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Statistics of a passive scalar (or tracer) with a horizontal mean gradient

in randomly forced and strongly stratified turbulence are investigated by nu-

merical simulations. We observe that horizontal isotropy of the passive scalar

spectrum is satisfied in the inertial range. The spectrum has the form Eθ(kh) =

Cθεθε
−1/3
K k

−5/3
h , where εθ, εK are the dissipation of scalar variance and kinetic

energy respectively, and Cθ ' 0.5 is a constant. This spectrum is con-

sistent with atmospheric measurements in the mesoscale range with wave-

lengths 1−500 km. We also calculate the fourth-order passive scalar struc-

ture function and show that intermittency effects are present in stratified tur-

bulence.
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1. Introduction

To gain insight into tracer mixing in geophysical flows, we explore passive scalar statis-

tics in strongly stratified fluids. First we consider some basic phenomenology of pas-

sive scalars statistics in isotropic turbulence. According to the Obukhov-Corrsin theory

of locally isotropic turbulence, there is an inertial range in which the one-dimensional

wavenumber spectrum of the variance of a passive scalar fluctuation θ has the form

(Warhaft 2000)

Eθ(k) = Cθεθε
−1/3
K k−5/3 , (1)

where εθ and εK are the dissipation of scalar variance and kinetic energy respectively and

Cθ is the Obukhov-Corrsin constant. In the corresponding range of separations, r, the

passive scalar structure function of an arbitrary order n, and the second-order structure

function in particular, are given by

〈δθn〉 ∝ rn/3 , (2)

〈δθδθ〉 = C ′
θεθε

−1/3
K r2/3 , (3)

where δθ = θ′ − θ is the difference between the scalar values at two points separated

by a vector r, 〈〉 denotes an ensemble average, and C ′
θ = 4π Cθ/[

√
3 Γ

(
5
3

)
] ≈ 4.0 Cθ.

In Kolmogorov turbulence the passive scalar spectrum (1) and the second-order structure

function (3) have been measured in several studies (Sreenivasan 1996, Warhaft 2000). Hor-

izontal spectra (Nastrom et al. 1986, Strahan & Mahlman 1994, Tjemkes & Visser 1994,

Bacmeister et al. 1996, Cho et al. 1999) and second-order structure functions (Lindborg

& Cho 2000, Sparling & Bacmeister 2001) of passive tracers measured in the mesoscale

range (1− 500 km) of the middle atmosphere appear to have the same functional form as
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(1) and (3). However, the similarity between the measured spectra and the second-order

structure functions and the theoretical expressions (1) and (3) can not be explained by the

classical Obukhov-Corrsin theory, which is based on the assumption of local isotropy. The

isotropy assumption would imply that we should be able to measure a vertical spectrum

of the same form as the horizontal spectrum in the wavelength range 1 − 500 km. For

obvious reasons this cannot be true and we must look for another explanation.

Nastrom et al. (1986) and Tjemkes & Visser (1994) suggested that the scalar spectra

originate from mixing in two-dimensional turbulence, but mixing by gravity waves has

also been mentioned as an explanation (e.g. Cho et al. 1999). The observed horizontal

k
−5/3
h -scalar spectra may thus be explained by different dynamical processes, but, in agree-

ment with our opinion, Bacmeister et al. (1996) concluded that neither two-dimensional

turbulence nor gravity waves can satisfactorily explain the measurements. Therefore, we

suggest an alternative explanation.

In strongly stratified fluids, large horizontal quasi two-dimensional structures are com-

monly observed. In recent work (Billant & Chomaz 2001, Lindborg 2006) it has been sug-

gested that structures with characteristic horizontal length scale lh split up into layers with

characteristic thickness lv ∼ Fhlh, where Fh = U/Nlh is a Froude number based on the

horizontal length scale, a characteristic horizontal velocity scale U and the Brunt-Väisälä

frequency N . The thin layers or pancake-like structures will break up into smaller struc-

tures. Lindborg (2006) and Brethouwer et al. (2007) argued that this nonlinear process

can repeat itself in many steps and lead to a three-dimensional strongly anisotropic energy

cascade in which energy is transferred from large to small scales, as in three-dimensional
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turbulence. This particular type of dynamics has been observed in simulations (Riley

& deBruynKops 2003; Lindborg 2006; Brethouwer et al. 2007; Lindborg & Brethouwer

2007). In the inertial range, the horizontal one-dimensional kinetic and potential energy

spectra of stratified turbulence have the form

EK(kh) = CKε
2/3
K k

−5/3
h , (4)

EP (kh) = CP εP ε
−1/3
K k

−5/3
h , (5)

where kh is the horizontal wave number and εP is the potential energy dissipation. The

spectra from the stratified turbulence simulations of Lindborg (2005; 2006) with and

without system rotation showed a very good agreement with (4) and (5), with CK '

CP ' 0.5, and also agreed with mesoscale atmospheric horizontal k
−5/3
h -spectra measured

by Nastrom & Gage (1985).

The equation for the passive scalar fluctuations with a constant mean vertical gradi-

ent has the same form as the equation for potential temperature fluctuations in a fluid

with constant background stratification. In this case, the passive scalar spectrum should

therefore be of the same form as in (5), which is also similar to the Obukhov-Corrsin

expression (1). Moreover, the two constants, Cθ and CP , should have the same value. It

can be expected that this spectral form has a certain degree of universality, so that it can

be observed in other cases, e.g. when the mean passive scalar gradient is in a horizontal

direction. In this paper, we study the passive scalar dynamics in stratified turbulence with

a constant horizontal mean gradient. To analyse whether the passive scalar spectrum is

consistent with (1) it is not sufficient to verify the k
−5/3
h dependence, since this can arise in

more circumstances (Warhaft 2000). We must also study the scaling with the parameters
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εK and εθ. By calculating passive scalar one-dimensional spectra and structure functions

in the direction which is either aligned or perpendicular to the mean gradient we assess

if the passive scalar dynamics is horizontally isotropic in the inertial range. Furthermore,

we will study scalar intermittency by calculating the fourth-order passive scalar structure

functions.

2. Simulations

Numerical simulations of homogeneous turbulence with a uniform stratification are car-

ried out with a pseudospectral code using periodic boundary conditions in all three direc-

tions. The horizontal sides of the domain, Lx and Ly, are equal and much larger than the

vertical side Lz (Lindborg 2005; 2006). The following set of equations are solved

∂u

∂t
+ u·∇u = −∇p + Duu + Nezφ− foez × u + f , (6)

∇·u = 0 , (7)

∂φ

∂t
+ u·∇φ = Dφφ−Nuz , (8)

∂θ

∂t
+ u·∇θ = Dθθ −G·u . (9)

Here, u is the velocity and uz is the vertical velocity component, ez is the vertical unit

vector, φ = gT ′/(NT0), where T ′ and T0 are the fluctuating and equilibrium potential

temperature respectively, g is the gravity constant, p is the pressure, fo = 2Ωsinσ is the

Coriolis parameter with σ the latitude and Ω the Earth’s rotation rate, f is a forcing term,

G is a mean scalar gradient, taken in the horizontal x-direction here, and Du, Dφ, Dθ are

diffusion operators. The latter are defined as

Du = Dφ = Dθ = −νh∇4
h − νv

∂8

∂z8
, (10)
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where ∇h is the horizontal Laplace operator and νh and νz are horizontal and vertical

diffusion coefficients respectively, which are equal for velocity, potential temperature and

the scalar. The forcing is restricted to the large scales and is purely horizontal and two-

dimensional. It is designed in such a way that it generates a constant energy input P , as

in Lindborg & Brethouwer (2007).

As we have argued, a simulation with a vertical mean gradient should produce the same

type of spectra for φ and θ. We have confirmed this, by carrying out simulations with G

in the vertical direction, using both identical and different initial conditions for φ and θ.

In this paper, we present the results from simulations in which G is in the horizontal x-

direction. The simulations enable us to determine to what degree passive scalar statistics,

such as spectra and structure functions, are universal, i.e. independent of the mean scalar

gradient direction. The simulation parameters are listed in table 1.

To assess the influence of rotation on scalar statistics we have carried out one simulation

with rotation (run Ar). Lindborg (2005) showed that stratified turbulence with a forward

energy cascade can prevail if the Rossby number Ro < 0.1. Here Ro = P 1/3/l
2/3
h fo with

lh the horizontal length scale at which the energy is injected. In run Ar Ro = 0.3.

3. Results

After an initial period of adjustment the flow field reaches a statistically stationary state

in which the sum of the kinetic and potential energy dissipation is equal to the forcing

input, and the kinetic and potential energy stay approximately constant. Through the

nonlinear cascade process the energy which is injected at the large scales is transferred to

small scales where it is dissipated. The velocity and potential temperature fields reach a
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statistical stationary state relatively fast. In run Ar also the scalar field becomes statistical

stationary, but in run A and B the scalar variance continues to grow slowly, implying that

the mean production of scalar variance, 2〈G·u〉, is not exactly balanced by the mean

dissipation, εθ. The computed dissipation-production ratios are 0.89 and 0.88 at the end

of runs A and B respectively. The slow growth of the scalar variance is likely caused by

the energy growth in the so-called shear mode with kh = 0 in run A and B. This growth

is inhibited by rotation in run Ar. Inertial range statistics are, however, not affected by

the scalar variance growth because it takes place on very long time scales. In terms of

an eddy turnover time teddy = l
2/3
h /P 1/3, run A is progressed till t = 158teddy and run B

till t = 12teddy. In the atmospheric mesoscale dynamics the eddy turnover time is of the

order of one day (Lindborg 2006).

Figure 1 shows compensated horizontal one-dimensional spectra of the kinetic and po-

tential energy extracted from the simulations. The imprint of the forcing of the modes

kh ∈ [1, 3] is visible in the kinetic energy spectrum. For wave numbers between kh = 3 and

about 40 and 100 in run A/Ar and B respectively, the kinetic and potential energy spectra

fall approximately on a straight horizontal line and display a k
−5/3
h -power-law range. We

find that CK ' CP ' 0.47 in agreement with Lindborg (2006) and Lindborg & Brethouwer

(2007). Figure 1 also displays the compensated horizontal one-dimensional spectra of the

scalar variance. These are calculated as the mean of the two one-dimensional spectra in

the x and y-directions. Just as the kinetic and potential energy spectra, the passive scalar

spectra show a k
−5/3
h -power-law range. Moreover, the compensated passive scalar spec-

tra approximately fall on top of the kinetic and potential energy spectra, implying that
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the Obukhov-Corrsin constant of stratified turbulence has the value Cθ ' 0.47. Interest-

ingly, this is close to the Obukhov-Corrsin constant observed in Kolmogorov turbulence

(Sreenivasan 1996). The rotation appears to have a minor or insignificant influence on

the inertial range spectra.

The passive scalar mean gradient introduces horizontal large-scale anisotropy in the

scalar field but this does not lead to any observable differences in the two horizontal

scalar spectra in the inertial range as shown in figure 2, which displays the ratio of the

scalar variance spectra in the x and y-directions. This ratio is very close to unity in the

inertial range, implying horizontal isotropy.

Figure 3 shows the scaled horizontal second-order passive scalar structure functions,

〈δθδθ〉/εθε
−1/3
K , from run A and B with r parallel to G. The horizontal structure function

with r perpendicular to G was almost indistinguishable from the structure function with r

parallel to G in the inertial range, which again is a sign of horizontally isotropic dynamics.

In run B, the second order structure function scales as r2/3 between r = 0.03 and about 0.5

and also in run A we see such a r2/3-range, although it is narrower. The computed constant

C ′
θ in (3) is 1.6 in run B and 1.9 in run A and this corresponds to Cθ ≈ 0.25C ′

θ ' 0.40 and

0.48, respectively. These values are quite close to Cθ ' 0.47 estimated from the scalar

variance spectra. The deviations from the theoretical relation Cθ ≈ 0.25C ′
θ are due to

the finite width of the inertial range. The second-order potential temperature structure

functions extracted from run B also showed a clear r2/3-scaling range (not shown here)

from which we estimated CP ' 0.45 which is close to the value estimated directly from

the potential energy spectrum.
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Intermittency theories for turbulence (Warhaft 2000) predict corrections to the

Obukhov-Corrsin theory. According to such theories the passive scalar structure func-

tion of order n scales as 〈δθn〉 ∼ rζn , where the scaling exponent ζn deviates from n/3. In

three-dimensional locally isotropic turbulence deviations indeed occur for n ≥ 3 (Warhaft

2000). We have calculated the fourth-order horizontal passive scalar structure functions

and observed that ζ4 ' 1.15, which is smaller than the Obukhov-Corrsin theory prediction

ζ4 = 4/3. The calculated fourth-order potential temperature structure functions showed

similar scaling exponents whereas the fourth-order velocity structure functions did not

display a clear scaling range.

The flatness factor of the passive scalar difference δθ is defined as

F =
〈δθ4〉
〈δθδθ〉2 . (11)

It is displayed in figure 4 together with the flatness factors of the potential temperature and

longitudinal velocity difference. According to the Obukhov-Corrsin theory, F should be

constant in the inertial range. In our simulations F is not constant but grows for decreasing

r, indicating a growing intermittency as the scales become smaller. The passive scalar

flatness factor is proportional to r−0.2 in the inertial range in run A and B, and proportional

to r−0.4 in run Ar. In all runs, the flatness factors of the potential temperature and the

velocity is also proportional to r−0.2 (the results from run Ar are very similar to run A and

not shown here). At small separations F is of the order 10, which is a sign of intermittent

high amplitude events in the small-scale turbulent field. In all simulations, the flatness

factor of the scalar is larger than the flatness factors of the potential temperature and

velocity. In the latter two cases F approaches the Gaussian value 3 at large r whereas
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for the scalar it does not in run A and B. This indicates a stronger intermittency in the

scalar field than in the potential temperature and velocity fields. Measurements in the

atmospheric boundary layer show that the flatness factor of the velocity scales as r−0.12

in the inertial range (Dhruva et al. 1997), but in the middle atmosphere F grows much

faster with decreasing scales (Lindborg 1999) revealing a much stronger intermittency

than in our simulations.

We conclude that the results of the numerical simulations are consistent with predictions

made on basis of stratified turbulence theory, according to which the horizontal spectra

and structure functions of passive scalar variance have the same form as in the Obukhov-

Corrsin theory for locally isotropic turbulence. It is, however, important to realise that the

dynamics of stratified turbulence is radically different from classical isotropic turbulence.

The stratified turbulence we have simulated here is extremely anisotropic, with vertical to

horizontal length scale aspect ratios of O(0.01). The simulation results are also consistent

with atmospheric observations. Our study suggests that measured passive scalar mesoscale

range spectra in the middle atmosphere can be explained by the presence of stratified

turbulence at these scales.
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Run A Ar B

Fh 2.5× 10−3 2.5× 10−3 5.8× 10−4

Lx/Lz 40 40 256

LzN/
√

EK 29.8 27.5 19.8

Nx ×Nz 384× 96 384× 96 1024× 128

νh 8.0× 10−15 8.0× 10−15 7.2× 10−18

νv 3.7× 10−22 3.7× 10−22 6.5× 10−29

εP /εK 0.32 0.39 0.31

Table 1. Overview of the numerical and physical parameters used in the simulations.

Nx and Nz are the number of modes in the horizontal respectively vertical direction.

The ratio of the vertical grid spacing and Ozmidov length scale ε
1/2
K /N3/2 is 7.1 in all

simulations.

Figure 1. Compensated horizontal one-dimensional kinetic energy spectra

EK(kh)k
5/3
h /ε

2/3
K , potential energy spectra EP (kh)k

5/3
h ε

1/3
K /εP and passive scalar variance

spectra Eθ(kh)k
5/3
h ε

1/3
K /εθ. The straight line is C = 0.47. (a), run A; (b), run Ar; (c), run

B.
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Figure 2. Ratio of the horizontal scalar variance spectra with kh parallel to the mean

scalar gradient and perpendicular.

Figure 3. Scaled second-order structure function of the passive scalar 〈δθδθ〉/εθε
−1/3
K

with r horizontal and parallel to the mean scalar gradient.

Figure 4. Flatness factors of the longitudinal velocity differences F (δu), potential

temperature F (δφ) and the scalar with r parallel to G, F (δθ).
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