
=0

and g = ∂ϕ

∂(∂η
∂x)

|∂η
∂x

=0, using

ϕ =
1

√

(

∂H
∂x + ∂η

∂x

)2
+ 1

.
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x

y

Figure 6.2. Illustration of the domain decomposition for
wakes and jets with surface tension (w. The upper domain
is blue, and the lower domain green. The computational do-
mains are separated by the steady interface position H(x).
The total surface position Htot(x) = H(x)+ η(x) is illustrated
by the white line. The black lines illustrate the grid lines of
the Chebyshev-Chebyshev grids, stretched in the y-direction.

6.5.1. Multidomain discretization in FLUPACK

The equations (6.5–6.7) are discretized using two domains that lie on top
of each other in the vertical direction (see Fig. 6.2). They are stretched in
the y-direction so that y = H(x), the steady interface position, becomes
their common boundary.

Both domains are discretized with their own sets of Chebyshev poly-
nomials. We require that Eq. (6.5–6.7) are satisfied in both domains,
and set the boundary conditions in a way similar to the one-domain
case (Sec. 6.3.1). Then, the two solutions are coupled at y = H(x), by
imposing the five coupling conditions (Eq. 32–35) at the interface.

In the parallel implementation, the eigenvector has the following
structure:

q = (û(2 ), v̂(2 ), p̂(2 ), û(1 ), v̂(1 ), p̂(1 ), η̂).
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The two matrices A(1) and A(2)containing the governing equations for
domains (1) and (2) and their outer boundary conditions are created
with the same routine as in one-domain case. Afterwards, these subma-
trices appear along the diagonal:

A =





A(2) 0 0
0 A(1) 0
0 0 0





The kinematic equation of the interface (Eq. 35) is then created by
a separate routine, and replaces the zeros in the last Nx rows of the
matrix. The uppermost and lowermost rows of the u- and v-momentum
equations in each domain is replaced by one of Eq. (32–34), involving
the flow variables in both domains and η̂.

6.6. Local stability of the liquid sheet

The local stability of the liquid sheet is governed by Eq. (2.17–2.19),
with ansatz (2.16). Based on the experiments, we also assume two-
dimensional disturbances, so the ansatz becomes:

ui = ûi(y)eiαx−iωt.

Here, we take the spatial approach, where ω is real and α a complex
number.

It can be shown that all unstable modes can be obtained from the
Orr-Sommerfeld equation for v (for a derivation, see Schmid & Henning-
son (2001)), written for a liquid sheet as:

(iαU − iω)
(

D2 − α2
)

v̂l ,g − iαD2Uv̂l ,g = Re−1
l ,g

(

D4 − 2α2D2 + α4
)

,
(6.9)

where D = d
dy and Rel ,g is the Reynolds number for liquid or gas.

The Reynolds numbers are defined as:

Rel =
ρ∗l U

∗
l a∗

µ∗
l

, (6.10)

Reg =
ρ∗gU

∗
l a∗

µ∗
g

, (6.11)

where U∗
l is the liquid sheet velocity, a∗ the half thickness of the liquid

sheet, and ρ∗l ,g and ν∗l ,g the density and viscosity for liquid or gas.

We have chosen to non-dimensionalize the boundary conditions with
liquid quantities, as in Söderberg & Alfredsson (1998) and Söderberg
(2003). This involves the following nondimensional parameters:
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the Weber number:

We =
ρ∗l
(

U0∗
l

)2
a∗

γ∗
, (6.12)

where γ∗ the surface tension between the liquid and the gas,
the density ratio between the gas and the liquid:

ρ̃ =
ρ∗g
ρ∗l

, (6.13)

and their viscosity ratio:

µ̃ =
µ∗

g

µ∗
l

. (6.14)

Similarly to the global problem in Sec. 6.5, we introduce a division
of the interface position into a steady and oscillating part as:
H∗

tot = H∗ + ĥei(αx−ωt). After some algebra, the linearized local non-
dimensional boundary conditions become (for details, see Söderberg &
Alfredsson (1998)):
(1–2) Velocity continuity on the interface (comp. 21):

Dv̂l − iαĥ (DUl − DUg) = Dv̂g (6.15)

v̂l = v̂g , (6.16)

where equation (26) is the continuity of û transformed to a condition for
v̂ using (2.19),
(3) Continuity of the tangential stress (comp. 22):

(

D2 + α2
)

v̂l − iαĥ
(

D2Ul − µ̃D2Ug

)

= µ̃
(

D2 + α2
)

v̂g (6.17)

(4) Surface tension induced jump of the normal stress (comp. 23):
[

(iαUl − iω) − Re−1
l

(

D2 − 3α2
)]

Dv̂l − iαDUl v̂l =
[

ρ̃ (iαUg − iω) − µ̃Re−1
l

(

D2 − 3α2
)]

Dv̂g − iαρ̃DUg v̂g − We−1α4ĥ,
(6.18)

and
(5) Interface equation of motion:

−iωĥ + U
∂ĥ

∂x
= v̂. (6.19)

The local problem is discretized in the same way as the global prob-
lem in the previous section, with the difference that the variables only
depend on y, except for h that is a constant. Thus, only a linear stretch-
ing in the y-direction is needed in this case. The local problem small
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enough to be solved serially with the QR-method (Sec. 6.2), which is
done using the EISPACK Software.



CHAPTER 7

Summary of the results of the present work

In this chapter, the main results of Papers 1–6 will be presented. They
are categorized in three parts: the effect of air co-flow on the convective
instability of a plane liquid sheet (Sec. 7.1), the effect of confinement on
global instability of wakes (Sec. 7.2), and the influence of surface tension
of global stability of jets and wakes (Sec. 7.3).

7.1. Stabilizing effect of air co-flow on a plane liquid sheet

The effect of air flow on the stability of a plane liquid sheet (the flow
case presented in Sec. 5.3) is investigated in Paper 1. In the experiments
made by A. Sasaki and M. Matsubara, the liquid sheet was excited with
different frequencies by loudspeakers located at the air nozzles (Fig. 5.4).
Then, the inclination angle of the sheet was measured experimentally
(for details about the measurement techniques see Paper 1). The spatial
growth rate was extracted from the measured amplitudes over a finite
interval, by plotting the amplitude curve in a logarithmic scale as a
function of the spatial coordinate1. The frequency could be converted
into a wavenumber, since the experiments showed that the phase velocity
of the waves was equal to the speed of the liquid. A spatial local stability
computation was then performed, using an estimated base flow profile
in the middle of the experimental interval.

First, the liquid sheet in stagnant air was studied. The computa-
tions were made without adjustments, using the experimental Reynolds
and Weber number, density ratio, and viscosity ratio. The viscosity of
both liquid and gas were included in the stability computations, and
the boundary layer development in the air was taken into account. The
exact shape of the air boundary layer was not possible to measure ex-
perimentally due to the flapping of the sheet, which prevented hot wire
measurements in the presence of the sheet. Two similarity solutions

1cmp. ansatz (2.16)
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Figure 7.1. Liquid sheet in stagnant air. (a) Growth rate
as a function of wavenumber, (o): measurements, blue (—
): computation, Stokes model, dark red (-.-) : computation,
Sakiadis model. (b) The same as in (a), compared with the
inviscid solution of Li (1993) in magenta (- -).
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Figure 7.2. (a) The growth rate of the peak eigenvalues for
different x-positions (x = 400, 800, 1000, 1200, 1400, 1600,
1800) for Stokes and Sakiadis as functions of |σ|1/2 , from
up and down: (—"—) Sakiadis U∞

g = 0, 0.2, 0.4, 0.6, (—
◦—) Stokes U∞
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g =
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g = 2, 1.8, 1.6, 1.4. (b)

The same scaling extracted from the data in Lozano et al.
(2001) for U∞

g = 12.5, Rel = 340, and a different base flow
model.
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were tested for the air boundary layer, using the nozzle exit as the vir-
tual leading edge and the mean measurement position as the streamwise
coordinate, here termed the Stokes model and the Sakiadis model.

The comparison between measurements and computations in stag-
nant air is shown in Fig. 7.1 (a). Here, the measured values are depicted
by rings, computational values with the Stokes model by a blue solid
line, and the Sakiadis model by the red dash-dotted line. The agree-
ment is excellent for the Stokes, and fairly good for the Sakiadis model,
although the latter slightly underestimates the growth rates. In Fig. 7.1
(b) both are compared to results from a previous model (Li 1993), where
air is assumed to be inviscid and have a uniform profile. It is seen that
the model with inviscid air overpredicts the experimental growth rate
by a factor of 2, and the wavenumber for maximal growth rate by a fac-
tor of 3, while both viscous solutions are in good agreement. A further
comparison of experiments and theory can be seen in Paper 1 for the
case of co-flowing air, with a good agreement, although less perfect than
in the stagnant case in Fig. 7.1.

The cases where Ug > Ul posed difficulties for the experimental stud-
ies, due to problems to control the air flow distribution. Also, it is not
straightforward to experimentally quantify the effect of the streamwise
position on the growth rate. The effect of these parameters was inves-
tigated further in the theoretical framework. For moderate air speeds,
with a fixed boundary layer thickness, the growth scales linearly with
the velocity difference between water and air irrespective of the bound-
ary layer model used. For fixed air speed on the other hand, the growth
seems to scale as the square root of the shear from the air at the water
surface (Fig. 7.2 a). The same viscous scaling due to air boundary layer
was also extracted from previous work dealing with atomisation flows
(Lozano et al. 2001) (Fig. 7.2 b).

7.2. The influence of confinement on wake instability

7.2.1. Linear global and nonlinear stability

In Paper 2, the global stability of confined plane co-flow wakes (the
flow case presented in Sec. 5.1) is investigated by linear two-dimensional
global modes and nonlinear direct numerical simulations (DNS).

First, the value of confinement (h) was altered for a wake at Re =
100, Λ−1 = −1.2. The growth rate (ωl

i) as a function of h is depicted with
a solid line with crosses in Fig. 15 (b). The figure shows that the growth
rate of the linear global mode mostly decreases with confinement, until
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Figure 7.3. (a) The most unstable linear, nonlinear initial
and nonlinear saturated frequency and (b) linear and nonlinear
initial growth rate, as functions of confinement, at Re = 100,
Λ−1 = −1.2. Linear data points: h = 9, 4, 2.33, 1.5 and 1,
nonlinear data points: h = 9, 4, 2.33, and 1.5 (h = 1 stable).

the flow finally stabilizes at h = 1. The main reason to the stabilization
was found from changes of the spatial structure of the base flow — the
length of the wake and the extent of the recirculation region — which
both decrease with confinement.

The frequency of the linear global mode (ωl
r) as a function of h is

depicted by a solid line with crosses in Fig. 15 (a). The frequency in-
creases monotoneously with confinement, in accordance with all previous
studies presented in Sec. 3.1.2 and 3.2.1.

In the DNS, a full time signal was recorded in nine points of the
flow field to determine the frequency and growth of the oscillation. We
extracted the frequency (circles in Fig. 15 a) and the exponent of the
amplitude growth (circles in Fig. 15 b) in the initial stage, and com-
pared those with the linear frequency and growth rate, respectively. The
agreement is nearly perfect, confirming that the nonlinear oscillation de-
velops through the computed linear global mode, thus cross-validating
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Figure 7.4. The neutral stability curves as a function of Λ−1

and Re for an unconfined (–"–, blue) and confined (–◦–, red)
wake. The region on the right side of the curve is unstable. The
inviscid solution by Juniper (2006) is also shown — unconfined
(-·"-·, blue) and confined (-·◦-·, red).

both methods. This agreement was as good for the other wakes under
study. Note that this means that the stability limits for DNS and linear
global modes were always equal, also in cases where final flow states
were different. For example, confinement stabilized the nonlinear flow
at h = 1 as well.

After the initial linear regime, the growth of the nonlinear oscillation
weakens and finally its amplitude saturates into a constant value. The
frequency and shape of the fundamental Fourier mode of the saturated
state were also extracted, and compared to their linear counterparts.
The nonlinear saturated frequencies (diamonds connected with dashed
lines in Fig. 15 a) show the same trend with confinement as the linear
frequencies, but are higher for all values of h. Comparisons of linear
and nonlinear mode shapes, and studies on the effect of shear ratio at
Re = 100, are also presented in the paper.

Now, we turn into the effect of the Reynolds number. Figure 24
shows the neutral stability curves for linear global modes in Λ−1 − Re-
plane, for a confined (h = 1) and an ”unconfined” (h = 9) wake. The
confined wake is always more stable than the unconfined wake, but the
stability limits approach each other at Re = 300 − 400. The base flows
at Re = 400 for confined and unconfined flows were seen to be similar in
the upstream region, although the total lengths of the wake region were
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Figure 7.5. Growth rate, ωgi (left) and frequency, ωgr (right)
of the linear global mode calculated with the approximate local
analysis (squares) and the ”true” global analysis (circles).

different. This lead to the hypothesis that the confinement affected the
flow only through base flow changes in the upstream region, and that
this effect would be absent for higher Reynolds numbers.

7.2.2. Linear global modes vs. weakly-non-parallel theory

The result of Paper 1, that confinement had a globally stabilizing effect
on co-flow wakes, seemed to contract the previous local results (Juniper
(2006), Rees & Juniper (2010)), where confinement increased the local
absolute instability for co-flow wakes (see the dashed lines in Fig. 24).
Also, the main conclusion from Paper 1 was that the stabilizing effect
of confinement was caused by the spatial structure of the confined base
flow. Therefore, the logical next step was to perform a local analysis on
the same spatially developing base flows as the global analysis.

In Paper 4, a local weakly-non-parallel (WNP) analysis is made by
M. P. Juniper, and the global analysis by the author of this thesis, on
an extensive set of base flows. Both the growth rate, frequency and
shape of the global mode can be approximated from the local analysis,
as described in Sec. 2.2. These results can then be compared with the
ones obtained from the ”true” global analysis.

The global and local eigenvalues with respect to h are shown in
Fig. 7.5: the frequency (a) and the growth rate (b). Two observations
can immediately be made from the figures. The first is that the local
analysis overestimates the growth rates and frequencies compared to
the global analysis for all h. The difference between local and global
eigenvalues is fairly constant. The second observation is that the trends



7.2. THE INFLUENCE OF CONFINEMENT ON WAKE INSTABILITY 69

in both curves are very similar. In particular, confinement decreases the
growth rate also in the local analysis. However, since the local analysis
overestimates the growth rates in all cases, the local growth rate for
h = 1 is still positive.

Shapes of local and global growth rate curves (and the same for
the frequency curves) are similar in all cases under study, apart from
the constant offset. Based on this, it is argued that the local analysis
might be able to predict trends seen in global linear stability, despite
the quantitative disagreement. Both analyses are also made on a more
artificial base flow with a slip condition on the wall, in an attempt to
study the influence of the wall boundary layer. Three competing effects
of the confinement are found:

1. The wake length and the length of the backflow region decrease
with confinement (as pointed out in Paper 1).

2. The wall boundary layer makes the profile less locally unstable.
3. The saddle point interaction (as in Juniper (2006), Rees & Juniper

(2010)) acts destabilizing.

For the wakes at Re = 100, effects 1–2 overcome effect 3 in the local
analysis, which resolves the apparent contradiction between the previous
local and global results.

7.2.3. Structural sensitivity

Paper 4 deals with the structural sensitivity of co-flow wakes, concen-
trating on the weakly confined2wake at h = 9, Re ≈ 400, Λ−1 = −1.32.
Specific phenomena, not reported in previous works performed in other
wake configurations, are highlighted. The physical background of the
sensitivity approaches presented here is described in Sec. 2.4 in more
detail.

First, we locate the wavemaker region, assumed to be the source of
the instability (Giannetti & Luchini 2007). This is obtained by look-
ing at the overlap of (the amplitude of) the direct and adjoint global
eigenmodes. This overlap for the leading eigenmode is shown in Fig.
7.6 a. In contrary to previous results for cylinder wakes (see Sec. 3.1.1),
the wavemaker has more than one local maximum: the first one in the
shear layer close to the inlet, and the second one downstream, centered
around x ≈ 20. The second elongated region seems to be unique for

2In Paper 2, the wakes at h = 9 are called ”unconfined”. This is because for h > 9, variations
in h cause only minor changes in the global eigenvalue. In Paper 6, the term ”unconfined” is
also sometimes used in comparisons, to distinguish from the strongly confined wake (h = 1).
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Figure 7.6. Theoretically predicted sensitivity of the global
wake eigenvalue to small perturbations: (a) sensitivity to
structural perturbations, (b) sensitivity to modifications of the
streamwise base flow velocity field, (c) sensitivity to a small
control cylinder (the dark contours surround regions where
stabilization is predicted by the linear theory).

weakly confined wakes at high Reynolds numbers; it appears neither for
strongly confined wakes, nor for weakly confined wakes at Re ≈ 100.

Second, we look at where local modifications of the base flow velocity
profile have the largest effect on the growth rate of the global mode (Mar-
quet et al. 2008). This property could potentially be exploited in flow
control; one could try to modify the mean flow profile experimentally in
a certain position, with the goal to either suppress or enhance the global
oscillations. The sensitivity to modifications in the streamwise velocity
of the base flow is shown in Fig. 7.6 b. The red color indicates that a
local streamwise acceleration is destabilizing, and the blue color that it
is stabilizing (and since the theory is linear, a streamwise deceleration
has the opposite effect).
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In the region 0 < x < 10 (the location of the upstream wavemaker in
Fig. 7.6 a), the effect of base flow modifications is intuitively clear. The
growth rate increases if the outer flow is accelerated, and the inner flow
decelerated. Both modifications would make the shear stronger, thus
enhancing the instability. The physical interpretation of the sensitivity
in the region x > 10 is not as straightforward. Here, a periodic row of
minima and maxima are seen, depending on the streamwise position of
the modification. This seemingly counterintuitive theoretical result is
verified by introducing a base flow modification directly in the global
mode computations, for a range of streamwise positions. For small base
flow modifications, the eigenvalue moves exactly as predicted by the
theoretical distribution.

Further, we examine the effect of a small control cylinder on the
global stability. Theoretically, this can be done by modeling the cylin-
der as a volume force with both steady and unsteady components (Hill
(1992), Pralits et al. (2010)). The resulting sensitivity distribution is
shown in Fig. 7.6 c. The black contours indicate regions, where a tiny
control cylinder with radius r = 0.02 should suppress the global mode.

The validity of the theoretical prediction is tested by including a
control cylinder (r = 0.02) in various spatial positions, and recomputing
the global spectrum. The result is that all global modes can be stabilized
if the control cylinder is placed inside the upstream wavemaker region.
When the cylinder is placed in region x > 10, it fails to stabilize the
flow, and instead several new unstable modes appear. The spectrum
depends on the position of the control cylinder, in a similar manner as
hotwires can create edge tones in shear layer experiments (Hussain &
Zaman 1978).

The prediction of the theory is only valid for small enough modifi-
cations, and the force from the cylinder appears to be too large. Ap-
pearance of several modes is shown also for large generic base flow mod-
ifications, while the small base flow modifications were very consistent
with the theory. Therefore, the theoretically obtained distribution in
the downstream region should be valid only for small enough cylinders,
but the eigenvalue would then probably not move to the stable side.

The result indicates that the flow should be controlled in the up-
stream region, while it is extremely sensitive to perturbations in the
downstream region. In previous wake studies (mostly at lower Re), the
regions of high sensitivity and controllability were always close to each
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Figure 7.7. Spectra for different values of surface tension
parameter We, for the example wake 2 in Paper 3 (Re = 316,
h = 1, Λ−1 = −1.32).

other. Therefore, the flow case could be very interesting for studies of
wake dynamics and control at moderate Reynolds numbers.

7.3. The effect of surface tension on wakes and jets

7.3.1. Changes in the spectra and modal structure of an example wake

In Paper 3, we add surface tension as a new parameter to the co-flow
wake studies. Two of the slightly unstable wakes in Paper 2 are chosen,
and we examine how the global modes evolve with increasing surface
tension, by changing the Weber number defined in Sec. 5.2 from We = ∞
(no surface tension) to We ≈ 2. In this section, some results for the
second wake (Re = 316, Λ−1 = −1.32, h = 1) are presented3.

3The first wake in Paper 3 (Re = 100, h = 1.5, Λ−1 = −1.2) gives similar trends, but the
effect of surface tension is smaller in that case.
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Figure 7.8. Streamwise disturbance velocity of the most un-
stable mode for different We, for the example wake 2 in Paper
3 (Re = 316, h = 1, Λ−1 = −1.32).

First, we look at the eigenvalue spectra for different values of surface
tension, shown in Fig. 7.7. Without surface tension (blue), there is one
unstable mode with nondimensional frequency ωr ≈ 0.88 and growth
rate ωi ≈ 0.012. The mode is antisymmetric, and corresponds to the
well-known von Kármán vortex street, but here in the context of a co-
flow wake.

When a small amount of surface tension is added (We ≈ 50, red),
not much is changed: the unstable mode has moved to a slightly lower
frequency. However, when the value of surface tension is increased to
intermediate values (We ≈ 10, black), the growth rate of the most
unstable mode has increased remarkably (to ωi ≈ 0.059), and five more
unstable modes have shown up. All modes occur at lower frequencies
than the unstable mode at We = ∞. A look at the mode shapes has
shown that the most unstable mode at We = 10 is still antisymmetric,
but that two of the other unstable modes are symmetric.

When the surface tension is increased further to We ≈ 4, it is shown
in Paper 3 that the most unstable mode becomes symmetric. When
We ! 2 (green), also the symmetric modes become stable.
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Figure 7.9. Global stability as a function of 1/We and 1/Λ
for wakes (a,c) and jets (b,d). Note the different scales on
vertical axis (1/We) for wakes and jets. Results for symmetric
(a,b) and antisymmetric (c,d) are shown. Filled symbols show
unstable and open show stable cases.

Examples on the effect of surface tension on the mode shapes are
shown in Fig. 7.8 (for antisymmetric modes). The unstable mode with-
out surface tension (uppermost figure) has a long wavelength and ex-
tends far outside the figure frame in the streamwise direction. Already
for weak surface tension (We = 50, middle figure), the longer wave-
length is accompanied by a shorter one in the shear layer close to the
nozzle. For We = 10, the shorter waves have taken over, and the mode
amplitude is large only over a couple of wavelengths, in a region fairly
close to the nozzle.

The effect of surface tension on the example wake can be summarized
as follows: Intermediate surface tension increases the growth rate of
the global mode(s) in wakes, while strong surface tension stabilizes all
oscillations. Further, surface tension shortens the wavelength of the
unstable mode(s), and moves the oscillation region upstream.
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Figure 7.10. Modes for antisymmetric and symmetric dist-
urbances for a jet with 1/Λ = 1.2, and 1/We = 0.06, 0.1 and
0.4, from top to bottom.

7.3.2. Surface tension induced destabilization of jets and wakes

The investigation in Paper 3 was made for wakes that were unstable
without surface tension. Although the growth rates increased, there
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was no proof that surface tension could destabilize a flow field. Also,
linear analysis is not expected to yield accurate results in the strongly
unstable flows, but can be used to locate the bifurcation point(s), which
is the focus of Paper 6.

In Paper 6, it is shown that surface tension indeed can destabilize
plane wakes and jets which are stable without surface tension. The
investigations are performed at h = 1 and Re = 316. In the current
section, we adopt the inverse Weber number We−1 to characterize the
importance of surface tension. This means that the case the case without
surface tension has conveniently the value We−1 = 0.

The instability of jets is more remarkable than that of wakes, since
co-flow jets do not normally have global oscillations for this low Reynolds
number. The stability of jets over the Λ−1–We−1-plane is shown in Fig.
7.9 (a) for antisymmetric and (b) for symmetric modes. Each dot in
the figure represents one global mode computation, and the filled dots
denote cases where at least one unstable mode was found. Consequently,
the limits of the globally unstable parameter region are located between
filled and open symbols. The jet is unstable for symmetric modes for a
much larger range of shear ratios, than for antisymmetric modes (notice
the different axis limit in subfigures a and b). The stability of wakes is
shown in Fig. 7.9 (c–d). For wakes on the other hand, antisymmetric
modes are unstable for a larger region in the parameter space than the
symmetric modes. In this sense, symmetric modes dominate for jets,
and antisymmetric modes for wakes.

However, the nature of the first bifurcation when surface tension
is increased largely depends on the value of the value of the shear ra-
tio Λ−1. We take the jet at Λ−1 = 1.2 as an example. For this jet,
both symmetric and antisymmetric modes bifurcate simultaneously at
We−1 ≈ 0.06, and have almost the same value of ω. This indicates that
the bifurcating mode is neither symmetric nor antisymmetric. Symmet-
ric and antisymmetric eigenfunctions for this jet at different values of
We, are shown in Fig. 7.10. The corresponding eigenvalue is written on
top of each figure.



CHAPTER 8

Conclusions and outlook

In this chapter, the main conclusions of each paper are first presented
in point-form. The conclusions are followed by a general outlook, in
which the results are put in a somewhat broader perspective and some
possibilities for future research and developmental work are proposed.

8.1. Conclusions

8.1.1. Stabilizing influence of a parallel gas flow on a plane liquid sheet

Paper 1 deals with the influence of a parallel air flow on a plane water
sheet, with the air velocity at most of the same order of magnitude as
the water velocity.

• The water sheet with a uniform inlet profile is convectively un-
stable in this regime, and responds to forcing in a consequent
manner.

• Experimental spatial growth rates are measured in the region
where the oscillation amplitude is small, and agree with results
from local spatial stability, but only if viscosities of both phases
are taken into account. The agreement is demonstrated both for
the case of stagnant air, and two cases with confluent air.

• The numerical studies indicate that the growth rate is linearly pro-
portional to the velocity difference between air and water. Also,
the stabilizing influence of the air boundary layer scales as the
square root of the shear at the air surface (inverse of the bound-
ary layer thickness) in the computations.

8.1.2. The global stability of confined wakes

The influence of confinement on wake instability is investigated in Paper
2 and Paper 4.

• The confinement at Re = 100 is mainly stabilizing, both for the
linear global modes and DNS.
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• The stabilization is connected to the spatial development of the
base flow.

• The stabilizing effect decreases with increasing Re, when the base
flow becomes more parallel, and for Re = 400 the stability limit
with respect to inlet shear is almost equal for confined and un-
confined wakes.

• The stability limits for DNS and global modes are always equal,
since the initial complex frequency extracted from DNS matches
exactly the linear frequency.

• The saturated frequency from DNS, and its corresponding fun-
damental Fourier mode, are similar for some cases, but differ
from the linear counterparts especially for high Reynolds num-
bers. Note that for co-flow wakes the inlet shear can be adjusted,
and hence the high Reynolds number cases are also close to bifur-
cation.

• The confinement decreases the growth rate also in a local linear
WNP analysis, thus resolving apparent contradictions in Paper 2
and previous works.

• The trends of the growth rate and frequency in the local analysis
are evidently similar to the one of ”true” linear global modes, as
well as the extracted mode shape. However, the local analysis
has a considerable and nearly constant offset. In particular, the
local analysis overpredicts all growth rates, similarly to previous
analyses of cylinder flows.

8.1.3. Oscillatory sensitivity patterns for global modes in wakes

For a weakly confined (h = 9) co-flow wake at higher Re, a region of
high sensitivity is found downstream, with the center at x ≈ 20. In
Paper 5, this phenomenon is investigated in detail.

• For a wake at h = 9, and Re ≈ 400, the wavemaker is split into
two regions: one at the shear layer edge close to the inlet, and
one further downstream. The second region does not appear for
wakes at lower Reynolds numbers (Re ≈ 100), and neither for
confined wakes at Re = 100 − 400.

• Inside the downstream sensitivity region, it is found that small
modifications in the base flow velocity profile cause either a de-
crease of increase of the growth rate and frequency, in a spatially
periodic manner. The term ”small” means that the sensitivity is
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assumed to be linear with respect to the modification. The sensi-
tivity to the base flow profile is computed using an adjoint-based
approach.

• The prediction from the theory is tested by recomputing the direct
eigenmodes with a small local modification in the base flow profile,
in a range of streamwise positions. The oscillatory pattern is
reproduced exactly for small enough base flow modifications.

• The sensitivity to a small control cylinder (r = 0.02) in differ-
ent parts of the flow is computed by modeling the small cylin-
der as a volume force, similarly to previous works on sensitivity
of wakes. One stabilizing region is identified inside the upstream
wavemaker, and several small regions inside the downstream wave-
maker.

• The theoretical prediction is tested by including a small control
cylinder in the computation of direct eigenmodes. The cylinder
can stabilize the flow when placed in the upstream region. Further
downstream however, the force from the cylinder is too large for
the linear prediction to be valid. Then instead, several unstable
modes dependent on the control cylinder position are seen, similar
to edge tones in shear layer experiments, or some of the global
modes in a cavity.

• The flow is thus receptive for control in the upstream region, but
the dynamics of the global mode is very sensitive to (both small
and finite) perturbations in the downstream region. In this sense,
the flow combines characteristics typical for absolute and convec-
tive instabilities.

• The downstream sensitivity could partly explain why broader
spectral distributions are observed for unconfined than for con-
fined cylinder wakes in previous works.

8.1.4. Influence of surface tension on the global stability of wakes and jets

In Paper 3 and Paper 6, surface tension is included in the interface
between two fluids (with the same density) in global stability computa-
tions.

• Surface tension can destabilize stable jets and wakes, in the global
setting.

• Intermediate amount of surface tension is globally destabilizing,
while strong surface tension is globally stabilizing. The limits of
the destabilizing regime depend on the flow case; wake or jet, and
the value of the inlet shear ratio.
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• The frequency of the global oscillation is decreased, when surface
tension increases.

• Both symmetric and antisymmetric unstable modes are encoun-
tered, for both jets and wakes.

• For jets, the symmetric modes need less shear at the inlet to
destabilize than antisymmetric modes. For wakes, the situation
is the opposite.

• For jets, the modes with the maximal growth rate over all We are
symmetric, and for wakes antisymmetric.

• The mode symmetry and structure at bifurcation (the lowest
and/or highest We of the unstable regime, other parameters fixed)
are different for different shear ratios.

8.2. Outlook

The wake and jet flows studied in this thesis are a family of flows showing
a rich dynamical behaviour. In the light of the extensive litterature on
one-fluid and two-fluid shear flows, it seems reasonable that the complex-
ity will increase if one considers different inlet profiles and inlet models,
non-Newtonian fluids1, varying viscosity and density ratios, and so on.
Therefore, the thesis points out many possibilities for future studies.
Neverthless, the application window of the present results might very
well carry over to related flows, as long as the results are interpreted
with a good understanding of the physics. Each paper performs (more
or less) a parameter study, so the conclusions are not based on one sin-
gle flow setup. Also, we attempt to carefully locate the global stability
limits, which is a valid application of the linear analysis, instead of char-
acterizing the nonlinear flow regime. These related flows could be e.g.
wakes behind a cylinder or mixing problems in the headbox jet of a
papermachine.

The results on confined wakes are already validated by DNS, and
relatively well understood in the current Reynolds number regime by
the combination of local and global linear analysis. However, the wave-
makers and sensitivities for unconfined wakes at Re > 300 are waiting
to be studied by nonlinear simulations (and why not experiments?). If
the sensitivities partially carry over to the nonlinear setup, this would
have implications on experiments and/or DNS studies, depending on
the cause. A deeper understanding of the underlying mechanism would
therefore be desirable.

1such as polymer flows, ink, fiber suspensions in a paper machine, to name a few.
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The most immediate suggestion to future work is to validate and
further quantify the considerable effects of surface tension on the global
stability of wakes and jets, by experiments and nonlinear simulations.
While many codes for one-phase flows can today be considered robust
enough to produce results on their own, for two-fluid flows experimental
validation is essential. On the other hand, in experiments it is hard to
distinguish between local and global instabilities, but in a sufficiently
noise-free DNS code the initial exponential growth is visible, as is shown
in Paper 2. This process might involve a more accurate modeling of
real experimental inlet geometries. Viscosity and density differences are
already included in the global stability code, and their effect is a topic
on its own. Sensitivity studies would help to further clarify the phys-
ical mechanisms. Once the current operational window of the code is
carefully investigated and understood, studies of other flow cases and pa-
rameters can be undertaken. The applications for further studies could
then range from ink jet printing to micro-mixing, from food to paper
industry, from sprays to atomisation.

Scientists investigate that which already is; Engineers create that which
has never been.

Albert Einstein (1859–1955)
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Papers and authors contributions

Paper 1
Stabilizing effect of surrounding gas flow on a plane liquid sheet
O. Tammisola (OT), A. Sasaki (AS), F. Lundell (FL), M. Matsubara
(MM) & L. D. Söderberg (DS). J. Fluid Mech. 672, 5–31.

This paper deals with the stabilizing effect of air co-flow around a plane
water sheet in air. The sheet is excited with different frequencies by
loudspeakers at the inlet. The growth rate is space is measured as a
function of frequency, and this curve is compared to spatial stability
computations, both in stagnant and confluent air. Then, the experi-
mentally validated stability code is used to quantify the effect of air
co-flow at moderate speeds.

The original idea of the experiment was by MM. The experiments
were performed by AS under guidance of MM and input from OT and
FL. The base flow computations were made by OT. The stability analysis
was made by OT, using a code and method created by DS who assisted
in the initial phase, and with input from FL. The writing was done by
OT, with assistance from FL, and input from MM.

Paper 2
Global linear and nonlinear stability of viscous confined plane wakes with
co-flow
O. Tammisola, F. Lundell, P. Schlatter (PS), A. Wehrfritz (AW) & L.
D. Söderberg J. Fluid Mech. 675, 397–434.

This paper deals with the effect of confinement and inlet shear ratio on
the global two-dimensional stability of co-flow wakes at Re = 100− 400.
Both linear global modes and the final nonlinear oscillation are consid-
ered.
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The base flow and linear global mode computations were performed
by OT under guidance of FL, and input from PS and DS. The direct nu-
merical simulations were performed by AW under supervision of PS and
input from OT and FL. The writing was made by OT, with assistance
from PS, and comments from FL.

Paper 3
Effect of surface tension on global modes of confined wake flows
O. Tammisola (OT), F. Lundell (FL) & L. D. Söderberg (DS). Phys.
Fluids 23, 014108.

This paper deals with the effect of surface tension on global modes
in wakes. The influence on the growth rate, frequency and shape of the
global mode is investigated.

The computations and writing were made by OT under supervision
of FL. The manuscript was commented by DS.

Paper 4
Comparison of local and global stability properties of confined wake flows
M. P. Juniper (MJ), O. Tammisola (OT) & F. Lundell (FL). Submitted
to Journal of Fluid Mech.

This paper deals with the comparison of true linear global modes and ap-
proximate linear global modes obtained from local weakly-non-parallel
analysis, for confined wakes. Previous local computations by MJ and
global computations by OT (Paper 2) gave opposite trends with respect
to confinement. In this paper, the effect of confinement on spatially de-
veloping wakes at Re = 100−400 is scrutinized by both local and global
methods, giving rise to several competing effects in the local setting.

The original idea for the paper was born in APS 2007 by all authors.
The base flow and global mode computations were made by OT, and the
local computations by MJ. The writing was made by MJ, with assistance
from OT and FL.

Paper 5
Oscillatory sensitivity patterns for global modes in wakes
O. Tammisola. Submitted.



84 9. PAPERS AND AUTHORS CONTRIBUTIONS

This paper deals with the structural sensitivity of very weakly con-
fined wakes (surrounded by distant walls) at Re ≈ 400 in a similar setup
as Paper 2 and 4. Specifically, a region of high sensitivity of the ”uncon-
fined” wake located downstream is highlighted, not reported on previous
works. It is shown that the downstream sensitivity pattern does not oc-
cur for confined wakes or unconfined wakes at low Reynolds number.
Further, the implications on passive control are investigated.

The work has been performed by the author.

Paper 6
Surface tension induced global destabilisation of plane jets and wakes
O. Tammisola, F. Lundell & L. D. Söderberg. To be submitted.

This paper is a follow-up of Paper 3. Here, we show that globally
stable co-flow jets and wakes become globally unstable in the presence
of surface tension. We determine the neutral curves of global stability
with respect to surface tension and inlet shear.

The computations were performed by OT. The writing was per-
formed jointly by FL and OT, which input from DS.
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The stability of a plane liquid sheet is studied experimentally and theoretically,
with an emphasis on the effect of the surrounding gas. Co-blowing with a gas
velocity of the same order of magnitude as the liquid velocity is studied, in or-
der to quantify its effect on the stability of the sheet. Experimental results are
obtained for a water sheet in air at Reynolds number Rel = 3000 and Weber
number We = 300, based on the half thickness of the sheet at the inlet, water
mean velocity at the inlet, the surface tension between water and air and water
density and viscosity. The sheet is excited with different frequencies at the
inlet and the growth of the waves in the streamwise direction is measured. The
growth rate curves of the disturbances for all air flow velocities under study
are found to be within 20% of the values obtained from a local spatial stability
analysis, where water and air viscosity are taken into account, while previ-
ous results from literature assuming inviscid air overpredict the most unstable
wavelength with a factor 3 and the growth rate with a factor 2. The effect
of the air flow on the stability of the sheet is scrutinized numerically and it is
concluded that the predicted disturbance growth scales with (1) the absolute
velocity difference between water and air (inviscid effect) and (2) the square
root of the shear from air on the water surface (viscous effect).

1. Introduction

Instability or break-up of a round or flat liquid jet entering into a gas
or vacuum is important in a vast number of applications (Eggers &
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Villermaux (2008) and references therein). In many cases, such as com-
bustion, agriculture and chemical or process engineering, it is desirable
that the jet breaks up and forms a spray. The reason is naturally that
one wants to achieve mixing between the gas and the liquid or an effi-
cient spreading of the liquid. We however aim at stabilizing a liquid jet.
An application where stabilization is desirable is papermaking, where a
plane jet of pulp suspension (a suspension of mainly water and cellulose
fibres) is sprayed onto one or in between two permeable wires. As the
water is drained, the fibres remain on the wire(s) and form the paper.

The stability of liquid jets surrounded by gas is a classical problem
in fluid mechanics. The stability of round liquid jets was studied by
Rayleigh (1878), who in an inviscid study concluded that all long enough
round jets break down into droplets due to surface tension. The physical
reason is that small waves result in an axial variation of the radius and
therefore a capillary pressure gradient that makes the fluid to migrate
even more to the thinner sections. Later on, Weber (1931) studied the
effect of a velocity difference between liquid and gas and concluded that
this should increase the instability. Plane jets, or liquid sheets, are
different from round jets, since far from the rims, there is no surface
force binding the upper and lower surfaces together; the equilibrium is
reached when both surfaces are flat and parallel. Squire (1953) showed
that liquid sheets do not possess the kind of instability caused by surface
tension alone that Rayleigh (1878) found for round jets.

In order to explain instabilities of liquid sheets it is thus necessary
to add more physics to the analysis. Hagerty & Shea (1955) introduced
an inviscid stationary gas around the sheet and Li & Tankin (1991); Li
(1993) added the viscosity of the liquid. Further on, Teng, Lin & Chen
(1997) performed a linear stability analysis of a specific wall-bounded
configuration including viscosity and velocity profiles of the surrounding
air as well, and Söderberg & Alfredsson (1998) did the same for a free
liquid sheet. The latter analysis is the basis for the theoretical part of the
present work. Recently, Sander & Weigand (2008) performed a direct
numerical simulation on the wave growth and break-up of a liquid jet
and investigated the effects of the physical parameters, as well as initial
velocity profile and turbulence intensity, on the break-up process. A very
brief summary of the studies above is: (i) the instability of liquid sheets
is driven by a velocity difference between liquid and gas, (ii) symmetric
and antisymmetric modes can exist depending on the parameter regime,
(iii) liquid viscosity has a stabilising effect in most cases, and (iv) the
inlet profile has a remarkable effect on the instability.
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In experiments, liquid sheets have mainly been studied through flow
visualizations and measurements of integral quantities such as break-up
length and spray angle. Söderberg & Alfredsson (1998) studied a liquid
sheet forced by a loudspeaker, and the disturbances showed qualitative
agreement with the linear stability theory. The particular case of a
liquid sheet with a co-flowing gas, which is studied in the present work,
has been investigated by Mansour & Chigier (1991); Lozano, Barreras,
Hauke & Dopazo (2001); Park, Huh, Li & Renksizbulut (2004). In these
studies, a strong blowing was applied in order to imitate the atomization
process.

In the present work, a liquid sheet surrounded by gas, with and with-
out co-flow, is generated experimentally and disturbed in a controlled
manner. The growth of disturbances on the sheet is carefully quantified
by measuring the variation in time of the local surface inclination. As
a result, growth factors can be determined with good accuracy. The
results are compared to theoretical predictions based on the method
by Söderberg & Alfredsson (1998), which has been complemented to
account for co-flowing air. The experimental setup and measurement
techniques are presented in section 2 and the theoretical and numerical
methods are explained in section 3. In section 4, the experimental results
are presented and compared with the theoretical predictions. Additional
observations based on the theory are made in section 5 and finally, the
conclusions are summarized in section 6.

2. Experimental setup and methods

2.1. Liquid sheet facility

The experiments were performed in a liquid sheet facility at Shinshu
University, Nagano, Japan. The facility consists of a nozzle unit (see
figure 1) ejecting a water sheet vertically into a water basin. The coor-
dinate system is defined in the figure, and is x∗, y∗, z∗ for the streamwise,
sheet-normal and spanwise directions, respectively, where stars denote
dimensional quantities. The origin is located at the centre of the exit
of the water nozzle. Further, the sheet half thickness is denoted by a∗,
the velocity profile in the liquid by U∗

l and the velocity profile in the gas
by U∗

g , while U0∗
l is the surface velocity of the liquid and U∞∗

g the free
stream velocity of the gas.

The nozzle unit consists of three parts: one central nozzle for the
water and two side nozzles for the co-flowing air. All of them have
contractions near the outlet in order to generate as flat velocity profiles
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Loudspeakers
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Figure 1. Schematic of the experimental setup: nozzles,
sheet, basin and coordinate system.

as possible. The width of the exits in the z∗-direction is 400 mm and the
thickness in the y∗-direction is 1 mm for the water nozzle and 50 mm for
each air nozzle. Due to design constraints, the air streams have an angle
of 25 degrees to the water sheet at the outlet, as indicated in figure 1.

The water is pumped in a closed loop by a centrifugal pump and the
air is taken from the room and pressurized with a fan before entering
the nozzles via dampers and flow regulators. The nominal velocities of
air and water are the mean velocities over the cross-sections. The sheet
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Figure 2. Measurement system for the thickness of the liquid sheet.
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Figure 3. Measurement system for the local angle of the
sheet surface: (a) liquid sheet and laser beam, (b) photodi-
ode array.
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Figure 4. Time signals of the surface angle for a water sheet
experiment. The initial disturbance frequency is 100 Hz. Mea-
surement location: (a) x∗ = 250 mm (non-dim. x ≈ 500), (b)
x∗ = 300 mm (non-dim. x ≈ 600), (c) x∗ = 350 mm. (non-
dim. x ≈ 700), and (d) x∗ = 400 mm. (non-dim. x ≈ 800).

can be forced to oscillate at a given frequency by speakers mounted at
the counter ends of the flow regulators.

Inclination of the air flow nozzles relative to the water sheet is a
necessary design constraint, to get a sufficient contraction for the sheet
prior to the nozzle. To avoid inclination of the air free stream velocity,
suction is applied at the walls near the outlet. Further, the air flow
is surrounded by walls of length 500 mm at a sheet-normal distance of
50 mm from the centreline, to create a constant and parallel air free
stream velocity.

2.2. Experimental methods

The flow rates are monitored and adjusted by checking the pressure
drops over the nozzles during all experiments. In order to verify the
flow quality, velocity and thickness measurements are performed. The
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velocity is measured by traversing a hot wire (air) and a total pres-
sure tube (water) in the y∗-direction. These sensors allow the spatial
variations of the mean flow to be quantified.

The thickness of the liquid sheet is measured by the system sketched
in figure 2, by moving 10 pairs of sharp electrodes towards the surface
of the liquid sheet from both sides with an accurate traversing mecha-
nism. First, a reference position is determined by moving the electrodes
towards a 1 mm thick gauge inserted between them until the circuit is
closed. After turning on the water flow, the position of each side of
the liquid sheet can be determined by moving the relevant electrode out
from the liquid sheet and then traverse it towards the sheet again until
it touches the surface and the circuit is closed again.

Finally, the amplitude of the sheet oscillations is measured. This
is done with a laser and a photodiode array as shown in figure 3. A
horizontal laser sheet is focused on the water surface by a cylindrical
lens so that the measurement area is point-like. From there the light is
again scattered in the spanwise direction, and the angle of reflection in
the vertical direction is given by the local streamwise inclination angle of
the water surface. The reflection from the measurement point thus forms
a light sheet that is detected with the photodiode array. This in-house
made optical system allows a continuous measurement of the inclination
angle of the water surface θ, while waves pass by the measurement point.

By detecting θ over time we get time sequences as shown in figure
4. The phase velocity estimated from these example signals is 7.42 m/s,
corresponding to the mean water speed 7.3 m/s. The feature that the
phase velocity is almost equal to the sheet velocity is observed for a wide
range of frequencies from 40 Hz to 200 Hz . The reason for the slight
deviation between the phase velocity and the mean water speed (< 2 %)
is probably that the determination of the mean water speed is somewhat
less accurate than the measurement of the phase velocity.

From the time signals the local oscillation amplitude and phase can
be evaluated. The growth rate is then obtained from the slope of the
amplitude curve in a logarithmic diagram.

2.3. Flow characteristics

The flow quality in the apparatus is quantified in figures 5–7. The
results on the liquid sheet are given without gas flow, whereas the gas
flow results are taken without water — the reason for this is detailed
below.
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Figure 5. Thickness variation of the liquid sheet in the span-
wise direction.
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Figure 6. Streamwise velocity as a function of y∗ right after
the nozzle exit.

The thickness of the sheet as a function of the spanwise position
is shown in figure 5. It varies from around 800 µm on one side to
1000 µm on the other. This variation, ±10%, is indeed substantial.
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Figure 7. Distribution of the streamwise velocity in the air
flow at two different distances from the nozzle.

Nevertheless, the flow visualizations to be shown in section 4.1 reveal
that the disturbances on the sheet are very two-dimensional.

The contraction of the water nozzle prior to the outlet aims at cre-
ating a top-hat velocity profile and the water velocity data in figure
6 shows that it succeeds fairly well. The shear layers at the sides are
thin and the plateau is flat. Here, it has to be mentioned that towards
the rims at y∗ = ±0.5 mm, small fluctuations of the position of the
sheet give rise to a decrease in the mean velocity measured by the total
pressure tube. This decrease occurs because the tube is intermittently
exposed to air and water, respectively. Consequently, the velocity profile
in figure 6 overestimates the actual shear layers of the liquid sheet. The
gravitational acceleration for the sheet in the measurement region was
seen to be of the order 1 %.

The velocity profile of the air as a function of y∗ at two different
streamwise positions is shown in figure 7. Since a hot wire is used, the
measurements are taken without water flow. There are two main reasons
for this. The first is that the wire might break if hit by drops, and the
second is that the heat transfer from the wire to the air, which is used
to determine the air velocity U∗

g , changes with the air humidity. Thus,
in order to get accurate data of the air velocity, the sheet cannot be
present.
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Figure 7 shows that the air velocity is constant and fairly parallel to
the sheet in the region y∗ = −5 mm to y∗ = 5 mm (remember the sheet
thickness 1.1 mm). The deviation in the free stream velocity is of the
order 3 % in this region. Further out from the sheet there is a difference
of 0.1 m/s between the two streamwise stations.

The observed shear in the air free stream will be of secondary im-
portance, since the deviation between water and air velocity will always
be an order of magnitude larger in all cases that are studied in detail.
Near the walls surrounding the air flow, located at y∗ = ±50 mm, there
is a clear boundary layer development and therefore a velocity decrease
at x∗ = 400 mm. However, this boundary layer is far enough from the
sheet so that the free stream velocity near the sheet remains unaffected
in the measurement region.

3. Theoretical and numerical methods

The velocities are non-dimensionalized with U0∗
l and the lengths with

a∗, again all dimensional quantities marked with stars. In the following,
we denote the non-dimensional liquid velocity profile by Ul (y), the gas
velocity profile by Ug(y), and the free stream velocity of the gas (nor-
malised by liquid velocity) by U∞

g . Recall from figure 1 that x is the
streamwise, y the sheet-normal and z the spanwise direction.

In this way, the problem is characterised by the following four non-
dimensional parameters:
Firstly, we have the overall Reynolds number

Rel =
U0∗

l a∗

ν∗l
(1)

and the Weber number

We =
ρ∗l
(

U0∗
l

)2
a∗

γ∗
, (2)

where ν∗l is the kinematic viscosity of the liquid, ρ∗l its density and γ∗ the
surface tension between the liquid and the gas. We describes the ratio
between inertia and capillary forces, and will enter the problem through
the interface boundary conditions as will be explained in section 3.2. We
also need the density ratio between the gas and the liquid,

ρ̃ =
ρ∗g
ρ∗l

(3)
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and similarly, the viscosity ratio:

µ̃ =
µ∗

g

µ∗
l

. (4)

In two-dimensional linear stability, all flow variables are divided into
a steady base flow (capital letters) and a disturbance (small letters) as
follows:

U tot(x, y, z, t) = U (x, y) + u(x, y, z, t),

Ptot(x, y, z, t) = P (x, y) + p(x, y, z, t).

In the following subsections we will explain how both of them are ob-
tained.

3.1. Determination of the base flow

The base flow in the liquid is assumed to be uniform, based on the ex-
perimental profiles — the deviation from uniform velocity was estimated
to be less than 1 %, and the shape of the liquid velocity profile was hard
to calculate numerically with that accuracy.

Since it was not possible to measure the air boundary layer in the
presence of the liquid sheet, it has to be modelled. We present results
for two alternative models in this paper, denoted as Sakiadis and Stokes
boundary layers. The first one is formally a solution to the boundary
layer equations, whereas the second one is not, but admits a convenient
analytical solution.

3.1a. Model I: Modified Sakiadis boundary layer. This profile is obtained
from the similarity solution for the boundary layer equations in a manner
analogous to the Blasius boundary layer over a flat plate. We introduce
a non-dimensional streamfunction f such that

f ′(η) = Ug(y), η = (y − 1)

√

Reg

x
, (5)

where

Reg =
ρ̃Rel

µ̃
. (6)

The boundary layer equation and the boundary conditions (Ug = 1 on
the sheet surface and U = U∞

g far away from the sheet) then read:

ff ′′ + 2f ′′′ = 0, (7)

f ′(1) = 1 (8)
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and

f ′(∞) = U∞
g . (9)

This equation coupled with the boundary condition U∞
g = 0 was first

studied by Sakiadis (1961a), and is therefore termed Sakiadis boundary
layer in this paper.

3.1b. Model II: Modified Stokes layer. This model was used in Söderberg
(2003) and is based on the Stokes first problem: the flow above an
instantaneously started plate. The solution to this problem is analytical,
and therefore especially easy to include also in problems with a varying
liquid velocity profile in the streamwise direction, as in Söderberg (2003).
In this case, the air velocity is obtained as:

U∗
g = U0∗

l + (U∞∗
g − U0∗

l )erf(η∗/2), (10)

where erf is the error function, and:

η∗ = (y∗ − a∗)/
√

ν∗g t∗,

where ν∗g is the kinematic viscosity of the gas. To be able to use this
solution, we must define t∗ as a function of x∗ in a way that gives a
qualitatively correct growth of the gas boundary layer in the streamwise
direction. The choice here is:

t∗ =
U0∗

l

x∗
. (11)

The resulting equation is in non-dimensional form:

Ug = 1 + (U∞
g − 1)erf(η/2), (12)

where, as before,

η = (y − 1)

√

Reg

x
. (13)

3.1c. Parameterization of the base flow profiles. As mentioned, the liquid
base flow profile was assumed to be uniform. The experimental velocity
profile of the water right after the nozzle exit is shown in figure 6. The
boundary layers are thin enough that this profile should have relaxed
to a uniform one at all measurement positions, located at least 300 jet
thicknesses downstream from the nozzle.

The uniformity also means that the non-dimensional parameters Rel

and We for the liquid sheet are constant in the streamwise direction.
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σ

(b)

Figure 8. (a): Physical interpretation of the boundary layer
thickness δ (equation 14).
(b): Illustration of σ.
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Figure 9. (a): The boundary layer thickness δ as a function
of the streamwise distance x for the Stokes (—) and Sakiadis
(- -) base flow models, U∞

g = 0. (b): σ, the shear from air at
the surface, as a function of x, Stokes (—) and Sakiadis (- -),
U∞

g = 0.

While Re is indeed constant due to mass conservation, the small grav-
itational acceleration of the sheet in the measurement region (section
2.3) results in an increase of We of the order 1%. This variation is of
the same order as the uncertainty due to e.g. temperature fluctuations,
and was therefore not considered.
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Figure 10. The base flow profiles with different amount of
”blowing” for (a) Stokes model (b) Sakiadis model. The profile
for U∞

g = 0 is drawn with a thick line, and thereafter U∞
g =

0.2, 0.4, ...,2. For the Stokes model in (a) the profiles are
exactly symmetric with respect to the difference between the
liquid and gas velocities, while for the Sakiadis model in (b)
they are not.
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Figure 11. (a) The boundary layer thickness δ as a function
of blowing velocity U∞

g for the Stokes (—) and Sakiadis (- -)
base flow models for two different x-positions, x = 300 (lower)
and x = 700 (upper). The absolute value of the shear from air
at the surface as a function of U∞

g , Stokes (—) and Sakiadis
(- -): (b) x = 300 and (c) x = 700.
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Figure 12. The streamwise velocity of the base flow with
Stokes gas flow model in grayscale, values indicated by the
colorbar. The velocity profiles at x = 0, x = 60, x = 150 and
x = 270 are plotted with grey arrows on top of the picture.
The boundary between the liquid and gas phases is marked by
a dark solid line. The liquid velocity profile is uniform all way
through, and the streamwise development of the gas boundary
layer is seen.

The streamwise development of the whole flow can thus be charac-
terised by one additional parameter, e.g. the boundary layer thickness
δ that we define by:

δ =

∫

∞

1

(Ug (y) − U∞
g )

(1 − U∞
g )

dy. (14)

This δ is similar to the displacement thickness for a boundary layer
around a solid body in the way that it gives the height by which the
liquid sheet should be extended in the sheet-normal direction to get the
same total volume flow, if both liquid and gas flows were considered
inviscid. In a real inviscid calculation, it might be desirable to keep the
total mass flow constant instead of volume flow, in which case the height
of the extensional region is effected by the density ratio. However, we
prefer to define the boundary layer thickness based on the gas properties.

The same definition of δ was also used by Sakiadis (1961b) in the
stagnant air case, and termed displacement thickness in that paper.
However, we would like to point out that it does not have a physical
interpretation in terms of displacement of streamlines like for the Blasius
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boundary layer, but rather represents a displacement of the free stream
region.

Another alternative to characterise the flow that will be considered
is the shear on the liquid surface, σ. Both parameters are illustrated in
figure 8. The Sakiadis solution has a larger δ and a larger absolute value
of σ than Stokes at the same streamwise position, as detailed in figure
9.

When the air velocity U∞
g is added as a parameter, the shape of the

Stokes profile only depends on the absolute velocity difference between
water and air, while the Sakiadis profiles are different for U∞

g < 1 and
U∞

g > 1 (figure 10). This difference is also reflected in δ and σ (figure
11). The resulting full base flow field U(x, y) for U∞

g = 0 and the Stokes
model is shown with grayscale in figure 12.

3.2. Linear stability analysis

In the linear stability analysis, two separate sets of equations are solved
— one for the liquid and one for the gas phase, with Re = Rel and Re =
Reg, respectively. Both of them share the same form, presented below.
These equations are then coupled together by the interface conditions
presented in section 3.2a.

The Navier–Stokes equations, linearized around a two-dimensional
base flow
(U(x, y), P (x, y)) and with pure base flow terms subtracted, become:

−
∂u

∂t
− U

∂u

∂x
− V

∂u

∂y
− u

∂U

∂x
− v

∂U

∂y
+

−
∂p

∂x
+

1

Re

(

∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)

= 0 (15)

−
∂v

∂t
− U

∂v

∂x
− V

∂v

∂y
− u

∂V

∂x
− v

∂V

∂y
+

−
∂p

∂y
+

1

Re

(

∂2v

∂x2
+
∂2v

∂y2
+
∂2v

∂z2

)

= 0 (16)

−
∂w

∂t
− U

∂w

∂x
− V

∂w

∂y
+

−
∂p

∂z
+

1

Re

(

∂2w

∂x2
+
∂2w

∂y2
+
∂2w

∂z2

)

= 0 (17)
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∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (18)

The stability analysis is based on the assumption that the base flow
variations occur on a much longer length scale than the typical wave-
length of the disturbances, i.e. locally parallel flow. The choice of
a local method is supported by the fact that in the experiments the
growth rate is changing very slowly in the streamwise direction. Both
the sheet-normal velocity and all streamwise derivatives of the base flow
are neglected, considering only base flow velocity profiles of type:

U = (U(y), 0, 0)

This results in that all coefficients in front of the disturbance quan-
tities in equations (15–18) are independent of both x and t. Thus, we
can Fourier-transform in x and t, making the well-known local Ansatz:

u(x, y, t) = (û(y), v̂(y))ei(αx−ωt), (19)

and similarly for p, where α is the wavenumber in the streamwise direc-
tion. The spanwise wavenumber is set to zero, as well as the spanwise
velocity component, which is justified by the two-dimensional nature of
the disturbances in the present experiment.

This is further converted to the velocity–vorticity formulation, which
gives the well-known Orr–Sommerfeld equation for the sheet-normal dis-
turbance velocity v (for a derivation, see Schmid & Henningson (2001))
for gas and liquid:

(iαU − iω)
(

D2 − α2
)

v̂l ,g − iαD2Uv̂l ,g = Re−1
l ,g

(

D4 − 2α2D2 + α4
)

,
(20)

where D = d
dy and Rel ,g is the Reynolds number in liquid or gas (given by

equations 1 and 6, respectively). The two sets of equations are coupled
by the interface boundary conditions that will be presented in section
3.2a. We select the centreline of the sheet (y = 0) to be the lower
boundary of the computational domain and set an antisymmetry con-
dition there, and a no slip condition at the upper boundary located in
the gas free stream. The upper boundary is chosen to be sufficiently far
away from the sheet in order to make the results independent of this
boundary condition.

The local spatial growth rates for the base flows represented in sec-
tion 3.1 are calculated numerically with a Chebyshev-discretization in
the sheet-normal direction. In spatial analysis, the frequency ω is as-
sumed real while the spatial growth rate and wavenumber are sought.
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This is similar to the experiments, where the sheet is forced at a given
temporal frequency and the spatial growth rate is measured. With this
approach, the equations constitute a generalized polynomial eigenvalue
problem with the complex eigenvalue α = αr + iαi , where the real part
αr gives the wavenumber of a disturbance, while the growth rate −αi is
given by the imaginary part. The disturbance shape corresponding to
each eigenvalue comes from the complex eigenfunctions v̂l ,g .

This fourth order polynomial generalized eigenvalue problem is con-
verted to a first order one by a straightforward procedure suggested in
Schmid & Henningson (2001). The problem can then be solved by stan-
dard methods for eigenvalue calculations. In this work, the EISPACK
Fortran Package was used, since it had been used previously for this code
(in Söderberg (2003), Söderberg & Alfredsson (1998)), and also because
of good numerical stability properties compared to some other solvers
for this particular problem. The solver is based on the QR-algorithm
and therefore solves for all eigenvalues and eigenvectors simultaneously.

Finally, for each frequency ω, the eigenvalue with the largest spatial
growth rate is extracted from the calculations, since we assume that
only the most amplified wavenumber is observed in the experiments.
This hypothesis is supported by the fact that in the experiments the
phase speed for each excitation frequency is constant, indicating one
single (and constant) wavelength. The growth rate of the most amplified
wavelength is plotted as a function of the frequency, and compared with
the experimental growth rates.

3.2a. Boundary conditions on the interface . To close the two sets of equa-
tions presented in the previous section, we need to couple the velocities
and pressures in the different phases together. These coupling conditions
are derived from the flow physics.

The boundary conditions for the total flow field at the interface
between gas and liquid are, in dimensional form:
(1–2) all velocity components are continuous at the interface:

U
∗
l ,tot = U

∗
g ,tot , (21)

(3) the tangential stresses are continuous at the interface:

n
∗
tot × (τ∗l ,tot − τ∗g ,tot) · n

∗
tot = 0, (22)

and
(4) there is a surface tension induced jump in the normal stress:

n
∗
tot · (τ∗l ,tot − τ∗g ,tot) · n

∗
tot = −γs∗tot , (23)
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where γ is the surface tension coefficient, n∗
tot the surface normal, τ∗p,tot

is the total stress tensor with pressure included, and s∗tot is the total
surface divergence operator defined as:

s∗tot = (∇ · n
∗
tot). (24)

Here, the direction of the surface normal n∗
tot is given by the location

of the interface Htot , and thus we also need an equation for Htot . This
comes from the assumption that the sheet-normal displacement of the
interface follows the sheet-normal displacement of a fluid particle on the
interface:

∂H∗
tot

∂t
+ (U∗

tot · ∇) H∗
tot = V ∗

tot . (25)

To non-dimensionalize the boundary conditions with liquid quanti-
ties, as before, we need We (2), ρ̃ (3) and µ̃ (4).

Similarly to the other variables, we introduce a division of the inter-
face position into a steady and oscillating part as: H∗

tot = H∗+ĥei(αx−ωt).
After some algebra, the linearized non-dimensional boundary conditions
become (for details, see Söderberg & Alfredsson (1998)):
(1–2) Velocity continuity on the free surface (comp. 21):

Dv̂l − iαĥ (DUl − DUg) = Dv̂g (26)

v̂l = v̂g , (27)

where equation (26) is the continuity of û transformed to a condition for
v̂ using (18),
(3) Continuity of the tangential stress (comp. 22):

(

D2 + α2
)

v̂l − iαĥ
(

D2Ul − µ̃D2Ug

)

= µ̃
(

D2 + α2
)

v̂g (28)

(4) Surface tension induced jump of the normal stress (comp. 23):
[

(iαUl − iω) − Re−1
l

(

D2 − 3α2
)]

Dv̂l − iαDUl v̂l =
[

ρ̃ (iαUg − iω) − µ̃Re−1
l

(

D2 − 3α2
)]

Dv̂g − iαρ̃DUg v̂g − We−1α4ĥ,
(29)

and
(5) Interface equation of motion:

−iωĥ + U
∂ĥ

∂x
= v̂. (30)
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Figure 13. The natural oscillation of the water sheet in stag-
nant air (x = 1700–3200 measured from the nozzle exit),
Rel ≈ 3000, We ≈ 350.

4. Experimental results and comparison with theory

4.1. A plane liquid jet into stagnant air

The visualisations shown in this section were performed with a prototype
jet facility with 150 mm width for the water sheet and no air flow nozzles.
In figure 13 the sheet is shown in the xz (front) and xy (side) planes. The
oscillations of the sheet are directly seen in the side view (right photo)
and as variations of the reflected light in the front view (left). The
front view shows that also under natural conditions without forcing, the
disturbances developing on the sheet are distinctively two-dimensional
and independent of z. This can be concluded from the horizontal nature
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Figure 14. The forced water sheet oscillation for two different
excitation frequencies: 110 Hz (left), 150 Hz (right).
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Figure 15. The amplitude of the disturbance in the region
x∗ = 250–350 mm (non-dim. x ≈ 500–700).

of the reflections in the sheet. From the side view it is clear that the
dominant oscillation is sinusoidal.
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Figure 16. (a) The experimental (o) and theoretical spa-
tial growth rates as functions of wavenumber in stagnant air
(Rel = 2910, We = 350): Stokes model (solid line) and
Sakiadis model (dotted line). The computations are performed
in the middle of the measurement interval, at x = 600, using
the nozzle outlet as a virtual leading edge for both models.
(b) All three growth rate curves compared to a solution where
air is assumed inviscid (Li (1993), dashed line). The invis-
cid solution clearly overestimates the experimentally observed
growth rates and wavelengths, whereas the viscous solutions
are in good agreement.

If the flow instead is disturbed at a given frequency with the loud-
speakers, the sheet picks up this frequency. This is illustrated in figure
14 where front and side views for frequencies f∗ = 110 and 150 Hz
are shown to the left and to the right, respectively. First it is noted
that the irregular oscillations of figure 13 are replaced by oscillations
with a well-defined wavelength. The reflections in the front views again
show a distinct two-dimensionality of the disturbances and it is also seen
that the wavelength is shorter for the higher frequency. Furthermore,
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Figure 17. Visualisation of the liquid jet over a long distance
without guiding walls for the air flow, for different gas blowing
velocities.
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Figure 18. Visualisation of the break-up process, far from
the inlet, with guiding walls guaranteeing uniform air flow, for
different gas blowing velocities.
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Figure 19. The experimental (◦) and theoretical (-) spatial
stability results (Rel = 3170, We = 312, Stokes model), with
different gas co-blowing velocities : (a) U∞

g = 0, (b) U∞
g = 0.3

and (c) U∞
g = 0.5.
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the side-views show that the disturbances are sinusoidal and that the
growth is considerably stronger for 110 Hz (left) than for 150 Hz (right).

The disturbance growth rate is quantified by looking at the root
mean square of the surface angle (θrms) at different streamwise positions
(cf. figure 4). An example of such curves for three different frequencies is
shown in figure 15. The root mean square of θ is seen to grow exponen-
tially and for each frequency, a growth factor can be readily determined
as the slope of the respective line. The surface oscillation amplitude h
has the same exponential growth rate. Note that the initial disturbance
amplitude varies depending both on the exact level of forcing and recep-
tivity, and only the growth rate is of interest in our analysis. It deserves
to be mentioned that the fact that the sheet picks up the disturbance
frequency and amplifies it with a distinct growth rate demonstrates that
the disturbances are of a convective nature, and can be analysed by the
local spatial approach used in this work. Furthermore, the angular phase
of the measured wave in different streamwise positions showed that the
phase speed of the disturbances is constant and equal to the water veloc-
ity, a feature that is confirmed by the linear stability analysis. Note that
the growth rates for curves such as the ones in figure 15 were obtained
further upstream (and thus at lower disturbance amplitudes) than the
visualisations in figure 14. This was to ensure that the measurements
were taken in the regime of linear growth, while it was difficult to obtain
visualisations where the disturbance amplitude was very small.

Experimental growth rates are compared with theoretical ones for
the Stokes and Sakiadis boundary layer models in figure 16(a). The
spatial growth rate −αi is shown as a function of the wavenumber αr .
At each real frequency ω, a spectrum of α is calculated and the one
with largest growth (largest −αi) is plotted in the figure; the curve is
obtained by performing the eigenvalue analysis for a sequence of ω. Since
the experiments are measured over an interval in the spanwise direction
while the theoretical analysis is local, a choice regarding the position at
which to perform the analysis has to be made. Here, the centre of the
interval used in measurements was chosen. For the experimental values,
the spatial growth rate is obtained from lines similar to the ones in figure
15 and the wavenumber is given by the frequency and the velocity of the
sheet (i.e. the phase speed as discussed above).

The comparison in stagnant air yields excellent agreement for the
Stokes boundary layer model as seen in figure 16(a). The experimen-
tal data (circles) follows the theoretical curve (solid line) over the peak,
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until it falls slightly below at αr = 0.12. Higher frequencies could not
be measured at the same x-position due to the low amplitude. For the
Sakiadis model (dotted line), the agreement is no more than satisfac-
tory. In figure 16 (b) the results are drawn together with the analytic
solution assuming inviscid air by Li (1993) (dashed line), obtained from
the expression given in Appendix 6. The inviscid solution overestimates
the growth rate and wavenumber of the peak by a factor of 2–3, while
the viscous solutions reproduce the experimental behaviour.

The difference between Stokes and Sakiadis is distinct although not
substantial and shows the relative importance of correct models for the
boundary layer in the air in order to pinpoint the growth rate exactly.
Even though the Sakiadis model includes more physics (specifically the
development in the streamwise direction) than the somewhat ad-hoc
Stokes model, the latter compares better with the experiments. This
could be a result of the fact that there are aspects of the air flow, such
as the inevitable re-circulation in the room, that neither the Stokes nor
the Sakiadis model account for. However, it will be shown later that for
the same characteristic parameters (boundary layer thickness or shear
from air at the interface) both models produce nearly identical results,
and therefore a correct choice of these for the measurement position
under study should be more important than the choice of the model.

It should be noted that no parameters have been adjusted for the
comparison; the physical constants are extracted from tables using the
measured mean temperature for water and air, and the air boundary
layer profiles computed by taking the middle of the measurement interval
as the distance from the virtual leading edge for both models. Since the
water profile has boundary layers at the nozzle exit, there is a reason
to believe that the streamwise development of the air boundary layer
is delayed. If the virtual leading edge is actually located downstream
from the outlet, this would explain why the Sakiadis model somewhat
underestimates the growth rates.

4.2. A plane liquid jet with confluent air

To visualise the effect of gas flow the whole way from the nozzle to
breakup, some initial experiments were performed without the guiding
walls and thus without suction for the air flow around the water sheet.
Although the uniformity of the air flow profile was not as good as in
the later experiments with walls, the pictures provide a good qualitative
measure of how blowing air in parallel to the liquid sheet affects the
stability.
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The oscillating liquid sheet with different amounts of air co-flow is
seen in figure 17. The non-dimensional gas velocity is varied between
U∞

g = 0 and U∞
g = 7/3. It is clear that the air co-flow has a considerable

effect on the stability. Going from the stagnant case U∞
g = 0 to U∞

g =
5/6 the oscillation is almost totally suppressed. When the gas velocity
is increased above the liquid velocity, the sheet destabilises again. This
is consistent with previous and present theoretical findings (see sections
1 and 5.2). The liquid sheet seems to be slightly more unstable and
have a more irregular shape for overflow (U∞

g > 1), but this might be
an effect of difficulties to control the air flow distribution in the overflow
case. For the same reason, experimental growth rates will be presented
only for U∞

g < 1.

The second visualisation concentrating on the breakup process (fig-
ure 18) is made in the current experimental setup. With the walls, it
is not possible to observe the whole wave growth process. However, the
breakup is seen to be delayed considerably, when air flow velocity is
increased from 0 (stagnant air) to half of the liquid velocity.

The growth rates for six different forcing frequencies are seen in
figure 19, for three values of the gas velocity: U∞

g = 0, 0.3 and 0.5.
While the shapes of the growth rate curves are similar, the liquid sheet
becomes less unstable for all frequencies by the gas flow. The agreement
in the stagnant case is good, but not as excellent as in the previous
section, probably because the measurement region is longer (x = 468–
755), and therefore the experimental growth rates are averaged over a
longer streamwise interval.

When confluent air is considered, the computed solution also predicts
the trends seen in the experiments. In the same figure, the computed
growth rate curves from the Stokes’ model are drawn with solid lines.
The air flow is stabilising for all frequencies, and the peak growth rates
are within 10% relative and 0.4 × 10−3 absolute accuracy. Sometimes
the theory slightly overpredicts, sometimes under-predicts the experi-
mental growth rates. One reason might be that it is difficult to obtain
a homogeneous air flow when blowing, due to the inclination of the air
flow nozzles, as indicated in the previous section (figure 7). Also small
modelling errors, such as the uncertainty in temperature that affects
the values of Re and We, and the shape of the velocity profiles for both
water and air, contribute to the difference.



126 Tammisola, Sasaki, Lundell, Matsubara & Söderberg
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Figure 20. Growth rate curves at Re = 3200 and We = 340
from the (a) Stokes and (b) Sakiadis air flow model, U∞

g = 0,
for different streamwise positions: x = 200, 400, 600, ..., 1800.
In both cases the peak moves towards longer wavelengths and
the growth rate decreases downstream.

5. Theoretical consideration

Based on the inviscid studies, we expect the relative velocity between gas
and liquid to be one important parameter, but we are also looking for
viscous parameters that would quantify the difference from the inviscid
result. The air boundary layer thickness δ represents the global scale of
a viscous modification, and the shear at the liquid surface σ is a local
scale near the surface.

5.1. Liquid jet in the stagnant air

In figure 20 eigenvalue curves in stagnant air (U∞
g = 0) are shown for

different streamwise positions, for the Stokes (a) and Sakiadis (b) bound-
ary layer models. The results for the two models share several common
features. It is clearly seen that for both cases the growth rate of the
most unstable mode and its wavenumber decrease when going down-
stream. This decrease is most pronounced for the upstream x-positions,
while the curves for the downstream positions are near each other. The
appearance of the whole eigenvalue curve is similar.

The most unstable wavenumber for each x-position (position of the
peak) and its growth rate (height of the peak) differ by 5–10 % between
the two models in the streamwise region under study, starting from
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Figure 21. The peak eigenvalues for each x-position (x =
200, 400, 600, ..., 1800) from figure 20 for Stokes (-◦-) and
Sakiadis (-"-) as functions of δ−1/2 and |σ|1/2: (a) most un-
stable wavenumber αr against inverse square root of bound-
ary layer thickness δ−1/2 (b) growth rate −αi against δ−1/2,
(c) most unstable wavenumber against |σ|1/2, (d) growth rate
against |σ|1/2.

x = 200, which corresponds to a distance 10 cm from the nozzle exit
in the experiments. Remember that it was shown in figure 9 that the
viscous parameters (δ and σ) at a given streamwise position have both
slightly larger absolute value for the Sakiadis than for the Stokes model.

The stabilisation of the sheet with the viscous development of the
base flow is expected already from an inviscid stability analysis, since
the vorticity thickness of the air increases. Since the basic instability
mechanism of the liquid sheet is the same as for the Kelvin–Helmholtz
instability of a vortex sheet (Chandrasekhar 1961), the stabilisation can
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be seen as an analogy to the classical piece-wise mixing layer: it is known
that the stability curve of a piece-wise mixing layer deviates from the
linear Kelvin–Helmholtz curve at a cut-off wavenumber inversely propor-
tional to the vorticity thickness. However, this comparison should not be
taken too far, since the liquid sheet problem involves more physics; even
the appearance of the inviscid curve without taking the vorticity thick-
ness into account is fundamentally different from the Kelvin–Helmholtz
curve.

Indeed, the growth rate seems to be inversely proportional to the
square root of δ, or directly proportional to the square root of σ. In
figure 21 the growth and wavenumber for both cases are compared as
functions of |σ|1/2 and δ−1/2. In these scalings, the two models almost
collapse. Especially, the growth rate displays a linear dependence on
|σ|1/2 in figure 21(d). In (a) and (c), the wave number also seems to
have a linear dependence on the same quantities, although it is obvious
from the figure that the slope cannot stay constant when δ → ∞.

5.2. Effect of gas flow on disturbance growth

The inviscid instability of a liquid sheet is known to be of aerodynamic
nature. The co-flow of gas stabilises the sheet, if the relative speed
between gas and liquid is decreased. In other words, an increasing gas
free stream velocity U∞

g leads to a more stable sheet to the point when
gas velocity is equal to liquid velocity (Ug = 1), in which case the sheet
is stable. When the gas velocity is increased over the liquid velocity, the
sheet destabilises again.

This feature is clearly seen in the eigenvalue curves from the Stokes
and Sakiadis models in figure 22. For Stokes in (a, c) the difference
between U∞

g − 1 = 1 and U∞
g − 1 = −1 is only 5 %, so the curves are

nearly symmetric with respect to the velocity difference. For Sakiadis
in (b, d) the same difference is 17 %. The reason can be understood
by looking at the base flow profiles in figure 10 and the development
of δ and σ for different U∞

g in figure 11. For Stokes the parameters
are symmetric with respect to (U∞

g − 1), but for Sakiadis asymmetric.
Although measurements were not made for U∞

g > 1, the visualisations
in figure 17 give some support to the Sakiadis result in this case, since
the wave growth seems to be faster for the over-blowing case. However,
it has to be kept in mind that this particular visualisation was made
without the guiding vanes guaranteeing uniform air flow.
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Figure 22. Growth rate curves (at Re = 3200, We = 340,
x = 200) for different air velocities, (a): Stokes, U∞

g = 0, 0.2,
0.4, 0.6, 0.8 (U∞

g < 1), (b): Sakiadis, U∞
g = 0, 0.2, 0.4, 0.6,

0.8 (U∞
g < 1), (c) Stokes, U∞

g = 1.2, 1.4, 1.6, 1.8, 2 (U∞
g > 1),

(d) Sakiadis, U∞
g = 1.2, 1.4, 1.6, 1.8, 2 (U∞

g > 1). Increasing
air velocity is stabilising if U∞

g ≤ 1, and destabilising other-
wise.

The growth rate of the most unstable mode as a function of the
relative velocity U∞

g −1 is seen for both models in figure 23. Dependence
on this parameter is expected from the inviscid analysis, as for Kelvin–
Helmholtz-type instability. In the inviscid analysis the dependence on
the growth rate of U∞

g − 1 can be shown to be quadratic — the growth
rate curve based on uniform velocity in water and air is shown with
dotted curve in the same figure, and derived in Appendix 6. In our
study, the growth rate scales linearly for |U∞

g − 1| ≥ 0.4 and the best fit
is shown as a line in the figure together with the data points. A similar



130 Tammisola, Sasaki, Lundell, Matsubara & Söderberg
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Figure 23. The largest growth rate at Re = 3200, We = 340
as a function of the velocity difference U∞

g − 1 at different
x-positions (x = 0.2, 0.4, 0.6, 0.8) for Sakiadis (—"—) and
Stokes (- -◦- -)model. The markers represent calculated values,
while lines are linear fits for |U∞

g | > 0.4. A temporal solution
assuming inviscid air and water is given by the dotted curve.

deviation from the inviscid analysis was noticed in the viscous analysis of
Lozano et al. (2001), who looked at the frequency for the most unstable
mode as a function of air velocity — the frequency increased linearly,
instead of a quadratic dependence predicted by the inviscid analysis.

The slopes of the lines for Sakiadis model (solid) are different for
negative (U∞

g < 1) and positive velocity differences, with U∞
g > 1 be-

ing slightly more unstable. For Stokes model (dashed) the same linear
dependency is seen, but the slopes are symmetric with respect to the
velocity difference. For all cases, the lines in figures 23 intersect at a
point in the region |U∞

g | = 0.3–0.4. The data points at |U∞
g − 1| = ±0.2
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Figure 24. (a) The growth rate of the peak eigenvalues for
different x-positions (x = 400, 800, 1000, 1200, 1400, 1600,
1800) for Stokes and Sakiadis as functions of |σ|1/2 , from
up and down: (—"—) Sakiadis U∞

g = 0, 0.2, 0.4, 0.6, (—
◦—) Stokes U∞

g = 0, 0.2, 0.4, 0.6, (- -"- -) Sakiadis U∞
g =

2, 1.8, 1.6, 1.4, and (- -◦- -) Stokes U∞
g = 2, 1.8, 1.6, 1.4. (b)

The same scaling extracted from the data in Lozano et al.
(2001) for U∞

g = 12.5, Rel = 340, and a different base flow
model.

that were not used for the linear fit are all above their respective lines.
The intersection of the lines and deviation from the linear fit for low
velocity differences is an interesting feature. It is natural to believe that
for these very long waves, the viscous and inviscid solution approach
each other, i.e. the Kelvin-Helmholtz instability mechanism gradually
weakens and is overtaken by neutrally stable capillary waves. We also
note that there is more scattering in the eigenvalues for |U∞

g − 1| = 0.2
than at larger velocity differences.

Furthermore, the slopes of the lines in figure 23 decrease with the
streamwise position. However, the linear relation persists. This is only
possible if the dependence of the growth rate on the x-position is of the
same form for different blowing velocities. Figure 24 confirms that there
is a nearly linear scaling with |σ|1/2 for blowing velocities that differ
from the liquid velocity by a factor larger than or equal to 0.4, as in
the stagnant air case. Again, if the profiles with the same characteristic
parameters are considered, the difference between Sakiadis and Stokes is
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very small. Moreover, when the data is drawn as a function of σ1/2 like in
this figure, especially for the Sakiadis case, points with the same absolute
velocity difference (|U∞

g −1|) for both underflow and overflow line up on

the same line. This was not as obvious if δ−1/2 was considered. Therefore
we consider σ1/2 to be the most attractive parameter to quantify the
viscous scaling.

Remarkably, we could find the same viscous scaling from the liter-
ature, by extracting the maxima from the temporal growth rate curves
drawn as a function of air boundary layer thickness in figure 7 of Lozano
et al. (2001). Their base flow model and parameter region are com-
pletely different: Their non-dimensional gas velocity (in our coordinates)
is U∞

g = 12.5, and water Reynolds number Rel = 340. The scaling is
shown in figure 24 b. The derivation of σ for the model of Lozano et al.
(2001) is given in Appendix 6.

When it comes to the wave numbers for different U∞
g , we could

not find universal scaling laws. One reason might be that the plateau
in the growth rate curves is rather flat, making the uncertainty in the
wavenumber bigger than that in the growth rate. Though, for U∞

g >
1 both models seem to approach a linear dependency between shear
and wavenumber, the latter exchangeable to frequency in our case, in
consistence with the experimental and numerical results of Lozano et al.
(2001) for high blowing velocities.

6. Conclusions

The disturbance growth for plane liquid sheets with air co-flow has been
analyzed experimentally and theoretically. Unlike many other studies,
that have a rapid breakup as a goal, our aim is to quantify the stabilising
effect of an air flow with a similar speed as the liquid flow.

Experiments have been conducted for a water sheet (Rel ≈ 3000,
We ≈ 300), both in stagnant air and with different amounts of co-flow.
The liquid sheet was excited with different frequencies by acoustic forc-
ing at the nozzle exit. The time-varying inclination of the water surface
was measured at different streamwise positions. With this method, we
could extract the spatial growth rate along with the frequency of the
waves.

A linear spatial stability analysis has been made using two differ-
ent air flow models — the theoretically correct Sakiadis model obtained
by solving the boundary layer similarity equations, and an analytical
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Stokes model based on Stokes’ solution of the flow above an instanta-
neously started plate, where the time dependency was changed to an
x-dependency. The liquid velocity was assumed to be uniform.

It was shown that the dependence of the growth rate on the invis-
cid stability parameter — relative velocity between air and water — is
retained for viscous gas, even if the viscous growth rates can be smaller
by several orders of magnitude. The dependence of this parameter is
approximately linear, instead of a quadratic dependence predicted by a
fully inviscid analysis. The two boundary layer models were shown to
produce very similar results, which justifies the use of Stokes model in
other (Söderberg 2003; Söderberg & Alfredsson 1998) and future stud-
ies. The viscous effect was investigated in terms of two parameters —
δ, the boundary layer thickness for the air flow quantifying the scale of
the total viscous modification, and σ, the shear from air at the inter-
face representing the viscous effect near the surface. As a function of
these parameters both models nearly collapse, and show a linear depen-
dence between the growth rate and the square root of |σ| starting some
distance downstream from the nozzle exit.

The Stokes model was compared with experiments. The results are
in very good agreement for the stagnant air case, while the previous in-
viscid solution of Li (1993) overestimates the most unstable wavenumber
and its growth rate by more than a factor of 2. For the case of air co-flow,
the trends are the same, and the quantitative agreement between exper-
iments and theory is also very good, but not perfect. We believe this is
due to experimental uncertainties concerning both the exact shape and
magnitude of the air flow and the non-dimensional numbers involved.

In the theoretical studies, the Stokes model gives an almost symmet-
ric growth rate curve with respect to velocity difference, irrespectively if
underflow (U∞

g < 1) or overflow (U∞
g > 1) is applied. For the more phys-

ical Sakiadis model, the slope is changed if overflow is applied. At this
point, experimental growth rates have not been obtained for U∞

g > 1
and the experimental confirmation of this has to be left for a future
study. A linear dependence between the growth rate and U∞

g − 1 is
obtained for both cases for |U∞

g − 1| > 0.4. As functions of σ or δ,
the models collapse. This means that for the same σ, the influence of
velocity difference is symmetric. So this leaves us with two parameters:
absolute value of the velocity difference |U∞

g − 1| (inviscid) and shear
from air at the surface σ (viscous).
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Since the viscous parameter σ also changes with gas velocity, it would
be tempting to try to characterise the stability in terms of this parameter
only. Our results show that for different values U∞

g −1 the same shear at
the surface leads to different growth rates, underlining the importance
of the inviscid parameter. However, when U∞

g − 1 is kept constant,

the same linear dependence on |σ|1/2 is obtained for the two different
boundary layer models, and also extracted from a previous result found
in literature with a strong overflow in air.

In future work, it would be interesting to test the validity of these
scalings experimentally. In order to do this, it is crucial to accurately
measure the air (and water) boundary layer profile at different stream-
wise positions. Also, it could be interesting to repeat the theoretical
analysis using inviscid stability in air but taking into account the vortic-
ity thickness of the air boundary layer. The aim would be to determine if
the viscous stabilisation can be explained by the base flow modification
alone. Alternatively, a complete viscous stability analysis (as presented
here) is necessary.

The authors gratefully thank Mr. Masamichi Tosaki, Mr. Yuta
Wakabayashi and Mr. Akihiko Mori for their support in arranging the
water jet facility and the experiments.

Appendix A: Spatial stability of a viscous liquid sheet in an
inviscid stagnant gas

A previous solution assuming viscous liquid and inviscid gas is compared
with our experiments and numerical solution with viscous gas in figure
16. The dispersion relation for sinuous disturbances is given by equation
5 in Li (1993):

[

(m − Ω) − i
4m2

R

]

(m − Ω) tanh (m)+

4m3

R2
[S tanh (S) − m tanh (m)] + ρΩ2 −

m3

β2
= 0 , (31)

where m = k∗a∗, Ω = ω∗a∗/U∗, β = We1/2 = U∗/(σ∗a∗ρ∗l )
1/2, ρ =

ρ∗g/ρ
∗
l , R = ρ∗l U

∗a∗/µ∗
l , and S = [m2 + iR(m − Ω]1/2.

The solution for our parameter values can be obtained by making
the substitutions: m = α, Ω = ω, β = We1/2, R = Rel .
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Appendix B: Fully inviscid temporal stability of a liquid sheet
in a confluent gas

The derivation here is based on the solution of Squire (1953) for an
inviscid liquid sheet in inviscid stagnant gas, both with uniform velocity
profiles. For the case of long waves compared to the thickness of the
liquid sheet, he recovers maximum of the dimensional growth rate:

ω∗
i ,max =

ρ̃U∗2
l

2
√

γ∗h∗

ρ∗
l

. (32)

Since in the inviscid equations there is a slip boundary condition,
they can be translated without affecting the sheet-normal velocity of
the disturbance, and thus the growth rate. The only quantity with the
streamwise velocity U∗ that will appear in the equations and boundary
conditions is α∗U − ω∗. Consequently, if we transform the equations
into a coordinate system where the gas is stagnant, Ũ∗ = U∗ − U∗

g , the
maximal growth rate will have the same value as in the untransformed
system, as will the wavenumber α∗

max for which this growth rate occurs.
The frequency, however, will be shifted by an amount of α∗

maxUg , since
the phase velocity is shifted by U∗

g .

The dimensional growth rate in our case is, consequently:

ω∗
i ,max =

ρ̃(U∗
l − U∗

g )2

2
√

γ∗h∗

ρ∗
l

. (33)

The non-dimensional growth rate in our system becomes:

ωi ,max =
h∗

U∗
l

ρ̃(U∗
l − U∗

g )2

2
√

γ∗h∗

ρ∗
l

=
1

2
ρ̃ (Ug − 1)2

√
We. (34)

To convert between the temporal and spatial formulations, we also
need to approximate the phase velocity. We get from Squire (1953), for
stagnant air:

c∗r ,max =
U∗

l

1 + ρ̃ coth(αh)
≈ U∗

l (35)

for water in air. Applying the transformation to get the solution in
moving air, and shifting the phase velocity by U∗

g , we simply get:

c∗r ,max = (U∗
l − U∗

g ) + U∗
g = U∗

l
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or in non-dimensional formulation:

cr ,max = 1. (36)

Appendix C: Derivation of shear at the surface for the model
of Lozano et al. (2001)

The dimensional velocity profile of Lozano et al. (2001) in air is:

U∗
2 (y∗) = b∗0 + b∗1

(y∗ − h∗)

δ∗
+ b∗2

(

(y∗ − h∗)

δ∗

)2

(37)

where b∗0 , b∗1 and b∗2 are constants (dependent on δ∗).
The dimensional y∗-derivative of this becomes:

dU∗
2

dy∗
=

b∗1
δ∗

+
2b∗2
δ∗

(y∗ − h∗)

δ∗
(38)

of which the second term vanishes on the interface between water and
air at y∗ = h∗.
The non-dimensional form of this at the interface (y = 1) becomes:

dU2

dy
(y = 1) =

b∗1h∗

〈U∗
1 〉δ∗

=
b∗1

〈U∗
1 〉δ

(39)

where the vertical mean of the water velocity 〈U∗
1 〉 is the velocity scale

and h∗ the length scale. It is given that

b∗1 = (U∗∞
2 − 〈U∗

1 〉)
δ∗

h∗
(

2/3µr + δ∗
h∗

) = (U∗∞
2 − U∗

1 )
δ

(2/3µr + δ)
(40)

and µr is the air/water viscosity ratio.
Finally:

σ =
dU2

dy
(y = 1) =

(U∞
2 − 1)

(2/3µr + δ)
. (41)

Since µr ≈ 0.01, this implies in practice that δ ∼ 1/σ.
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The global stability of confined wakes is studied numerically, using two-dimen-
sional linear global modes and nonlinear direct numerical simulations (DNS).
The wake inflow velocity is varied between different amounts of co-flow (base
bleed), while the density and viscosity are assumed to be constant everywhere
in the flow domain. In accordance with previous studies, we find that the
frequencies of both the most unstable linear and the saturated nonlinear global
mode increase with confinement. Here, we also find that for wake Reynolds
number Re = 100, the confinement is stabilising. It decreases both the growth
rate of the linear and the saturation amplitude of the nonlinear modes. We
conclude that the dampening effect is connected to the streamwise development
of the base flow, and for higher Reynolds numbers this effect decreases, since
the flow becomes more parallel. The linear analysis reveals that the critical
wake velocities below which the flow becomes unstable are almost identical
for unconfined and confined wakes at Re ≈ 400. Also, the present results
are compared with literature data for an inviscid parallel wake due to the
similarity of inflow profile. The confined wake is found to be more stable than
its inviscid counterpart, while the unconfined wake is more unstable than the
inviscid wake. The main reason to both can be explained by the base flow
development. A detailed comparison of the linear and nonlinear results reveals
that the most unstable linear global mode gives an excellent prediction of the
initial nonlinear behaviour and therefore the stability boundary, in all cases.
However, the nonlinear saturated state is quite different in particular for higher
Reynolds numbers. For Re = 100, the saturated frequency also differs less than
5% from the linear frequency, and trends regarding confinement observed in the
linear analysis are confirmed.
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1. Introduction

A wake is formed when a local region with lower velocities than its
surroundings is present in a flow. In many such cases, the flow in the
wake features a temporally periodic oscillation around a specific mean
flow, like in the well-known example of a von Kármán vortex street be-
hind a solid cylinder. Then the wake is said to be unstable, and often
this instability is solely dependent on the flow geometry (e.g. location
of confining walls) and characteristic parameters (for example Reynolds
number), and is independent on the level of disturbances in the envi-
ronment; wakes are often globally unstable. Wake instability and the
related mixing process are important in many industrial applications
ranging from combustion to food industry. Wakes behind solid obsta-
cles in two and three dimensions have grasped the attention of many
researchers, due to their relation to the aerodynamic drag imposed on
the obstacle. Confined wakes, i.e. wakes between near-lying walls, oc-
cur e.g. when two streams of fluid mix in a narrow channel, or when
cylinders are introduced into a channel in order to increase the heat
transfer. In most applications, efficient mixing is desired and therefore
knowledge of wake instabilities is essential. In other cases it might be
desirable to stabilise the flow, and the self-sustained oscillations poten-
tially introduced by wake instabilities should be avoided. One example
of the latter type occurs in the beginning of the papermaking process: a
suspension consisting of 99% water and 1% cellulose fibres flowing thr-
ough a sharply convergent nozzle, where different pulp streams can be
separated by either solid or water-filled plates, and the globally unstable
wakes behind these may cause unwanted mixing.

In the present contribution, we investigate the global instability of
viscous wakes with co-flow, where one inner and two outer streams with
different velocities enter into a channel and mix with each other. The
configuration is symmetric in the vertical direction, and the inner stream
is assumed to have a lower velocity. When the streams meet, a wake
region appears, which gradually diminishes as the parabolic channel flow
profile develops for the mean flow (figure 1). We study the global sta-
bility of this flow as a function of shear, i.e. velocity difference between
the inner and outer streams at the inflow, and different degrees of con-
finement, for low to moderate Reynolds numbers. The investigation
is performed using two different methods. Firstly, we determine the
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Figure 1. An example base flow for a typical wake in this
study, i.e. the equilibrium point for the linear analysis (Re =
100, h = 2.33, Λ−1 = −1.2). The mean flow in the nonlinear
simulations is qualitatively similar. Top: Streamwise velocity
profiles for the base flow at different downstream stations: a)
x = 0, b) x = 2, c) x = 10, d) x = 25, and e) x = 80.
Bottom: Greyscale representation of the streamwise velocity
pertaining to the complete base flow field. Dark regions have
low or reverse velocity and light regions high velocity. The
profiles b) to e) are superimposed with solid lines.

growth rates of the linear global modes. These states oscillate peri-
odically around the chosen mean flow (base flow) that the problem is
linearised around. The modes either grow or decay in time, and grow-
ing modes represent self-sustained oscillations. Secondly, we extract
frequencies and oscillation shapes from nonlinear direct numerical sim-
ulations (DNSs).

According to our knowledge, neither the two-dimensional linear sta-
bility nor nonlinear development have been computed previously for this
flow configuration. However, in parallel with the present work, direct nu-
merical simulations have been performed by another group for a similar
flow case; wakes confined in a channel with a slip condition at the walls
(Biancofiore et al. 2010). Their results will be discussed and compared
to our results in section 6.
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Figure 2. Velocity profiles in the study of absolute instability
of inviscid parallel wakes and jets by Huerre & Monkewitz
(1990): (a) wake and (b) jet. The geometry is assumed infinite
in both the vertical and horizontal directions. In contrast, (c)
gives the geometry in the study of Juniper (2006), confined by
walls in the vertical direction.
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Figure 3. Definition of a sinuous and varicose mode in terms
of the vertical disturbance velocity.

On the other hand, there are a number of studies based on the theory
for weakly-nonparallel flows (WNP) dealing with the stability of co-flow
wakes. Many of these consider fluid streams of different density. In the
present work, we study flows with uniform density and the review below
reflects this basic assumption. According to the WNP theory (Huerre
& Monkewitz 1990), local streamwise velocity profiles can be used to
find an approximation of the frequencies, growth rates and shapes of
the linear global modes. A finite region of local absolute instability can
then be shown to be a requirement for a growing linear global mode to
exist, and therefore absolute instability of velocity profiles potentially
occurring in e.g. a wake is of interest. Consequently, many studies
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Figure 4. The gray area shows the region of absolute in-
stability for sinuous disturbances and uniform density in the
inviscid study of Juniper (2006) with respect to confinement
h (1) and inverse shear ratio Λ−1 (2) (figure provided by M.
Juniper.)

have concentrated on searching for absolute instability (Briggs 1964) of
different model velocity profiles.

Already Huerre & Monkewitz (1990) discussed local absolute insta-
bility on plane “wakes and jets” (figure 2 a and b), which also could be
called inviscid symmetric mixing layers, with constant velocity and den-
sity inside the inner and outer layers. They concluded that the absolute
instability is enhanced by a high velocity difference for both wakes and
jets. In the wake the sinuous (antisymmetric for streamwise, symmetric
for vertical velocity) von Kármán vortex street becomes unstable first,
while in the jet it is always a varicose (streamwise symmetric) mode
(figure 3). Almost at the same time, Yu & Monkewitz (1990) analysed
the effect of viscosity, and they concluded that the absolute instability
for wakes and jets is caused by the interaction of the two shear layers
and not by viscous effects.

The effect of confinement on the absolute instability of wakes and
jets, represented by the same type of symmetric model profiles as in
the previous studies, was conducted by Juniper (2006). The stability
analysis was still inviscid, and the base flow profile step-like, without
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shear and boundary layers. A sketch of the flow configuration together
with parameter definitions is given in figure 2 (c). This problem can be
described by two nondimensional parameters, which were chosen as the
confinement parameter h:

h =
h2

h1
, (1)

and the shear ratio λ:

λ =
(U1 − U2)

(U1 + U2)
. (2)

The boundary between absolute and convective instability in the h–Λ−1-
plane obtained by Juniper (2006) is shown in figure 4 for the sinuous case
(the setting relevant for the present work) , for confinements 0.1 < h <
10. It is shown that in the inviscid limit, wakes are most unstable when
h = 1. In a very recent paper (Rees & Juniper 2010), the analysis was
extended to viscous stability of velocity profiles with finite shear layer
thickness, although the slip condition on the wall was retained for both
the base flow and the (linear) disturbance in the stability analysis. The
destabilising effect of confinement observed in the inviscid case was still
present, but somewhat weaker for viscous wakes, and the most unstable
case was observed for higher h.

Traditionally, stability problems have been formulated based on the
so-called local approach. The use of such local methods was motivated
by the fact that solving the several-dimensional linear stability prob-
lem requires extensive computational resources, which have not been
available until recently. Also, according to some recent theories, the
frequency selection of the final nonlinear state for weakly non-parallel
flows might occur in the most upstream locally absolutely unstable point
(Chomaz 2005). However, since the WNP theory assumes locally paral-
lel flow neglecting streamwise gradients of the base flow, it is therefore
only applicable to finding linear global modes around base flows that are
weakly developing in the streamwise direction.

The studies with non-local methods have until now been concen-
trated on wakes behind solid obstacles. Hammond & Redekopp (1997)
performed DNS on wakes behind an unconfined solid plate subject to
suction at the trailing edge at Re = 160− 400 based on the plate thick-
ness and the free stream velocity. The appearance of self-sustained oscil-
lations as a function of Reynolds number was investigated for different
suction velocity distributions. The authors concluded that strong suc-
tion stabilised the wake for a range of Reynolds numbers, due to the de-
crease of length of the wake region. They also found that the frequency
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matched the frequency prediction by the WNP analysis at Re = 160
within 1% for symmetric and 8% for asymmetric wakes. It should be
noted that the linearisation was performed around the mean flow ob-
tained from the nonlinear simulation, instead of the true steady solution
of Navier-Stokes equations.

The importance of the length of the wake is also highlighted by e.g.
Camarri & Giannetti (2007), who observed that the point of inversion
of the vortices observed for confined wakes was connected to the length
of the wake for the nonlinear mean flow. Also, the length of the reverse
flow region is generally known to be important for the onset of global
oscillations. Further below, these two quantities (length of the wake and
reverse flow region) will be used to characterise and classify the wake
flows under consideration.

There are also a number of experiments and nonlinear simulations
studying the effect of confinement on wakes behind cylindrical obstacles,
see e.g. the classical studies Shaw (1971), Davis et al. (1984) and Richter
& Naudascher (1976). Similarities and differences between such flows
and wakes with co-flow will be further discussed in section 6.

1.1. Structure of the paper

It is the aim of the present contribution to study the stability of viscous,
spatially developing wake flows through global linear stability analysis
and nonlinear DNS. The paper is organised as follows: The characteristic
parameters, governing equations and definitions of linear and nonlinear
global modes are introduced in section 2, and the numerical methods
used for linear and nonlinear analysis are introduced in section 3. Section
4 presents results pertaining to the linear and nonlinear simulations of
an unconfined reference wake (h = 9) in greater detail, while section
4 contains the results for confined wakes, which are further discussed
and linked to the results from previous studies in section 6. Finally,
section 7 summarises the present findings. Further technical details on
the boundary conditions, grid independence and numerical convergence
are given in Appendix 7, whereas details of the signal processing related
to the nonlinear results are summarised in Appendix 7.

2. Problem definition

2.1. Characteristic parameters

The flow problem at hand is parameterised in a straight-forward way
based on the inflow profile of the wake (see figures 2 c above and 7
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below). For a complete description of the viscous confined problem,
three nondimensional parameters are needed, as detailed below. Two
of them are chosen as in the inviscid case by Juniper (2006) — the
confinement parameter h (equation 1) and the shear ratio Λ (equation
2). As the third parameter, we choose the Reynolds number based on
the wake width and outer stream velocity:

Re = Rewake =
U2h1

ν
, (3)

Holding Rewake constant while confining the flow, can be seen as placing
a thin plate above the wake/jet without altering the flow velocity. This
could therefore be described as a confined wake in a free stream.

Note that a number of other studies, in particular dealing with cylin-
der wakes, base their Reynolds number on the channel width: Rech =
U2h2
ν . We would like to point out that the stability boundary in our pa-

rameter regime depends on the type of confinement, i.e., the definition
of Reynolds number, as further discussed in section 6.

2.2. Linear and nonlinear global modes

In the following, x denotes the streamwise, y the vertical and z the
spanwise direction. The nondimensionalisation is performed based on
h1 as the length and U2 as the velocity scale, in accordance with the
definition of Reynolds number in the previous section. Unless explicitly
stated otherwise, all quantities from now on are nondimensional. The
nonlinear simulations are performed by solving the full time-dependent,
incompressible Navier-Stokes equations:

∂U

∂t
+ U · ∇U = −∇P +

1

Re
∇2

U (4)

∇ · U = 0 (5)

In the following subsections we introduce the equations that are solved in
the linear analysis, and define the concepts of linear and nonlinear global
modes. Further details of their computation are presented in section 3,
including the boundary conditions needed to close the equation systems.
The detailed procedure of extracting the nonlinear global modes from
the simulation data is described in Appendix 7.

2.2a. Linear global modes . As common in stability analysis, the flow vari-
ables are divided into a steady and a time-varying part:

U tot (x, y, z, t) = U(x, y, z) + u(x, y, z, t)
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Figure 5. The global linear eigenvalue spectrum of the un-
confined reference wake (Re = 100, h = 9, Λ−1 = −1.2).
There is one eigenvalue with a positive growth rate (ωl

i > 0),
indicating an unstable global mode.

Ptot (x, y, z, t) = P (x, y, z) + p(x, y, z, t),

where (U tot , Ptot ) is the total time-dependent flow field,
(U(x, y, z), P (x, y, z)) the steady base flow, and (u(x, y, z, t), p(x, y, z, t))
a disturbance, i.e. a deviation from the base flow. We take as a base
flow the solution to the steady nonlinear Navier-Stokes equations, i.e.
equations (4)-(5) without the time derivative.

If the disturbance magnitude is small enough compared to that of
the base flow, and if it is smooth enough, the governing equations can
be linearised in the disturbance quantities about the steady state, yield-
ing the linearised Navier-Stokes equations, LNSE. Due to linearity in
time, the equations can be transformed from the time domain to a fre-
quency domain by a Fourier ansatz. If the base flow does not vary in all
coordinate directions, or varies slowly in certain directions, then these
directions can be Fourier transformed as well. Our base flow is Cartesian
2D — independent of the spanwise coordinate z — which leads to the
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ansatz:

u(x, y, z, t) = (û(x, y), v̂(x, y), ŵ(x, y), p̂(x, y)) eiβz−iωlt, (6)

where β is a wavenumber in the spanwise direction, and ωl is the complex
frequency; the superscript l indicates a frequency from linear analysis.
In this paper, only disturbances with β = 0 are discussed, which auto-
matically leads to a vanishing cross-flow disturbance velocity ŵ. This
approximation is made for two reasons: the first bifurcation of our wakes
is probably two-dimensional, as for cylinder wakes, and it makes the pa-
rameter studies we aim ait considerably easier. For further details about
linear stability and the modal ansatz, see e.g. Drazin & Reid (1981),
Schmid & Henningson (2001) and Theofilis (2003).

Inserting ansatz (6) into the LNSE gives (assuming β = 0):

−U
∂û

∂x
− V

∂û

∂y
− û

∂U

∂x
− v̂

∂U

∂y
+

−
∂p̂

∂x
+

1

Re

(

∂2û

∂x2
+
∂2û

∂y2

)

= −iωlû (7)

−U
∂v̂

∂x
− V

∂v̂

∂y
− û

∂V

∂x
− v̂

∂V

∂y
+

−
∂p̂

∂y
+

1

Re

(

∂2v̂

∂x2
+
∂2v̂

∂y2

)

= −iωlv̂ (8)

∂û

∂x
+
∂v̂

∂y
= 0. (9)

The linearised equations (8–11) constitute a 2D eigenvalue problem
for ωl. Linear temporal global modes are obtained when discretizing
and solving this problem without further simplifications. The eigen-
functions then represent possible two-dimensional disturbance shapes
(û(x, y), v̂(x, y), p̂(x, y)), together with corresponding frequencies and
growth rates given by the real and complex part of ωl = ωl

r + iωl
i, re-

spectively. The corresponding eigenfunction with a non-zero amplitude
in any point will be amplified by a factor exp(ωl

it) and grow at all times
in that point. Convective instabilities, which are convected downstream
while growing in amplitude, are in this setting represented by a sum of
stable eigenfunctions, as in e.g. Ehrenstein & Gallaire (2005). An ex-
ample of such a global eigenvalue spectrum for the unconfined reference
wake (reference case h = 9, further discussed in section 4), is shown in
figure 5.
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An eigenfunction-eigenvalue pair is called a mode. A general distur-
bance can usually be expressed as a sum of the eigenfunctions with the
largest growth rates:

u(x, y, t) =
N
∑

k=1

ckûk(x, y)e−iωl,kt, (10)

where ck is a complex amplitude (similarly for v and p).

A finite number of the most unstable modes can then be used to
approximate the dynamics of the flow. How many modes that are needed
(the value of N) to capture the relevant behaviour at finite times, i.e.
the structures that dominate the flow dynamics, is problem-dependent
(Schmid & Henningson 2001). If the initial condition is known, the
values for the unknown coefficients ck can be obtained by projecting the
initial condition to eigenmodes of the adjoint linearised system (Schmid
& Henningson 2001), which requires a solution of another eigenvalue

problem. However, if there are unstable global modes (ωl,k
i > 0), it is

often sufficient to include these in order to catch the physical behaviour
after initial transients, and the initial condition becomes irrelevant. In
particular, unstable global modes mean that the flow eventually will
deviate from the steady state.

The interpretation of the linear global results, computed from the
system (8-11) with the above ansatz, is fairly straight-forward. In the
cases presented here, there is at most one mode with a positive growth
rate. When presenting the results, unless stated otherwise, ωl always
describes the linear complex eigenvalue for the most unstable mode.

2.2b. Nonlinear global modes . When simulating the flow in a nonlinear
setting, after an initial transient behaviour the flow field will feature
periodic oscillations around its mean. In the following, the oscillation
frequencies in this time-periodic state are denoted by ωs, denoting the
nonlinear saturated frequencies. A typical nonlinear frequency spectrum
is shown in figure 6. This spectrum is obtained from the final time-
periodic part of the simulation data as described in Appendix 7. It
contains a peak for the mean flow at ωs = 0, a high energy peak for the
fundamental frequency, and several lower energy peaks for the harmonics
located at multiples of the fundamental.

Among several possibilities to define a nonlinear global mode, we
have chosen the following definition. If a discrete Fourier transform is
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Figure 6. Frequency spectrum extracted from the saturated
nonlinear velocity fluctuations (time signal shown in figure 29)
for the unconfined reference wake (Re = 100,h = 9,Λ−1 =
−1.2). The first nonzero peak ωs ≈ 0.73 corresponds to the
nonlinear global mode, and the other visible peaks to its har-
monics.

performed based on the oscillation period T of the flow field:

û(x, y,ω) =
∞
∑

k=0

uk(x, y)e(ik2πt/T ), (11)

the nonlinear global mode is the term with k = 1 in this expansion, i.e.
the one oscillating with the fundamental frequency 2π/T . The frequency
of the nonlinear global mode is thus real-valued. The coefficient u1(x, y)
gives the spatial shape of the nonlinear global mode. Note that for our
flow case, this mode coincides with the Koopmann mode with highest
amplitude (Rowley et al. 2009), and its spatial shape also with the most
energetic POD mode (Berkooz et al. 1993). When presenting the results,
unless otherwise stated, ωs is the frequency, and the spatial shape (û, v̂
and p̂) the coefficient of this fundamental Fourier mode.

In addition to this saturated nonlinear global mode, we also extract
the oscillation frequency and logarithmic slope of the amplitude curve
in the initial part of the nonlinear simulation, where an exponential
growth is seen. These quantities together form the initial nonlinear
frequency ωi, which is complex-valued. Thus it and can be compared to
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Figure 7. Illustration of the nonlinear computational domain
with following boundaries : the upper and lower walls (no slip),
the inflow (condition 9), and the outflow (Neumann condition
with constant pressure).

the (complex) frequency obtained for the linear global mode, ωl. Mode
shapes are not extracted for this oscillation stage.

3. Numerical methods

3.1. Solution of the nonlinear system

The solution to the nonlinear Navier-Stokes equations (4-5) is computed
using a Legendre polynomial based spectral-element method (SEM)
(Fischer 1997), implemented in the code nek5000 . In this method,
as in the case of the finite-element method (FEM), the governing equa-
tions are cast into weak form and discretised in space by the Galerkin
approximation, where the test and trial spaces are restricted to certain
(and different) velocity and pressure spaces respectively, following the
PN −PN−2 SEM discretisation by Maday & Patera (1989). The velocity
space is spanned by Nth-order Lagrange polynomial interpolants, based
on tensor-product arrays of Gauss-Lobatto-Legendre (GLL) quadrature
points in a local element. The individual elements take the shape of
hexahedra, allowing a general coordinate mapping of both the element
boundaries and the collocation points inside the elements. Time ad-
vancement is achieved by an explicit second-order extrapolation (EXT2)
for the advection terms and an implicit second-order backward differen-
tiation scheme (BDF2) for the viscous terms.
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Figure 8. Illustration of the computational domain for the
base flow with following boundaries: the wall (no slip), the
wake centreline (symmetry), the inflow (condition 9, y > 0),
and the outflow (Neumann condition with constant pressure).

The computational domain together with boundary conditions is
illustrated in figure 7. It consists of a rectangular box, discretised
with non-equidistantly distributed but structured spectral elements, and
four boundaries, representing the inflow, outflow and the two surround-
ing walls. For the inflow, a slightly modified inviscid double mixing
layer profile, symmetric around the centreline, is imposed as a Dirichlet
boundary condition. Since the spectral method is based on high-order
polynomial interpolation, sharp gradients could cause unphysical oscil-
lations near the inflow boundary. Therefore, the gradients of the inviscid
top-hat profile were slightly smoothened. The shape of the inflow profile
is shown in figure 7, and is given by the following analytic expression:

U(0, y < 0) = 1/π [arctan(500(y + h + 1)) + π/2] +

2
[

π
(

Λ−1 − 1
)]−1

[arctan(500(y + 1)) + π/2]
U(0, y > 0) = 1/π [arctan(500(h + 1 − y)) + π/2] +

2
[

π
(

Λ−1 − 1
)]−1

[arctan(500(1 − y)) + π/2]

(12)

Note that the inflow profile is C2- continuous. No-slip conditions were
applied at the walls, and a homogeneous Dirichlet condition for the pres-
sure together with a homogeneous Neumann condition for the velocities
was chosen at the outflow boundary. Further details on convergence
properties are given in Appendix 7.

3.2. Base flows for linear stability

The base flows are steady solutions to the Navier-Stokes equations, and
were obtained with the same code as the time-dependent flow field. In
our flow case, the only unstable mode for moderate Reynolds numbers
was known to be antisymmetric. Therefore, by applying a symmetry
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condition at the wake centreline, the oscillations could effectively be
eliminated, and the DNS converged to a stationary solution.

The computational domain for the base flow calculations and its
boundaries are illustrated in figure 8. The inflow profile is the upper half
of the nonlinear one (equation 9). The condition at the wall (no-slip)
and the outflow boundary condition were the same as in the nonlinear
case (section 3.1). As the specific outflow condition could potentially
have an effect on the stability results, the base flow domain was always
chosen long enough to avoid this.

The evolution of the streamwise velocity of the base flow for a spe-
cific choice of parameters has already been shown in figure 1. In the
upper part, velocity profiles at different streamwise stations are shown.
Starting from an almost plug-like inflow profile in both the wake and
the outer streams, the base flow quickly develops boundary layers at
the solid walls and gradually approaches a parabolic profile at x = 80.
There is a small backflow region near the inflow boundary, and the re-
circulation is strongest around x = 2. The whole streamwise velocity
field is shown with greyscale in the lower part of the figure.

3.3. Solution of the linear system

In the global linear analysis, equations (8)–(11) are discretised in space
by a spectral method, using Chebyshev-polynomials in both streamwise
and vertical directions:

û(x, y) ≈
Nx
∑

i=1

Ny
∑

j=1

cijφ
i(x)φj(y) (13)

where φk is the kth Chebyshev polynomial. The values of the unknown
coefficients cij are obtained by requiring the discretised equations to be
satisfied exactly at the Nx × Ny collocation points, which are selected
as the Gauss-Lobatto points to assure an exponential convergence rate
(Weideman & Reddy 2000). A linear transformation of the domain from
[−1, 1] × [−1, 1] to [0, Lx] × [0, h1 + h2] is applied.

The eigenvalue problem of a continuous operator is thus transformed
into a generalised matrix eigenvalue problem:

Aq = ωlBq, (14)

where q = (û, v̂, p̂) is the eigenvector and ωl the eigenvalue. The sys-
tem matrices of the local and global discretised problem share the same
structure. A basic property for the present two-dimensional eigenvalue
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problem is that the left-hand side matrix A grows as 9N2
xN2

y , com-
pared to only N2

y in the one-dimensional formulation. For instance, at
Re = 400 we need Nx = 500 and Ny = 70 to obtain a converged most
unstable mode, resulting in a dense matrix with (105000)2 elements. To
store such a matrix in double precision 88 GB of RAM is needed. Thus,
a parallel code FLUPACK was developed, in which the matrix is built
in smaller pieces on each processor. Then the eigenvalue problem is
solved using PARPACK (Maschhoff & Sorensen 1996), a mathematical
library containing a parallel version of the Arnoldi algorithm based on
Krylov subspace iterations (Lehoucq et al. (1998)), where a chosen num-
ber of eigenvalues and eigenvectors near a chosen location, the shift, are
recovered. Complex shifts are used to reduce the necessary number of
eigenvalues, which doubles the memory need mentioned above. All ingo-
ing vector operations and equation system solving are made in parallel
with the mathematical library ScaLAPACK.

The code scales well with the number of processors in the sense that
computational times remain within a few hours independently of prob-
lem size. The amount of processors used is thus dictated by the memory
need alone, where the system matrix has the biggest contribution. For
problems of reasonable size, the computational time is spent mostly and
almost in equal amounts in two types of ScaLAPACK operations: (a) the
LU-factorization of the system matrix, and (b) repeated back-substitions
of the LU-decomposed matrix inside the Arnoldi loop. The FLUPACK
code is not yet fully optimized in terms of memory and speed. Here
we outline some differences between FLUPACK and the well optimized
and documented similar code of Rodriguez & Theofilis (2009). Both
use machine-optimized versions of the ScaLAPACK library, while in the
code of Rodriguez & Theofilis (2009), the algorithm for the Arnoldi loop
is implemented manually. Presumably, this improves the performance,
since the combination of distributed and non-distributed arrays can be
chosen as is appropriate for two-dimensional global mode computations.
Also, this opens the possibility for more dynamic allocations. It seems
at the first sight that the way the system matrix is created in FLU-
PACK is already quite efficient; in the code of Rodriguez & Theofilis
(2009) this operation takes 20% of the computational time regardless
the problem size, while in FLUPACK the building of the system matrix
(and postprocessing) give only marginal contributions to the time spent.
In the code of Rodriguez & Theofilis (2009) a looping over the elements
of the global matrix is performed at this stage, while in FLUPACK each
processor calls a subroutine to build the blocks it needs.
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3.4. Boundary conditions for the disturbance

The boundary conditions at the wall and the centreline are determined
by the problem setup. At the confining wall, we set a no slip condition:

û(x, h + 1) = 0, v̂(x, h + 1) = 0. (15)

As was mentioned in section 3.2, it is known that for wakes a sinuous von
Kármán-type of mode always becomes unstable first. So it is sufficient
to consider antisymmetric modes:

û(x, 0) = 0,
∂v̂

∂y
(x, 0) = 0, p̂(x, 0) = 0, (16)

where the condition on the pressure is used to specify both the required
symmetry condition and setting the (undetermined) level of the distur-
bance pressure.

The boundary conditions in the streamwise direction are not as
straightforward, as the only natural boundary condition for the global
mode is to decay at infinity. The standard choice was made by taking
a Dirichlet condition at the inflow boundary, and a Neumann condition
at the outflow boundary:

û(0, y) = 0, v̂(0, y) = 0, (17)

∂û

∂x
(L, y) = 0,

∂v̂

∂x
(L, y) = 0. (18)

It was then verified that the chosen streamwise boundary conditions did
not affect the stability characteristics, by assuring that the most unsta-
ble eigenvalue converged in terms of domain length. However, the most
unstable eigenvalue showed a weak dependence on the upstream condi-
tion, but this was considered to be of secondary importance. Further
details on the convergence studies are presented in Appendix 7.

Finally, the remaining seven spurious pressure modes inherent in
a Chebyshev-Chebyshev discretisation are removed by setting specially
designed boundary conditions in seven near-corner points, i.e., homoge-
neous Neumann conditions to remove the four so-called corner modes:

(

∂p

∂x
+
∂p

∂y

)

1,1

=

(

∂p

∂x
+
∂p

∂y

)

1,Nx

=

(

∂p

∂x
+
∂p

∂y

)

Ny ,1

=

(

∂p

∂x
+
∂p

∂y

)

Ny ,Nx

= 0, (19)

where the subscripts give the indices of the grid point in y and x-
directions, and conditions for the three modes oscillating between grid
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Figure 9. Streamwise velocity of the base flow for the un-
confined reference wake (h = 9, Λ−1 = −1.2) indicated with
greyscale — light tones represent high velocity and dark tones
low velocity or reverse flow. Note that the figure has to be
stretched by a factor of 3 in the streamwise direction to get
the physical aspect ratio.

points:
∑

i,j

(−1)imi,jp(i, j) =
∑

i,j

(−1)jmi,jp(i, j) =
∑

i,j

(−1)i+jmi,jp(i, j) = 0,

(20)
where mi,j = (1 − 0.5δi,1)(1 − 0.5δi,Ny )(1 − 0.5δj,1)(1 − 0.5δj,Nx).

4. Results for an unconfined reference wake

For comparison with the confined cases, we chose a wake with walls suf-
ficiently far away so that the wall distance no longer affects the stability.
This situation was seen to occur for h ≈ 9, i.e. when the total channel
width is ten times the width of the wake, for a wake that has a weak
co-flow at the upstream boundary, Λ−1 = −1.2.

When viewing the results in this and following sections, recall from
sections 2.2a and 2.2b that the complex frequency extracted from the
linear analysis is denoted by ωl, the real saturated nonlinear frequency
ωs, and the initial complex frequency near the onset of the nonlinear
oscillation ωi.

4.1. Linear results

The base flow development for this reference wake can be seen in figure 9.
The inflow profile is steep consisting of two layers with constant velocity,
and the boundary layers grow until the parabolic profile is reached at
x ≈ 170.
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Figure 10. Real part of the eigenfunction of the unstable
mode in figure 5 (Re = 100, h = 9, Λ−1 = −1.2): (a) û,
(b) v̂ and (c) p̂. Light regions represent positive and dark
regions negative values. This is an instantaneous picture of
the disturbance distribution in space. The colormap in all
pictures is scaled with the maximum amplitude of the eigen-
function.

For this case, one unstable mode is found with nondimensional oscil-
lation frequency ωl

r = 0.714, and growth rate ωl
i = 0.021 (the eigenvalue

spectrum was already shown in figure 5). The spatial shape of the un-
stable mode can be seen in figure 10. Figure 10 (a) shows the streamwise
component of the oscillation û at one instant in time. The mode oscil-
lates back and forth around the base flow (figure 9). The symmetric
vertical component v̂ and antisymmetric pressure component p̂ are pro-
vided in figures 10 (b) and (c). The mode is an antisymmetric (sinuous)
mode.
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Figure 11. Reference case (Re = 100, h = 9, Λ−1 = −1.2)
— the streamwise velocity for: (a) the nonlinear mean flow
(compare to figure 9 for the steady base flow), (b) the saturated
nonlinear global mode, and (c)–(e) the first harmonics. The
saturated frequency for each mode is given above respective
plot.
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Figure 12. Reference case (Re = 100, h = 9, Λ−1 = −1.2)
— the vertical velocity for: (a) the nonlinear mean flow, (b)
the saturated nonlinear global mode, and (c)–(e) the first har-
monics. The saturated frequency for each mode is given above
respective plot.

4.2. Nonlinear results and comparison

The spectral density (PSD) distribution of the velocity signals for the
reference wake (shown in figure 6) contains several peaks. The highest
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peak is located at ω = 0, with energy density PSD ≈ 100, and it belongs
to the mean flow. The next highest peak at ωs ≈ 0.73 corresponds to the
nonlinear global mode, and has the value PSD ≈ 1.6. The first harmonic
has twice the frequency of the global mode, and is almost equal in energy
with the second harmonic, PSD ≈ 0.03 for both. The third harmonic
has again an order of magnitude lower energy density (PSD ≈ 0.003),
while the fourth and fifth are equal in amplitude at PSD ≈ 0.0004.

It is described in section 7 how the spatial shapes of the mean
flow, the global mode and its harmonics can be obtained by a Fourier-
decomposition in time of the velocity and pressure fields. The streamwise
velocity of the mean flow is shown in figure 11 (a), and is very similar
to the steady solution shown in figure 9. An instantaneous streamwise
velocity distribution of the nonlinear global mode is shown in figure 11
(b), and is similar, but not identical, to the real part of the streamwise
velocity of the linear global mode in figure 10 (a). The wavelength and
upstream shape of the linear and nonlinear global modes match, but fur-
ther downstream the nonlinear one moves towards the walls and becomes
more diffuse, in contrast to the linear one. However, their frequencies
are very close, ωl = 0.714 and ωs = 0.736.

The streamwise velocity of the first harmonic is shown in figure 11
(c). It is symmetric, and positioned along the contours of the nonlinear
global mode in the vertical direction, but it has a more refined spa-
tial structure than the global mode — the phase changes sign twice in
the vertical direction. Also, it is located closer to the inflow than the
global mode. The same development continues when comparing the first
harmonic to the antisymmetric second harmonic (figure 11 d) and the
symmetric third harmonic (11 e). The vertical velocities of the mean
flow, global mode and the same harmonics are seen in figure 12 (a–e).
From the amplitude distributions shown by the colorbars it can be seen
that the global mode provides an almost equal contribution to the total
vertical velocity as the mean flow does. Notice also the shape of the
vertical velocity for the nonlinear global mode. It is evidently similar
to the vertical velocity of the linear global mode in figure 10 (b), but
extends further downstream. Since the linear and nonlinear global mode
are the focus of the present work, the harmonics will not be considered
further.
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Figure 13. Base flows for different values of confinement
(Re = 100, Λ−1 = −1.2): (a) h = 9, (b) h = 4, (c) h = 2.33,
(d) h = 1.5, (e) h = 1. The plots show distributions of stream-
wise velocity, where high velocity regions are light, and low or
reverse velocity regions dark. For ease of comparison, all plots
have the same vertical and streamwise length scales, i.e. for
the two uppermost wakes the walls are located outside the
axis limits. The figures need to be stretched by a factor 2.5 in
the streamwise direction to get the physical aspect ratio.

5. Stability results for confined wakes

5.1. Stability vs. confinement

In this section the stability of the wake is studied with different values of
confinement while holding both the Reynolds number Rewake = 100 and
the shear Λ−1 = −1.2 constant. The confinement parameter (h = h1/h2,
see figure 2) goes from the almost unconfined h = 9, where the total
channel width (h1 + h2) is ten times the wake width (h1), to h = 1,
where the channel is only twice as wide as the wake. For all wakes, the
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Figure 14. Characteristics of the base flow for different de-
grees of confinement at Re = 100, Λ−1 = −1.2: (a) the wake
length, (b) the length of the reverse flow region, and (c) the
centreline velocity. The asymptotic values of the centreline ve-
locity far downstream assuming parabolic velocity profile (Ua)
are given with respective line style to the right of (c).

inflow profile mimics the inviscid shear layer, but the development of
the viscous flow field is altered by confinement in several ways.

Base flows for different confinements are shown in figures 13 a-e, with
decreasing h (more confined wake) from top to bottom. We quantify
the wake length lw as the point where the streamwise velocity of the
centreline has reached 75 % of the value for a fully developed channel flow
profile, where the threshold value is chosen arbitrarily. The wake length
is shown in figure 14 (a) and decreases monotonously with confinement,
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Figure 15. (a) The most unstable linear, nonlinear initial
and nonlinear saturated frequency and (b) linear and nonlinear
initial growth rate, as functions of confinement, at Re = 100,
Λ−1 = −1.2. Linear data points: h = 9, 4, 2.33, 1.5 and 1,
nonlinear data points: h = 9, 4, 2.33, and 1.5 (h = 1 stable).

from lw ≈ 183 for h = 9 to lw ≈ 60 for h = 4, and further to lw ≈ 13
for h = 1. At the same time, the length of the reverse flow region lr
shrinks from lr = 3 to lr = 2.3 with confinement (figure 14 b), while the
minimum value of the velocity (in the point of maximal reverse flow)
increases slightly from Ur = −0.08 to Ur = −0.07. In figure 14 (c), the
centreline velocity of the base flow is shown inside the domain for the
stability calculations, from x = 0 to x = 100. It can be seen that the
shortening of the wake leads to an increased centreline velocity for h = 4
and h = 2.33 in this region, compared to the unconfined wake.

These changes of the base flow clearly have an influence on the global
stability of the wake: This is exemplified by the crosses connected by
a solid line in figure 15 depicting ωl

r (left) and ωl
i (right) for the most

unstable eigenvalue for linear global modes in each case. As the con-
finement parameter h goes from 9 to 1, the general trend is that the
growth rate ωl

i decreases (the flow is stabilised), and the frequency ωl
r



166 Tammisola, Lundell, Schlatter, Wehrfritz & Söderberg
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Figure 16. Real part of the streamwise disturbance velocity
û corresponding to the linear eigenvalues ωl in figure 15, from
up and down: h = 9, 4, 2.33, 1.5 and 1. In other words, the
walls move closer to the wake from up and down. The ampli-
tude distribution of û, scaled with 1.99 times the maximum
amplitude, is given by the dotted line on top of each figure.
The colormap in all figures is scaled with the maximum am-
plitude of û. The figures need to be stretched by a factor 2.5
in the streamwise direction to get the physical aspect ratio.
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Figure 17. An instantaneous streamwise velocity of the non-
linear global mode, corresponding to ωs in figure 15, from up
and down: h = 9, 4, 2.33, and 1.5. As indicated in the figure,
the case h = 1 is stable. The amplitude distribution of the
streamwise velocity of the global mode, scaled with 3 times
the maximum amplitude for the unconfined wake, is given by
the dotted line on top of each figure.
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increases, the latter in agreement with previous studies. For h = 1, the
wake becomes stable. Observe in the previous figures that there is still
a considerable amount of reverse flow for this wake, so the length or
strength of the reverse flow region seems not to be the only criterion
to determine the stability. Note also that as h goes from 4 to 2.33, the
wake is actually slightly destabilised by the confinement.

Figure 16 shows the real part of the streamwise velocity distribution
of the disturbance, û, for the five wakes. Also here, two different trends
are observed as the flow is confined. Focus first on the development
from h = 4 to 1 (the four lower panels). The wavelength of the mode,
i.e. the streamwise distance between two consecutive peaks, decreases
with confinement (and thus with the increasing frequency, indicating a
nearly constant phase velocity). The envelope, i.e. the streamwise extent
of the mode, is seen to be generally shorter for the more confined flows.
This is further illustrated by the dotted lines on top of the figures repre-
senting the distribution of maxy|û(y)| in the streamwise direction. The
envelope can be assumed to reflect the balance between energy produc-
tion and convection, which would mean that the reason for stabilisation
with confinement is rather a decrease in production, than an increase
in convection speed. This is in agreement with our hypothesis, that the
slow-down of the high-speed fluid and a faster relaxation to the parabolic
profile is the main cause of stabilisation. However, at the initial stages
of confinement, when h is changed from 9 to 4 (the two top panels),
both the wavelength and envelope of the mode increase. The latter is
possibly related to the increased streamwise velocity of the base flow at
the centreline (figure 14 c) for h = 4 compared to h = 9. This might in
turn lead to that the convection velocity is increased. For h = 2.33 the
centreline velocity is also strong, but the wake is slightly destabilised
(increased production), and therefore the convection becomes less im-
portant, resulting again in a shorter mode. For the most confined wake,
the convection velocity is lower than in other cases, and the mode stays
localised even if it is stable.

For the nonlinear case, we have investigated the saturated frequency
ωs and the shape of the saturated oscillation, for the same parameters
as in the linear case. In addition, the frequency and initial growth rate
when the oscillation sets in (ωi

r and ωi
i) were determined, to see whether

the transition happened via a state determined by the linear analysis.
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The real and complex part of ωi extracted from the initial phase
of the nonlinear simulation are depicted by rings in figures 15, left and
right. The agreement with linear analysis is excellent. Note that the
values for h = 1 could not be determined, since this case was stable
even in the nonlinear simulation. The saturated frequencies ωs are also
shown in the left figure. The trend is the same as in the linear case,
frequency increases with confinement, and the values are within 5% from
the linear frequency. The saturated frequency (the diamonds in figure
15 a) is somewhat lower than the linear one, with best agreement for
small h. Note that the saturated state does not involve any temporal
growth so that figure 15 (b) only contains ωl

i and ωi
i.

The instantaneous streamwise velocity of the saturated nonlinear
global mode for each case is shown in figure 17. Even here, the envelope
and wavelength of the mode become shorter with confinement, apart
from h = 4. In the nonlinear case, also the amplitude of the saturated
state has a physical meaning, and from the colorbars it is clear that
the amplitude is smaller for the most confined wake near the stability
boundary, but nearly constant otherwise. In the cases with a long en-
velope and a high saturation amplitude of the nonlinear global mode
(h = 4 and h = 9), the shear layers in the mean flow are smoothened
by nonlinear diffusion, and consequently the nonlinear modes are dis-
placed towards the walls. For the most confined wakes, this effect is less
important.

5.2. Influence of base bleed

It is known that base bleed, i.e. increasing the velocity of the inner part
of the inflow to the wake, has a stabilising effect on unconfined wakes.
Here we investigate the same phenomenon for a moderately confined
wake (h = 1.5). The wake inflow velocity is increased so that the inverse
shear ratio decreases from Λ−1 = −1 to Λ−1 = −1.3. A decreasing
inverse shear ratio means reduced shear, i.e. a smaller velocity difference
between the wake and the outer streams. Although not shown here, the
wake length increases slightly with decreasing shear for these wakes,
but the dominating effect is that the extent of the reverse flow region
is reduced towards zero. The mean velocity also increases, resulting in
a stronger convection. Figure 18 shows linear, initial nonlinear, and
nonlinear saturated frequencies, for different shear ratios. As the shear
is decreased, the flow is stabilised as expected. The growth rate of
the linear mode and the amplitude of the nonlinear mode given by the
relative maxima of the dotted lines decrease, until the wake is stable
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Figure 18. (a) The most unstable linear, nonlinear initial
and nonlinear saturated frequency and (b) linear and nonlinear
initial growth rate as functions of shear of the inflow Λ−1, for
Re = 100, h = 1.5. Data points for linear case: Λ−1 = −1,
−1.05, −1.1, −1.15, −1.2, −1.25 and −1.3, data for nonlinear
DNS: Λ−1 = −1, −1.1, −1.15 and −1.2 (Λ−1 = −1.3 stable).

at Λ−1 = −1.3. Also, the frequency increases monotonously in both
cases. The agreement between the linear and initial nonlinear frequency
is very good, and the saturated frequency stays within 5 % of the linear
frequency: it is slightly higher for Λ−1 = −1.15, and lower for Λ−1 =
−1. As expected, the deviation increases when moving further from the
neutral stability boundary (located at Λ−1 ≈ −1.21).

The real part of the streamwise disturbance velocity distribution for
the linear modes is shown in figure 19, and for the saturated nonlin-
ear modes in figure 20. The effect of base bleed is monotonous and
consistent: the disturbance envelope becomes more elongated and the
maximum moves further away from the inflow , while the wavelength
is nearly constant; less production and enhanced convection results in
longer modes. This is more apparent for the linear than for the nonlinear
modes, again due to the fact that the mean flow becomes slightly more
diffusive than the base flow when the mode saturates. As the frequency
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Figure 19. Real part of the streamwise disturbance velocity
corresponding to the linear eigenvalues ωl in figure 18 for dif-
ferent shear ratios, from top to bottom: Λ−1 = −1, −1.1, −1.2,
and −1.3. In other words, the velocity of the outer streams U1

increases from top to bottom. The amplitude distribution of
û, scaled with 1.99 times the maximum amplitude, is given by
the dotted line. The colormap in all figures is scaled with the
maximum amplitude of û. The figures need to be stretched
by a factor 2.5 in the streamwise direction to get the physical
aspect ratio.
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Figure 20. Instantaneous streamwise velocity of the nonlin-
ear global mode, corresponding to ωs in figure 18, from up
and down: Λ−1 = −1, −1.1, −1.2 (case Λ−1 = −1.3 is stable).
The amplitude distribution of the streamwise velocity of the
global mode, scaled with 2.44 times the maximum amplitude
without co-flow (Λ−1 = −1), is given by the dotted line.
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Figure 21. (a) Base flow and (b) nonlinear mean flow at
Re = 316, Λ−1 = −1.35, h = 1.5.

increases, so does the phase speed of the waves, in accordance with com-
mon knowledge of local temporal instability in shear layers (the phase
speed c = (U1 + U2)/2 for Kelvin-Helmholtz instability).

5.3. Increasing Reynolds number

For wakes at Re = 100 the linear analysis provided an excellent predic-
tion of the initial nonlinear behaviour. Next, we will look at how the
linear global stability limit evolves for higher Reynolds numbers, and
the applicability of linear analysis in this parameter regime needs to be
investigated.

We compare the linear and nonlinear result in a case near the global
linear stability boundary (neutral curve): Re = 316, h = 1.5, Λ−1 =
−1.35. At first sight, the comparison does not appear promising. The
steady base flow and nonlinear mean flow are shown in figure 21. This
wake is very close to the linear stability boundary (as will be shown,
the growth rate is very small), but there is still a substantial nonlinear
modification of the mean flow field. This is even reflected in the fact that
the saturated frequency ωs = 0.91 and the linear frequency ωl

r = 0.8392
differ by almost 10 %, which is more than at lower Re. There are also
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Figure 22. The instantaneous streamwise velocity of the (a)
linear and (b) nonlinear global mode at Re = 316, Λ−1 =
−1.35, h = 1.5. The amplitude distributions, scaled with 1.99
times the maximum amplitude in each case, are given by the
dotted lines.

clear differences in the mode shape — the nonlinear global mode has a
maximum amplitude at x ≈ 10, while the entire linear global mode is
located more downstream, the maximum lying at x ≈ 40 (figure 22 a).
In addition, the nonlinear mode is located further from the centreline
than the linear one, due to the diffusion of the shear layers by means
of the Reynolds stresses in the nonlinear setting. Recall that the same
tendencies regarding mode shape were visible, but less apparent, for the
two least confined wakes at Re = 100 (the uppermost plates in figures
16 and 17).

However, when we look at the initial frequency and growth rate in the
nonlinear simulation (ωi above the picture), they are again in excellent
agreement with the linear analysis, up to three digits. When we repeated
the analysis for another wake close to the linear stability boundary,
Re = 316, Λ−1 = −1.33, we got the values ωl = 0.8358 + 0.0333i,
ωi = 0.8362 + 0.0329i. Thus, we conclude that our linear global modes
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Figure 23. Development of the streamwise velocities at the
centreline for a confined (h = 1.5) and unconfined (h = 9)
wake at Re = 316, Λ−1 = −1.34.

still give an excellent prediction of the initial nonlinear behaviour, and
consequently the stability boundary, of confined wakes also at Re = 316.

The confined wakes were seen to be more stable than the unconfined
wakes for Re = 100. When comparing the previously defined base flow
quantities again, for an unconfined (h = 9) and confined (h = 1.5) wake
with the same value of inverse shear ratio (Λ−1 ≈ −1.34), one finds that
the wake length is still much larger in the unconfined case: lw > 350 for
h = 9 and lw = 59 for h = 1.5. The centreline velocities are shown in
figure 23 – notice also that none of these two wakes contains any reverse
flow (compare figure 14 c).

Both wakes are slightly and almost equally unstable (ωl
i ≈ 0.02),

which seems to contradict the wake length analysis. However, looking
at the velocities at the centreline in figure 23, we see that in a large
streamwise region, between x = 0 and x = 50 they are very close, and
differ from each other by maximum 2 % of the reference velocity. This
could be compared to the case Re = 100, where the difference in the
centreline velocity between wakes with h = 9 and h = 1.5 was of the
order 10 % already in the interval x = 0 to x = 5. So, although the
asymptotic decay rates for unconfined and confined wakes are still very
different at higher Reynolds numbers, as are the entrainment lengths
for the two channels, it is clear that the wake length effect is decoupled
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Figure 24. The neutral stability curves as a function of Λ−1

and Re for an unconfined (–"–) and confined (–◦–) wake. The
region on the right side of the curve is unstable. The inviscid
solution is also shown — unconfined (-·"-·) and confined (-·◦-).

from the wake development in the upstream region of high shear. Either
this is the most important region deciding the stability of the flow, or
there are other competing mechanisms. This also confirms what was
previously seen for Re = 100, that neither the wake length nor the
length or strength of the reverse flow region alone is enough to completely
characterise the stability behaviour.

To further quantify the effect of confinement on the stability limit, we
compare one confined wake (h = 1) with an unconfined wake (h = 9) at
a few different Reynolds numbers. Figure 24 shows the neutral stability
curves for both in the Λ−1-Re-plane. The region on the right side of all
curves is unstable. As was shown in the previous sections, for Re = 100
the stability limit of the unconfined wake is at higher inflow velocities
than the confined one; the unconfined wake is more unstable. This is
also the case for the higher Reynolds numbers tried, Re = 150–400, but
the stability limits gradually approach each other.

6. Discussion

The wake developing from our inflow profile often has a region of reverse
flow and is unstable even for low Reynolds numbers, and by changing the
defining parameters many different wakes with varying characteristics
can be generated. For this reason the present wake flow provides a
suitable flow case for comparison of local weakly non-parallel (WNP),
global linear and nonlinear stability results. A specific goal of the present
work is to demonstrate the general agreement between global linear and
nonlinear methods as well as to point out the differences. This work
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therefore also provides a firm base for a future comparison with a local
WNP analysis using the same base flow fields.

The basic mechanism behind local absolute instability in jets and
wakes is known to be of inviscid nature (Yu & Monkewitz 1990), and
the absolute instability of parallel, inviscid co-flow wakes has been well
characterised: unconfined (e.g. Huerre & Monkewitz (1990)) and con-
fined (Juniper 2006). However, the spatial development of the flow field
caused by viscosity can still be important when determining the global
stability limits for real confined wakes and jets. In the linearised setting,
this influence can be divided into two parts:
(1) the degree and type of confinement has a considerable effect on the
base flow profiles, and
(2) also the disturbance itself satisfies a no-slip condition at the con-
fining walls, and this might affect the shape of the disturbance and
consequently the stability properties.
Our results indicate that the mechanism (1) dominates for co-flow wakes
in the studied parameter regime. In particular, the length of the high
shear or reverse flow region is known to be important for the onset of
global instability, and this length is clearly influenced by the base flow
development. Below, we discuss four aspects (the relation between lin-
ear and nonlinear stability, the effect of boundary condition at the walls,
the relation between local absolute and global stability, and finally simi-
larities to confined cylinder wakes) of wake instability in the light of our
present results and the literature.

6.1. Linear and nonlinear stability

The differences in the shapes of linear and nonlinear global modes es-
pecially at the higher Re (see e.g. figure 22) might be in accordance
with local nonlinear theory. This theory, summarised e.g. by Chomaz
(2005), predicts that the frequency selection and saturated shape of the
nonlinear global mode is determined in a station upstream of the linear
global mode. For nonlinear modes of the so-called pulled-front type, the
selection occurs at the first locally absolutely unstable point. Chomaz
(2005) further suggests that the efficiency of linear global modes as pre-
dictors of flow dynamics is dependent on the normality of the global
linear operator (higher degree of non-normality gives a worse predic-
tor). Consequently, the linear global modes should be better suited for
strongly non-parallel flows than for almost parallel flows.

In our case, the frequency agrees well at low Re but differs approxi-
mately 10% between the linear global method and nonlinear simulations
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Figure 25. (a) The spatial distribution of the deviation be-
tween the streamwise velocity of the base flow and mean flow
shown in grayscale; case Re = 316, h = 1.5 and Λ−1 = −1.35.
Both wakes are symmetric with respect to the centerline, and
only the upper half is shown here. Dark regions indicate that
the base flow velocity is slower than the mean flow velocity, and
light regions the other way around. (b) The streamwise veloc-
ity at the centerline: nonlinear (solid line) and linear (dashed
line).

at Re = 316. The base flow becomes more parallel for higher Reynolds
numbers, and the mode in figure 22 (b) indeed resembles the pulled-front
nonlinear global mode, the dynamics of which was suggested to be de-
scribed by local nonlinear theory by Chomaz (2005). For the Ginzburg-
Landau equation, it has been shown that the nonlinear global mode can
occur even when all linear modes are stable (Pier, Huerre & Chomaz
2001). It is possible that the final frequency is indeed selected by a local
mechanism for our flow. However, the initial nonlinear frequency and
growth rate was captured exactly by our linear analysis also for this case,
cross-validating the two very different numerical approaches. The route
to transition from a steady flow to a saturated oscillation is through the
unstable linear global mode in our DNS, and does not occur if the global
modes are stable. This confirms that properly converged linear global
modes can predict the stability limit also for fairly parallel flows.

Several authors have connected the nonlinear behaviour of wakes to
local or global linear analysis performed around the mean flow (Ham-
mond & Redekopp (1997), Camarri & Giannetti (2007)) rather than
around the steady solution to Navier-Stokes that has been used in the
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present work. This approach often yields good agreement between lin-
ear and nonlinear results for cylinder wakes (Camarri & Giannetti 2007),
but not for e.g. open cavities, as shown by Sipp & Lebedev (2007). The
deviation between the stationary base flow and the nonlinear mean flow
is shown in figure 25 for Re = 316, h = 1.5 and Λ−1 = −1.35. Due
to the Reynolds stresses in the nonlinear (oscillatory) flow, the wake
shortens, which is especially visible in the centerline velocities shown in
figure 25 (b). Also, the boundary layers develop faster. Thus, these dif-
ferences could explain the differences between the linear mode in figure
22 (a) and the nonlinear mode in 22 (b). However, preliminary studies
indicate that the linear global mode computed around the mean flow as
such does not coincide with the nonlinear global mode in this case. It is
possible that the Reynolds stresses not only affect the mean flow shape,
but also the disturbance, and that these has to be accounted for in the
stability analysis.

6.2. Relation to wakes with slip condition at the walls

Recently, Biancofiore et al. (2010) performed DNS on confined wakes
with a slip condition at the channel walls. They concentrated on defin-
ing the parameter regions for which the nonlinear oscillation appears,
for two different wake Reynolds numbers: Re = 100 and Re = 500. In
contrast to our results based on no-slip conditions, they find that con-
finement is weakly destabilising for Re = 100, while for Re = 500 the
stability limits for unconfined and confined wakes approach each other,
in agreement with our findings. We suggest that the different base flow
development, resulting from the change in wall condition, is the dom-
inant factor behind the discrepancy at Re = 100. This suggestion is
supported by linear global mode analysis of base flows with slip and
no-slip at Re = 100 by Tammisola (2009). In this comparison, it was
seen that with increased confinement (decreasing h), the wake length
increases for the slip case but decreases for the no-slip case. This base-
flow difference was reflected in the linear global modes. Longer wakes
give longer amplitude distributions, higher growth rates and lower fre-
quencies.

Biancofiore et al. (2010) also track the appearance of local absolute
instability in their base flow for selected flow cases. For the six example
cases chosen at Re = 500, a nonlinear oscillation is observed if and only
if there is absolute instability. In some applications, a rough approxima-
tion of the stability boundary is sufficient, while in others one would like
to have quantitative description of the neutral curve, frequencies, and
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possibly mode shapes. Their result is however promising for the local
method, and promotes a WNP study of the whole flow field for our as
well as their flow.

6.3. Relation to local absolute instability of inviscid wakes

As mentioned in the introduction, the inviscid local stability of our inflow
profiles was studied by Juniper (2006). In figure 24 the stability limits of
Juniper (2006) (limits of the gray region in figure 4 at h = 9 and h = 1)
are shown with vertical lines. Our global confined wake (h = 1) is more
stable than the local inviscid wakes. The main reason to this is clear: the
wakes get weaker as the viscous flow develops towards the full parabolic
profile. This development occurs in a shorter streamwise distance for the
confined cases. On the other hand, the unconfined viscous wake (h = 9)
is more unstable than the inviscid wake. This is probably due to a region
of reverse flow that appears one or two wake heights downstream from
the inflow in the viscous developing flow. However, it is intriguing to
see that even the unconfined wakes without reverse flow are unstable for
higher Re, while in the inviscid analysis the neutral stability limit goes
to Λ−1 = −0.9. In Rees & Juniper (2010) it was shown that thicker shear
layers than in the inviscid profile result in a slightly broader instability
region for unconfined wakes. Another reason to the deviation could be
that the flow is still more than weakly non-parallel, also at higher Re.
Further comparisons with the viscous model profiles by Rees & Juniper
(2010) are omitted here, since their parameter combinations are not
representative for our inflow profile.

6.4. Relation to confined cylinder wakes

While co-flow wakes have been mostly studied by employing the local
approach, the effect of confinement on a wake behind a cylinder has been
widely investigated by direct numerical simulations and experiments in
a global sense.

Experiments on wake instability behind cylindrical rods confined in
a channel were performed by Shaw (1971) and Davis et al. (1984) for
a rectangular cross-section of the rod, and by Richter & Naudascher
(1976) for a circular cross-section. The inflow velocity to the channel
was kept fixed, while the cylinder-to-channel diameter ratio was varied
from 0.05 to 0.35 (Shaw 1971) and 0.167 to 0.5 (Richter & Naudascher
1976). All studies report a substantial increase in the non-dimensional
frequency for confined flows compared to unconfined ones, up to 12 %.
This is consistent with our results (figure 15). In the linear analysis for



Global linear and nonlinear stability of viscous confined plane wakes 181

Re = 100, we observed a monotoneous increase from ωr = 0.72 (h = 9)
to ω = 0.86 (h = 1), and the nonlinear results are in good agreement.

When it comes to stability, Richter & Naudascher (1976) reports in-
creased amplitude of the lift-force oscillations with confinement, which
could be coupled to destabilisation. Furthermore, a DNS study of square
cylinders by Suzuki et al. (1994) reported that the critical Reynolds
number (based on the cylinder height) decreased with confinement; if,
instead, Re was based on total channel height, the trend was the op-
posite. When comparing results from confined flow around obstacles
with the present co-flow wakes, several issues arise. For flow around
obstacles, the Reynolds number is typically based on the mean velocity
in the channel and the height of either the channel or the obstacle. In
our case, the Reynolds number is based on the outer velocity U2, which
would correspond to the velocity of the accelerated flow in between the
obstacle and the wall. Furthermore, the wakes behind obstacles typically
have no co-flow in the wake (a special case of the present work) and the
separation point might fluctuate. Nevertheless, the present results on co-
flow wakes suggests that the complete mean flow development, including
wake length and reverse flow regions (e.g. Richter & Naudascher (1976)
report an increase of reverse flow velocity with a factor of 15 at a flow
case corresponding to h = 2), has to be documented in order to under-
stand and explain the effects of confinement on wakes behind obstacles.
Further interpretation of our results in this context is out of the scope
of the present work

7. Conclusions

In this paper, global stability of spatially developing co-flow wakes has
been analysed as a function of confinement and shear of the inflow for
low to moderate wake Reynolds numbers (Re = 100 − 400), with linear
global modes and direct numerical simulations. The main results are:

• Base flow development is important for the linear stability of the
confined co-flow wakes in this parameter regime.

• For Re = 100 the flow is stabilised by confinement due to a faster
relaxation of the confined wake towards a parabolic profile, com-
pared to an unconfined wake.

• For Re = 300 − 400 the base flow upstream for confined and
unconfined wakes is similar, and the stability limits approach each
other.
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• For Re = 100 the nonlinear saturated frequencies differ from the
linear ones by at maximum 5%.

• For Re = 300 − 400 the difference between linear and nonlinear
saturated frequency is of the order 10%, even close to the stability
limit.

• Nonlinear stability limits and initial nonlinear frequency and growth
of the oscillation in in perfect agreement with the linear ones for
all wakes at all Re under study.

• The saturated nonlinear oscillation shape is similar, but its ampli-
tude distribution differs from the linear one, in increasing amount
for higher Reynolds numbers, when the mean flow becomes more
parallel (as well as the base flow).

Our results indicate that the extension of a region with high shear in
the flow is the most important factor for deciding the stability of confined
co-flow wakes at low to moderate wake Reynolds numbers. Since the flow
development for co-flow wakes, in contrast to cylinder wakes, seems to be
uneffected by confinement for moderate Reynolds numbers, it would be
of interest to see whether this is true for high Reynolds numbers as well,
by tracking the wake length and reverse flow region, as well as invent
better measures to characterise the high shear region in the flow. Base
flows as well as nonlinear flow fields could rather easily be computed for
higher Reynolds numbers than presented here.

We also conjecture that confinement by decreasing channel height
while keeping the flow rate constant could be destabilising, due to in-
creasing shear ratio, as well as increasing wake length. However, for our
Reynolds numbers, we could not identify the inviscid destabilising mech-
anism of confinement proposed by Juniper (2006), and neither could this
be seen in the DNS of Biancofiore et al. (2010). This mechanism might
still appear, and possibly be dominant, for high Reynolds number co-
flow wakes.

In future work, it would also be interesting to consider the adjoint
linear global modes and the associated wavemaker region to these wakes,
to confirm the observations regarding base flow development and con-
finement effects, and for comparison with cylinder wakes. A full compar-
ison between local and global analysis (linear as well as nonlinear in both
cases) is also a logical next step, to further elucidate to which extent the
local methods can be applied to real spatially developing co-flow wakes.
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Nx Ny h = 1 & Λ−1 = −1.15 h = 1 & Λ−1 = −1.35
100 60 0.838540− 0.012176i 0.915644− 0.108935i
150 60 0.838547− 0.012185i 0.915917− 0.109439i
180 60 0.838549− 0.012165i 0.915932− 0.109460i

Nx Ny h = 9 & Λ−1 = −1.2
100 60 0.714911 + 0.020903i
150 60 0.714383 + 0.021059i
180 60 0.714349 + 0.021082i

Table 1. Convergence of the most unstable linear eigenvalue
ωl with grid refinement in x-direction (d = 0, L = 80).

The authors would like to thank Prof. M.P. Juniper for providing
figure 3, where an absolutely unstable region in his analysis is shown. O.
Tammisola also would like to thank Johan Malm at KTH Mechanics for
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by the project Ecotarget in the 6th EU Framework Programme, and the
Swedish Research Council (VR).

Appendix A. Convergence analysis

The linear and nonlinear results were verified with respect to grid re-
finement and streamwise boundary conditions. In tables 1–2, the most
unstable linear eigenvalues for three example wakes can be found:
(1) A marginally globally unstable confined wake: h = 1 and Λ−1 =
−1.15,
(2) a globally stable confined wake: h = 1 and Λ−1 = −1.35, and
(3) a globally unstable very weakly confined wake: h = 9 and Λ−1 =
−1.2.
Convergence is obtained at least for two decimal places for both fre-
quency and growth rate in all cases, which shows that the results are
convergent to this amount with respect to grid refinement (table 1) and
length of the computational box, L, i.e. independent of the outflow
boundary condition (table 2).

The linear results proved to be quite insensitive on the number of col-
location points in the vertical y-direction (Ny), while in the streamwise
x-direction the necessary number of polynomials (Nx) increased rapidly
with increasing domain length. Therefore, we emphasise the results for
the resolution check in the x-direction in table 1.
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L Nx Ny h = 1 & Λ−1 = −1.15 h = 9 & Λ−1 = −1.2
80 100 60 0.838540− 0.012176i 0.714911 + 0.020903i
120 150 60 0.838538− 0.012174i —
120 200 60 — 0.714315 + 0.021059i

Table 2. Convergence of ωl with box length (d = 0).

L

Dirichlet (no slip)

Neumann

Dirichlet (symmetry)

Dirichlet (no slip)

Dirichlet (no slip)

Dirichlet (no slip)

Dirichlet (symmetry)

Dirichlet (no slip)

d

Figure 26. Illustration of the parameters and disturbance
boundary conditions in the test domain used for the second
boundary condition independency test, performed with COM-
SOL Multiphysics.

To see the effect of the inflow boundary condition we initially per-
formed a simulation with a different software, COMSOL Multiphysics,
that was able to handle most of the unstable flow cases. A damping
region was introduced by moving the inflow boundary to the stability
problem upstream from the actual computational domain, and creating
two channels (figure 1 a) for the outer stream and wake, respectively,
where the base flow velocity in each channel was set to a constant value,
equal to 1 in the outer and U2 = (Λ−1 + 1)/(Λ−1 − 1) in the inner
channel. To prevent any shear layer instability due to this extensional
region a no slip condition (cmp. splitter plate) was set between the two
channels. The test configuration along with boundary conditions is il-
lustrated in figure 26. The aim was purely to see whether a change in
the location of the upstream boundary condition would alter the sta-
bility. This together with the outflow boundary condition gave us two
variables: domain length L and length of the damping region d, and the
effects could be analysed and compared.

The most unstable eigenvalue was calculated as a function of Λ for
a weakly confined wake (h = 10), for varying L and d. The growth rate
ωi is shown as a function of Λ−1 in figure 27. It is seen that the length
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Figure 27. The convergence of the most unstable linear
eigenvalue ωl and the stability limit, with respect to L (left)
and d (right) for a weakly confined wake: h = 10.

Nx Ny ωs,1 ωs,2 ωs,3

26 15 0.8015 1.6068 2.4083
36 20 0.8053 1.6162 2.4215
52 30 0.8130 1.6183 2.4314

Table 3. Convergence of the frequencies of the nonlinear
global mode and first two harmonics with h-refinement, at
Re = 100, h = 1.5 and Λ−1 = −1.2. Domain length Lx = 100
and polynomial order N = 7. Nx and Ny denote the number
of elements in the respective coordinate directions.

of the domain is of considerable importance for the stability. Stable
modes can be forced to be unstable with a too short domain; L = 20
gives a largely overestimated instability region (Λ−1 ! −1.75), while for
L = 80 the stability limit is converged (Λ−1 ! −1.27). We believe that
this is an effect of an unphysical disturbance outflow condition only, and
not due to that the base flow development far downstream would have
implications on stability.

The results for the length of the damping region d are shown in figure
27 (b). There is a minor effect on the location of the neutral curve in the
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hΛ-plane — a convergent result was obtained for d = 1. For smaller h,
the effect was slightly larger, and a region of length d = 2 was required
for convergence. However, the change was not considered to be large
enough to require an implementation of the extensional region in the
actual Chebyshev-Chebyshev stability code. Such a region in that code
would require a multi-domain approach in the stability problem, and
result in a considerably increased complexity. In addition, the damp-
ing region concept would have been difficult to realise in the nonlinear
simulations.

In the nonlinear case, the domain length was chosen with the linear
results as a guideline. For a few specific cases, the adequacy of the
chosen grid was verified by both a grid refinement study as well as by
changing the domain length, see table 3. In a first series, a h-refinement,
i.e. an increase of the number of spectral elements, was performed on
an example wake with h = 1.5, Λ−1 = −1.15, Re = 100, L = 100
using three non-equidistantly distributed grids and a fixed polynomial
order N = 7. The finest grid used in this convergence study (or a grid
with a similar resolution for weakly confined wakes) is then used for
runs in the present paper. To further ensure that the nonlinear results
are not affected by the numerical choice, an additional p-refinement test
(increasing polynomial order) for a wake with h = 4, Λ−1 = −1.2,
Re = 100 was performed, where in addition the box length was changed
from x = 100 to x = 160. The computed frequencies did not change for
these latter cases given the temporal resolution of the PSD calculation.
This indicates that the grid for the nonlinear DNS (extent, number of
elements and polynomial order) is indeed appropriate.

Appendix B: Determination of the nonlinear oscillation
characteristics

In the following, we will go through the numerical procedure for extract-
ing the nonlinear result from the simulation data in detail. For illustra-
tion, we use the flow case where Re = 100, h = 9 and Λ−1 = −1.2, i.e.
the practically unconfined reference wake to which all confined wakes
are compared in the coming sections.

In each flow case, an initial simulation is performed, where the time
signal in nine selected points of the flow field (the points depicted by
rings in figure 28) is followed more carefully. To obtain a temporal high-
resolution signal and avoid aliasing errors, the velocity data in these
points is stored in double precision binary format at every 10 time steps.
One of these time signals (recorded at x = 10, y = −1) for the example
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Figure 28. The whole instantaneous streamwise velocity field
with fluctuations at t=2000 (Re = 100, h = 9, Λ−1 = −1.2).
Rings depict points where time signal history was collected.
The time signal from the position marked with a dot inside
the ring is shown in figure 29.

flow case is shown in figure 29 (a). The obtained time signal contains
the whole history of the flow simulation for the spatial point where it
was recorded, and can be divided into three phases. In the initial phase,
the signal remains seemingly steady for a comparably long time, until
an oscillation appears at t ≈ 600. During the following transient phase
the oscillation grows in time, until it finally reaches a constant finite
amplitude due to nonlinear effects. Then the flow has reached what
will be called the saturated state in this work. Note that although
the self-sustained oscillations start around the steady state, the mean
flow that the saturated state fluctuates around is in general different, as
can be clearly seen for the given example. The development is similar
in all unstable flow cases, i.e. whenever an oscillation appears in the
nonlinear simulation. To obtain a good resolution of the oscillation
frequencies there has to be a long enough period of the saturated state.
Note that such a simulation typically required a few hundred CPU hours
to complete.

The power spectral density (PSD) spectrum is calculated for the sat-
urated state, for each of these nine signals. For this purpose the Welch
modified periodogram method is used. Since the noise level of the signal
is low and resolution high, the influence of the window functions is not
significant and splitting the data into several segments and averaging
the periodograms has only small advantages. Thus the usual Hamming



188 Tammisola, Lundell, Schlatter, Wehrfritz & Söderberg
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Figure 29. Time signal of the streamwise velocity in point
x = 10,y = −1 (marked with a dot-ring in figure 28): (a) The
original time signal, where Usteady is the level from which the
oscillation starts to grow, (b) the absolute value of U −Usteady

in linear scale and (c) in logarithmic scale. The slope of the
line in the last picture indicates the extracted growth rate in
the linear regime.

window is chosen and the data is split up into two segments with 50%
overlap. The data of each segment is zero-padded to four times the seg-
ment length. The highest peak in the PSD spectrum is always located
exactly at zero frequency and represents the mean flow energy. The
second highest peak corresponds to the energy in the nonlinear global
mode, and other peaks are its harmonics. The harmonics have usually,
but not always, monotonically decreasing energy levels. An accurate de-
termination of the global mode frequency from the spectrum is crucial
for the further analysis. The global mode frequencies based on the sig-
nals in the nine different sampling points in figure 28 were, as expected,
identical.
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When the global mode frequency has been identified from the spec-
tra, a new simulation is performed starting from a converged saturated
state, and the whole flow field is saved during exactly four periods of
oscillation of the global mode. A Fourier transform of the data from
the second simulation is then performed. The spatial shape of the mean
flow is obtained as a coefficient to the Fourier mode with zero frequency
in this expansion. The shape of the global mode is given by the fifth
coefficient, since the transform was performed over four periods. If the
global mode frequency is denoted by ωs

1, then the nth harmonic has per
definition the frequency ωs

n = (n + 1)ωs
1, and its spatial shape is con-

sequently given by the Fourier coefficient number 4(n + 1) + 1. These
shapes will be called Fourier modes of the flow field, and are naturally
dependent on the time period used for the transform. A similar method
has been previously used by e.g. Rowley et al. (2002) to visualise two
acoustic eigenmodes for a resonant cavity obtained from a direct numer-
ical simulation — the time period of the Fourier decomposition was then
chosen to be a multiple of both frequencies. Of course, if many differ-
ent peaks in the energy spectrum can be identified, or if there are no
clear peaks, this approach becomes cumbersome and possibly ill-defined.
Other methods to characterise and visualise structures obtained from a
nonlinear simulation include the eigenmodes of the time-averaged auto-
correlation matrix of the velocities, i.e. the POD modes (e.g. Berkooz
et al. (1993)) containing the most energetic structures of the flow, and
the eigenmodes of the Koopman operator associated with the nonlinear
evolution operator, the Koopman modes (Rowley et al. 2009). However,
since the spectrum in our case was clearly dominated by one (periodic)
global mode and its harmonics, all of these approaches are equivalent,
and Fourier modes proved to be an adequate and simple method to
extract the structures of interest. The obtained mode shapes will be
further discussed in the coming sections.

Finally, to get a good picture of how closely the initial development
of the flow field corresponds to the calculated linear stability characteris-
tics, we can again look at the time signal. Typically, we expect the initial
development of the flow field, when the deviation of the steady state is
small, to be governed by linear dynamics. Therefore, the disturbance
that initially grows in the flow field should be the most unstable linear
global mode. It should have an exponential growth rate, which along
with its shape and frequency can be determined by the linear stability
calculation, described in the next section.
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There is indeed a time interval during the transient phase of the
nonlinear signal where the growth is exponential. This can be seen
in e.g. figure 29 c, where the absolute value of the velocity signal is
drawn in a logarithmic diagram, and the slope is approximately linear
at 700 < t < 900 in this example case. The slope of this curve can
be directly compared with the growth rate of the linear global mode
obtained from the linear stability calculation. This frequency and growth
rate form the real and complex part of the initial nonlinear frequency
ωi.
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Many wake flows are susceptible to self-sustained oscillations, such as the well-
known von Kármán vortex street behind a cylinder, that makes a rope beat
against a flagpole at a distinct frequency on a windy day. One appropriate
method to study these global instabilities numerically is to look at the growth
rates of the linear temporal global modes. If all growth rates for all modes
are negative for a certain flow field then a self-sustained oscillation should not
occur. On the other hand, if one growth rate for one mode is slightly positive,
the oscillation will approximately obtain the frequency and shape of this global
mode. In our study, we first introduce surface tension between two fluids to
the wake-flow problem. Then we investigate its effects on the global linear
instability of a spatially developing wake with two co-flowing immiscible flu-
ids. The inlet profile consists of two uniform layers, which makes the problem
easily parametrisable. The fluids are assumed to have the same density and
viscosity, with the result that the interface position becomes dynamically im-
portant solely through the action of surface tension. Two wakes with different
parameter values and surface tension are studied in detail. The results show
that surface tension has a strong influence on the oscillation frequency, growth
rate and shape of the global mode(s). Finally, we make an attempt to confirm
and explain the surface-tension effect based on a local stability analysis of the
same flow field in the streamwise position of maximum reverse flow.

1. Introduction

This paper analyses the global stability of plane immiscible two-dimensional
wakes. In our model configuration, an inner and two outer fluid streams
with different velocities enter into a channel, introducing a region of lo-
cal velocity deficit, i.e. a wake, which gradually recedes as a parabolic
channel flow profile develops downstream. The development of the flow
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field in time and space is determined by the inflow profile, densities and
viscosities of the fluids, as well as the surface tension between them.

Here, we concentrate on the effect of surface tension on the stability
of planar wakes. The density and viscosity of the two fluids is kept equal
and uniform to exclude other effects, but a density and viscosity ratio
could easily be included in subsequent analysis 1 albeit not introduced
in this work. We assume small perturbations, and apply the method of
2D linear global modes around the time-independent solution of Navier-
Stokes equations, to determine for which parameter values the global
oscillation appears.

The global stability of wakes and jets has grasped the attention of
many researchers due to its importance in mixing and heat transfer re-
lated problems. The wake behind a solid circular or rectangular cylinder
has served as a model problem in a large number of studies, since the
transition to global instability happens at a low value of the Reynolds
number making the global problem computationally tractable (see e.g.
Williamson (1996) with references, Giannetti & Luchini (2007), Pier
& Huerre (2001), Camarri & Giannetti (2007)). Planar wakes where
fluid streams with two different velocities mix have also been a topic of
several previous studies. Our starting point is the local stability of in-
viscid parallel flow in a symmetric configuration with one inner and two
outer fluid streams, and uniform velocities in each Huerre & Monkewitz
(1990). This flow profile is also used as the inlet profile in the present
work. It has been concluded Huerre & Monkewitz (1990) that the ve-
locity ratio is destabilizing and that high density wakes and low-density
jets are more unstable. Later studies include wakes and jets surrounded
by walls (Juniper 2006), i.e. confined wakes, and confined wakes with
surface tension (Rees & Juniper 2009), with the conclusions that both
intermediate confinement and intermediate surface tension have a desta-
bilizing effect.

In the case of a weakly non-parallel flow, the stability limits from a
local approach might be similar to the ones obtained with linear global
modes. However, for strongly non-parallel flows, this is not the case.
In such cases, a global approach is necessary in order to determine the
stability of the flow.

Linear global modes for viscous confined wakes starting from the
inlet profile of Juniper (2006) and developing in the streamwise direction,

1The special case of a water sheet in air has been shortly considered in Tammisola (2009)
and Tammisola, Lundell, Söderberg, Sasaki & Matsubara (2009).
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Figure 1. The inlet profile with illustration of the (dimensio-
nal) parameters h∗
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for different parameter values but without surface tension, have also
been calculated (Tammisola 2009). It was shown that confinement was
stabilizing for low Reynolds numbers (Re < 400), due to the more rapid
mean flow development in the streamwise direction imposed by the shear
at the confining walls. In this paper we extend this work to confined
wakes with surface tension, but without examining the coupling between
surface tension and the confinement effects.

2. Flow case

Figure 1 shows the inlet profile: it consists of two fluid layers with a
uniform velocity in each. An inlet profile similar to this can in principle
be obtained experimentally by a sharp contraction prior to the inlets.
The profile is easily parametrizable as shown in the figure, we choose h∗

1
(the asterisk indicate dimensional parameters) to be half the width of
the inner layer (wake half width at the inlet), and h∗

2 to be the height
of the outer streams, and similarly, U∗

1 is the inlet velocity of the wake
and U∗

2 that of the outer streams.

Since the densities and viscosities of the two fluids are equal, the
problem is characterized by the following four nondimensional parame-
ters:

• The Reynolds number describing the ratio between inertia and
viscous forces

Re =
U∗

2 h∗
1

ν∗
, (1)
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Figure 2. Base flow velocity field for study case 1, Re = 100,
h = 1.5, Λ−1 = −1.2. The dashed curves show the streamlines
separating the inner and outer fluids. (a) Streamwise velocity
shown by colors, with example velocity profiles drawn on top
of the figure.
(b) Streamlines close to the inlet. Observe that the aspect
ratio is different from (a).

where ν∗ is the kinematic viscosity of the fluids.
• The Weber number representing the ratio between inertia and

capillary forces

We =
ρ∗ (U∗

2 )2 h∗
1

γ∗
, (2)

where ρ∗ is the density of the fluids and γ∗ the surface tension
coefficient between them.

• The shear ratio describing the strength of the shear between the
fluids at the inlet compared to their momentum

Λ =
(U∗

1 − U∗
2 )

(U∗
1 + U∗

2 )
. (3)

• The confinement characterizing the distance to the walls:

h =
h∗

2

h∗
1

. (4)
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All these parameters are based on the inlet profile. However, the flow
development downstream for a confined wake can also differ consider-
ably depending on the choice of parameters. In this paper, we present
example results for two cases:

• Case 1: Re = 100, h = 1.5 and Λ−1 = −1.2, and
• Case 2: Re = 316, h = 1 and Λ−1 = −1.32.

These two cases were chosen to give an illustration of the effects sur-
face tension can have on the wake instability. Both wakes are slightly un-
stable without surface tension (Tammisola 2009), and the growth rates
with different amounts of surface tension are examined here. More ex-
tensive parameter studies are left to the future, including a determina-
tion of the neutral stability limits, where linear global modes serve as a
proper tool.

3. Methods

In the following, we denote the streamwise coordinate by x∗, wall-normal
coordinate by y∗ and spanwise coordinate by z∗. The problem is nondi-
mensionalized with h∗

1 and U∗
2 as scaling parameters.

In general in linear stability, the flow variables are divided into one
steady and one timevarying part. This concerns both the velocity vector:

Ūtot(x, y, z, t) = Ū(x, y) + ū(x, y, z, t),

the pressure field:

Ptot(x, y, z, t) = P (x, y) + p(x, y, z, t),

and in the case of immiscible fluids, the position of the interface between
them:

Htot(x, z, t) = H(x) + η(x, z, t).

Here Ūtot, Ptot and Htot determine the total time dependent flow
field, Ū(x, y, z) and P (x, y, z) the time-independent base flow, and
(ū(x, y, z, t), p(x, y, z, t), η(x, z, t)) a disturbance, i.e. a deviation from the
base flow. The stationary (time independent) solution to the 2D Navier-
Stokes equations is taken as a base flow. We also assume two-dimensional
disturbances, hence the z-dependence is removed from the problem.

3.1. Base flow

A typical base flow field, here for case 1, is shown in Fig. 2. Starting
from the inlet profile at x = 0, the flow first develops a reverse flow
region around to x ≈ 2 (clearly seen in the streamline plot in Fig. 2 b),
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whereafter the wake gradually disappears and the velocity profile goes
towards a parabolic shape downstream. It is known that for the lowest
Reynolds numbers (Re = 100), not only the shear ratio but also the
confinement plays a considerable role for the development of the base
flow, and therefore for the global stability (Tammisola 2009). For higher
Reynolds numbers (e.g. Re = 316) the base flow development is more
similar for confined and unconfined wakes, over a long distance upstream
from the inlet.

In both cases, the curvature of the interface given by the streamline
originating from (x, y) = (0,±1) for the base flow is small except in
the immediate vicinity of the inlet (x < 0.1)2. Thus, surface tension is
assumed not to have a considerable effect on the shape of the stationary
solution. To simplify the problem, the base flow is therefore calculated
without surface tension. We have checked the validity of this assump-
tion a posteriori by computing the capillary pressure gradient along the
interface that would exist for case 1, We−1 = 0.1. This pressure gra-
dient was of the order 10−4, i.e. two orders of magnitude smaller than
pressure gradients occurring in the flow field.

To obtain the base flow, the steady Navier-Stokes equations are
solved using Nek5000 DNS spectral element code provided by Paul Fis-
cher MCS, Argonne National Laboratory, Argonne, USA3. The code
is based on rectangular blocks with Legendre polynomials in both the
vertical and streamwise directions (Deville et al. 2002).

Preliminary studies showed that for these wakes, the only unstable
mode has an antisymmetric streamwise velocity, while the base flow
wake is symmetric around the centerline. Therefore, by using only the
upper half of the domain and imposing a symmetry condition at the
lower boundary, the DNS converges in time to the steady solution. The
condition at the wall is no slip and for the outlet we choose the standard
Nek5000 outlet condition with P = 0.

The outflow condition could potentially have an effect on the sta-
bility results. Therefore, the base flow domain is always chosen to be
much longer than the domain used in the stability analysis described in
the next subsection. It was ensured that changing the domain length
for the base flow calculations does not affect the stability results.

2To define a fully physical curvature of the interface at the inlet would require contact line
modelling, which is out of the scope of this work.
3The code can be accessed from https://nek5000.mcs.anl.gov.
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3.2. Stability

In the stability problem, the computational domain is divided into two
parts in the vertical direction, coinciding with the regions each fluid
occupies in the steady state, with the steady position of the interface
given by (x, y) = (x,H(x)) as the common boundary. These regions
are referred to as domains 1 and 2. In each region, the coordinates are
transformed from the physical domain to a rectangular one by stretching
in the vertical direction.

The stability analysis is made by assuming small disturbances, so
that the Navier-Stokes equations can be linearized around the steady
state, the base flow (Ū , P,H). Further, we assume two-dimensional
disturbances, independent of the z-coordinate4. We also transform the
problem from a time frame to a frequency frame, by making the well-
known normal mode ansatz:

uk(x, y, t) = ûk(x, y)e−iωt, (5)

vk(x, y, t) = v̂k(x, y)e−iωt, (6)

pk(x, y, t) = p̂k(x, y)e−iωt, (7)

η(x, t) = η̂(x)e−iωt, (8)

where ω is the complex angular frequency and the subscript k refers to
flow domain 1 and 2. The division into two domains and introduction
of η is necessary in order to include the effect of surface tension on the
interface, as described in the next subsection. In the following, this
subscript is often skipped and in these cases û, v̂ and p̂ refer to the
disturbance distributions in the full domain.

Inserting the ansatz (3-6) into the linearized Navier-Stokes equations
(LNSE) gives:

−U
∂û

∂x
− V

∂û

∂y
− û

∂U

∂x
− v

∂U

∂y
(9)

−
∂p̂

∂x
+

1

Re

(

∂2û

∂x2
+
∂2û

∂y2

)

= −iωû (10)

−U
∂v̂

∂x
− V

∂v̂

∂y
− û

∂V

∂x
− v̂

∂V

∂y
(11)

−
∂p̂

∂y
+

1

Re

(

∂2v̂

∂x2
+
∂2v̂

∂y2

)

= −iωv̂ (12)

4This assumption is valid for wakes at low Re, e.g. the flow in a wake behind a circular
cylinder becomes three-dimensional at Re ≈180.
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∂û

∂x
+
∂v̂

∂y
= 0. (13)

Equations (8–11), together with appropriate boundary conditions
shortly described in the next section, constitute a 2D eigenvalue prob-
lem for ω. The eigenfunctions represent possible 2D disturbance shapes
(û(x, y), v̂(x, y), p̂(x, y), η̂(x)), together with corresponding frequencies
and growth rates given by the real and complex part of the eigenvalue
ω = ωr + iωi. Each eigenvalue-eigenfunction pair is called a global
mode, and the analysis is distinguished from its local counterpart by
two-dimensionality of the eigenfunction.

We discretize this problem using a spectral collocation technique
based on Chebyshev polynomials in both the streamwise and vertical
directions. In order to handle a storage issue generated by the resulting
huge matrix, that appears in global mode calculations, we have paral-
lelized them: we build the matrix in pieces on different processors, and
the LU-factorization and eigenvalue calculation are accomplished with
the aid of mathematical libraries ScaLAPACK (Blackford et al. 1997)
and P ARPACK (Maschhoff & Sorensen 1996).

3.2a. Boundary conditions. To complete the set of equations above, we
also need boundary conditions for the disturbance. The condition at
the upper wall is no slip:

û2(x, h + 1) = v̂2(x, h + 1) = 0, (14)

and at the centerline, for antisymmetric modes:

û1(x, 0) =
∂v̂1

∂y
(x, 0) = p̂1(x, 0) = 0, (15)

and symmetric modes:

∂û1

∂y
(x, 0) = v̂1(0) =

∂p̂1

∂y
(x, 0) = 0. (16)

In order to be able to include capillary forces in the problem, we
also need to satisfy physical constraints at the interface y = H + η, pre-
sented below. To make the expressions simple and the physics clear, we
only write down the nonlinear conditions before the linearization steps
here. They are presented in tensor form, where ûk,i now represents the
streamwise disturbance velocity for i = 1 and the vertical disturbance
velocity for i = 2. The conditions are:
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1. Continuity of the velocities at the interface

U1,i + u1,i = U2,i + u2,i. (17)

2. Continuity of the tangential force at the interface

t̃iS1,ijñj = t̃iS2,ijñj , (18)

where t̃ is the tangent vector of the interface (that depends on
both H and η), ñ the normal vector, and S the stress tensor with
pressure included.

3. Jump in the normal stress due to surface tension, dependent on
local surface curvature:

ñiS1,ijñj = ñiS2,ij ñj − 1
We

(

∂ñj

∂xj

)

. (19)

4. The interface displacement follows the vertical displacement of a
particle at the interface5:

∂η

∂t
+ (U1 + u1)

∂

∂x
(H + η) = V1 + v1. (20)

The surface normal in the stress conditions above contains both H
and η, so these conditions need to be linearized not only with respect
to û, v̂ and p̂, but also η̂. Furthermore, since the surface position varies
in time, all conditions also have to be linearized to yield at y = H, the
stationary position of the interface. Consequently, the interface bound-
ary conditions will involve many base flow terms in combination with
η̂, and disturbance terms in combination with H, and their exact form
is omitted here due to extensive length. More details can be found in
Tammisola (2009), where the linearized conditions at the interface are
presented for an arbitrary density and viscosity ratio between the fluids.
A similar method has been used previously to obtain the local stability
of a water sheet in air, solving the Orr-Sommerfeld equations with a cou-
pling at the interface (Söderberg 2003), (Tammisola et al. 2010). This
approach yielded an excellent agreement with experiments in a globally
stable (locally unstable) flow (Tammisola et al. 2010).

Finally, a Dirichlet no slip condition was chosen at the inlet:

ûk,i(0, y) = η̂(0) = 0, (21)

and a Neumann condition at the outlet:
∂uk,i

∂x
= 0, (22)

5By Eq. 15, this condition has exactly the same appearance if formulated in terms of variables
in domain 2.
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where k = 1, 2.

Unstable global modes are per definition localized in space, so the
disturbance should vanish at infinity. However, there is no physical
argument that would a priori justify a restriction of the disturbance
to any particular finite interval in the streamwise direction. Therefore,
it needs to be investigated whether the results are independent on the
streamwise boundary conditions. For the outlet condition, this is easily
established by making the domain longer until the unstable eigenvalues
have converged to the desired precision. A domain length of L = 100 for
the first, and L = 200 for the second wake, were seen to be sufficient in
order to obtain a convergence of the first three decimal places for both
the real and imaginary part of the unstable eigenvalues. To investigate
the influence of the inlet condition, we have tested a procedure involving
a damping region upstream of x = 0 (Tammisola et al. 2011). This
amounts to extending the computational domain for the velocity and
pressure variables upstream from the actual inlet, with a parallel base
flow profile equal to the inlet profile, and a splitter plate between the
two fluid streams, in order not to enhance the instability6. A Dirichlet
condition as above (Eq. 21) is then set at the inlet of the damping
region, at x = −d, instead of x = 0. The only purpose of the damping
region is to allow the disturbance to start more smoothly, and the results
were seen to be insensitive to both the chosen base flow profile in this
region and the length of the damping region, except from the appearance
of some additional unstable modes for case 2. These were one weakly
unstable varicose mode at intermediate values of surface tension and two
strongly unstable sinuous modes at weak surface tension (We > 500).
The antisymmetric modes appear neither without surface tension nor
with stronger surface tension than We = 500, and the symmetric mode
always has the lowest growth rate of all modes. Thus, they do not affect
the main conclusions of the present investigation. A complete study of
the effect of the upstream boundary condition is left for a future study.

4. Results

4.1. Case 1

The base flow for case 1 is shown in Fig. 2. It contains a region of reverse
flow with a maximum at x ≈ 2. Without surface tension (We = ∞),

6Our investigations have shown that the form of base flow profile in the damping region
does not affect the solution, as long as there is a splitter plate so that the wake region is not
extended upstream. The possibility for the disturbance to decay smoothly is more important,
but is required only if the modes have a high amplitude close to the inlet.
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Figure 3. Spectra for different We. Case 1: Re = 100, h =
1.5, Λ−1 = −1.2.

it is known (Tammisola et al. 2011) that there is one slightly unstable
mode, with ω = 0.818 + 0.006i.

Eigenvalue spectra for different values of We are shown in Fig. 3.
For very weak surface tension, We = 50, the growth rate (ωi) of the
unstable mode remains almost constant, while its frequency decreases
to ωr = 0.731. For stronger surface tension, We = 10, the growth
rate of the unstable mode increases noticeably (to ωi = 0.016), and the
frequency is much lower, ωr = 0.494. However, when the surface tension
is increased further to We = 2, all global modes are stable. The growth
rate of the eigenvalue (ωi) is shown in Fig. 4 (b), when the inverse Weber
number We−1 changes continuously from 0 to 0.28 (We = ∞ → 3.6),
and it shows two local peaks. The maximum growth rate is seen to
occur at We−1 ≈ 0.14 (We ≈ 7), while a second maxima is observed
at We−1 = 0.06 (We ≈ 16).The frequency as a function of We−1 is
quantified in Fig. 4 (a), and is monotoneusly decreasing.

The eigenfunctions of the most unstable modes for We = ∞, We =
50 and We = 10 are presented in Fig. 5. We start by looking at the real
part, i.e. an instantaneous field, of the streamwise disturbance velocity.
The usual wake mode for We = ∞ (Fig. 5 a) has a long envelope, i.e.
a streamwise region where its amplitude is not vanishingly small (com-
pared to its maximum amplitude). This can be seen in that there are
red (high velocity) and blue (low velocity) regions over a long distance.
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Figure 4. (a) The frequency ωr, and (b) the growth rate ωi

as a function of We−1 for the unstable mode at Re = 100,
h = 1.5, Λ−1 = −1.2.

Naturally, the mode finally decays upstream and downstream, a local-
ization that is characteristic for unstable global modes. The amplitude
for the velocity disturbance reaches a maximum at x ≈ 12. If the mean
distance between two consecutive peaks of the oscillation (e.g. the cen-
ters of the red regions at x = 9, y = 0.5 and x = 15, y = 0.5) is seen as
a wavelength, then the wavelength of this mode is of the order 6, which
gives a wavenumber slightly greater than unity. The instantaneous oscil-
lation of the interface is shown with a magenta line on top of the mode
picture, and its phase is seen to follow that of the streamwise velocity
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Figure 5. Spatial shape of the most unstable mode for differ-
ent We, at Re = 100, h = 1.5, Λ−1 = −1.2: (a)-(c) the stream-
wise disturbance velocity, (d)-(f) the vertical disturbance ve-
locity, (h)-(i) the pressure disturbance. Red color represents
positive values, blue color negative values and the figures has
to be stretched a factor of 1.25 in the horizontal direction to
get the physical aspect ratio.
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Figure 6. Base flow streamwise velocity field, at Re = 316,
h = 1, Λ−1 = −1.32. The boundary between inner and outer
fluid is marked with a dashed curve. (a) Velocity field shown
by colors, example velocity profiles are drawn on top of the
figure. (b) Streamlines close to the inlet. Observe that the
aspect ratio is different from (a).

oscillation. However, it should be mentioned that the interface pertur-
bation starts to decay first at x ≈ 50. The slower decay of the interface
perturbation is due to its ability to be convected with the mean flow,
further described in section 5.

For We = 50 in Fig. 5 (b), the shape of the mode downstream is
similar, but more irregular structures are seen to appear in the wake
close to the inlet. The envelope is shorter, maximum being where the
new structures appear, at x ≈ 6. The amplitude of the oscillation of
the interface (the magenta line) is largest near the inlet and decays
downstream, and does not follow the phase of the streamwise velocity
oscillation there. The wavelength of the mode downstream is longer,
as one would intuitively expect, since in local stability surface tension
damps the short wavelengths.

However, for We = 10 (Fig. 5 c) the mode is completely dominated
by short waves close to the inlet. The maximum is at x ≈ 3 and the
streamwise velocity oscillation is concentrated on both sides of the in-
terface, with the same wavelength as the interface oscillation. One has
to look carefully to find traces of a long wavelength wake oscillation
downstream.
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Figure 7. (Color online) Spectra for different We, at Re =
316, h = 1, Λ−1 = −1.32.

For the vertical disturbance velocity v̂ shown in Fig. 5 (d)–(f) the
conclusions are similar, but for We = 50 (Fig. 5 e) it is seen that the
phase of the vertical velocity is equal to that of the interface close to
the inlet. This localized vertical interface movement is the reason why
the wake structure in Fig. 5 (b) becomes distorted. Figures 5 (g)–(i)
show the pressure disturbance, and here the effect of surface tension is
clear. Without surface tension, the pressure changes smoothly over the
interface, and follows the low wavelength structures seen in the velocity
modes in this case. For We = 50, capillary force introduces a ”pressure
jump”, a discontinuity over the interface. The amplitude of the pres-
sure is clearly highest where the distortion of the wake mode appears
(near x ≈ 6). Furthermore, the pressure variation seems to have a high
amplitude in the high speed fluid and low in the low speed fluid in that
region, a feature that is common for all modes with surface tension pre-
sented here. The reason for this is not obvious. However, it means that
the pressure is interacting both with the interface and with the velocity
fields. A pure pressure jump due to the oscillation of the interface is
seen by careful scrutiny of the middle figure longer downstream, where
the pressures below and above the interface are exactly out of phase.
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Figure 8. (Color online) (a) The frequency ωr, and (b) the
growth rate ωi as a function of We−1 for the unstable modes
at Re = 316, h = 1, Λ−1 = −1.32: antisymmetric (a1-a5) and
symmetric (s1-s3).

4.2. Case 2

Case 2 is different in several ways. Firstly, the base flow (Fig. 6) con-
tains no reverse flow region. Therefore, also the streamline at y = 0 is
continuous (Fig. 6 b), without stagnation points. Secondly, it is more
confined than the first case, which is known to be stabilizing for the
wake without surface tension for similar parameter values (Tammisola
2009). There is less shear at the inlet (Λ−1 = −1.32), which is also
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Figure 9. Spatial shape of mode a1 for different We, at Re =
316, h = 1, Λ−1 = −1.32: (a)-(c): the streamwise disturbance
velocity, (d)-(f) the vertical disturbance velocity, and (g)-(i)
the pressure disturbance. Red color represents positive values,
blue color negative values and the figures has to be stretched
a factor of around 1.5 in the horizontal direction to get the
physical aspect ratio.
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Figure 10. The symmetric most unstable mode at We = 4.2
(We−1 = 0.24), Re = 316, h = 1, Λ−1 = −1.32: (a) û, (b)
v̂ and (c) p̂. Red color represents positive values, blue color
negative values and the figures has to be stretched a factor of
around 1.3 in the horizontal direction to get the physical aspect
ratio.

stabilizing. However, the Reynolds number (Re = 316) is higher than
in case 1, which makes the high shear region longer, and consequently
there is still one unstable mode without surface tension.

Eigenvalue spectra for the same four values of We are shown in Fig.
7 (compare with Fig. 3 for case 1). At We = 50, no major changes in the
frequency or growth rate of the one unstable mode are seen. However, at
We = 10 the change in the spectrum is dramatic: six different unstable
low frequency modes show up. In fact, even in case 1 (Fig. 3) there
were modes separating from the main branch at We = 10 and becoming
less stable, but they all still had negative growth rates. Despite this
destabilization for We = 10, at We = 2 all modes are once again stable.
The study of the eigenvalue spectra when We−1 changes continuously
from 0 to 0.5 (We = ∞ → 2) reveals in total eight unstable modes,
five of which are antisymmetric, and three symmetric (Fig. 8). For an
intermediate range of Weber numbers (We−1 = 0.25 − 0.47) the most
unstable mode is symmetric. It is remarkable that symmetric unstable
modes can dominate the antisymmetric ones for a wake, when surface
tension is introduced. This confirms that the trend seen in inviscid local
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analysis (Rees & Juniper 2009), that moderate surface tension consider-
ably extends the parameter region where a varicose (symmetric) mode
is absolutely unstable, is relevant also for viscous spatially developing
flows.

The real part of the streamwise disturbance velocity of the most
unstable mode for the same We as in case 1 is seen in Fig. 9 (a)–(c). The
mode without surface tension (Fig. 9 a) is very elongated, the maximum
being at x ≈ 35. The wavelength is comparable to the one observed for
case 1. When weak surface tension is introduced (We = 50, Fig. 9 b),
the mode shape is very different, even if the frequency and growth rate
were similar. Short wavelength oscillation appears downstream from x =
10, with maximum amplitude at x ≈ 18, and the maximum oscillation
amplitude is suddenly moved from the outer to the inner fluid. Modes
localized on each side of a sheared interface with surface tension have
been noted in previous studies (Yecko et al. 2002). In the downstream
end the oscillation again retains a similar shape as in the We = ∞
case in (a), but with a lower relative amplitude. For We = 10 the
small wavelength oscillations are again completely dominant. The most
unstable mode is shown, but all antisymmetric unstable modes (Fig. 7)
have a similar structure.

The most noticeable change in the vertical disturbance velocity (Fig.
9 d–f) with surface tension is that the mode for We = 50 in (e) extends
almost the whole way up to the wall in the high-speed fluid, whereas for
We = ∞ in (d) it lies closer to the shear layer and low speed fluid. This
could mean that confinement has a stronger influence on the mode shape
when surface tension is introduced, as was also indicated by previous
local studies (Rees & Juniper 2009). Notice that in case 1 with slightly
weaker confinement, the v-mode was still more concentrated in the low
speed fluid (Fig. 5 e). For the wake pressure disturbance without surface
tension, the phase is constant from the shear layer and up to the closest
wall (Fig. 9 g). But with surface tension, in particular We = 50,
we observe a phase change for the pressure in the vertical direction.
Finally, in Fig. 10 an example of the shape of a symmetric mode is
shown: the most unstable mode at We = 4.2. This mode is similar to
the antisymmetric ones regarding envelope and wavelength. It is located
even closer to the inlet, and the amplitude of the û-eigenfunction has
a secondary peak near the wall, indicating that this mode is influenced
by confinement. The shape near the inlet is close to the antisymmetric
modes at the same wavenumbers (not shown), but the symmetric mode



214 Tammisola, Lundell & Söderberg
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Figure 11. Temporal spectra for x = 2, different We, at
Re = 100, h = 1.5, Λ−1 = −1.2.

is more localized, since it is more unstable, and does not contain traces
of the usual wake mode downstream.

4.3. Summary

Even weak surface tension has a complicated influence on the global
stability of plane wakes. This is the case even when other physical
parameters of the two-fluid problem such as different densities and vis-
cosities of the two fluids are not included. Surface tension changes the
global spectrum and mode structures in different ways depending on
the other parameter values, and the full influence of confinement, Rey-
nolds number and shear ratio to this effect is yet to be determined. In
the next section we will try to explain why weak surface tension has a
destabilizing influence.

5. Physical reason for destabilization

To understand global mode results better and to verify them, it is good
practice to compare some of them with results obtained with a different
method. The verification is especially important in the case of global
modes with surface tension, since the linearized interface boundary con-
ditions are rather complicated.
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Figure 12. (Color online) The absolute frequencies at x = 2,
at Re = 100, h = 1.5, Λ−1 = −1.2, given by vertical lines
on top of the global eigenvalue spectra for different We. Each
marker on top of the line (and color online) represent the same
We as that of the global spectrum.

This will now be done for Case 1. We start by investigating the base
flows with the local linear stability method (e.g. Drazin & Reid (1981)).
In brief, this means that the flow is assumed to be locally parallel, i.e.
the base flow is assumed to evolve in the streamwise direction on a
scale that is much longer than the wavelength of the disturbance, and
therefore for each streamwise position, it is sufficient to look at the base
flow profile at that position. Consequently, the base flow field is of the
form (Ū , P ) = (Ū (y), P (y)), and all streamwise derivatives of the base
flow disappear from the equations. With this simplification, it becomes
possible to make the local ansatz:

ū = û(y)ei(αx−ωt), (23)

where we can look at the development for different streamwise wavenum-
bers α separately. The equations to solve are then a simplified form of
Eqs. (8–11) and the boundary conditions stated in Eqs. (12–18). With
this approach, the interface boundary conditions become much simpler,
and it is relatively easy to verify the local stability code against existing
results.

We first take the temporal approach, by setting a real wavenumber
α, and obtain the complex ω (the frequency and growth rate in time)
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for this wavenumber by solving the eigenvalue problem. When this is
done for many different α, we get lines of eigenvalues in ω-space. One
example is shown in Fig. 11 (a). It is now convenient to denote each
of these lines (over all alpha) as a mode. For parallel and weakly non-
parallel flows, local temporal instability is a necessary condition to get
an unstable global mode (Huerre & Monkewitz 1990). This condition is
not sufficient, but means that modes that are temporally stable will not
become globally unstable for weakly nonparallel flows. Therefore, even
if our flow is spatially developing, temporally unstable modes could give
a first indication of the physics behind the destabilization with surface
tension.

For We = ∞, there is one unstable mode, as shown in Fig. 11 (a).
This mode reaches a maximal temporal growth rate of ωi = 0.22 for
the frequency ωr = 0.73 and wavenumber α = 1.2. This has to be the
mode that develops to an unstable global mode without surface tension,
i.e. the usual wake mode. The maximal temporal growth rate of this
mode is much higher than the global mode growth rate, which is to be
expected from the theory. However, the frequency and wavenumber are
in the same range as what is seen in the global mode pictures without
surface tension (Figs. 5 a, d, g). In addition, there is one neutrally
stable mode. A closer examination shows that the eigenfunction of the
neutrally stable mode only involves an interface displacement η̂, with
vanishing velocity and pressure components. In addition, by tracking
the phase speed c = ωr

kr
of this mode, we have seen that it travels with

the base flow velocity at the surface. In other words, the kinematic
equation of the interface, Eq. (18), reduces to:

∂η

∂t
+ U(H)

∂η

∂x
= 0, (24)

where an initial interface displacement is convected with the base flow
speed without changing its amplitude. Since there is no velocity associ-
ated with this interface displacement, viscosity will not stabilise it, and
the mode is neutrally stable. Without surface tension, this mode lacks
physical meaning, and is purely due to our choice to introduce η as a
variable in a problem which also could be solved in terms of velocity and
pressure disturbance only.

However, when surface tension is introduced, the interface position
suddenly becomes dynamically important. It is clear that with the pres-
ence of surface tension no pure convection of the disturbed interface



Effect of surface tension on global modes of confined wake flows 217

position can exist, since an interface displacement introduces a pres-
sure perturbation. This in turn induces a vertical velocity field, which
emerges in the kinematic equation of the interface possibly rendering
the mode stable or unstable.

Now look at the temporal spectrum for We = 50 and x = 2 in Fig. 11
(b). The wake mode still has the highest amplitude, but the ”interface
convection mode” has become unstable for certain wavenumbers. It
reaches a maximal temporal growth rate ωi = 0.1 at ωr = 0.71 for
wavenumber α = 1.6. A shorter wavelength appearing near the inlet
was also seen in the shape of the global mode (Figs. 5 b, e, h). At
the same time, the usual wake mode has been slightly stabilized and the
maximum moved to longer wavelengths (α = 1). The same development
clearly continues for We = 10 and We = 2 as seen in Fig. 11 (c)
and (d), although the maximal temporal growth rates of both modes
decrease. The local temporal pressure and velocity eigenfunctions are
now nonvanishing for all values of α for the interface convection mode,
as they should be due to the capillary action. But otherwise, the nature
of this mode is very much dependent on the value of α. For very long
waves (small α) the effect of surface tension (which acts through the
interface curvature) is so weak that the interface displacement is still
mostly convected with the mean velocity: the growth rates are nearly
zero and the phase speed is very close to the base flow surface speed.
Surface tension clearly damps very short waves. What is most interesting
is the destabilization for some intermediate wavenumbers.

Our suggestion is that this can be seen as an interplay between cap-
illary waves and the base flow shear. In a stagnant base flow, the two
interfaces with surface tension support neutrally stable capillary waves.
For long waves, the capillary force is very weak, and very short capillary
waves are damped by viscosity. Thus, there should be an intermedi-
ate range of wavelengths, where the dynamical relevance of capillary
waves is maximum. On the other hand, shear layers support Kelvin-
Helmholtz type instability, where the maximal growth rate and its as-
sociated wavelength depend on both the strength and thickness of the
shear layer. When the wavelength and frequency of the capillary waves,
simultaneously convected by the base flow, is suitable, these may also
extract energy from the base flow shear by the Kelvin-Helmholtz mech-
anism. The shorter wavelengths approaching the thickness of the shear
layer, which would be damped otherwise, may be promoted by capillar-
ity. Also, the lower frequency of the interfacial mode helps to counteract
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viscous stabilisation for short wavelengths. The hypothesis of a Kelvin-
Helmholtz mechanism is supported by the fact that for high surface
tension, the frequency-growth rate curve for the interfacial mode seems
to follow closely that of the usual wake mode for low frequencies. When
the wavelength becomes short enough, the growth rate and frequency
of the interfacial mode suddenly drop, as could be expected due to a
strong capillary force.

A new local temporal mode cannot explain a destabilisation in the
global spectrum. A more important question to be answered is: Can we
get any indications from the local analysis that this interfacial mode,
or the usual wake mode, becomes more globally unstable with surface
tension? To do this, we have to take the local analysis a bit further.

It is known (Huerre & Monkewitz 1990) that for weakly nonparallel
flows a region of so-called local absolute instability, i.e. the existence of
unstable zero group velocity modes in the local stability problem, is a
necessary condition for an unstable 2D global mode to exist. The locally
unstable frequency is identified from the frequency at a saddle point
with a positive growth rate in the complex frequency-wavenumber-plane.
Although temporal instability is also a necessary condition for global
instability, it is not the temporal frequencies but rather the frequency of
the complex saddle point that might give a prediction of the frequency of
the 2D global mode. This frequency should be determined in the whole
streamwise region where local absolute instability exists, whereafter a
prediction of the global mode frequency can be established by techniques
based on analytic continuation. This has been done in the inviscid wake
and jet analyses based on model velocity profiles (Huerre & Monkewitz
1990; Juniper 2006; Rees & Juniper 2009).

We limit ourselves to obtaining the local absolute frequencies in the
streamwise point where counterflow and therefore absolute instability
without surface tension is strongest, at x = 2, to get a first indication of
whether the trends seen in the global analysis can be confirmed by the
local analysis. Observe that to get a full comparison between local and
global methods, the analysis have to be extended to a wider streamwise
region (Huerre & Monkewitz 1990).

The result is shown in Fig. 12, where the absolute frequencies are
represented by vertical lines (with the corresponding marker on top)
and compared to the global spectra. For We = ∞ and We = 50 the
zero group velocity mode turned out to be the usual wake mode, and
for We = 10 and We = 2 the interfacial mode. The absolute growth
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rates determined in one spatial point do not give a good approximation
of the global mode growth rate; however, the absolute growth rate in
this point was highest for We = 10 and lowest for We = 2.

The local absolute frequencies at x = 2 are far from identical to
global frequencies, but the same trend is seen in both: the frequency
increases with the surface tension. The wavenumber also goes in the
right direction, but the wavelength predicted is still longer than the
wavelength seen in the global mode by a factor 2 (not shown). In a
previous inviscid local study (Rees & Juniper 2009) a short wavelength
mode was also seen to appear in the presence of surface tension, but
with a wavelength one order of magnitude smaller than our global mode
wavelength. These local studies together confirm that the phenomena
seen in the global analysis are physical and not a result of e.g. upstream
or downstream boundary conditions. Furthermore, they indicate that
a global linear analysis might be necessary to accurately predict the
frequency and stability limits of global modes with surface tension.

6. Conclusions

Global stability of plane wakes consisting of inner and outer fluid layers
with surface tension on the interfaces has been analyzed by 2D linear
global modes. Surface tension was modified by changing the value of
the nondimensional parameter We describing the ratio between inertia
and capillary forces. This parameter was varied and the global eigen-
value spectrum investigated for values between We = ∞ (no surface
tension) and We = 2 (inertia twice as strong as surface tension). It was
shown that surface tension has an influence on both the growth rate,
appearance, and number of unstable global modes. The most unsta-
ble configurations for the two example wakes presented in this paper
were found to occur for intermediate surface tension at We = 7 (case
1, Re = 100) and We = 11 (case 2, Re = 316). Both wakes had one
slightly unstable mode without surface tension. For the first wake, only
one mode was observed to be unstable, while for the second wake, seven
new unstable modes appeared with surface tension, three of which are
varicose (symmetric), which is unusual for wake instability. However,
when surface tension was increased further to We = 2, both wakes be-
came stable. In light of these results, there is a strong reason to believe
that intermediate surface tension will destabilize also wakes that would
be stable without surface tension.

A possible physical explanation for the influence of surface tension
was indicated by a local stability analysis performed on the first wake in
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the streamwise position where the counterflow was strongest, at x = 2.
Without surface tension, in addition to the well-known wake mode, there
was a neutrally unstable mode in the temporal spectrum. This mode
corresponded to a pure convection of a small interface displacement by
the mean flow. When surface tension was introduced, the mode be-
came temporally unstable for certain wavenumbers, and for We = 10
and We = 2 it also became the most absolutely unstable mode. A sim-
ilar situation, where a neutrally stable ”invisible” interfacial mode in
Poiseuille flow was rendered temporally unstable by viscosity stratifica-
tion, has been observed previously (Yih 1967). Our hypothesis is that
with capillarity, energy can be extracted from the local mean flow shear
at the surface at different scales than without surface tension. A saddle
point associated with the shear layer activated by surface tension was
even found for inviscid flow (Rees & Juniper 2009).

An interfacial saddle is assumed to interact with the wake saddle and
therefore influence the frequency and mode shape for our first wake. Os-
cillations with a small wavelength, in accordance with the local analysis,
are seen to appear in the global mode in the shear layer close to the in-
let, and for higher surface tension these oscillations become dominant.
For the second wake no local analysis was made, but the trends seen in
the global modes, and the appearance of varicose modes, confirms that
the wake instability changes character when surface tension is added.
The wake instability moves closer to the inlet and becomes a shear layer
instability for intermediate surface tension.

The absolute instability thus has all the same trends as global linear
instability with surface tension, confirming that there is a physical mech-
anism behind the phenomena. However, the frequency, growth rate and
wavelength are not identical. The local analysis was performed only in
one streamwise position, and more refined methods need to be applied
to get real predictions from it (Huerre & Monkewitz 1990). Also, a fully
global analysis might be necessary to get an accurate description of the
influence of surface tension in this and similar flow cases.

The ordinary wake instability without surface tension, similar to the
von Kármán instability behind the cylinder, has its origin in the low
speed or recirculation region inside the wake. The linear global analysis
shows clearly that when surface tension is introduced, this instability
is gradually replaced by a new type of global modes located closer to
the inlet, where the shear near the surface is strongest. The destabi-
lization is strongest in the slowly developing example wake (higher Re),
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containing a longer region of high shear at the surface. Both symmetric
and antisymmetric modes were observed for this wake, further indicat-
ing that the new modes are shear layer modes rather than wake modes,
and might therefore be observed in jets as well.
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At high Reynolds numbers, wake flows become more globally unstable when
confined within a duct or between two flat plates. At Reynolds numbers around
100, however, global analyses suggest that such flows become more stable when
confined, while local analyses suggest that they become more unstable. The
aim of this paper is to resolve this apparent contradiction. In this theoretical
and numerical study, we combine global and local stability analyses of planar
wake flows at Re = 100 to determine the effect of confinement. We find that
confinement acts in three ways: it modifies the length of the recirculation zone
if one exists, it brings the boundary layers closer to the shear layers, and it
can make the flow more locally absolutely unstable. Depending on the flow
parameters, these effects work with or against each other to destabilize or
stabilize the flow. In wake flows at Re = 100 with free slip boundaries, flows
are most globally unstable when the outer flows are 50% wider than the half-
width of the inner flow because the first and third effects work together. In
wake flows at Re = 100 with no slip boundaries, confinement has little overall
effect when the flows are weakly confined because the first two effects work
against the third. Confinement has a strong stabilizing effect, however, when
the flows are strongly confined because all three effects work together. By
combining local and global analyses, we have been able to isolate these three
effects and resolve the apparent contradictions in previous work.

1. Introduction

In this theoretical and numerical paper, we describe the effect of con-
fining a viscous planar wake between two flat plates at Re = 100. In
particular, we examine how the destabilizing effect of confinement is
influenced by the boundary layers that are generated by the confining
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Figure 1. Streamlines of two of the confined wake flows
studied in this paper. Both flows have inverse shear ratio
Λ−1 = −1.2 and confinement parameter h = 1. The top flow
has free slip at the boundaries. The bottom flow has no slip
at the boundaries.

walls. Unlike our previous analyses, this analysis combines a local sta-
bility analysis with a global stability analysis over a wide range of con-
finements and shear ratios. This provides more information than can be
obtained with independent local and global analyses.

Confined wake flows are frequently found in industry and in model
problems. Our previous research into the effect of confinement has been
motivated partly by instabilities that appear in paper manufacturing,
Lundell, Söderberg & Alfredsson (2011) and Tammisola, Lundell, Schlat-
ter, Wehrfritz & Söderberg (2011), and partly by instabilities that ap-
pear in rocket and aircraft engines, Juniper & Candel (2003).

The above flows tend to be at high Reynolds numbers, for which con-
finement increases global instability. This is seen particularly clearly in
the experimental study of Richter & Naudascher (1976). They examined
the fluctuating forces on a confined circular cylinder at 104 < Re < 106

and found that the fluctuating cross-stream force, which arises from sin-
uous vortex shedding, increases markedly as the flow is confined. The
same effect was observed in a numerical study by Kim, Yang & Senda
(2004), by Bearman & Zdravkovich (1978) and Hwang & Yao (1997)
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for the half-confined case, and by Healey (2007) for a confined rotating
disk boundary layer. Confinement destabilizes wake flows at intermedi-
ate Reynolds numbers as well, as is seen, for example, in Davis, Moore
& Purtell (1983) at Re = 750.

The effect of confinement is less well understood at low and moder-
ate Reynolds numbers. In this paper, we examine viscous wake flows,
such as those shown in Fig. 1, at Re = 100. Two incompressible flows
with uniform viscosity are injected through the left boundary: a fast-
moving outer flow and a slow-moving inner flow. When the inner flow is
sufficiently slow-moving, a recirculation zone forms just downstream of
the injection plane. The whole flow is confined between two flat plates.
The ratio of the width of the outer flow to the half-width of the inner
flow, which is labelled h, turns out to have a strong influence on the
flow’s stability.

Local stability analyses of jets and wakes with piecewise-linear ve-
locity profiles, such as Juniper (2006) and Juniper (2007), show that
inviscid flows become more absolutely unstable when confined. Co-flow
inviscid planar jets are convectively unstable at all h but they become
marginally absolutely unstable to a varicose mode at h = 2.79. Co-
flow inviscid planar wakes are convectively unstable at large h but they
become absolutely unstable to a sinuous mode at h = 2.79 and reach
maximum absolute instability at h = 1, when the outer flow has exactly
half the width of the inner flow. This result is exploited in cryogenic
rocket engines in order to enhance break-up of the slow-moving liquid
oxygen stream by the fast-moving hydrogen stream, Juniper & Candel
(2003).

Although the effect of confinement is clear for inviscid flows, our pre-
vious studies of viscous flows at Re ∼ 102 seem to contradict each other.
On the one hand, a local stability analysis of viscous planar wakes with-
out boundary layers, Rees & Juniper (2010), shows that the destabiliz-
ing effect of confinement persists down to Re = 10, although it becomes
attenuated at lower Reynolds numbers because the instability itself be-
comes attenuated by viscosity. This destabilizing effect, attenuated by
viscosity, is also seen at Re = 500 and Re = 100 in the nonlinear DNS
of Biancofiore, Gallaire & Pasquetti (2011). On the other hand, linear
global stability analyses of confined viscous planar wakes with boundary
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layers, Tammisola et. al (2011), show that wakes at Re = 100 become
more globally stable when confined. This is observed both for the linear
global modes and in nonlinear DNS. At first sight, these results seems
to contradict those of Rees & Juniper (2010) because stronger abso-
lute instability should imply a stronger global instability. In this paper,
we examine these confined flows in more detail in order to explain this
apparent contradiction and to highlight the influence of the boundary
layers, which was not considered in detail in Rees & Juniper (2010).

2. Methodology

In this paper, we perform two types of analysis on two types of flow.
The first type of flow has free slip at the confining walls. The second
type of flow has no slip at the confining walls. In the second type of
flow, the boundary layers affect the stability of the shear layers and also
block the flow near the wall, which shortens the recirculation bubble by
forcing the flow to speed up near the centreline. By considering both
flows with both analyses, we can separate the effect of confinement from
the two effects caused by the boundary layers.

The properties of each flow are characterized by the conditions on the
left boundary, where the inner flow has velocity U∗

1 and width h∗
1 and the

outer flow has velocity U∗
2 and width h∗

2. The shear between the two flows
is quantified by the inverse shear ratio Λ−1 ≡ (U∗

1 −U∗
2 )/(U∗

1 +U∗
2 ). The

confinement is quantified by the ratio h ≡ h∗
2/h

∗
1. (In Rees & Juniper

(2010), it was quantified by hRJ ≡ (h∗
2−h∗

1)/(h
∗
2 +h∗

1) = (h−1)/(h+1).)
The viscosity is quantified by the Reynolds number, which is defined
as Re ≡ U∗

2 h∗
1/ν

∗. (In Rees & Juniper (2010), it was quantified by
ReRJ ≡ (U∗

1 + U∗
2 )(h∗

1 + h∗
2)/(2ν

∗) = (1 + h)/(1 −Λ)Re). For each type
of flow we vary Λ−1 at h = 1 in order to test the effect of Λ−1 and then
we vary h at Λ−1 = −1.2 in order to test the effect of h.

Our first type of analysis is a linear global stability analysis, Tam-
misola et. al (2011). The Navier–Stokes equations are linearized about
the steady but unstable base flow and small perturbations are assumed
of the form ũ(x, z) exp(−iωgt). The evolution operator for the perturba-
tions is discretized and expressed as a matrix acting on the discretized
state vector ũ(x, z). The global modes of the linearized system are the
eigenmodes of this matrix. Each eigenmode consists of an eigenvalue,
ωg, which describes the frequency and growth rate, and an eigenvector,
ũ(x, z), which describes the mode shape. The procedure for finding the
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eigenmodes of this matrix is described in §3.

Our second type of analysis is a linear local stability analysis, Huerre
& Monkewitz (1990). As for the global analysis, the Navier–Stokes
equations are linearized about the steady but unstable base flow. The
WKBJ approximation is applied, i.e. the base flow is assumed to be
locally parallel and small local perturbations are assumed of the form
û(z) exp(i(kx − ωt)). The absolute frequency ω0 is calculated at each
slice and the frequency and growth rate of the linear global mode, ωg,
are estimated by analytical continuation into the complex x-plane. The
response of each slice at ωg is then calculated and the WKBJ approx-
imation is inverted in order to obtain the mode shape ũ(x, z). This
procedure is described in §4.

3. The global analysis

3.1. Construction of the global analysis

The flow is assumed to be governed by the Navier–Stokes (N–S) equation
and the incompressibility condition:

∂Utot

∂t
+ Utot ·∇Utot = −∇Ptot +

1

Re
∇2Utot, (1)

∇ ·Utot = 0. (2)

Following our previous studies, the flow is assumed not to vary in the
spanwise direction, y. The total velocity and pressure fields are divided
into steady and time-varying components:

Utot(x, z, t) = U(x, z) + u(x, z, t), (3)

Ptot(x, z, t) = P (x, z) + p(x, z, t). (4)

The steady base flow (U(x, z), P (x, z)) is the solution to the N–S equa-
tions (1-2) without time derivatives. The unsteady perturbation is as-
sumed to take the form:

u(x, z, t) = ũ(x, z) exp (−iωgt) . (5)
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The N–S equations are linearized around the base flow by ignoring qua-
dratic terms in perturbation quantities, to give the Linearized N–S equa-
tions (LN–S):

−U∂xû − V ∂zû − û∂xU − v̂∂zU

−∂xp̂ +
1

Re
(∂xxû + ∂zzû) = −iωgû (6)

−U∂xv̂ − V ∂z v̂ − û∂xV − v̂∂zV

−∂z p̂ +
1

Re
(∂xxv̂ + ∂zzv̂) = −iωgv̂ (7)

∂xû + ∂z v̂ = 0. (8)

The LN–S equations (8–11) constitute a 2D eigenvalue problem for ωg.
This set of equations is satisfied only for certain eigenvalues, ωg, which
give the growth rates and frequencies of the linear global modes. (We
call ωg the complex frequency.) Each ωg has an associated eigenfunction
ũ(x, z), which describes the shape of the global mode.

A finite number of the most unstable modes can approximate the
dynamics of the flow, as described in Schmid (2007). In most of the
cases presented in this paper, there is only one mode with positive growth
rate, which dominates the dynamics after the initial transients have died
away. In this paper, we focus only on this global mode.

3.2. Solution of the global analysis

The base flow is obtained from Direct Numerical Simulation (DNS) us-
ing a Legendre polynomial-based spectral-element method (SEM) im-
plemented in the code nek5000, Fischer (1997). The inlet velocity has
a slightly-smoothed top hat profile with slower velocity in the inner flow:

U(0, z > 0) = 1
π

[

arctan(500(h + 1 − z)) + π
2

]

+
2

π(Λ−1−1)

[

arctan(500(1 − z)) + π
2

] (9)

A symmetry condition is imposed along the centreline, z = 0. For
these base flows, all the unstable modes are antisymmetric, which means
that the DNS converges naturally to the steady (but antisymmetrically-
unstable) solution.

At the wall boundary (z = h + 1), we set either a no slip condition
or a free slip condition (Fig. 1). At the downstream boundary, we set a
homogeneous Neumann condition for the velocities and a homogeneous
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Dirichlet condition for the pressure. The possible influence of the down-
stream boundary condition is eliminated by using substantially longer
domains for the base flow than are used in the stability problem. For
more details about the code and base flow computations, see Tammisola
et. al (2011).

To calculate the linear global modes, (8–11) are discretized in space
using Chebyshev-polynomials in both the streamwise and cross-stream
directions:

û(x, z) ≈
Nx
∑

i=1

Nz
∑

j=1

cijφ
i(x)φj(z) (10)

where φk is the kth Chebyshev polynomial. The values of the unknown
coefficients cij are obtained by requiring the discretized equations to be
satisfied exactly at the Nx × Nz collocation points. The domain is lin-
early transformed from [−1, 1] × [−1, 1] to [0, Lx] × [0, h1 + h2].

For all base flows, whether they have free slip or no slip at the
confining walls, we set a no slip condition for the perturbation:

û(x, h + 1) = 0, v̂(x, h + 1) = 0. (11)

For the wake flows in this paper, it is sufficient to consider only
antisymmetric modes:

û(x, 0) = 0, ∂z v̂(x, 0) = 0, p̂(x, 0) = 0. (12)

The truncation of the domain in the streamwise direction is problem-
atic because the only natural streamwise boundary condition for unsta-
ble global modes is to decay at infinity. We impose a Dirichlet condition
at the inlet and a Neumann condition at the outlet:

û(0, z) = 0, v̂(0, z) = 0, (13)

∂xû(L, z) = 0, ∂xv̂(L, z) = 0. (14)

We check that these boundary conditions do not affect the stability by
ensuring that the most unstable eigenvalue is not sensitive to the do-
main length and that the upstream influence of the Dirichlet condition
is small, Tammisola et. al (2011).

Using these techniques, the eigenvalue problem of a continuous op-
erator (8-11) with boundary conditions (13-14) is transformed into a
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generalised matrix eigenvalue problem:

Aq = ωgBq, (15)

where q = (û, v̂, p̂) is the eigenvector and ωg the eigenvalue. The number
of elements of the left-hand side matrix A grows as 9N2

xN2
z (compared to

N2
z in the local analysis) and the required memory increases correspond-

ingly. To handle this, the matrix is built in parallel and the eigenvalue
problem solved using parallel versions of the Arnoldi algorithm, with
linear algebra operations from ScaLAPACK, Tammisola et. al (2011).

4. The local analysis

4.1. Construction of the local analysis

As for the global analysis, the velocity and pressure fields are decom-
posed into a steady base flow, (U(x, z), P (x, z)), and a small perturba-
tion, (u(x, z, t), p(x, z, t)). For the local analysis, however, we assume
that the flow exhibits two well-separated length scales: an instability
wavelength, λ, and a length scale that characterizes the stream-wise
non-uniformity of the base flow, L. The ratio λ/L, which must be small
for a local analysis to be rigorously valid, is labelled ε.

The development in this paper follows Monkewitz, Huerre & Chomaz
(1993), which is summarized pedagogically in Huerre & Monkewitz (2000)
§4. The LN–S equations for the small perturbation contain terms that
scale with ε0, terms that scale with ε1 and terms, which are neglected,
that scale with higher orders of ε. The ε0 terms represent a streamwise
succession of locally parallel problems, which are solved with the tech-
nique described in §4.2. The complex frequency, ωg, of the linear global
mode and the position of the wavemaker region, Xs, are calculated with
the technique described in §4.3. The corresponding global mode shape
is calculated in §4.4 by integrating

u(x, z, t) ∼ A0(X)û±(z;X) exp

(

i

ε

∫ X

0
k±(X ′;ω) dX ′ − ωgt

)

, (16)

where, at the X-position of each slice, k+ is the local wavenumber down-
stream of Xs, k− is the local wavenumber upstream of Xs, and û±(z;X)
is the corresponding eigenfunction. The ε1 terms of the LN–S equations
describe the evolution of the slowly-varying amplitude A0(X) but, for
the simple local analysis in this paper, we assume that A0 is a constant.
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4.2. Solution of the locally-parallel problem

The planar LN–S equations for the perturbation are expressed as three
PDEs in three primitive variables, (u, v, p). At each X-position, the
perturbations are expressed as Fourier modes such as

u(x, z, t) = û(z) exp{i(kx − ωt)

which converts the three PDEs into three ODEs. The ODEs are dis-
cretized on a Chebyshev-spaced grid in the z-direction, which produces
a generalized matrix eigenvalue problem of the form

A(k)φ = ωB(k)φ (17)

where φ is a column vector representing the discretized values of û, v̂ and
p̂. This is satisfied for certain (ω, k) pairs and represents the dispersion
relation for this slice of the flow. In this paper, 108 Chebyshev-spaced
points are used between the centreline and top wall, which is sufficient
that the eigenvalues change by ∼ 10−5 when the resolution is increased.

A temporal stability analysis is performed on a slice near the entry
plane to find the maximum temporal growth rate, which corresponds to
the growth rate of the centre of the impulse response in a parallel flow,
Juniper (2007). A spatio-temporal stability analysis is then performed
by finding the saddle points of ω(k) that are also k+/k− pinch points. (In
a flow with mean mass flux in the positive x-direction, the perturbation
with maximum temporal growth rate lies on the k+ branch and the
algorithm used in this paper finds all the k− branches that pinch with
it.) In wake flows such as those studied here, there can be up to three
such k+/k− saddles, Juniper (2006). The highest saddle is labelled the
dominant saddle point. These saddle points are then followed as the
base flow changes. The absolute complex frequency of the dominant
saddle, ω0, as a function of streamwise distance, X, is stored for the
algorithm in §4.3. An example of ω0i(X) is shown in Fig. 2(b).

4.3. Calculating the frequency and growth rate of the linear global mode

It is assumed that the absolute complex frequency ω0(X) can be contin-
ued analytically into the complex X-plane. The complex frequency of
the linear global mode, ωg, is given at leading order in ε by the saddle
point of ω0(X), which is labelled ωs(Xs), Chomaz, Huerre & Redekopp
(1991). In this paper, the position of the saddle point Xs is estimated by
selecting the region of ω0(X) around the maximum of ω0i(X) and then
fitting Padé polynomials to these values. (Padé polynomials take the
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form Pn(x)/Qm(x), where Pn(x) and Qm(x) are polynomials of order n
and m respectively.) Padé polynomials have two advantages over stan-
dard polynomials: they can fit ω0(X) accurately at relatively low order,
and they are better behaved in the complex plane, Cooper & Crighton
(2000).

Initially, the saddle position, Xs, is found for n = m = 2 by con-
sidering a small region around ω0i(X). The saddle is then followed as
n and m are increased to 8 and the threshold value of ω0i is lowered
until the polynomials fit a wide range of ω0(X) around the absolutely
unstable region. This gives the complex frequency ωg of the global mode
and the position of the wavemaker region Xs. If n and m are increased
further, there is no systematic change in the saddle position but its vari-
ance around the value at n = m = 8 increases. From this, we conclude
that, for larger n and m, the saddle position becomes unduly influenced
by small errors in ω0(X), without becoming more accurate.

These results can be compared with those from other local analyses.
For the steady but unstable flow behind a cylinder at Re = 50, Pier
(2002) found the real part of ωg to be 0.78, while Giannetti & Luchini
(2007) found ωg = 0.779 + 0.09i. The process used in this study finds
ωg = 0.789 + 0.0918i for the same flow. Given that the calculated value
of ωg varies slightly with n and m and with the streamwise extent of
ω0(X) that is sampled, this is sufficiently close for us to have confidence
in the procedure.

These results can also be compared with those from global analyses
(§3). Giannetti & Luchini (2007) compared a linear global analysis with
a linear local analysis of the flow behind a cylinder at 15 < Re < 100
and showed that the local analysis always over-predicts ωgi. At Re = 50,
their global analysis predicts ωg = 0.747 + 0.0125i, showing that their
local analysis over-predicts ωgi by 0.08. At Re = 100, which is the
value used for most of the results in this paper, their local analysis over-
predicts ωgi by 0.059. Given that the flows in this paper are very similar
to the flow behind a cylinder, we expect a similar over-prediction in this
paper.
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4.4. Calculating the 2D global mode shape

The 2D global mode shape is calculated by investigating how the flow
responds to an oscillation with complex frequency ωg applied at Xs, so
that the integral (16) can be evaluated. To do this, the values of k that
satisfy (17) when ω = ωg are calculated and the two that correspond to
the k+ and k− branches in the X-plane are selected. The global mode
is estimated from (16) by integrating the k− branch upstream of Xs

and the k+ branch downstream of Xs. The z-dependence is obtained by
multiplying the result by the eigenfunction of the k− branch upstream
of Xs and that of the k+ branch downstream of Xs.

5. Comparison of local and global results

In this section, results from the global analysis are compared with those
of the local analysis for two wake flows: one at Re = 400 and the other
at Re = 100.

5.1. Re = 400

Figure 2 shows local and global results for a confined wake flow at
Re = 400 with h = 1, Λ−1 = −1.2 and a free slip condition at the
walls. There is a recirculation zone between 2.36 < X < 22.29. Tak-
ing the length of this recirculation zone as a characteristic streamwise
evolution lengthscale, L, we obtain L ≈ 20. The absolutely unsta-
ble region lies between 0.06 < X < 28.42. Continuing ω0 analytically
into the complex X-plane, the complex global frequency is found to be
ωg(loc) = 0.6547 + 0.1306i. The k+ and k− branches are calculated
at ωg(loc) and are plotted in Fig. 2(c,d) alongside the complex local
wavenumber, k, extracted from the global analysis. The complex local
wavenumber, k, closely follows the k− branch upstream of the wave-
maker region and the k+ branch downstream, as expected.

The global analysis gives a complex global frequency of ωg(glob) =
0.6659+0.1133i, which is slightly more stable than that of the local anal-
ysis, as expected from §4.3. (Being at Re = 400, however, the difference
is quite small.) The global analysis gives the 2D eigenfunction in Fig.
2(e), while, by integrating (16), the local analysis gives the 2D eigenfunc-
tion in Fig. 2(f), which is very similar. The slightly higher growthrate
in the local analysis causes the centre of its global mode to be slightly
further upstream. This is a general feature of the global mode predicted
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by the local analysis. Having calculated the k± branches and the mode
shapes, we can estimate that λ ≈ 5.0, which means that ε ≈ 0.25. The
local analysis works well at this value of ε.

Figure 3 shows the k+ and k− branches and the 2D eigenfunctions
calculated by the local analysis, but at the complex frequency calculated
by the global analysis, ωg(glob). The results are almost identical, which
shows that the only significant defect of the local analysis is its over-
prediction of ωgi.

In summary, the global analysis gives the more accurate prediction
of the absolute frequency and the 2D eigenfunctions because it does not
make the parallel flow assumption. However, the local analysis gives
the more useful qualitative information about the flow. For instance it
shows that, although the global mode has a maximum amplitude at X =
28.36, it is actually driven by a wavemaker region at X = 12.43, which
arises from the absolutely unstable region between 0.06 < X < 28.42,
which is centred on the recirculation zone. The flow downstream of the
recirculation zone is simply responding to the forcing from this region.

5.2. Re = 100

Fig 4 shows results for a confined wake flow at Re = 100 with h = 1,
Λ−1 = −1.2 and a free slip condition at the walls. There is a recir-
culation zone between 0.91 < X < 5.57. Taking the length of this
recirculation zone as a characteristic streamwise evolution lengthscale,
L, we obtain L ≈ 6. The absolutely unstable region lies between
0.17 < X < 6.69. From this, the complex global frequency is found
to be ωg(loc) = 0.6538 + 0.08594i. The k+ and k− branches are calcu-
lated at ωg(loc) and are plotted in Fig. 4(c,d) alongside the complex
local wavenumber, k, extracted from the global analysis. The complex
local wavenumber, k, follows the k− branch upstream of the wavemaker
region and the k+ branch downstream, but is not as close as it was in
the Re = 400 case.

The global analysis gives a complex global frequency of ωg(glob) =
0.6613+0.02665i, which is 0.059 more stable than that of the local anal-
ysis, as expected from §4.3. The global analysis gives the 2D eigenfunc-
tions in Fig. 4(e), while the local analysis gives the 2D eigenfunctions
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Figure 2. The base flow (a), local stability properties (b–d)
and global modes (e–f) of a confined planar wake with h = 1,
Λ−1 = −1.2, Re = 400 and free slip boundaries; (a) stream-
lines; (b) absolute growth rate, ω0i; (c) spatial growthrates, k+

i

(+) and k−

i (◦), calculated with the local analysis, compared
with ki (–) extracted from the global analysis (the latter is
noisy at the upstream end because the amplitude is small);
(d) as for (c) but for the spatial wavenumber, kr; (e) ṽ(x, z)
of the first eigenmode calculated with the global analysis; (f)
ṽ(x, z) of the first eigenmode calculated with the local analysis;
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Figure 3. As for Fig. 2(c–f) but with k± calculated at the
complex frequency of the global analysis, ωg(glob), rather than
that of the local analysis, ωg(loc).

in Fig. 4(f). The agreement is reasonable but not excellent. Again,
the higher growthrate in the local analysis causes the centre of its global
mode to be slightly further upstream. Having calculated the k± branches
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Figure 4. As for Fig. 2, but for Re = 100.

and the mode shapes, we can estimate that λ ≈ 5.1, which means that
ε ≈ 0.8. This is too large to expect the WKBJ analysis to be accurate.

Figure 5 shows the k+ and k− branches and the 2D eigenfunctions
calculated with the local analysis, but at the complex frequency cal-
culated with the global analysis, ωg(glob). This gives a more accurate
prediction of the 2D eigenfunction than was obtained with ωg(loc). This
shows that, for this flow, the inaccuracy in the local analysis lies in the
prediction of ωg, rather than in the calculation of the k± branches down-
stream. This is because the local analysis is less accurate in the upstream
regions, which determine ωg, because the flow is locally non-parallel
there. By contrast, the local analysis is accurate in the downstream
regions because the flow is nearly locally parallel there.

6. Effect of shear ratio

The growth rate and frequency of the linear global mode are plotted in
Fig. 6 and table 1 for flows with Re = 100, h = 1 and varying Λ−1.
The top frames show flows with free slip at the boundaries. The bottom
frames show flows with no slip at the boundaries. As the co-flow in-
creases (as Λ−1 becomes more negative), the global modes become more
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Figure 5. As for Fig 3, but for Re = 100.

stable and oscillate at higher frequencies. We will use the local analysis
to find the physical origin of these trends.

There is a nearly systematic off-set between the complex frequencies
calculated with the local analysis and those calculated with the global
analysis, very similar to that found by Giannetti & Luchini (2007). The
real part of this offset is smaller for the free slip case, for which ε ≈ 0.8,
than it is for the no slip case, for which ε ≈ 1.5, probably because the
free slip case is closer to being locally parallel. The imaginary part of
this offset is always around 0.059.

The streamlines, the absolutely unstable regions (light grey), and
the wavemaker region (dark grey) are shown in Fig 7(a) for the case
with free slip and in Fig 8(a) for the case with no slip. The local abso-
lute growth rate, ω0i, and the local k+

i and k−

i branches are shown in
Figs 7(b) and 8(b).

For low co-flow (bottom frames) the region of absolute instability
creates a globally unstable flow, whose wavemaker region lies just down-
stream of the centre of the recirculating zone. As the co-flow increases
(i.e. as Λ−1 becomes more negative), the recirculating zone becomes
smaller and the flow becomes more stable.
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Figure 6. Growth rate, ωgi (left) and frequency, ωgr (right)
of the linear global mode calculated with the local analysis
(squares) and the global analysis (circles) for free slip bound-
aries (top) and no slip boundaries (bottom).

The cases with no slip have smaller recirculation zones than the cor-
responding cases with free slip. This is the first reason why the cases
with no slip are more globally stable than the cases with free slip, but
it is not the only reason.

In the case with free slip, the absolutely unstable region extends
into the co-flow region on both sides of the recirculation zone, similar
to the results of Pier (2002) for an unconfined flow behind a cylinder.
In the case with no slip, however, the absolutely unstable region does
not extend into the co-flow region downstream of the recirculation zone.
We can conclude that the second reason that the cases with no slip are
more globally stable than the cases with free slip is that the proximity of
the boundary layer to the shear layer makes the shear layer less locally
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Perfect slip
Λ−1 ωg(loc) ωg(glob)
-1.00 0.6026 + 0.163657i 0.5961 + 0.091515i
-1.15 0.6418 + 0.104847i 0.6468 + 0.043247i
-1.20 0.6538 + 0.085942i 0.6613 + 0.026651i
-1.25 0.6641 + 0.066963i 0.6748 + 0.009889i
-1.30 0.6742 + 0.047717i 0.6873 - 0.006971i
-1.35 0.6839 + 0.029651i 0.6985 - 0.023865i

No slip
Λ−1 ωg(loc) ωg(glob)
-1.00 0.6621 + 0.200105i 0.7597 + 0.044896i
-1.15 0.7307 + 0.101872i 0.8385 - 0.012174i
-1.20 0.7482 + 0.071893i 0.8606 - 0.035369i
-1.25 0.7632 + 0.042795i 0.8807 - 0.059537i
-1.30 0.7805 + 0.018816i 0.8992 - 0.084329i
-1.35 0.7936 - 0.007261i 0.9159 - 0.109491i

Table 1. Data in Fig. 6
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Figure 7. Streamlines (right) and ω0i (–), k+ (+) and k−

(◦) (left) for the free slip case at h = 1 as Λ−1 varies. The
absolutely unstable region is shown in light grey. The position
of the wavemaker region is shown in dark grey. As the co-flow
increases (top to bottom), the recirculation zone strengthens
and the flow becomes more absolutely unstable.

unstable.
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Figure 8. As for Fig. 7 but for the no slip case. The same
effect is seen at the upstream end of the recirculation bub-
ble but the flow quickly becomes convectively unstable at the
downstream end due to the boundary layers.
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Figure 9. ṽ(x, z) eigenfunctions for the free slip cases calcu-
lated with a local analysis (left) and a global analysis (right).
The global mode lies further upstream for the local analysis
because of its higher growth rate.

The eigenfunctions from the local analysis are compared with those
from the global analysis in figure 9 (free slip) and 10 (no slip). They
have the same qualitative structure and behaviour but there are some
quantitative differences. When compared with the corresponding eigen-
function of the global analysis, each eigenfunction of the local analysis
always has a slightly longer wavelength, more rapid growth at the up-
stream end, more rapid decay at the downstream end, and a centre that
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Figure 10. As for Fig. 9 but for the no slip cases.

is further upstream. This is because each eigenfunction from the local
analysis has a lower kr(X) and a higher ki(X) than the corresponding
eigenfunction from the global analysis. This is exactly the trend seen in
Fig. 4. and, when Fig. 4 is compared with Fig. 5, it is seen that this
arises because the local analysis over-predicts the global growth rate (see
Fig. 6). When the local analysis is repeated using the complex frequency
derived from the global analysis, as in Fig. 5, the eigenfunctions from
the local analysis are almost identical to those from the global analy-
sis. As already mentioned, this over-prediction is a common feature of
wake flows at this Reynolds number (Re ∼ 100), Giannetti & Luchini
(2007). This defect of the local analysis arises because the flow is locally
non-parallel. The local analysis becomes more accurate as the Reynolds
number increases because the flow becomes more locally parallel.

7. Effect of confinement

The growth rate and frequency of the linear global mode are plotted as
a function of h in Fig. 11 for flows with Λ−1 = −1.2 and Re = 100
with free slip and no slip at the boundaries. For the free slip cases, the
flow is most unstable when h ≈ 1.5. For the no slip cases, the flow is
barely affected by confinement when h > 2 but is strongly stabilized
when h < 2. We will use the local analysis to find the physical origin of
these trends.

The streamlines, the absolutely unstable regions, and the position of
the wavemaker region are shown in Fig 12(a) for the case with free slip
and in Fig 13(a) for the case with no slip. The local absolute growth
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Figure 11. Growth rate, ωgi (left) and frequency, ωgr (right)
of the linear global mode calculated with the local analysis
(squares) and the global analysis (circles) for free slip bound-
aries (top) and no slip boundaries (bottom)

rate, ω0i and the k+
i and k−

i branches are shown in Fig 12(b) and 13(b).

When the confining walls are far away (h 0 1), the recirculation
zone of the case with free slip is almost the same size as that for the
case with no slip and, as would be expected, the flows are equally un-
stable. As the flows become more confined, the recirculation zone of the
case with free slip lengthens, while that of the case with no slip shortens.
This is the first reason why the cases with free slip are more globally
unstable than those with no slip. It is identical to the first reason in §6.
If this first effect acted alone, confinement would destabilize flows with
free slip but stabilize flows with no slip.
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Perfect slip
h ωg(loc) ωg(glob)

1.000 0.6538 + 0.085942i 0.6613 + 0.026651i
1.220 0.6383 + 0.104380i 0.6562 + 0.041594i
1.350 0.6318 + 0.111333i 0.6537 + 0.045078i
1.500 0.6242 + 0.112461i 0.6523 + 0.046319i
1.670 0.6189 + 0.110243i 0.6523 + 0.045606i
1.860 0.6163 + 0.107583i 0.6541 + 0.043574i
2.330 0.6192 + 0.102644i 0.6624 + 0.037869i
4.000 0.6311 + 0.099269i 0.6874 + 0.028373i
9.000 0.6367 + 0.096425i 0.7030 + 0.024166i
10.000 0.6370 + 0.096776i 0.7036 + 0.023956i

No slip
h ωg(loc) ωg(glob)

1.000 0.7482 + 0.071893i 0.8606 - 0.035369i
1.220 0.7286 + 0.087469i 0.8426 - 0.013077i
1.350 0.7155 + 0.092530i 0.8311 - 0.003578i
1.500 0.7017 + 0.093950i 0.8183 + 0.004457i
1.670 0.6907 + 0.091285i 0.8049 + 0.010542i
1.860 0.6847 + 0.091329i 0.7918 + 0.014624i
2.330 0.6692 + 0.093271i 0.7678 + 0.017788i
4.000 0.6520 + 0.094551i 0.7350 + 0.016713i
9.000 0.6400 + 0.096620i 0.7143 + 0.021059i
10.000 0.6395 + 0.096926i 0.7129 + 0.021374i

Table 2. Data in Fig. 11

When the confining walls become closer (h decreasing), the abso-
lutely unstable region extends further downstream of the recirculation
zone in the case with free slip but not in the case with no slip. This
shows that the boundary layer velocity profile makes the shear layer less
locally unstable, as seen in §6. If this second effect acted alone, confine-
ment would slightly destabilize flows with free slip but stabilize flows
with no slip.

When the confining walls are close (h < 2), the absolutely unstable
region upstream of the recirculation zone extends far into the co-flow
region. This is the effect of confinement described by Rees & Juniper
(2010). (In that paper, h is defined differently, such that h in this paper
equals (1 + h)/(1 − h) in that paper.) The global instability reaches a
maximum (Fig.11) around h = 1.5, which matches exactly the value of
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Figure 12. Streamlines (right) and ω0i (–), k+ (+) and k−

(◦) (left) for the free slip case at Λ−1 = −1.2 as h varies. The
absolutely unstable region is shaded in grey and the position
of the wavemaker region is shown in dark grey.

h = 0.2 at which Rees and Juniper (Fig.8d) predict that the absolute in-
stability is maximal. If this third effect acted alone, confinement would
destabilize flows with free slip (until h ≈ 1.5) and also destabilize flows
with no slip, probably to a similar value of h.

Through the local analysis, we can now explain the effect of confine-
ment on the stability of viscous wake flows and explain the results in
Fig. 11, which is the main aim of this paper. In the case with free slip,
the three effects described above work together: confinement increases
the size of the recirculation zone, extends the absolutely unstable re-
gion downstream of the recirculation zone and also extends it upstream
of the recirculation zone, until h ≈ 1.5. In the case with no slip, the
first two effects work against the third: confinement decreases the size
of the recirculation zone, slightly reduces the absolutely unstable region
downstream of the recirculation zone but also extends it upstream of the
recirculation zone, probably also until h ≈ 1.5. At the Reynolds number
studied here, these effects almost exactly cancel out until h ≈ 1.5, at
which point all effects become stabilizing. In the local analysis of the
no slip case, there is a slight peak around h = 1.5 but this is not seen in
the global analysis.

The eigenfunctions from the local analysis are compared with those
from the global analysis in figure 14 (free slip) and 15 (no slip). The



The stability of confined planar wakes at Re = 100 249

0
1
2

z

 

 
h = 10

0
1
2

z

 

 
h = 4

0
1
2

z

 

 
h = 2.33

0
1
2

z

 

 
h = 1.86

0
1
2

z

 

 
h = 1.5

0 2 4 6 8 10 12 14 16 18 20
0
1
2

X

z

 

 
h = 1

−2
0
2

−2
0
2

−2
0
2

−2
0
2

−2
0
2

0 2 4 6 8 10 12 14 16 18 20
−2
0
2

X

Figure 13. As for Fig. 12 but for the no slip case.
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Figure 14. ṽ(x, y) eigenfunctions for the free slip cases cal-
culated with a local analysis (left) and a global analysis (right).

behaviour is the same as that seen in figures 9 and 10 and the difference
arises because the flow is locally non-parallel. This is most noticeable
in the no slip cases at smaller values of h because the flow is more non-
parallel for these flows than it is at larger values of h.

8. Conclusions

Confined wake flows are frequently found in industry and in model prob-
lems. Our previous work at high Reynolds numbers shows that confine-
ment is destabilizing. Our previous work at medium to low Reynolds
numbers, however, seems to give contradictory results. The aim of this
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Figure 15. As for Fig. 14 but for the no slip cases.

paper is to resolve the apparent contradiction.

We consider, at Re = 100, two types of confined wake flows: one
with free slip at the walls and one with no slip. We perform two types of
analysis: a local stability analysis and a global stability analysis. These
show that the global instability is caused by an absolutely unstable re-
gion centred on the recirculation zone. The local analysis always slightly
over-predicts the global growth rate, as expected from previous work,
but provides useful qualitative information about the effect of confine-
ment on the flow.

We find that confinement acts in three ways: (i) it modifies the
length of the recirculation zone, (ii) it brings the boundary layers closer
to the shear layers, which changes their stability and (iii) it makes the
flow more locally absolutely unstable when the confinement ratio, h, is
around 1.5. Depending on the flow parameters, these effects can work
with or against each other to destabilize or stabilize the flow.

In a flow with free slip, in which effect (ii) does not play a role,
confinement lengthens the recirculation zone and makes the flow more
absolutely unstable around h = 1.5, both of which are destabilizing ef-
fects. Effects (i) and (iii) therefore work with each other to make the
flow most globally unstable around h = 1.5, as seen in Fig. 11 (top left).
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In a flow with no slip, confinement shortens the recirculation zone
and brings the boundary layers closer to the shear layers, both of which
are stabilizing. For h > 1.5, effects (i) and (ii) work against effect (iii)
and confinement has little overall effect on the stability. For h < 1.5,
effects (i) and (ii) work with effect (iii) and confinement has a strongly
stabilizing effect. This can be seen in Fig 11 (bottom left).

Rees & Juniper (2010) used a local analysis analysis to consider the
third effect in isolation, while Tammisola et. al (2011) used a global
analysis to consider all three effects together. These studies had contra-
dictory results. By combining local and global analyses, we have been
able to isolate the three effects described above and therefore resolve
the apparent contradiction in our previous work. This shows the value
of a combined local and global approach to shear flow instabilities, in
which a global analysis gives accurate results, while a local analysis gives
physical insight.
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In this work, marginally unstable co-flow wakes at intermediate Reynolds num-
bers are studied with a structural sensitivity approach. Wakes at two different
confinement values are investigated, termed as unconfined (h = 9) and confined
(h = 1) for simplicity. As a first quantification, the overlap between the ab-
solute value of direct and adjoint global modes is considered. Confined wakes,
as well as unconfined wakes at Re = 100, are found to have a single region of
strong structural sensitivity region close to the inlet, in agreement with pre-
vious findings for cylinder wakes close to the critical Reynolds number. For
unconfined wakes at Re = 400, a second longer region of high structural sen-
sitivity is found downstream of the first one. Secondly, the sensitivity to base
flow modifications is considered, following the linear theory, valid for small
modifications. A spatially oscillating sensitivity pattern is found inside the
second, downstream, region. In particular, it is found that the same change
in the base flow can either destabilize or stabilize the flow, depending on the
position where it is applied. It is shown that the sensitivity pattern remains
unchanged for different choices of streamwise boundary conditions and numer-
ical resolution. It is confirmed that the eigenvalues from the linear problem
move according to this sensitivity pattern, when a small base flow modification
is introduced in the direct problem, thus eliminating any uncertainties related
to the adjoint computations. Finally, we look at the implications of a small
control cylinder on the flow, partly by modelling it as a volume force and partly
by recomputing the base flow and stability in the direct problem. The findings
have direct implications on the numerical resolution needed for wakes at higher
Reynolds numbers. Furthermore, they provide one more possible explanation
to why confined wakes have a more narrow frequency spectrum than unconfined
wakes.
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1. Introduction

Above a critical Reynolds number (Re), wake flows are susceptible to
self-sustained oscillations at a distinct frequency. A well-known example
is the von Kármán vortex street for a flow past a solid cylinder, which
beats at the nondimensional frequency (Strouhal number) 0.2, and ap-
pears for Re > 47, based on the cylinder diameter and inflow velocity.
The critical Reynolds number coincides with the value of Re for which
a global eigenmode for the linearized Navier-Stokes equations first be-
comes unstable, and the frequency of oscillation at the onset is close to
the frequency of the linear mode. On the other hand, as long as the
growth rates for all linear eigenmodes are negative, no self-sustained os-
cillations occur.

Due to the success of global linear stability theory for the cylinder
flow, new theories have emerged to determine the sensitivity to forcing
of this flow, based on the global linear eigenmodes and the eigenmodes
for the adjoint linearized Navier-Stokes equations. In particular, the
sensitivity of the growth rate and frequency of the global mode to struc-
tural changes in the momentum equations was examined by Giannetti
& Luchini (2007). One goal was to determine regions where a small
control cylinder should be placed in order to have a maximal effect on
the stability, and hopefully stabilize the global mode. This would then
theoretically explain the stabilizing effect observed in experiments of
Strykowski & Sreenivasan (1990). The theoretical approach was taken
further by Marquet, Sipp & Jacquin (2008) by introducing the sensi-
tivity to (arbitrary) base flow modifications, and sensitivity to a static
volume forcing. Further, they modelled a small control cylinder as a
volume force, taking into account the effect of this force on the base
flow, and compared their results favorably to the experimental regions
where vortex shedding was suppressed (Strykowski & Sreenivasan 1990).
In Pralits, Brandt & Giannetti (2010), both the effects on the base flow
and the disturbance were modelled for a rotating cylinder. When pre-
senting this chronological flow of discoveries, it should also be denoted
that an expression specifically for the sensitivity for a control cylinder
was presented earlier in the sometimes overlooked work of Hill (1992).

Furthermore, cylinders confined to a channel have been studied in
DNS by e.g. Richter & Naudascher (1976), who found that confinement
increased the level of lift fluctuations and made the frequency spectrum
more concentrated around the dominant frequency, especially at higher
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Figure 1. The inlet profile with dimensional parameters.

Reynolds numbers (Re > 750). More well-defined frequency peaks for
half-confined cylinder wakes have also been reported by Bearman &
Zdravkovich (1978) at Re = 350.

The present work deals with a slightly different wake flow, the co-flow
wake. Here, one inner flow stream with low velocity meets and mixes
with two outer flow streams with high velocity (see the inlet profile in
figure 1). The strength of the wake is determined by the shear ratio
between inner and outer flows at the inlet. Viscous spatially developing
co-flow wakes have been analysed by linear global modes in Tammisola,
Lundell, Schlatter, Wehrfritz & Söderberg (2011), and by a local WKBJ
analysis of the same base flows in Juniper, Tammisola & Lundell (2011).
In particular, both works addressed the effect of confinement on the
global stability of co-flow wakes at intermediate wake Reynolds numbers
(Re = 100−400). It was found that confinement was globally stabilizing,
partly due to a decreasing wake length and partly since the boundary
layers at the walls made the wake less locally unstable. At Re = 400,
the shear ratios at the onset of global instability for unconfined and
confined wakes were pratically equal, and this was attributed to a similar
base flow development in the upstream region (x < 50). On the other
hand, previous local analyses have shown that confinement can have
a destabilizing effect through saddle point interaction (Juniper (2006),
Rees & Juniper (2010)), especially at high Reynolds numbers. This
effect was also visible in the local analysis of the spatially developing
wakes at moderate Re, but shadowed by other effects (Juniper et al.
2011) .
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The present work was initiated to see whether the equal stability
limits at Re ≈ 400 are due to similar base flows in the upstream region.
This would imply that the wavemaker regions for both flows are identi-
cal, and located close to the inlet. The findings will show that although
the hypothesis is not completely untrue, dynamics of the unconfined
wakes in Tammisola et al. (2011) are fundamentally different from the
confined ones, and show surprising features.

The manuscript is organized as follows: the relevant background
is given in § 1, the mathematical description of the sensitivities in § 2,
the wavemakers and sensitivities to generic base flow modifications are
shown in § 3, and their further verification in § 4 (with numerical details
left to Appendix § 6). The sensitivity to a volume force and its appli-
cation on a small control cylinder are presented in § 5. The results are
summarized and discussed in § 6. Further, results for a co-flow wake
with a slightly different geometry are shown in Appendix § 6, and an
expression for the volume force generated by the small cylinder derived
in Appendix § 6.

2. Definitions of parameters and sensitivity measures

The problem is nondimensionalized based on the inlet profile, and the
dimensional quantities denoted by .̃ The parameter definitions are as
follows (see figure 1):

• Confinement parameter h:

h =
h̃2

h̃1

, (1)

• Reynolds number Re:

Re =
Ũ2h̃1

ν̃
, (2)

where ν̃ is the kinematic viscosity of the fluids,
• Shear ratio describing the strength of the shear between the fluids

at the inlet compared to their momentum

Λ =
(Ũ1 − Ũ2)

(Ũ1 + Ũ2)
. (3)

The inverse of the shear ratio, Λ−1, is more often used here. A
high absolute value of this quantity means a strong co-flow (base
bleed), for example: Λ−1 = −1.5 means Ũ1/Ũ2 = 0.2, Λ−1 = −1
means Ũ1/Ũ2 = 0 (no co-flow).
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The base flow (U, V, P ) is obtained by solving the steady Navier-
Stokes (N-S) equations. Other governing equations that are solved are:
(a) The linear global system:

−
∂u

∂t
− U

∂u

∂x
− V

∂u

∂y
− u

∂U

∂x
− v

∂U

∂y

−
∂p

∂x
+

1

Re

(

∂2u

∂x2
+
∂2u

∂y2

)

= 0 (4)

−
∂v

∂t
− U

∂v

∂x
− V

∂v

∂y
− u

∂V

∂x
− v

∂V

∂y

−
∂p

∂y
+

1

Re

(

∂2v

∂x2
+
∂2v

∂y2

)

= 0 (5)

∂u

∂x
+
∂v

∂y
= 0 (6)

where (u, v, p) is the disturbance. The global mode ansatz is made in
these equations, and they are solved with respect to the complex eigen-
value ω:

[u, v, p] = [û(x, y), v̂(x, y), p̂(x, y)]e−iωt. (7)

(b) The adjoint linear global system:

−
∂u+

∂t
− U

∂u+

∂x
− V

∂u+

∂y
+ u+∂U

∂x
+ v+ ∂V

∂x

+
∂p+

∂x
−

1

Re

(

∂2u+

∂x2
+
∂2u+

∂y2

)

= 0 (8)

−
∂v+

∂t
− U

∂v+

∂x
− V

∂v+

∂y
+ u+∂U

∂y
+ v+ ∂V

∂y

∂p+

∂y
−

1

Re

(

∂2v+

∂x2
+
∂2v+

∂y2

)

= 0 (9)

∂u+

∂x
+
∂v+

∂y
= 0, (10)

where where (u+, v+, p+) is the adjoint disturbance.

The global mode ansatz is made also in these equations, and they
are solved with respect to the complex eigenvalue ω+:

[u+, v+, p+] = [û+(x, y), v̂+(x, y), p̂+(x, y)]e−iω+t. (11)
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In the continuous formulation (with correct boundary conditions for
the adjoint problem), it can be shown that ω+ = ω∗, where the star
denotes complex conjugate. Hence, the comparison of adjoint and direct
eigenvalues serves as a nice resolution check for both direct and adjoint
problems.

The adjoint needs to fulfill the following normalization condition, for
the sensitivity expressions presented here to be valid:

∫

u+∗u = 1. (12)

The numerical solution and boundary conditions are briefly described in
Appendix § 6).

The sensitivity of the eigenvalue to modifications of a quantity φ is
defined as:

δω =

∫

γ(x, y)δφ(x, y)dxdy, (13)

where γ is a sensitivity distribution. In other words, by integrating the
product of the modification (e.g. the base flow changes) and the corre-
sponding sensitivity function (e.g. sensitivity to base flow modifications),
one obtains the change in the eigenvalue. Observe that the expression
above is complex, and that the changes in growth rate and frequency
can be treated separately.

The wavemakers presented in this report are described by the fol-
lowing equations:

(1) The general structural sensitivity (Giannetti & Luchini 2007).
The upper bound of the sensitivity to perturbations in the u-momentum
equation (eq. 4) is obtained from:

S(x, y) = |û(x, y)||û+(x, y)|. (14)

This means that |δω| ≤ S(x, y)A, where A is the perturbation amplitude.

(2) The sensitivity to generic base flow modifications (Marquet et al.
2008), where the modified base flow is not necessarily a solution to N-S.
(a) for the streamwise component:

SU(x, y) =
(∫

(û+∗û + v̂+∗v̂)dxdy
)−1
[

−∂û∗

∂x û+ − ∂v̂∗

∂x v̂+ + ∂û+

∂x û∗ + ∂û+

∂y v̂∗
]

,
(15)
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where the stars denote complex conjugates, and
(b) for the vertical component:

SV (x, y) =
(∫

(û∗u+ + v̂∗v+)dxdy
)−1
[

−∂û∗

∂y û+ − ∂v̂∗

∂y v̂+ + ∂v̂+

∂x û∗ + ∂v̂+

∂y v̂∗
]

.
(16)

Note that both (2a) and (2b) are complex quantities, where the
sensitivity of the growth rate is obtained from the real part and the
sensitivity of the frequency by the imaginary part (where the latter
differs from Marquet et al. (2008) due to a different definition of the
eigenvalue).

The expressions (a) and (b) can be further divided as the sensitiv-
ity of energy production (first two terms) and sensitivity of base flow
advection (second two terms). In this report, we define the following
expressions for the growth rate sensitivity:

Sprod =
√

S2
U,prod + S2

V,prod (17)

and

Sadv =
√

S2
U,adv + S2

V,adv, (18)

where

SU,prod = real

(
∫

(û+∗û + v̂+∗v̂)dxdy

)−1 [

−
∂û∗

∂x
û+ −

∂v̂∗

∂x
v̂∗
]

,

SU,adv = real

(∫

(û+∗û + v̂+∗v̂)dxdy

)−1 [∂û+

∂x
û∗ +

∂û+

∂y
v̂∗
]

,

SV,prod = real

(
∫

(û+∗û + v̂+∗v̂)dxdy

)−1 [

−
∂û∗

∂y
û+ −

∂v̂∗

∂y
v̂+

]

,

SV,adv = real

(
∫

(û+∗û + v̂+∗v̂)dxdy

)−1 [∂v̂+

∂x
û∗ +

∂v̂+

∂y
v̂∗
]

.

(3) The sensitivity to a steady and unsteady volume force (Pralits
et al. 2010).

The sensitivity to a steady volume force is given by:

SF = U+, (19)

where U+ is the solution to the adjoint base flow equations:

−Uj
∂U+

i

∂xj
+ U+

j

∂Uj

∂xi
−
∂P+

∂xi
−

1

Re

(

∂U+
i

∂xj∂xj

)

= −
∂û∗

j

∂xi
û+

j +
∂û+

i

∂xj
ûj.

(20)
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Figure 2. The structural sensitivity S for wakes: (a) Re =
398 and h = 1, (b) Re = 398 and h = 9, (c) Re = 100 and
h = 9. The region y > 0 is shown — the sensitivity at y < 0
is the mirror image.

Further, to model a small control cylinder we assume a force propor-
tional to the velocity: A steady force Fi = δ(x−x0)(y−y0)Mijuj , and an
unsteady force f = δ(x − x0)(y − y0)mijuj. The matrices M = M(x, y)
and m = m(x, y) are related to the specific drag model for the small
cylinder, and are given in Appendix § 6 for the model used in the present
work.

The sensitivity to the small control cylinder is then given by (Pralits
et al. 2010):

δω = U+
i MijUj + u+

i Mijuj . (21)

3. General structural sensitivities of co-flow wakes

Here, we present the sensitivity distributions for the most unstable mode
of three wakes: high Reynolds number confined (Re = 398, h = 1), high
Reynolds number unconfined (Re = 398, h = 9), and low Reynolds
number unconfined (Re = 100, h = 9). Only the upper halves of the
sensitivity distributions are shown, since the symmetry of the base flow
implies that they are symmetric around the centerline. The magnitude
of the sensitivity for structural perturbations S (equation 14) for each
of the wakes is shown in figure 2. We begin with the confined wake.
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Figure 3. The sensitivity of the growth rate to generic mod-
ifications in streamwise base flow velocity (real[SU ]): (a)
Re = 398 and h = 1, (b) Re = 398 and h = 9, (c) Re = 100
and h = 9. Note that the axis limits differ from the ones in
figure 2. The region y > 0 is shown — the sensitivity at y < 0
is the mirror image.

For the confined wake (figure 2 a), high amplitude of the structural
sensitivity S is found in the region 0 < x < 10. The maximum of
the sensitivity lies around the shear layer, but the sensitivity also has
a visible amplitude close to the wall, showing an effect of confinement.
Apart from the confinement effect, this is similar to the wavemakers for
cylinder wakes at slightly supercritical Reynolds numbers shown in the
previous works (Giannetti & Luchini (2007), Pralits et al. (2010)).

The structural sensitivity of the unconfined wake for the same pa-
rameters is shown in figure 2 b. There is a similar high sensitivity
region close to the inlet, and the overall maximum of the sensitivity is
at x ≈ 6.2. However, a second region of high sensitivity appears down-
stream, and is extremely elongated with a maximum at x ≈ 20. The
second region also extends higher up in the outer flow, at y = 4 the
amplitude is still 0.03, i.e., 10% of the total maximum amplitude of S.
There are no additional sensitivity regions, and the sensitivity has no
visible amplitude outside the figure frame shown (neither downstream
nor upwards). The same quantity for the unconfined wake at a lower
Reynolds number (figure 2 c) again shows only one sensitivity region.
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As one would expect, the sensitivity region is located closer to the inlet
and down to the low speed region close to the symmetry line (where a
separation bubble might occur depending on parameters), again in full
agreement with cylinder wakes at slightly supercritical Reynolds num-
bers.

Now, we leave the arbitrary structural perturbations, and look specif-
ically at how small perturbations of the base flow field affect the stability.
First, the sensitivity of the global mode growth rate to generic modi-
fications in the streamwise base flow velocity is considered. We begin
again with the confined wake (figure 3 a). The growth rate is increased if
the streamwise velocity is decreased in the lower part of the shear layer,
and increased in the upper part. The effect is very intuitive, since both
changes make the wake stronger, inside the region where the wavemaker
is strong (figure 2 a). In addition, the growth rate increases if the ve-
locity is increased close to the wall, i.e., if the boundary layer near the
wall is removed, in agreement with Juniper et al. (2011).

For the unconfined wake (figure 3 b), the base flow modification acts
in a more curious way. There are similar structures upstream as in the
confined case, but the sensitivity is clearly stronger inside the down-
stream located wavemaker region of figure 2 b. Furthermore, inside this
region, the sensitivity oscillates between positive and negative values,
with a similar wavelength as the one for the direct eigenmode! This
means that if we introduce a small base flow modification for example
at the centerline (y = 0), at x = 17 or x = 23 we get an increased growth
rate, but when doing the same at x = 21 or x = 27, the growth rate
decreases. At the low Reynolds number but unconfined wake (figure 3
c), the sensitivity is again concentrated close to the inlet, although some
traces of a wave-like sensitivity at a low amplitude are seen downstream.
More extensive parameter variations have shown that the change be-
tween the two states is continuous, as the Reynolds number increases.
The sensitivity to base flow modifications for unconfined wakes is sur-
prising and counterintuitive, as opposed to the confined wakes. The rest
of this manuscript exclusively investigates this phenomenon.

Next, we divide the sensitivity to base flow modifications into changes
in production, and changes in advection. The former is shown for all
wakes in figure 4. From figure 4 b it is seen that the production part of
the unconfined wake is still more localized in the upstream wavemaker
region, and does not substantially differ from the same of the confined
wake at the same Reynolds number in figure 4 a. Figure 5 b reveals
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Figure 4. The magnitude of the sensitivity of the growth rate
to generic base flow modifications, production part Sprod: (a)
Re = 398 and h = 1, (b) Re = 398 and h = 9, (c) Re = 100
and h = 9. The region y > 0 is shown — the sensitivity at
y < 0 is the mirror image.

that the oscillating sensitivity is mostly due to changes in advection
(note that the colormaps in figures 4 b and 5 b are different). This
shows that the main source of the instability still comes from the up-
stream wavemaker, while the downstream wavemaker acts to either heal
the symptoms or to increase the sickness, by letting the disturbance be
convected downstream in different amounts. Being the dominant con-
tributor to the sensitivity to base flow modifications, the downstream
wavemaker should in any case not be overlooked.

4. Verification of the oscillating sensitivity pattern of the
unconfined wake at Re = 398

As the Reynolds number increases, the co-flow wake becomes increas-
ingly parallel and therefore the global modes are more non-normal (Chomaz
2005). It is thus essential to verify that the oscillating sensitivity is not a
product of an insufficient resolution, boundary conditions or even a par-
ticular numerical discretisation method. Both the wavemaker and the
sensitivity to base flow modifications of the unconfined wake have been
verified by changing the methods for computing the base flow and stabil-
ity, the resolution, and by changing the location of the boundaries of the
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rate to generic base flow modifications, advection part Sadv:
(a) Re = 398 and h = 1, (b) Re = 398 and h = 9, (c) Re = 100
and h = 9. The region y > 0 is shown — the sensitivity at
y < 0 is the mirror image.

computational domain. The whole pattern remained unchanged, and in
particular, the phase and location of maximal sensitivity for the same
wake did not change. Modelling the region before the wake inlet more
carefully has also been tested, including a rounded-edge splitter plate
with a finite thickness, where boundary layers are allowed to develop.
This naturally changes the base flow, and therefore the sensitivities, but
the oscillating pattern remains, and in fact has an even higher amplitude
in this case. The results of the numerical tests are summarized in table 1
in Appendix § 6, and the results for a round-edged plate with boundary
layers in Appendix § 6.

It is easy to test whether the adjoint-based sensitivity distributions
are the true ones for a certain linear global mode problem, with pre-
scribed boundary conditions. This can be done by applying a series of
localized base flow modifications to the problem, and recalculating the
direct eigenvalues. Here, the V -component of the base flow is altered by
superposing a gaussian centered around the line y = 0.5:

Vmod = V + Ae[−100(x−xmod)2−100(y−0.5)2]
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Figure 6. (a) The frequency and (b) the growth rate of the
most unstable eigenvalue with modifications of different am-
plitude along the line y = 0.5 (varying xmod), normalized with
the amplitude: the theoretical curve obtained directly from
the sensitivity distributions (solid), global modes recomputed
with A = 0.01 (−−), global modes recomputed with A = 0.02
(−.)

The derivatives of V are altered accordingly. The amplitude A of the
base flow modification needs to be small enough for the linear theory to
be valid, and the appropriate level is found by trial and error.

The theoretical movement of the eigenvalue, when such a modifica-
tion is applied, is obtained from the sensitivity distributions by integrat-
ing the product of (Vmod − V ) and the sensitivity distribution over the
computational domain.

These theoretical curves with A = 1 as a function of xmod are shown
with solid lines in figure 6 a (growth rate part) and 6 b (frequency
part). The other line styles represent movements of eigenvalue that is
obtained by applying the base flow modification in the direct problem
and recomputing the eigenvalues. Different maximum amplitudes of the
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Figure 7. Sensitivity to a steady volume force in the stream-
wise direction (positive forcing direction aligned with ēx =
(1, 0)). The streamline starting between the two flow streams
at the inlet is shown with a dashed line. The region y > 0 is
shown — the sensitivity at y < 0 is the mirror image.

gaussian are chosen: A = 0.02 (10 % of the maximum amplitude for V ,
and ≈ 2% of the maximum amplitude for U) and A = 0.01, and the
result is normalized with A. The curves with both amplitudes have a
rather nice collapse with the theoretical curve.

These results show that the sensitivity is inherent to the physical
problem, and is not related to errors in the numerical or analytical so-
lution of the problem.

5. Sensitivity to a volume force and implications for passive
control

Response to local base flow modifications was examined previously. This
provides insight on where local changes of the base flow profile are most
efficient. However, when a real passive control is applied locally, it can
have a global effect through transport and production by the base flow.
In other words, the modified base flow field will still satisfy Navier-Stokes
equations.

Next, passive control is modeled as a steady volume force (19), so
that the modified base flow satisfies the steady Navier-Stokes equations.
The resulting growth rate sensitivity distribution for a volume force
applied in the streamwise direction is seen in figure 7. By following
the streamline starting between the outer and inner flow at the inlet
(dashed line), it is obvious that shear below this line controls the flow.
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Figure 8. Sensitivity to a control cylinder of radius 0.02.
Light regions imply a reduced growth rate of the global mode,
and dark regions an increased growth rate. The white contours
surround the regions where the model predicts stabilization.
The streamline starting between the two flow streams at the
inlet is shown with a dashed line. The region y > 0 is shown
— the sensitivity at y < 0 is the mirror image.

The growth rate of the global mode increases, if the flow is accelerated
in the upper part of this ”inner flow”, and decelerated in the lower part.
Further downstream, the oscillating pattern is visible, but has a lower
amplitude. Observe that this does not contradict the previous results,
since the present analysis can take into account non-local changes, such
as a modification of the wake length due to local changes in the upstream
flow.

5.1. Sensitivity to a small control cylinder

Next, a small control cylinder is modeled as a steady and unsteady vol-
ume force, following Pralits et al. (2010) (and equivalent to Hill (1992)).
Here, Rec is the Reynolds number of the small cylinder. Pralits et al.
(2010) modelled the force using the Lamb-Oseen drag coefficient for a
cylinder valid for Rec << 1, and Hill (1992) adjusted constants in a
low Reynolds number drag coefficient model. Here, we use the model of
Imai (1951) that is shown to give good agreement with experiments for
5 < Rec < 100 in Zdravkovich (1997):

CD =

(

0.707 +
3.42√
Rec

)2

. (22)
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Figure 9. A cylinder with r = 0.02 included in the base flow
and global mode computations: (a) spectra with a cylinder in
xcyl = 1, ycyl = 1.03 compared to the spectra without control
cylinder, (b) the same with xcyl = 24, ycyl = 0, (c) the growth
rate of the most unstable mode as a function of xcyl, when
ycyl = 1.03.

The lift on the control cylinder due to local shear is assumed to be
negligible. Estimates based on the low Reynolds numbers lift model
of Filon (1926) and maximal circulation indicated that the lift on the
control cylinder was two orders of magnitude less than the drag.

The predicted change in the growth rate of the global mode, when
a cylinder with radius 0.02 is inserted in different positions of the flow
domain, is shown in figure 8. The colorscale gives the magnitude and di-
rection of the change (positive or negative), as a function of the position
of the control cylinder. First, we denote that this change has mostly the
opposite sign compared to the sensitivity to a steady volume forcing in
figure 7. This is due to the fact that there is no reverse flow. Hence, the
cylinder decelerates the flow everywhere, corresponding to a negative
volume force. The next observation is that the forcing with a control
cylinder is more efficient in regions with a high base flow velocity, since
it results in larger velocity difference and therefore a larger drag. The
significance of the outer flow is somewhat increased in figure 8 compared
to figure 7, and the dominant white region close to the centerline in fig-
ure (7) is neither stabilizing nor destabilizing for the control cylinder in
figure 8.
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5.2. Global stability with insertion of the control cylinder

Finally, we turn to the physical implications on the global stability as
a whole. The boundaries of the regions where the control cylinder is
supposed to stabilize this particular global mode (so that ωi ≤ 0) are
indicated by the white contours. We now investigate the actual global
mode problem, where the base flow and stability are recomputed with
the small cylinder included. In Tammisola et al. (2011) it was shown
that the stability for converged linear global modes matches exactly the
stability limits seen in direct numerical simulations for co-flow wakes.

In the following, the control cylinder is inserted in the position
x = xcyl, y = ycyl in the global mode computation. We start by in-
vestigating the strongest sensitivity region close to the inlet, and follow
the line ycyl = 1.03, at 0 < xcyl < 5. The computations show that with
this position of the control cylinder, all global modes are stabilized. An
example spectrum for xcyl = 1,ycyl = 1.03 is shown in figure 9 a, com-
pared to the original spectrum. Thus, the flow can be controlled inside
the stabilizing region found close to the inlet.

Now, we try to insert the cylinder inside one of the smaller regions
downstream, where the cylinder is also predicted to stabilize the flow
(i.e. ωi < 0): at xcyl = 24, ycyl = 0. The spectrum (figure 9 b) has
changed completely, and now contains four unstable modes instead of
one. It is even difficult to guess where the original global mode would
be, to decide whether it has stabilized as theory predicts. Following the
global mode with different xcyl the line ycyl = 1.03 (figure 9 c) reveals
that a second mode becomes unstable when xcyl ≈ 9, and soon after
this, the original mode stabilizes. A third mode becomes unstable at
x ≈ 12, while the second mode stabilizes at x ≈ 16. This development
continues with several modes. Each individual mode also increases in
frequency with increasing xcyl, and thus forms an arch in the spectrum
with increasing xcyl.

The instability has completely changed its character due to insertion
of the tiny cylinder. So, even if control could not be established in the
downstream region, it is by no means less dynamically important than
the upstream region. In fact, changes downstream have a strikingly big
influence on the linear dynamics of the flow, in the light of the results
presented in both this and previous sections.
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6. Summary and discussion

In this study it is seen that the linear structural sensitivity for weakly
confined (here termed unconfined) co-flow wakes at Re ≈ 400 shows two
distinct regions of high sensitivity. The first region is in the near-field of
the wake (x < 10), as is usual for wake flows. Such a region appears both
for confined and unconfined wakes, and for wakes at lower Re, as well as
cylinder wakes in previous works (e.g. Giannetti & Luchini (2007)). The
second region however has not been observed in other flow cases. This
second region is elongated and extends until x ≈ 50 in the streamwise
direction, and also higher up in the free stream in the vertical direction
(up to y ≈ 5).

The sensitivity to generic base flow modifications shows a spatially
oscillating pattern inside the downstream sensitivity region mentioned
above. If the base flow is modified in a certain spatial position, then the
global mode is stabilized or destabilized depending on the streamwise
coordinate of the modification. Specifically, the change in both growth
rate and frequency oscillates between positive and negative values as a
function of the chosen streamwise coordinate for the modification.

The sensitivity downstream can have both physical and numerical
consequences, and we address first the computational ones. The impact
on the numerical solution of the problem is the high resolution needed
inside the whole region of high sensitivity. This concerns the resolution
of both the computed base flow, and the ”apparent base flow” in the
stability problem, i.e., the resolution of the global mode computation.
While the wakes at lower Reynolds numbers only require high resolution
close to the inlet, the wakes at Re ≈ 400 must be well resolved inside a
long region downstream. The need of increasing streamwise resolution is
counterintuitive, since the flow becomes more parallel for higher Re, but
neverthless was clearly observed during the previous study of Tammisola
et al. (2011). Here, it should be stressed that all flows and their sensitiv-
ities in the present work have gone through careful studies of resolution
and boundary condition independence, described in Appendix § 6.

When the flow is modified (or controlled) in a real physical or nu-
merical experiment, one has to take account the global effect of even a
localized feedback. For example, smoothing of the shear layer in one
upstream position can alter the length and strength of the whole wake
downstream. To take the global effects on the base flow into account,
the sensitivity to a steady volume force (of a small amplitude) incor-
porated in the Navier-Stokes equations was studied. The sensitivity to
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a volume force was strongest upstream, but also appeared downstream
with the familiar oscillatory pattern. For a second wake introduced in
Appendix § 6 for comparison, the downstream sensitivity was stronger
than the upstream one.

Finally, the effect of a small control cylinder (r = 0.02) on the sta-
bility of the flow was studied, both indirectly from the prediction based
on a sensitivity distribution, and directly by including a cylinder in the
global mode problem. There are several regions in space, where a con-
trol cylinder could be placed to stabilize the global mode, according to
the sensitivity distribution.

The first region is in the upper part of the shear layer close to the
inlet. The direct global mode study confirms that the flow is indeed
stabilized by a control cylinder inside this region. The other regions
are partly in the outer flow close to the inlet, and partly inside the
oscillatory pattern downstream. Since the latter is the focus of this
study, the cylinder was placed in the downstream region. Here, the result
was again a destabilization of several global modes. In fact, the spectra
are similar to the spectra with a large generic base flow modification
(Appendix § 6). The theory and sensitivity distributions presented here
are only valid for small forcing and small base flow modifications, and
the limit of ”small enough” depends on the flow in question.

It is legitimate to ask why a small cylinder far downstream had such
a big impact on the flow, and also why the flow is sensitive to base
flow modifications downstream. This flow is known to be convectively
unstable at x > 10, so why would any effect be convected downstream,
and change the frequency in the absolutely unstable region?

The proposed explanation to the cylinder effect is similar to edge
tones in a free shear layer (Hussain & Zaman 1978). It is known that
a hot wire can create additional frequencies in shear layer experiments,
and that these ”tones” depend on the placement of the hot-wire probe.
The oscillations creating the tones occur in the region between the inlet
and the hot-wire probe, and lead to frequency jumps in the response
when the hot wire is traversed in the streamwise direction. Further, the
amplitude of each fundamental tone grows initially, then decays, and
gives place to another fundamental tone (Hussain & Zaman 1978). This
is very similar to the spectra as a function of cylinder position in the
present work (figure 9). An unconfined co-flow wake at Re = 400 has
a strong advection, and the wake in the present work is also slightly
accelerated by the slow development towards a parabolic profile. It is
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thus possible that the wake acts as a shear layer with an appropriate
forcing. It should be noted that both edge tones, and global modes in
cavities exploiting the same mechanism (e.g. Rowley, Colonius & Basu
(2002)), are usually discussed in the context of compressible flows. How-
ever, the same feedback mechanism has been observed for global modes
in a smooth incompressible cavity (Åkervik, Hœpffner, Ehrenstein &
Henningson 2007). Downstream traveling waves reflected back from the
downstream edge of the cavity were evident in the pressure trace of the
optimal initial condition, and the global spectrum was also seen to be
dependent on the cavity length (Åkervik 2011).

Both phenomena — the oscillating sensitivity distributions for small
forcing, and the cascade of modes dependent on the position of the con-
trol cylinder — seem to be connected to the strong advection. The
sensitivity distributions show that the flow is very sensitive to changes
in advection downstream. Let us assume that for small changes in ad-
vection (local deceleration or acceleration), a tiny amount of the global
mode is reflected upstream by e.g. pressure feedback. This reflected
part can be either in phase or out of phase with the ”true mode” in the
position of the ”true wavemaker”, at the time of the instantaneous re-
flection. Thus, it can have either destructive or constructive interference
with the wavemaker.

If the reflection is strong enough (corresponding to a large base flow
modification), possibly there is also a reflection from the inlet. There is
always a solid boundary present at the inlet, either through a splitter
plate between the flow streams (physical effect) or through a zero dis-
turbance condition at the wake inlet (numerical effect), the latter case
if no extensional regions as in the present work (described in 6) are
applied. This feedback mechanism similar to cavity flows would then
dominate the absolute instability, leading to the observed generation of
new modes.

Although the observations in the present work are interesting from
a fundamental point of view, a definite next step is to see if and to
which extent they carry over to a nonlinear setup. Although the linear
spectrum is very sensitive to downstream forcing, there always seems to
be at least one linear mode available to start the initial growth process,
and the shape and frequency of the final nonlinear oscillation need not
be as sensitive. Only a further study by nonlinear simulations and/or
experiments can answer this question. There is no conclusive evidence
of edge tones for wake experiments, although suggested to be seen by
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e.g. Kovasznay (1949). Periodic minima and maxima of the vortex for-
mation length, a quantity inversely proportional to maximum of urms

(Williamson 1996), are reported also for a cylinder wake at Re ≈ 750 in
Unal & Rockwell (1987), when a splitter plate is traversed in the stream-
wise direction in a cylinder wake. At low Reynolds numbers (Re ≈ 140),
no such effects were seen. Co-flow wakes could turn out to be a suitable
flow case for such studies.

In previous work with cylinder flows at high Re, confined wakes had
more narrow spectral distributions than unconfined wakes (e.g. Richter
& Naudascher (1976)). Randomness in the downstream sensitivity for
unconfined wakes seen here, that was completely absent for the confined
wake, could contribute to the appearance of a broader spectrum.

Following people are especially acknowledged for sharing their
thoughts around the sensitivities: Fredrik Lundell, Philipp Schlatter,
Luca Brandt, Jan Pralits, Milos Ilak, and Matthew Juniper. The sup-
port from the European Union FP6 Project Ecotarget and the Swedish
Research Council, Linné FLOW Centre is gratefully acknowledged.

Appendix A: Numerical treatment

The first numerical setup (figure 10 a) utilizes a damping region concept,
also used in Tammisola et al. (2011). In this setup, the base flow is
computed in the region x > 0, and the inlet profile shown in figure 1 is
set at x = 0. In the stability problem however, the numerical domain is
continued to the region x < 0, where we set a no slip condition between
the two fluid streams, resembling an ”infinitely thin plate”. The base
flow is kept equal to the inlet profile in this region. The purpose of this
”damping region” of length d is only to let the global mode decay more
smoothly, and avoid spurious reflections from the inlet, without altering
the base flow. Then, the length d can be varied to test the dependence of
the inlet boundary condition of the global mode, and L the dependence
for the outlet boundary condition.

The sensitivities are also seen to be essentially invariant with respect
to both the numerical discretisation used, resolution and the boundary
conditions of the stability problem. The outlet boundary condition used
were the following. At the inlet, a homogeneous Dirichlet condition is
set (zero disturbance):

û(−d, y) = v̂(−d, y) = 0. (23)
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Base flow Stability L d md1 md2 max(Sadv) pos. of max(Sadv)

Comsol Comsol 250 10 0.07 0.18 3.7437 (19.41,0.4000)
Nek5000 Comsol 250 20 0.07 0.2 4.1940 (19.50,0.4000)
Comsol Comsol 160 10 0.07 0.18 3.7392 (19.41,0.4000)
Comsol Comsol 160 110 0.07 0.18 3.8430 (19.42,0.4000)
Comsol Comsol 95 10 0.04 0.14 3.7995 (19.35,0.4000)

Table 1. The maximal value of Sadv and its location in space
for different numerical configurations.

At the walls we have a no slip condition:

û = v̂ = 0. (24)

At the centerline antisymmetry is imposed (since all the unstable modes
were known to be antisymmetric):

û(x, 0) =
∂v̂

∂y
(x, 0) = p̂(x, 0) = 0. (25)

At the outlet, a stress-free condition was chosen, although the tests
showed that the choice was not important here:

−p̂ +
1

Re

∂û

∂x
=
∂v̂

∂x
= 0. (26)

In table 1, the numerical accuracy is quantified by the maximum
value of the magnitude of the advective part of the sensitivity to base
flow modifications (Sadv). This is the part that contains most of the os-
cillating behaviour. Two different codes are used for calculating the base
flow: the Nek5000 spectral element code and the Comsol Multiphysics
finite element code. In the Nek5000 simulation, the inlet profile needs to
be slightly smoothened, but even this is seen to have a very minor effect
on the results. For the stability, we use mainly Comsol Multiphysics,
that has been verified against our own spectral software FLUPACK in
Tammisola et al. (2011). FLUPACK has problems to resolve the sen-
sitivities very accurately at high Reynolds numbers, due to the point
distribution (Gauss-Lobatto points). Therefore, we perform a verifica-
tion between FLUPACK and Comsol at Re = 158, and with a probably
too short domain (L = 50), to meet the resolution requirements. Despite
the short domain, the oscillatory pattern is still strikingly similar to the
one obtained from Comsol with a long domain (SV for both shown in
figure 11).
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Figure 10. Illustration of the two computational domains
used in this study: (a) inlet profile at x = 0 combined with
a damping region at −d < x < 0 (all results except appendix
6) (b) inlet profile at x = −d = −1 combined with a splitter
plate at −d < x < 0 (appendix 6).
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Figure 11. SV for the same base flow, with stability com-
puted in (a) FLUPACK (b) Comsol.

Appendix B: Results for a round-edged plate with a
boundary layer before the inlet

Here, the sensitivity is computed with a more realistic inflow model.
The fluid streams are separated prior the wake (at −d < x < 0) by a
round-edged plate of finite thickness (figure 10 b). The base flow profile
is allowed to develop prior to the wake and develop thin boundary layers
at x < 0. Since boundary layers have a damping effect on the stability,
the development region has to be kept rather short at these Reynolds
numbers. In this section, results are presented for d = 1.

In the following, the round-edgeg plate setup will be called setup B,
and the setup used in the main body of the paper and § 6 (described
in § 6) will be called setup A.
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Figure 12. The change to generic changes in base flow ad-
vection, Sadv, for the round-edged plate.
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Figure 13. Sensitivity to a steady volume force in the stream-
wise direction (positive forcing direction aligned with ēx =
(1, 0)), for the round-edged plate case. The streamline start-
ing between the two flow streams at the inlet is shown with a
dashed line. The region y > 0 is shown — the sensitivity at
y < 0 is the mirror image.

The advective part of the sensitivity to base flow modifications for
setup B is shown in figure 12, and shows an even stronger oscillatory
pattern than for setup A shown previously (figure 5). The same is true
for the sensitivity to a steady volume force shown for setup B in figure 13
(compared to the one for setup A shown in figure 7), and the sensitivity
to a control cylinder for setup B in figure 14 (compared to figure 8
for setup A). Since the oscillatory patterns appear for both setups, we
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Figure 14. Sensitivity to a control cylinder of radius 0.02 for
a round-edged plate. Region where stabilization is predicted
is marked by the white contours.

have now verified that the inlet modeling used for setup A does not
cause the oscillations. Together with the tests of different discretisations,
streamwise boundary conditions and resolutions presented in 6, it can
be concluded that the oscillations most probably have a physical origin.

The verification of the sensitivity to base flow modification is again
performed by modifying the actual base flow by the distribution 4 in
different positions xmod, and recomputing the direct global modes in
all cases. The result is compared to the prediction from adjoint-based
sensitivity distributions, for different amplitudes of the base flow modi-
fication; for setup B, both small and larger amplitudes were tested. The
movement of the most unstable mode with a base flow modification of
a small amplitude is shown in figures 15 (a) (growth rate) and 15 (b)
(frequency). These small amplitude modifications agree well with the
theory. However, when the modification amplitude increases to A = 0.02
(figures 15 c–d), which is 10% of the maximal vertical velocity, the so-
lution starts to deviate from the theoretical curve. For A = 0.05 and
A = 0.1 the original mode soon gives place to new modes. Every ”jump”
in the frequency curve in figure 15 (d) indicates that a new mode has
taken over as the most unstable mode.

Appendix C: Linearized drag model for the control cylinder

The dimensional drag force per unit spanwise length for the control
cylinder is expressed in tensor form as:

D∗
F,i =

1

2
CD,totρ

∗|U∗
tot|D∗U∗

tot,i , (27)
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Figure 15. The change in the frequency and the growth rate
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where ρ∗ is the density, D the diameter of the control cylinder, CD,tot

the drag coefficient of the control cylinder, and U∗
tot the total velocity

field, and in nondimensional form:

DF,i =
D∗

F,i
1
2ρ

∗U∗2
2 h∗

1

= CD,tot|Ūtot|DUtot,i .
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Let us now divide the total quantities (with subscript ”tot”) into
a steady and unsteady linear part (uppercase vs. lowercase letters):
CD,tot = CD + cD, Utot,i = Ui + ui. Then we get:

DF,i = D
(

CD|Ūtot|Ui + CD|Ūtot|ui + cD|Ūtot|Ui + cD|Ūtot|ui
)

. (28)

The last term is neglected in the linear approximation. Further, we need
to linearize |Utot|:

|Ūtot| =
√

(U + u)2 + (V + v)2

≈
√

U2 + V 2 +
1

2

[

U2 + V 2
](−1/2)

(2Uu + 2V v)

= |Ū | +
(Uu + V v)

|Ū |
,

which leads to:

DF,i ≈ D

(

CD|Utot|Ui + CD|Utot|ui + cD|Utot|Ui

)

≈ D

(

CD|Ū |Ui + CD
(Uu + V v)

|Ū |
Ui + CD|Ū |ui +

+CD
(Uu + V v)

|Ū |
ui + cD|Ū |Ui + cD

(Uu + V v)

|Ū |
Ui

)

≈ D

(

CD|Ū |Ui + CD
(Uu + V v)

|Ū |
Ui + CD|Ū |ui + cD|Ū |Ui

)

(29)

Now it remains to find CD and cD, by linearizing an appropriate
expression for CD,tot. An empirical expression for a cylinder in a uniform
stream in good agreement with experiments for 5 < Re < is according
to Zdrakovich found from Imai 1957:

CD,tot =

(

0.707 +
3.42√
Rec

)2

, (30)

where Rec is the cylinder Reynolds number. For the flow case in the
present work this is rewritten according to:

CD,tot =

(

0.707 +
3.42

√

Re|Ūtot|D

)2

. (31)
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By inserting (29) into this and developing, we get:

CD,tot =

(

0.707 +
3.42

√

Re|Ūtot|D

)2

≈

(

0.707 +
3.42

√

Re|Ū |D

)2

+2

(

0.707 +
3.42

√

Re|Ū |D

)

3.42√
ReD

[

−
1

2
|Ū |−3/2 (Uu + V v)

|Ū |

]

=

(

0.707 +
3.42

√

Re|Ū |D

)2

−
3.42

√

Re|Ū |D

(

0.707 +
3.42

√

Re|Ū |D

)

[

(Uu + V v)

|Ū |2

]

.

This can be written in a simple form by introducing functions varying
with the local velocity, α = 3.42/

√

Re|Ū |D and β = (0.707 + α):

CD = β2

and

cD = −αβ
(Uu + V v)

|Ū |2

Now we can identify components and divide the drag into steady
and unsteady parts as:

DF (steady),i = Dβ2|Ū |Ui (32)

DF (unsteady) = D

[

β2Ui
(Uu + V v)

|Ū |2
+ β2|Ū |ui − αβ|Ū |Ui

(Uu + V v)

|Ū |2

]

= D
(

β2 − αβ|Ū |
)

Ui
(Uu + V v)

|Ū |2
+ Dβ2|Ū |ui. (33)

Now when the components of the linearized force have been obtained,
they should be considered as point forces in the steady equations and
linearized momentum equations, respectively (to obtain the correct total
force on the flow). The sensitivities can now be obtained e.g. from the
expressions of Pralits et al. (2010), repeated again for convenience.
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For an unsteady force of the form f = δ(x − x0)(y − y0)mijuj , the
sensitivity is given by:

δω = u+
i mijuj,

and for a steady force of the form: F = δ(x − x0)(y − y0)Mijuj:

δω = U+
i MijUj.

The normalization can be skipped, since our adjoints are already appro-
priately normalized, according to (12).

The above expressions give:

MUU = Dβ2|Ū |, MV V = Dβ2|Ū |, MUV = MV U = 0,

muu = D
(

β2 − αβ|Ū |
)

U2/|Ū |2 + Dβ2|Ū |,
muv = D

(

β2 − αβ|Ū |
)

UV/|Ū |2,
mvu = D

(

β2 − αβ|Ū |
)

UV/|Ū |2,
mvv = D

(

β2 − αβ|Ū |
)

V 2/|Ū |2 + Dβ2|Ū |.
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L. D. 2011 Global linear and nonlinear stability of viscous confined plane wakes
with co-flow. Journal of Fluid Mechanics 675, 397–434.

Unal, M. F. & Rockwell, D. 1987 On vortex formation from a cylinder. part 2.
control by splitter-plate interference. Journal of Fluid Mechanics 190, 513–529.

Williamson, C. H. K. 1996 Vortex dynamics in the cylinder wake. Annual Review
of Fluid Mechanics 28, 477–539.

Zdravkovich, M. M. 1997 Flow around circular cylinders, , vol. 1. Oxford University
Press.





Paper 6

6





Surface tension induced global destabilisation of
plane jets and wakes
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The effect of surface tension on global stability of confined co-flow jets and
wakes at a moderate Reynolds number is studied. The flow cases under study
are globally stable without surface tension. It is found that surface tension
can cause the flow to be unstable if the inlet shear is strong enough. For even
stronger surface tension, the flow is re-stabilized. As long as there is no change
of the most unstable mode, increasing surface tension seems to decrease the os-
cillation frequency and increase the wavelength of the mode. The critical shear
(minimum shear at which an instability is found) is found to occur for anti-
symmetric disturbances for the wakes and symmetric disturbances for the jets.
However, at stronger shear, the opposite symmetry might be the most unstable
one, in particular for wakes at high surface tension. The results show strong
effects of surface tension that should be possible to reproduce experimentally
as well as numerically.

1. Introduction

There are many examples where surface tension between immiscible flu-
ids has an important roll in fluid dynamic processes. Some examples
illustrating the width of the applications are atomization in e.g. irri-
gation and combustion applications, the stability of the headbox jet in
papermaking or breaking waves and the related gas transport to the
ocean.

This work concentrates on the effect of surface tension on global
stability of a family of jet and wake flows. The term global stability
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Figure 1. Example of jet (Λ−1 = 1.2, a, b) and wake (Λ−1 =
−1.4, c,d) base flows under study. The streamline separating
the inner and outer flow (at which surface tension is applied) is
bold, the inner streamlines are solid and the outer streamlines
are dashed.

means that self-sustained instabilities are sought for. When such in-
stabilities exist, the flow acts as an oscillator at a certain frequency (a
famous example is the von Kármán vortex street behind a cylinder).
This is different from studies of convective instabilities, which investi-
gate the ability of a flow to spatially amplify a disturbance convected
by the flow. Surface tension enters the problem through the boundary
condition on the interface between two fluids. In a previous work, it has
been shown (Tammisola et al. 2011b) that surface tension increased the
growth rate of global modes for a wake flow, and that the most unstable
mode changed from antisymmetric to symmetric for strong surface ten-
sion. Here, the effect of surface tension on wake and jet flows is studied
in a wider parameter space.

The flow cases under study are illustrated in figure 1. The flow is
plane and two-dimensional and consists of one inner stream surrounded
by two outer streams. The inner stream can be either slower (wake) or
faster (jet) than the outer streams, which both have the same velocity.
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The height of the inner flow is 2h∗
1 (the superscripts denote dimensional

parameters) and the height of each outer stream is h∗
2 (the total channel

height is 2h∗
1 + 2h∗

2)). The coordinates are x, y for the streamwise and
vertical directions, respectively, and the origin is at the centre of the
channel at the inlet. The inlet velocity of respective stream is constant
over the cross section and equals U∗

1 in the inner stream and U∗
2 in the

outer streams. The velocity scale is defined as U∗
ref and is chosen as the

largest of the two velocities, i.e. U∗
1 for jets and U∗

2 for wakes. Leng-
ths are scaled with the height of the inner stream h∗

1. Neglecting surface
tension and assuming that the two streams have the same kinematic vis-
cosity ν∗, these flows can now be characterized by three nondimensional
parameters:

Re =
U∗

refh∗
1

ν∗
, h =

h∗
2

h∗
1

, Λ =
U∗

1 − U∗
2

U∗
1 + U∗

2

, (1)

which define the Reynolds number, confinement parameter and shear
ratio, respectively. In the present study, Re = 316 and h = 1 have been
chosen. Introducing the surface tension γ∗, one additional parameter
appears, namely the Weber number:

We =
ρ∗U∗

refh∗
1

γ∗
(2)

where ρ∗ is the density of the fluids (the two streams are assumed to
have the same density).

The division to two fluids occurs along the streamlines originating
from the inlet and drawn with thick lines in figure 1. In (b,d), addi-
tional streamlines are shown: solid indicating the inner flow and dashed
indicating the outer flows.

The study of these flow cases was inspired by earlier work on abso-
lute instability of weakly-nonparallel jet and wakes flows (e.g. Huerre
& Monkewitz (1990) and Juniper (2006)) without surface tension. The
reason for chosing this particular flow problem as a model problem is
that the global stability of single phase wake flows (Λ−1 < 0) has been
studied and understood with different methods (global stability, local ab-
solute instability and direct numerical simulations) by Tammisola et al.
(2011a); Juniper et al. (2011). In those two studies, the different meth-
ods were compared and the effects of Re, Λ and h were outlined. Fur-
thermore, it was found that the global method as used in this work
successfully predicted the onset and growth of instabilities in the direct
numerical simulations and that the combination of the three methods
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allowed the physical origins to be investigated. For complete parametric
dependencies, the works cited above should be consulted.

When it comes to single phase uniform density co-flow jets (Λ−1 > 0)
at the Re of the present study, they are globally stable for oscillatory
modes, and these authors are not aware of any related results in the
literature. At higher Re and the case of U∗

2 = 0 (no outer flow), results
for confined axisymmetric jets have been reported by e.g. Villermaux &
Hopfinger (1994). The recirculation bubble formed due to confinement
caused self-sustained low-frequency oscillations.

The influence of surface tension on two example wakes at fixed shear
was investigated in Tammisola et al. (2011b). These wakes had one un-
stable mode without surface tension, the well-known antisymmetric von
Kármán mode. Intermediate surface tension (We−1 ≈ 0.1) considerably
increased the growth rate of the most unstable mode, while strong sur-
face tension (We−1 ≈ 0.5) stabilized the wakes. The frequency of the
most unstable mode decreased with surface tension. The first exam-
ple wake at Re = 100 had at maximum one unstable mode, while the
behaviour of the second wake at Re = 316 was more interesting: for
intermediate surface tension, several unstable modes appeared, and for
a certain range of We, the most unstable mode was symmetric. It was
conjectured that surface tension could move the stability boundaries for
uniform density wakes, and due to the appearance of symmetric modes,
the mechanism might be present for jets as well. In studies based on
the locally parallel assumption (e.g. Rees & Juniper (2009)), absolute
instability has been found also for jets with surface tension, which sup-
ports the hypothesis. Furthermore, a relaxational plane water jet in air
can possess absolute instability (Söderberg 2003). For water sheets with
uniform velocity profiles, a curious neutral absolute instability with zero
frequency and infinite wavelength has been reported (Li & Tankin 1991).

In the present work, we investigate the global destabilization due
to surface tension of confined (h = 1) wakes and jets with constant
density and viscosity at Re = 316. Governing equations and numerical
methods are presented in section 2. Results for wakes and jets with a
varying degree of surface tension and varying inlet shear are presented
and discussed in section 3, and the main conclusions summarized in
section 4. An appendix, in which the linearized boundary conditions on
the free surface are given explicitly, is also provided.
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2. Methods

2.1. Base flows

The base flows are similar to those used in Tammisola et al. (2011a)
and were calculated using the Nek5000 spectral element (SEM) code,
developed by Paul Fischer, Argonne Laboratory, Argonne, USA (Fischer
1997). Below, some issues specific to the present study are presented and
discussed.

The restrictions of the present work (constant density and viscosity)
were made in order to be able to use high-accuracy base flows from single
phase calculations. This approximation was used also in a previous work
(Tammisola et al. 2011b) and is motivated by the following observations:

1. The steady interface position between any two fluids (also with
density/viscosity gradients) must follow a streamline of the steady
base flow. This is the only possibility, since the velocity compo-
nent normal to the interface has to vanish.

2. The curvature of the steady base flow without surface tension is
small, except for the immediate vicinity of the inlet (x < 0.1). On
the other hand, accurately determining the curvature at the inlet
would require contact line modeling, which is out of the scope of
this work, and is a research topic in itself.

The capillary pressure gradients that would exist due to interface cur-
vature are at least an order of magnitude smaller than other pressure
gradients in the flow even at very high surface tension (We−1 = 2).

Without surface tension, the only oscillations occurring in the flow
are antisymmetric and thus, steady base flows can be obtained by im-
posing a symmetry condition along the centreline.

2.2. Global stability analysis

The stability analysis is made by assuming small disturbances, so that
the Navier-Stokes equations can be linearized around the steady state.
The flow field is decomposed into a steady and fluctuating part so that
U (tot) = U + u, V (tot) = V + v, P (tot) = P + p and H(tot) = H + η where
U (tot) and V (tot) are the velocity components in x and y, respectively,
P (tot) is the pressure and H(tot) is the position of the interface between
the fluids. An overbar will be used to denote a vector of the two velocity
components. Furthermore, we make the global mode Ansatz indepen-
dent of the z-coordinate:

uk(x, y, t) = ûk(x, y)e−iωt, (3)
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vk(x, y, t) = v̂k(x, y)e−iωt, (4)

pk(x, y, t) = p̂k(x, y)e−iωt, (5)

η(x, t) = η̂(x)e−iωt, (6)

where ω is the complex angular frequency and the subscript k refers to
flow domain 1 and 2. In the following, this subscript is often skipped
and in these cases û, v̂ and p̂ refer to the disturbance distributions in
the full domain. The division into two domains and introduction of η is
necessary in order to include the effect of surface tension on the interface
via the conditions coupling the two domains, as described in the next
subsection.

Inserting the ansatz (3-6) into the linearized Navier-Stokes equations
(LNSE) gives:

−U
∂û

∂x
− V

∂û

∂y
− û

∂U

∂x
− v

∂U

∂y
(7)

−
∂p̂

∂x
+

1

Re

(

∂2û

∂x2
+
∂2û

∂y2

)

= −iωû (8)

−U
∂v̂

∂x
− V

∂v̂

∂y
− û

∂V

∂x
− v̂

∂V

∂y
(9)

−
∂p̂

∂y
+

1

Re

(

∂2v̂

∂x2
+
∂2v̂

∂y2

)

= −iωv̂ (10)

∂û

∂x
+
∂v̂

∂y
= 0. (11)

This system has to be equipped with boundary conditions both at the
interface between domains 1 and 2, and at the boundaries of the com-
putational domain.

The conditions at the vertical boundaries are straightforward. The
condition at the wall is:

û2(x, h + 1) = v̂2(x, h + 1) = 0, (12)

(note that h is the confinement parameter and not the disturbance of
the surface; this notation has been chosen in order to be consistent with
previous work) and at the centerline, for antisymmetric modes:

û1(x, 0) =
∂v̂1

∂y
(x, 0) = p̂1(x, 0) = 0, (13)
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and symmetric modes:

∂û1

∂y
(x, 0) = v̂1(x, 0) = 0. (14)

At the streamwise boundaries we set Dirichlet conditions, and com-
bine this with a fringe region at the outlet. In this region, the disturbance
is gradually forced towards zero by a volume force (inspired by the SIM-
SON code, see Chevalier et al. (2007)). Especially for jets, this turned
out to be a better choice than the conventional Neumann condition at
the outlet providing faster convergence of the eigenvalues as the length
of the domain was increased.

The flow has to satisfy physical constraints at the interface y =
H + η, where the capillary force is imposed as a stress discontinuity.
The interface conditions are presented in tensor form, where ûk,i now
represents the streamwise disturbance velocity for i = 1 and the vertical
disturbance velocity for i = 2. The nonlinear conditions are given here
in order to explain the origin of the interface conditions. They must be
linearized to yield at the steady position of the interface (y = H), which
becomes more cumbersome; the linearization procedure and resulting
conditions are presented in Appendix A. The physical conditions at the
interface are:

1. Continuity of the velocities at the interface

U (tot)
1,i = U (tot)

2,i . (15)

2. Continuity of the tangential force at the interface

t̃iS
(tot)
1,ij ñj = t̃iS

(tot)
2,ij ñj , (16)

where t̃ is the tangent vector of the interface (that depends on
both H and η), ñ the normal vector, and

S(tot)
ij = −P (tot)δij +

1

Re

(

∂U (tot)
i

∂xj
+
∂U (tot)

j

∂xi

)

is the stress tensor with pressure included.
3. Jump in the normal stress due to surface tension, dependent on

the local surface curvature:

ñiS
(tot)
1,ij ñj = ñiS

(tot)
2,ij ñj −

1

We

(

∂ñx

∂x

)

. (17)
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4. The interface displacement follows the vertical displacement of a
particle at the interface:

∂H(tot)

∂t
+ U (tot) ∂H(tot)

∂x
= V (tot) . (18)

The stability analysis is performed by discretizing equations (8–11)
using Chebyshev-polynomials in both the streamwise and vertical direc-
tions:

û(x, y) ≈
Nx
∑

i=1

Ny
∑

j=1

cijφ
i(x)φj(y) (19)

where φk is the kth Chebyshev polynomial. The values of the unknown
coefficients cij are obtained by requiring the discretised equations to be
satisfied exactly at the Nx × Ny collocation points, which are selected
as the Gauss-Lobatto points to assure an exponential convergence rate
(Weideman & Reddy 2000). The domain [−1, 1] × [−1, 1] is stretched
linearly in the vertical and horizontal directions to [0, Lx]× [0,H(x)] for
the inner and [0, Lx]× [H(x), h+1] for the outer flow. The two domains
are connected with the interface conditions (see appendix A).

The matrix resulting from the discretized equations and boundary
conditions becomes too large for the problem to be solved serially. There-
fore, the matrix is built and the eigenvalue problem solved in parallel,
using our code FLUPACK based on parallelised Arnoldi algorithm ob-
tained from the PARPACK mathematical library (Maschhoff & Sorensen
1996), and parallel linear algebra operations from ScaLAPACK (Black-
ford et al. 1997). Further details of the code can be found in Chapter
5 of this thesis. The matrix eigenvalue problem is solved directly, as
opposed to the time-stepping approach (Tuckerman & Barkley 2000),
which would have been necessary for three-dimensional problems.

It can be shown that for linear problems, any disturbance can be ex-
pressed as a sum of symmetric and antisymmetric components, and also
that for symmetric base flows these two components can be computed
separately. Thus, we use the upper half of the flow domain only.

3. Results and Discussion

Stability results for a confinement h = 1 and a Reynolds number Re =
316 will be shown for different Weber numbers and shear ratios. This
choice has been made in order to illustrate how surface tension on the
interface can affect the stability of the flow. With a four-dimensional
parameter space at hand (h, Re, We, Λ), a complete parameter study is
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Figure 2. Global stability as a function of 1/We and 1/Λ for
wakes (a,c) and jets (b,d). Results for symmetric (a,b) and
antisymmetric (c,d) disturbances are shown. Filled symbols
(red) show unstable and open (blue) show stable cases.

not feasible. First, the stability as such, i.e. sign of ωi, will be studied, of
course with an emphasis on the bifurcation to instability. This study will
be followed by a presentation of spectra and eigenmodes for one selected
jet and wake with varying surface tension. The latter presentation is
made in order to illustrate how the capillary forces on the interface can
affect the eigenvalues and amplitude distributions.

3.1. Stability as a function of 1/We and 1/Λ

Figure 2 shows the stability for a large number of combinations of 1/We
and 1/Λ. The unstable cases are shown with filled (red) markers and the
stable with open (blue) markers. Wakes (1/Λ < 0) are shown in (a,c)
and jets (1/Λ > 0) in (b,d). Note that the vertical axis is different for
jets and wakes, respectively. The first row, (a,b), shows the stability of
symmetric disturbances and the second row, (c,d), shows antisymmetric
disturbances. All four cases show a region of global instability.
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All data in figure 2 show a similar overall behaviour. For all values
of 1/Λ shown except 1/Λ = −1.32, the flows are stable at 1/We = 0
(no surface tension). As 1/We is increased (upwards in each figure), the
flows eventually become unstable and as 1/We is increased even further,
the flows get stable again.

Focus now on the range of destabilization for different shear ratios
(1/Λ). Since an increasing absolute amplitude of 1/Λ means decreasing
shear, these results show that surface tension can induce global insta-
bility if the shear is large enough. Thus, one can define a critical shear
and surface tension as the maximum absolute value of 1/Λ for which
the flow can be unstable, and the corresponding value of We is the crit-
ical Weber number. An indication of the critical shear can be obtained
by studying the leftmost filled symbol in (a,c) and the rightmost filled
symbol in (b,d), although the focus on the present study is to illustrate
the overall behaviour of the flows, rather than pin-pointing the exact
critical value(s) of some parameter(s).

Analyzing figure 2 in more detail, we will start by looking at the
differences between the jets and the wakes. For the jets (left column),
the critical value of 1/Λ is distinctively higher than for the wakes (left
column), as well as the critical 1/We. This means that jets are desta-
bilized at weaker shear than wakes (and thus are more unstable than
wakes in this sense), but also that a stronger surface tension is needed
for jets at the critical point. Note also that the symmetry for which
the critical shear is weakest is different for jets and wakes. The anti-
symmetric disturbances on wakes in (c) demonstrate a weaker critical
shear than the symmetric ones in (a). For the jets, the situation is the
opposite: the critical shear for symmetric disturbances in (b) is weaker
than for the antisymmetric disturbances in (d).

One can also make conclusions by comparing the two rows in figure
2 showing results for different symmetries. The symmetric disturbances
(a,b) are unstable for higher values of 1/We than the antisymmetric
ones (c,d). For the wakes, this means that there are considerable pa-
rameter regions where there are unstable symmetric disturbances even
though the antisymmetric disturbances (which are the ones unstable for
the weakest shear as discussed above) are stable. This behaviour was
observed also in the detailed study of selected wake flows by Tammisola
et al. (2011b).
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Figure 3. Spectra for 1/Λ = 1.2 (a jet flow), antisymmetric
disturbances in (a) and symmetric in (b). Spectra for different
1/We are shown with different combinations of marker and
colors. For each 1/We, the most unstable eigenvalue is shown
with a filled marker and the value of 1/We is given next to it.
Note that the vertical axis below -0.0325 has been compressed
by a factor of 10.

3.2. Spectra and modes for a jet, 1/Λ = 1.2

The spectra and modes reveal more details of the instabilities. Results
for a jet with 1/Λ = 1.2 (c.f. figure 1 a) are shown in figure 3 (spec-
tra) and 4 (modes). Starting with the spectra in figure 3, the global
oscillatory modes are found as eigenvalues that are separated both from
the stable continuous spectra with lower values of ωi and the steady
modes with ωr = 0. For both antisymmetric and symmetric disturban-
ces, there is a bifurcation from stable to unstable eigenvalues between
1/We = 0.05 and 0.06. The growth rate (ωi) then grows as 1/We is
increased and the frequency (ωr) decreases. At 1/We = 0.1 and 0.4,
there are several unstable modes.

Figure 4 shows the eigenmodes for the most unstable eigenvalues in
figure 3, for some values of 1/We. In figure 4, antisymmetric (a, c, e) and
symmetric (b, d, f) modes of the û disturbance are shown for increasing
values of 1/We. The oscillation of the interface is indicated by a solid
line; note that the ampitude of this oscillation is arbitrary and has been
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Figure 4. Real part of û for 1/Λ = 1.2 for antisymmetric
(a,c,e) and symmetric (b,d,f) disturbances for 1/We = 0.06 in
(a,b), 0.1 in (c,d) and 0.4 in (e,f). The oscillation of the free
surface is illustrated with solid curves.
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Figure 5. Spectra for 1/Λ = −1.4 (a wake), antisymmetric
disturbances in (a) and symmetric in (b). Spectra for different
1/We are shown with different combinations of marker and
colors. For each 1/We, the most unstable eigenvalue is shown
with a filled marker and the value of 1/We is given next to it.
Note that the vertical axis below -0.015 has been compressed
a factor of 10.

chosen for its graphical appearance. It should also be emphasized that
the computational domain is considerably longer than the region shown
and that the eigenvalues are converged with respect to the box length
for all results shown.

The modes in figure 4 show a consistent development as 1/We is
increased. As the surface tension gets stronger and stronger, the most
unstable mode exhibits an increase in its wavelength. A possible expla-
nation might be that smaller waves are damped by the strong surface
tension. When it comes to the origin of the surface tension induced
global instability as such, it is probably relying on an interplay between
wave motions in the flow and on the surface (which is turned into an ac-
tive part of the oscillatory system when surface tension is present). The
purpose of this work is not to scrutinize the details of this interplay but
to demonstrate and somewhat systematize the overall effects of surface
tension.
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Figure 6. Real part of û for 1/Λ = −1.4 for antisymmetric
(a,c,e) and symmetric (b,d,f) disturbances for 1/We = 0.08 in
(a,b), 0.1 in (c,d) and 0.2 in (e,f). The oscillation of the free
surface is illustrated with solid curves.
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3.3. Spectra and modes for a wake, 1/Λ = −1.4

Overall, the behaviour of the spectra and modes for the wake shown in
figures 5 and 6 are similar to those of the jet discussed above. For low
1/We, the flow is stable. If 1/We is increased, single unstable modes
appear and as 1/We is increased further, the growth factor reaches a
maximum before it becomes negative and the flow is stable again. In
general, it is also so that the frequency decreases as 1/We is increased,
and the corresponding wavelength of the mode in figure 6 increases.

However, these wake modes illustrate an additional feature compared
to the jet modes, namely a mode-switching. Looking at the details of
figure 5 (a), it is seen that the frequency of the most unstable mode
increases from 1/We = 0.08 to 0.1. Furthermore, the corresponding
modes in figure 6 (a) and (c) show that the structure of the mode changes
completely, from a mode situated relatively far from the inlet around
x ≈ 10, whereas the other modes in figure 6 all have their maximum
amplitude at x < 5. Thus, the most unstable modes switches from
1/We = 0.08 to 0.1, explaining the odd behaviour of the frequency. In
fact, the mode in figure 5 (a) that is most unstable at 1/We = 0.1 is
seen also at 1/We = 0.08 as a stable mode, with a frequency higher
than that of the 1/We = 0.1 mode.

4. Conclusions

The main conclusions from this work is summarized as follows:

• Global stability of plane jet and wake flows has been studied.
• As surface tension is increased from zero, many wakes and jets

are first destabilized and then stabilized again.
• There is a critical value of weakest shear (largest Λ−1) at which

each flow can be made unstable by surface tension.
• At this critical point, the most unstable mode is symmetric for

the jets and antisymmetric for the wakes.
• The global mode shapes are considerably different when surface

tension is applied, compared to e.g. vortex streets: the wavelength
decreases and the amplitude maximum moves closer to the inlet.

The results clearly point out parameter regions that should be inter-
esting for numerical and experimental investigations of the flow case.
Such studies should be performed for two reasons, the first of which is
of course a validation of the present results. A previous study in single-
phase flows (Tammisola et al. 2011a) has shown that the global stability
predicts the initial growth (and thereby the stability limit) in DNS well,
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and thus it should be possible to extract the initial growth of the global
mode from a careful DNS or possibly a measurement.

The second interesting feature that needs to be studied is the con-
nection between the global linear frequencies and mode shapes and the
saturated nonlinear state at which the flow arrives after exponential dis-
turbance growth. Also in Tammisola et al. (2011a), the linear global
modes were sometimes different from the saturated nonlinear state. In
the two-phase case, this issue gets even more interesting since there can
be drop pinch-off and other processes which further complicate the non-
linear state. An unstable linear global mode near the nozzle could thus
lead to everything from small-amplitude waves to a complete breakup to
small droplets. Thus, future studies can demonstrate to what extent the
global frequency and mode shapes give an indication of the final drop
sizes, breakup, and other two-phase features.

Appendix A:Linearised boundary conditions at the interface

Linearisation and transformation to y = H

Here the boundary conditions are linearised and transformed to the un-
perturbed surface location y = H.

In order to do this, the velocity at the perturbed surface location
is expressed as a series expansion w.r.t. η and only the linear terms
w.r.t. disturbance quantities are kept. The terms concerning base flow
only disappear (since the base flow satisfies the boundary condition at
y = H), and the expressions can readily be Fourier/Laplace transformed.
The condition (15) transforms to:

û1 + η̂
∂U1

∂y
= û2 + η̂

∂U2

∂y
, (20)

v̂1 + η̂
∂V 1

∂y
= v̂2 + η̂

∂V 2

∂y
, (21)

The expression for the stress condition is somewhat more compli-
cated. Let us divide the stress tensor further to:

S(tot)
ij = −P (tot)δij +

2

Re
E(tot)

ij ,

where

E(tot)
ij =

1

2

(

∂U (tot)
i

∂xj
+
∂U (tot)

j

∂xi

)

.

is the rate of deformation tensor.
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The rate of deformation tensors Ek,ij (with k = 1 or 2 for the two
domains) consist of partial derivatives of the velocities only, i.e. they
can be divided into two separate parts — one tensor for the base flow
(Ek,ij) and one for the disturbance (ek,ij):

Ek
tot,ij = Ek

ij + ek
ij . (22)

Now by doing the same linearisation as above for u, v and p, we get the
value of eij at y = H:

Eij(H + η) ≈ Eij(H) + eij(H) + η
∂Eij

∂y
.

Let us assume that the surface normal can be written as:

ñi = Ñi + ñ′
i, (23)

where Ñi only consists of base flow terms and ñ′
i is a linear function of

the disturbance quantities. Then the linearised condition (equations 16
and 17) at y = H with base flow terms subtracted becomes:

(−P 1 + P 2)δij ñ
′
j +

2

Re
(E1

ij − E2
ij)ñ

′
j+

(−p1 + p2)δijÑj +
2

Re
(e1

ij − e2
ij)Ñj+

+ηÑj
∂

∂y
(−P 1 + P 2)δij +

2

Re
ηÑj

∂

∂y
(E1

ij − E2
ij) =

−
1

We
(Ñi

∂ñ′
j

∂xj
+ ñ′

i
∂Ñj

∂xj
).

(24)

Components of the surface normal

Now it remains to find the base flow and disturbance parts of the inter-
face normal, Ñi and ñi, respectively. The surface normal can be written
in terms of H(tot) as:

ñ =

(

−∂H(tot)

∂x , 1
)

√

1 +
(

∂H(tot)

∂x

)2
(25)
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This equation will be nonlinear in ∂η
∂x due to its presence in the

denominator. Thus we introduce:

ϕ =
1

√

(

∂H
∂x + ∂η

∂x

)2
+ 1.

(26)

The desired form (equation 23) can be achieved by expanding the
surface normal in ∂η

∂x :

ñj ≈ ñj|∂η
∂x

=0 +





∂ñj

∂
(

∂η
∂x

) |∂η
∂x

=0





∂η

∂x
, (27)

where Ñj is identified as the first and ñ′
j as the second term.

After straightforward calculations we get the following equations for
the surface normal components:

N̄ =

(

−
∂H

∂x
f, f

)

, (28)

n̄′ =

((

−f −
∂H

∂x
g

)

∂η

∂x
, g
∂η

∂x

)

, (29)

where

f = ϕ|∂η
∂x

=0 =

[

1 +

(

∂H

∂x

)2
]−1/2

and

g =
∂ϕ

∂
(

∂η
∂x

) |∂η
∂x

=0 = −
∂H

∂x

[

1 +

(

∂H

∂x

)2
]−3/2

Equation for the interface motion

The equation of motion for the free surface at y = H + η is:

∂(y − H(tot))

∂t
+ ū(tot) ·1(y − H(tot)) = 0. (30)

After writing out the terms we get:

−
∂η

∂t
− U (tot) ∂(H + η)

∂x
+ V (tot) = 0.
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After linearisation, and when the base flow terms are removed, this
equation at y = H reads:

∂η

∂t
+
∂H

∂x
u + U

∂η

∂x
+
∂H

∂x

∂U

∂y
η − v −

∂V

∂y
η = 0. (31)

0.1. Boundary conditions for the global eigenvalue problem

In order to get boundary conditions for the eigenvalue problem, we again
substitute the global mode ansatz (3–6) in the linearised boundary con-
ditions presented the previous subsections. This replaces all disturbance
terms a with their Fourier transformed counterparts â, except the t-
derivatives, which transform to ∂a

∂t = −iωâ.

We arrive at the following conditions at the interface:

û1 + η̂
∂U1

∂y
= û2 + η̂

∂U2

∂y
(32)

v̂1 + η̂
∂V 1

∂y
= v̂2 + η̂

∂V 2

∂y
(33)

(−P 1 + P 2)δij n̂
′
j +

2

Re
(E1

ij − E2
ij)n̂

′
j+

(−p̂1 + p̂2)δijNj +
2

Re
(ê1

ij − ê2
ij)Nj+

+η̂Nj
∂

∂y
(−P 1 + P 2)δij +

2

Re
η̂Nj

∂

∂y
(E1

ij − E2
ij) =

−
1

We

(

Ni
∂n̂′

j

∂xj
+ n̂′

i
∂Nj

∂xj

)

(34)

−iωη̂ +
∂H

∂x
û + U

∂η̂

∂x
+
∂H

∂x

∂U

∂y
η̂ − v̂ −

∂V

∂y
η̂ = 0, (35)

where n̂′ =
[

(

−f − ∂H
∂x g
) ∂η̂
∂x , g ∂η̂∂x

]

and êij = 1
2( ∂ûi
∂xj

+ ∂ûj

∂xi
).
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