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A new computationally cheap stochastic Smagorinsky model which allows for backscatter of
subgrid scale energy is proposed. The new model is applied in the large eddy simulation of decaying
isotropic turbulence, rotating homogeneous shear flow and turbulent channel flow at Re�=360. The
results of the simulations are compared to direct numerical simulation data. The inclusion of
stochastic backscatter has no significant influence on the development of the kinetic energy in
homogeneous flows, but it improves the prediction of the fluctuation magnitudes as well as the
anisotropy of the fluctuations in turbulent channel flow compared to the standard Smagorinsky
model with wall damping of CS. Moreover, the stochastic model improves the description of the
energy transfer by reducing its length scale and increasing its variance. Some improvements were
also found in isotropic turbulence where the stochastic contribution improved the shape of the
enstrophy spectrum at the smallest resolved scales and reduced the time scale of the smallest
resolved scales in better agreement with earlier observations. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2711477�

I. INTRODUCTION

Accurate descriptions of turbulent flows are desirable in
many engineering applications and geophysical situations. A
promising method in this respect is large eddy simulation
�LES� which is an under-resolved numerical simulation of
the Navier-Stokes equation whereby the influence of the un-
resolved, subgrid scales �SGSs� on the large scales has to be
modelled. Many approaches to develop subgrid models in
LES have been proposed and many of them rely upon some
kind of scale similarity assumption between the resolved and
unresolved scales, and depend on the resolved scales in a
deterministic way. The widely known Smagorinsky model
for the unclosed subgrid stress is based on a mixing length
hypothesis whereby a SGS velocity scale is constructed from
the resolved rate of strain and the filter length scale
�Meneveau1�. The model has several known drawbacks. Two
examples are that it does not provide for backscatter of tur-
bulent kinetic energy and that it overpredicts the correlation
time of the resolved turbulence as pointed out by He et al.2

The dynamic model Germano et al.3 provides for backscatter
but the model constant yields large fluctuations and it can
easily become unstable. Applying averaging in homogeneous
directions to obtain the constant eliminates the stability prob-
lem but the model loses generality and the ability to account
for backscatter. In the similarity model developed by Bardina
et al.4 the full unfiltered velocity field is estimated by the
resolved velocity and the SGS stress is computed using a
secondary explicit filtering at equal or larger filter scale. The
model does not provide for enough dissipation and is usually
used in an ad hoc combination with a Smagorinsky term. A

recent SGS model by Stolz and Adams5 is the approximate
deconvolution model �ADM�, which can be regarded as a
generalized similarity model. Deterministic models based on
scale similarity have proven to perform well in many situa-
tions. However, it is well known that interaction between the
resolved scales and subgrid scales give rise to random fluc-
tuations in the SGS stress �Leslie and Quarini6 and
Kraichnan7�. Consequently, the subgrid scale stress tensor
extracted from direct numerical simulation �DNS� contains
stochastic noise that cannot be modelled by any deterministic
subgrid-scale model. De Stefano et al.8 applied a wavelet
denoising technique to isotropic turbulence to separate the
incoherent part �close to white noise� from the coherent part
of the velocity field. They found a very large amount of
incoherent noise in the subgrid stress tensor. These random
fluctuations in the SGS stress introduces stochastic backscat-
ter which is a physical process that is missing in many SGS
models of today. We believe that the stochastic influence of
the subgrid scales on the resolved scales has to be modelled
in order to get a correct description of the smallest resolved
scales. In this paper we will use a stochastic process to model
the stochastic influence of the SGS scales.

The use of stochastic processes in subgrid modelling in
LES has been treated by several authors. Bertoglio9 included
a random white noise force to simulate backscatter in homo-
geneous turbulence. He adjusted the amplitude of the sto-
chastic force to fit the amount of backscatter with EDQNM
�Eddy-Damped Quasi-Normal Markovian� predictions. Ber-
toglio also introduced a finite time scale of the stochastic
force and observed some differences in third order statistics
due to the finite time scale. Leith10 supplemented the Sma-
gorinsky model by spatially and temporally uncorrelated ran-
dom SGS stresses calculated as the rotation of a stochastic
vector potential. The backscatter spectrum will then have the

a�Electronic mail: linus@mech.kth.se
b�Electronic mail: geert@mech.kth.se
c�Electronic mail: viktor@mech.kth.se

PHYSICS OF FLUIDS 19, 035107 �2007�

1070-6631/2007/19�3�/035107/12/$23.00 © 2007 American Institute of Physics19, 035107-1

Downloaded 29 Jan 2008 to 130.237.233.133. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp

http://dx.doi.org/10.1063/1.2711477
http://dx.doi.org/10.1063/1.2711477
http://dx.doi.org/10.1063/1.2711477


k4 slope derived by Kraichnan.7 Leith10 found that the back-
scatter was able to excite growth of resolved energy in a
plane mixing layer. Chasnov11 calculated the Kolmogorov
constant from LES of forced isotropic turbulence using a
partly stochastic SGS model. The model contained an eddy
diffusivity term and a stochastic force derived from the
EDQNM stochastic model equation. The inclusion of the sto-
chastic force improved the slope of the energy spectrum in
LES. Mason and Thomson12 proposed a Smagorinsky-
stochastic model based on the same stochastic vector poten-
tial as Leith and applied the model to the LES of the bound-
ary layer. Their Smagorinsky-stochastic model clearly
improved the mean velocity profile and the anisotropy of the
velocity fluctuations close to the wall, compared to the stan-
dard Smagorinsky model. Schumann13 also based his model
on the Smagorinsky model and added the stochastic behavior
of the SGS scales by random SGS stresses for the velocity
field, and by random SGS scalar fluxes for the passive scalar
field constructed from random velocity and scalar fluctua-
tions. The random fluctuations were solutions to the Lange-
vin equation �Langevin14� with a finite time scale and con-
trollable variance. The Schumann model was applied to the
LES of decaying isotropic turbulence, where the model was
shown to improve the shape of the energy spectrum at the
smallest resolved scales. The model also had a small impact
on the decay rate of the turbulence kinetic energy. A more
recent example of stochastic SGS modelling using the
Langevin equation is the Lagrangian stochastic model by
Wei et al.,15 who coupled their Lagrangian model to Eulerian
LES. Their stochastic model was shown to improve the two
time correlation in a Lagrangian frame as well as scalar dis-
persion.

The purpose of this study is to further develop the work
of Alvelius and Johansson16 and develop a computationally
inexpensive stochastic model for the subgrid scales of the
velocity field and validate this new model. We also apply the
idea of stochastic modelling to the subgrid scales of a pas-
sive scalar field.

II. STOCHASTIC SUBGRID MODELLING

A. Filtered equations

The filtered incompressible Navier-Stokes and passive
scalar equations in a rotating frame read ��ijk is the permu-
tation tensor�
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where ũi and �̃ are the filtered velocity and passive scalar,
respectively, and where p̃ includes both the pressure and the
centrifugal force. �i is the system rotation vector and Pr is

the Prandtl number. The subgrid stress tensor �ij =uiuj
˜ − ũiũj

and the subgrid flux vector qj =�uj
˜− �̃ũj have to be modelled

to close the equations.

B. A stochastic model

The idea behind the present stochastic subgrid model is
to model the random influence of the subgrid stress and flux
by a stochastic process with the aim to improve the descrip-
tion of the smallest resolved scales. In this paper we make
use of the solution to the Langevin equation

dX�x,t� = aX�x,t�dt + b�2adW�x� , �2�

where a and b are constants and dW�x� are spatially and
temporary independent random numbers with the normal dis-
tribution N�0,�dt�. The solution X�x , t� to �2� is a stationary
process with zero mean, E�X�x0 , t��=0, and constant vari-
ance, V�X�x0 , t��=b2. The time scale of the process can be
characterized by the decay rate of the correlation
E�X�x0 , t�X�x0 , t0+ t�� /VX=exp�−at�. It follows that the time
scale of the process,�X=1/a, decreases with increasing val-
ues of a. The Langevin equation was originally a stochastic
model for the Brownian motion of particles, see Langevin,14

but it can also be considered as a model for a fluid particle
trajectory in isotropic turbulence. In that case �X is the La-
grangian integral time scale and it is possible to choose the
model parameters a and b so that the Lagrangian structure
function becomes consistent with Kolmogorov theory, see
Pope.17 Our stochastic model is based on the Smagorinsky
model in which the eddy viscosity is constructed from the

filter scale � and a velocity scale � � S̃ij�. We let X�x , t� rep-
resent a random fluctuation in the velocity scale ��1
+X� � S̃ij� induced by the interactions with the subgrid scales.
As a result we obtain a partly stochastic eddy viscosity

�T = Cs
2�1 + X�x,t���2�S̃ij� , �3�

where Cs is the Smagorinsky constant and � is the filter
scale. The part corresponding to the Smagorinsky model
should generate the right amount of mean dissipation
whereas the stochastic part provides for backscatter and cre-
ates realistic SGS fluctuations. The model parameter a en-
ables control of the time scale of the stochastic fluctuations
and the parameter b enables control of the amount of
backscatter.

The subgrid scales are advected by the resolved scales. It
follows that X is advected by the flow as well and that �x

should be computed in a Lagrangian frame of reference. This
is, however, beyond the scope of the present study. Instead,
we neglect the advection and take �x to be an Eulerian time
scale. The time scale of the stochastic noise that we intend to
model is that of the smallest resolved velocity scales. There-
fore, we take �x to be proportional to the time scale of the
SGS velocity field estimated from the filter scale � and the
energy transfer. From dimensional arguments we have

�X = C� �2

��	

1/3

, �4�

where C is a model constant, and �=−�ijS̃ij is the SGS dis-
sipation. Because �X=1/a this defines a. When the Smagor-
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insky model is applied to �4� �X becomes proportional to the
shear time scale, ��Sij�−3	1/3, which is a characteristic time
scale of the smallest resolved scales.

Hence, stochastic noise which has a correlation time
about as long as the time scale of the subgrid velocity field
and which is uncorrelated in space, enters the subgrid stress
through the eddy viscosity. The eddy diffusivity for the sub-
grid scalar flux is modelled using a constant PrT=0.6 and
thus also contains stochastic noise.

III. SIMULATIONS

LES were carried out for three different test cases: de-
caying isotropic turbulence, rotating homogeneous shear
flow, and fully developed turbulent channel flow. Three dif-
ferent subgrid models were applied: the standard Smagorin-
sky model, the stochastic model based on the standard Sma-
gorinsky model, and the dynamic model as defined by Lilly18

�both with model constant averaging in all homogeneous di-
rections and with clipping of large negative values�. Nega-
tive eddy viscosity in LES has to be treated with care. The
stochastic model predicts locally negative total viscosity
��T+�� that could lead to numerical instabilities under some
circumstances. A large time scale, �X, and a large variance of
the stochastic process increases the probability for numerical
instability. For the LES of turbulent channel flow, using the
present choice of parameters, it was necessary to neglect
predictions of negative spikes in the transfer beyond −50
times the mean energy transfer. Such negative spikes oc-
curred at less than 0.5% of the nodes and the clipping did not
significantly affect the mean energy transfer. The LES of
decaying isotropic turbulence and rotating homogeneous
shear flow did not need any clipping of negative spikes in the
transfer. The model parameters were chosen as b=2.3 and
C=0.2

LES of decaying isotropic turbulence represented on
1283, 643, and 323 grid points in a cubic box were performed
using a pseudospectral code with a third order Runge-Kutta
method for time advancement. The initial velocity field, with
the initial turbulence Reynolds number ReT=20000, was ran-
dom with a prescribed high Reynolds number shape of the
energy spectrum and the Smagorinsky constant was chosen
as Cs=0.17. The aliasing errors were removed using a com-
bination of phase shifting and truncation.

LES of rotating homogeneous shear flow with 1283, 643,
and 323 grid-points were performed in a periodic box with
the dimensions 4	
3	
2	. The filtered incompressible
Navier-Stokes equations with a constant uniform shear, Ui

=Sx3�i1, and the passive scalar equation with a mean scalar
gradient, Gi=�i3, were solved using the same pseudospectral
code as in the previous test case. Rogallo’s method was used
to simulate homogeneous shear flow, i.e., the grid moves
along with the mean flow to enable the use of periodic
boundary conditions, and it is remeshed periodically. Some
information is lost during the remeshing. However, the losses
are not significant for the evolution of the flow. Fully devel-
oped turbulence obtained from isotropic decay was used as
an initial condition and the flow is rotating about the span-
wise direction, �i=��i2, at the nondimensional rotation

numbers R=2� /S=0, −1/2, and −1. The initial scalar field
was without any fluctuations. The initial nondimensional

shear rate was chosen as SK̃ / �̃=3.38, and the initial turbu-

lence Reynolds number was ReT= K̃0
2 / ��0̃��=1500. The LES

results were compared to DNS data of homogeneous turbu-
lent shear flow represented on 960
512
576 grid-points in
a box with the dimensions 4	
2	
2	. The DNS data was
filtered to the resolutions 323, 643, and 1283 using both a
spectral cutoff filter and the Gaussian filter used by Cerutti
and Meneveau.19 In the DNS the initial Reynolds number,
ReT=135, is lower than in the LES. Moreover, the mean
scalar gradient in the DNS is directed in the streamwise di-
rection instead of the transverse direction as in the LES.
However, we believe that it is appropriate to compare data on
the amount of backscatter with the LES results. We will also
use the filtered data to compare the intermittency of the SGS
energy dissipation to the intermittency of the SGS scalar
variance dissipation.

LES of turbulent channel flow at the wall friction Rey-
nolds number Re�=360 represented on 64
97
48 grid-
points was performed in a box with the dimensions 4	�

2�
4	� /3, using Cs=0.12 and van Driest damping

C2 = Cs
2�1 − e−y+/25�2, �5�

where y+ is the wall distance normalized in wall units, when
the Smagorinsky and stochastic model were employed. The
time scale �X was calculated according to �4� without wall
damping of Cs. The grid spacing is �x+=71, �z+=35 and an
averaged grid spacing of ��y+	=7.4. The numerical code is
spectral in the streamwise �x� and spanwise �z� directions
and uses Chebychev representation in the wall normal direc-
tion �y�. The LES results were compared to filtered DNS data
obtained from Alvelius and Johansson.16 The DNS �see Alve-
lius and Johansson16 or Grundestam et al.20� is represented
on a 384
257
240 mesh and was filtered to a 64
48
mesh in the x and z directions using a spectral cutoff filter.
There was no explicit filtering in the y direction. We have
also employed a sharp cutoff filter in Chebychev space as an
explicit filter in the wall normal direction, but it is omitted
here since it only had a very small impact.

IV. DECAYING ISOTROPIC TURBULENCE

A. Turbulent kinetic energy and enstrophy

Figure 1 shows the time development of the turbulence
kinetic energy for the 643 LES of isotropic turbulence and

the spectra of K̃ and the enstrophy at, T= �̃0t / K̃0=5, where

K̃0 and �̃0 represent the initial values. The time development

of K̃ in the LES with the Smagorinsky model and stochastic
model differ little showing that the stochastic term has a very
small influence on the mean dissipation rate. The kinetic en-

ergy decays with an asymptotic power law scaling K̃�t�
� t−1.35. The only difference due to the present stochastic
model is that the LES follows the power law decay rate

K̃�t�� t−1.35 a bit longer than with the Smagorinsky model.
This is substantially different from the behavior of the sto-
chastic model by Schumann,13 which contributes to the mean
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energy transfer and decreases the decay rate of K̃�t� in the
LES of isotropic turbulence. The energy spectrum at T=5
�Fig. 1�b�� reveals that there is an increased activity at the
smallest resolved scales due to the stochastic noise, but the
difference is small. The increased small scale activity is more
pronounced in the enstrophy spectrum in Fig. 1�c�. The sto-
chastic model yields better agreement with the Kolmogorov
inertial range scaling k1/3 at the smallest resolved scales com-
pared to the Smagorinsky model. This should be regarded as
an improvement since the smallest resolved scales lie within
the inertial range.

Figure 1�d� shows the time scale �X with a constant C
=0.2 at T=5 as a function of cutoff wave number in LES of
decaying isotropic turbulence. The time scale decreases as
�X�kc

−2/3 which is the correct behavior for an eddy time
scale within the inertial subrange according to Kolmogorov
theory. Hence, there is no need for a filter scale dependence
of C. The value C=0.2 can be explained from the fact that

�Cs
2�1/3�0.2. This is desired because then we have �X

���Sij�−3	1/3, which is appropriate when using the Smagorin-
sky model.

B. Backscatter

Backscatter is local energy transfer from the SGS to the
resolved scales, see Piomelli et al.21 and Cerutti and
Meneveau.19 In the present model backscatter is represented
by intermittently negative eddy viscosity assuming that the
SGS stress is aligned with the resolved rate of strain. This is
of course only a simple model for the real backscatter phe-
nomenon. It is well known that backscatter represented by a
smooth eddy viscosity gives a wrong scaling of the backscat-
ter spectrum. However, the stochastic eddy viscosity pro-
posed in this paper is spatially delta-correlated, and we can
follow the steps by Schumann13 to show that the model has
the required k4 scaling of the backscatter spectrum. The time

FIG. 1. �a� Time development of the turbulence kinetic energy. �b� Energy spectrum at T=5. �c� Enstrophy spectrum at T=5. �d� Filter scale dependence of
�X at T=5. Stochastic model, solid line; Smagorinsky model, dashed line.
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scale of X is not relevant for the spectral behavior because X
is white noise in space with a Dirac type spatial autocorrela-
tion at any fixed time. The stochastic part of the modelled
SGS stress is linear in X and will essentially have the same
delta-autocorrelation as X. White noise has a k2 slope of the
spectrum in three dimensions. It follows that the backscatter
spectrum, which scales as the power spectrum of �X /�xj, has
the desired k4 behavior. Following Schumann the random
SGS stresses transfers energy at the rate
2Cs

2�2ui��X �S �Sij� /�xj. The spectrum of negative events of
stochastic energy transfer at T=5 is plotted in Fig. 2�a�. Evi-
dently, it scales as k4 in the inertial subrange. Most of the
transfer comes from k�0.5kc �85%� and �45%� comes from
k�0.75kc.

The subgrid dissipation � of the stochastic model can be
decomposed into two parts

� = Cs
2�2�S̃ij�3 + XCs

2�2�S̃ij�3 
 �S + �X, �6�

where �S is the standard Smagorinsky contribution and �X

is the stochastic contribution which is linear in X. Figure 2�b�
shows the probability density function �PDF� of �S and �X

at T=5 respectively. From the PDF of �X we see that it is
symmetric about its mean value ��X	=0. Again, this shows
that the stochastic contribution to the eddy viscosity does not
change the mean dissipation in a direct manner. �S has no
backscatter of turbulent kinetic energy and has a positive
mean value. The combination of the Smagorinsky model and
the stochastic term thus accounts for a combination of for-
ward energy flux �if 1+X�0� and backscatter �if
1+X
0�.

One basic constraint on the backscatter is that the energy
that is transferred to the larger scales must not exceed the
SGS kinetic energy. To prevent such events it is required to
have a small and controllable time scale of the backscatter,
since a short time scale of the backscatter decreases the

amount of energy transferred to the larger scales. The sub-
grid kinetic energy in the present LES, i.e., the trace of the
SGS stress, is unknown and is lumped together with the pres-
sure when solving the LES equations. It is, however, possible
to show that the energy transferred by the stochastic model
during the time �X��Sij�−1 scales as

Ktr � �2Cs
2�1 + X��Sij�3�X � �2�Sij�2.

This is the same scaling as one obtains by constructing a
model for the SGS kinetic energy from the squared Smago-
rinsky velocity scale KSGS����Sij��2. Hence, by choosing the
proposed time scale of X and a constant model parameter b,
the energy transferred to the larger scales during the time �X

will decrease in the same way as the SGS kinetic energy
within the inertial subrange. Note that this scaling for the
energy backscatter cannot be guaranteed with a dynamic
Smagorinsky model, because the time scale of the backscat-
ter event cannot be controlled. A controllable time scale that
decreases with filter scale is also important for the stability of
the LES, since a long correlation time of negative eddy vis-
cosity leads to numerical instabilities.

C. Correlation time

Time correlations are important in LES of sound genera-
tion, see He et al.2 He et al.2 showed that in LES with the
Smagorinsky model the time scales are overpredicted at all
turbulent length scales, especially close to the filter scale,
and suggested a stochastic force to solve the problem. The
present stochastic model adds such a stochastic SGS force to
the velocity field. We have chosen to study the time correla-
tions in decaying isotropic turbulence. The results of the cor-
relation time scales are affected by the decay of the turbu-
lence intensity, but it is appropriate for comparison of the
Smagorinsky and stochastic models because the mean turbu-

FIG. 2. �a� Spectrum of the stochastic energy transfer. �b� PDF of the subgrid dissipation according to the stochastic model. �X, solid line; �s, dashed-dotted
line.
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lent kinetic energy develops in the same way for both models
as shown before. In correspondence with He et al., we define
the correlation coefficients as

c�k,t,�� =
�ui�k,t�ui�− k,t + ��	

�ui�k,t�ui�− k,t�	
, �7�

where the average operator denotes averaging over a spheri-
cal shell in wave number space. In Fig. 3 the time correlation
coefficients at k=0.75kc of the present stochastic model de-
cay faster in time than the coefficients of the Smagorinsky
model. In the case C=0.2 the correlation coefficients de-
crease faster than at C=0.8 which is expected because the
time scale of X is smaller at C=0.2. The correlation time
scale as a function of k is computed as

�*�k,t1� = �
0

�

c�k,t1,��d� �8�

and is shown in Fig. 4, for t1=5. The stochastic model pre-
dicts shorter correlation times than the Smagorinsky model
for all k, but in particular at large k the reduction of �* is
large and this is where it is most desired, as was also pointed
out by He et al. Similar improvements of the behavior of the
correlation time scale were reported by Wei et al.15 using a
Lagrangian stochastic model coupled with Eulerian LES.

V. ROTATING HOMOGENEOUS SHEAR FLOW

A. Large scale statistics

Figure 5 shows the time development of the turbulent
kinetic energy in rotating homogeneous shear flow. The flow

is strongly destabilized by rotation at R=−0.5. At R=−1, K̃
still grows but at much slower rate than at R=0 in agreement
with Brethouwer and Matsuo.22 The growth has a pro-

nounced exponential part, K̃= K̃0e�St at R=0 and R=−1/2.
At R=0 the exponential growth rate is in agreement with the
experiment by Tavoularis and Corrsin.23 Cs=0.10 is used in
the standard Smagorinsky and stochastic model, which is

equal to the value Cs�0.10 predicted by the dynamic model.
This value is also close to the value Cs=0.11 suggested by
Canuto and Cheng24 for homogeneous shear flow, but much
smaller than the value Cs=0.19 used by Bardina.4 The time

development of K̃ �and the Reynolds stresses� are very simi-
lar for the LES with the stochastic model and the dynamic
model according to the figure. The results for the Smagorin-
sky model and stochastic model were indistinguishable, as
should be expected.

Next, we turn our attention to the scalar mixing. The
direction of the turbulent flux is defined as

� f = atan� ��̃�ũ3�	

��̃�ũ1�	

 , �9�

where ũi� and �̃� are the fluctuating velocity and scalar com-

ponents, and where ��̃�ũ1�	 and ��̃�ũ3�	 are the mean turbulent
scalar fluxes in the x1 and x3 direction, respectively. Accord-
ing to Fig. 5�b�, the development of � f depends on the rota-
tion number. The angle � f in the LES with the standard,
dynamic and stochastic Smagorinsky model approach the
same equilibrium values and the results were found to yield
good agreement with DNS results of Brethouwer and Matsuo
and Rogers et al.25 Also here, the results of the stochastic
model are very close to those of the Smagorinsky model. The
ratio of the mean turbulent diffusivity to the molecular dif-
fusivity is about 50 showing that the similarities between the
predictions of the stochastic and the Smagorinsky model are
not owed to a low Reynolds number.

B. Backscatter

Despite the small differences in large scale statistics in
the LES with the standard Smagorinsky and stochastic
model, there are significant differences at the smaller scales.
One element is the backscatter of kinetic energy, which is
absent in LES with the Smagorinsky model but can be mod-
elled by employing the stochastic model. If we assume that it

FIG. 3. The time correlation coefficient for k=0.75kc at T=5. Standard
Smagorinsky model, dashed-dotted line; stochastic model C=0.8, dashed
line; C=0.2, solid line.

FIG. 4. Time scale, �*�k�, as a function of the wave number. Standard
Smagorinsky model, dashed-dotted line; stochastic model with C=0.2, solid
line.
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is appropriate to model all backscatter by the stochastic eddy
viscosity, we can adjust the parameter b so that the modelled
amount of backscatter matches observations. Piomelli et al.21

found that the probability of backscatter is about 50% for a
sharp spectral cutoff filter and about 30% with a Gaussian
filter at all locations in turbulent channel flow. The present
stochastic model is not able to predict 50% backscatter prob-
ability unless b→�. We separate the mean SGS dissipation
into averaged forward ��+	 and backscatter ��−	
contributions

��+	 + ��−	 = ��	 �10�

and calibrate the model with a Gaussian filter as reference. In
the filtered DNS data using a Gaussian filter the ratio
−��−	 / ��+	 is typically 0.4 with a slight increase at smaller
filter scales. A constant b in the stochastic model implies a
constant ratio −��−	 / ��+	. We choose b=2.3 which implies
−��−	 / ��+	�0.4, which yielded a fair overall agreement
with the DNS results as shown in Fig. 6. The spectral cutoff
filter implies higher ratios, typically −��−	 / ��+	�0.7. A
constant fraction of backscatter is not completely well justi-
fied. Piomelli et al.21 showed that there is an increasing trend
for the backscatter with the Reynolds number. The estimated
value is therefore not universal, but a further study would be
necessary to address this question. However, we believe that
−��−	 / ��+	�0.4 is a fair approximation for a Gaussian fil-
ter for a wide range of Reynolds numbers. With a constant b
the amount of backscatter scales with the mean energy trans-
fer. This is consistent with the EDQNM theory for isotropic
turbulence with an infinite inertial subrange where the scal-
ing constant depends on the type of filter. Leslie and Quarini6

found a forward to backward transfer ratio of −��−	 / ��+	
=0.254 for a Gaussian filter and −��−	 / ��+	=0.578 for
spectral cutoff filter. The rotation number and the model pa-
rameter a did not have any significant effect on the amount
of backscatter in the LES.

The stochastic model accounts also for backscatter of
scalar variance in the same manner as for the turbulent ki-
netic energy. This is shown in Fig. 7�a�, where the PDF of
the total scalar variance dissipation,

Q = − 2qi���̃/�xi �11�

is plotted together with the PDF of the total SGS dissipation,
for the LES with a resolution of 1283. In agreement with the
DNS data in Fig. 7�b�, the peak of scalar PDF is more narrow
than for the velocity field indicating that the scalar field is
more intermittent than the velocity field. The amount of sca-
lar variance backscatter −�Q−	 / �Q+	 in Fig. 6, agrees reason-
ably well with that of the DNS data despite the fact that we

FIG. 5. �a� The time history of the turbulent kinetic energy. �b� The direction of turbulent scalar flux. Dynamic model, dashed line; stochastic and Smagorinsky
model, solid line.

FIG. 6. Amount of backscatter in the LES with different resolution and
DNS data with different filter widths. Stochastic model, solid lines; DNS
data with Gaussian filter, dotted lines; DNS data with spectral cutoff filter,
dashed lines. Energy backscatter, square; scalar backscatter, triangle.
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calibrated the constant b to fit the data for the velocity field.
It seems appropriate to use the same process X and parameter
b as for the velocity field.

C. Intermittency of SGS dissipation

The flatness factor of the subgrid dissipation

F =
��� − ��	�4	
��� − ��	�2	2 �12�

is a measure of the intermittency. Cerutti and Meneveau19

compared the flatness factor of the subgrid dissipation pre-
dicted by various subgrid stress models using a velocity field

obtained from DNS. They found that the dynamic model
without spatial averaging predicts an intermittent SGS dissi-
pation, i.e., large values of F, and that the Smagorinsky
model predicts SGS dissipation that is about as intermittent
as the real SGS dissipation. The flatness factor of �, at R
=0 according to the LES with the stochastic model, the
clipped dynamic model �Cs

2�−0.01� and the standard Sma-
gorinsky model are plotted in Fig. 8�a�.

The constant a in the stochastic model is varied by
changing C in Eq. �4�. We can see that the flatness predicted
by the stochastic model with C=0.2 is of the same order of
magnitude as for the standard Smagorinsky model, whereas

FIG. 7. PDF of the energy SGS dissipation and the scalar variance SGS dissipation according to �a� the stochastic Smagorinsky model; �b� the filtered DNS
data using a spectral cutoff filter. Energy SGS dissipation, dashed line; scalar variance SGS dissipation, solid line.

FIG. 8. �a� Flatness factor F��� at different filter scales. Stochastic model with C=0.2, solid line; stochastic model with C=0.8, dotted line; dynamic model
�Cs

2�−0.01�, dashed line; standard Smagorinsky model, dashed-dotted line. �b� F�Q� /F���. Stochastic model, solid line; standard Smagorinsky model,
dashed-dotted line; filtered DNS, dotted line.
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the intermittency of � according to the clipped dynamic
model and the stochastic model with C=0.8 �Fig. 8�a�� is
much too large. Hence, by choosing C=0.2 the stochastic
model provides for backscatter in the form of “negative vis-
cosity” without being too intermittent. The time scale of the
backscatter is an important parameter considering numerical
instabilities that can result from large values of F. A large
time scale allows the instabilities to grow in time. Both the
dynamic model and the stochastic model allow locally nega-
tive total viscosity. The present results indicate that the rea-
son for the result of the dynamic model to be much more
intermittent is the time scale of the backscatter rather than
the negative viscosity itself.

The PDF of � and Q in Sec. V B indicated that Q is
more intermittent than �. From Fig. 8�b� we see that this is
the case. Apparently, the resolved scalar gradient is more
intermittent than the resolved strain rate. According to the
filtered DNS data, using a Gaussian filter, the ratio of the
flatness factor of Q to that of � varies from 2.5 to 1.6 within
the present range of filter scales. The ratio predicted by the
Smagorinsky model is somewhat smaller and the result of
the stochastic model is slightly larger. The flatness ratio ob-
tained using the spectral cutoff filter is very similar to that
using the Gaussian filter.

VI. TURBULENT CHANNEL FLOW

A. Mean velocity and Reynolds stresses

Figure 9 shows the mean velocity profile for turbulent
channel flow computed with different SGS models. Both the
stochastic model and the Smagorinsky model have a log-
layer slope but overpredict the magnitude of the mean veloc-
ity in comparison with the DNS, as could be expected from a
model based on van Driest damping, see for example Hughes
et al.26 However, the inclusion of stochastic noise decreases
slightly the magnitude of the mean velocity profile in the
log-layer which yields a better agreement with the DNS. The

mean velocity according to the dynamic model, with averag-
ing of the model constant along the two homogeneous direc-
tions, is similar to that of the stochastic model within the
log-layer.

The diagonal Reynolds stresses are also improved by the
inclusion of the stochastic term �Figs. 10�a�–10�c��. The sto-
chastic model decreases the peak values of streamwise fluc-
tuations and increases the peak values of spanwise and wall
normal fluctuations, which yields a significantly better agree-
ment with the filtered DNS data. Another positive feature
resulting from the stochastic backscatter is that the spanwise
and wall normal fluctuations are larger in the near-wall re-
gion. Such increased near wall activity due to stochastic
backscatter was also found by Mason and Thomson12 in their
LES of a turbulent boundary layer.

The dynamic model also improves the diagonal stresses
compared to the Smagorinsky model by increasing the span-
wise and wall normal fluctuations in the near-wall region.
This is not due to any stochastic backscatter but to a reduced
near-wall eddy viscosity compared to a van Driest damped
constant. It is interesting to note that the stochastic model
decreases the level of anisotropy of the fluctuations com-
pared to the Smagorinsky model. Figure 10�d� shows that the
improvement in the isotropy measure I= �ww	 / �uu	 is con-
siderable. The fluctuations predicted by the Smagorinsky
model are significantly too anisotropic.

B. Energy transfer statistics

The mean SGS dissipation ��	, the variance V���, the
length scale Lx���, and the mean backscatter according to
the LES and filtered DNS are shown in Fig. 11. The mean
SGS dissipation is predicted correctly by all three SGS mod-
els, except for the peak near the wall, but the variance V���
is not. The filtered DNS data attain very large values of
�V���, up to 10 times of that of the standard and dynamic
Smagorinsky models, indicating an intermittent behavior of
the real energy transfer. The variance of the energy transfer
becomes more realistic with the stochastic model. It is twice
as large as for the standard and dynamic Smagorinsky mod-
els which, hence, yields a somewhat better agreement with
the DNS.

The length scale of the subgrid dissipation is computed
from the correlation

Lx��� = �
0

1/2lx ����x0����x0 + x�	
���2	

dx , �13�

where lx is the box length in the streamwise direction, and
��=�− ��	 is the fluctuating part of the subgrid dissipation.
According to the DNS data, Lx���, is smaller than the mean
filter scale �= ��x��y	�z�1/3, indicating a large amount of
spatially decorrelated noise in the SGS stress. The standard
and dynamic Smagorinsky models predict Lx��� to be larger
than 5� away from the wall. This deficiency is presumably
associated with the large influence of low wave number in-
formation on the SGS stress in these models. Lx��smag� is, in
fact, comparable with the integral length scale of the stream-
wise velocity in the middle of the channel, see Fig. 11�c�.
The inclusion of stochastic noise into the SGS model rem-

FIG. 9. Mean velocity profile U /u�. Stochastic model, dashed line; Smago-
rinsky model, dotted line; dynamic model, dashed-dotted line; filtered DNS,
solid line.
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edies the problem. Lx��� is slightly larger than twice the
filter scale � according to the stochastic model, which is in
much better agreement with the filtered DNS data. The fil-
tered DNS suggest L�
� but this is not achievable in LES
because the energy transfer has to be resolved by the grid to
avoid truncation errors in the numerical method. The present
stochastic model predicts L��2.5�, i.e., the energy transfer
can be considered as resolved.

The backscatter derived from DNS using the spectral
cutoff filter is almost as large as the forward scatter with a
ratio −��−	 / ��+	�0.8 or −��−	�5.4��	. This ratio is ap-
proximately the same as that we found in homogeneous
shear flow using a spectral cutoff filter �Sec. V B�. The sto-
chastic model provides for backscatter with −�− /�+�0.4.

VII. CONCLUSIONS

A stochastic eddy viscosity Smagorinsky-type of model

based on a partly stochastic velocity scale ��1+X��S̃ij� is
proposed. The new model provides for stochastic backscatter
with the desired k4 scaling of the backscatter spectrum and
enables control of the length and time scales of the SGS
energy transfer. LES of isotropic decaying turbulence, rotat-
ing homogeneous shear flow with a passive scalar and fully
developed channel flow were performed. Three different sub-
grid models were used: the standard Smagorinsky model, the
dynamic Smagorinsky model, and the newly developed sto-
chastic model.

In isotropic turbulence there was no significant influence
on the kinetic energy development due to the stochastic term

FIG. 10. �a� �uu	+; �b� �vv	+; �c� �ww	+; �d� �ww	 / �uu	. Stochastic model, dashed line; Smagorinsky model, dotted line; dynamic model, dashed-dotted line;
DNS, solid line; filtered DNS, thick solid line.
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but the new model improved the shape of the enstrophy
spectrum at the smallest resolved scales and reduced the time
scale of the smallest resolved scales. The latter may be a
promising feature for the development of improved subgrid
scale models for aeroacoustics because the Smagorinsky
model overpredicts the time scale of the smallest resolved
scales �He et al.2�. The time scale �X of the stochastic process
with a constant model parameter C=0.2 was shown to have a
correct filter scale dependence in the inertial subrange. The
correct scaling of �X implies that the amount of energy that is
transferred to the larger scales during backscatter events de-
creases with filter scale, despite the constant variance b
=2.3 of the process. This is not only physically correct but
also essential for the stability of the LES. Such scaling of the
energy backscatter cannot be guaranteed with a dynamic
Smagorinsky model, because the time scale of the backscat-
ter event cannot be controlled.

The choice of the subgrid model has a small influence on
the large scale velocity and scalar statistics in rotating homo-
geneous shear flow, despite significant backscatter. However,
it was shown that the intermittency of the SGS dissipation of
the stochastic model is much smaller and more realistic than
that of the dynamic model with clipping of large negative
values of the model constant instead of spatial averaging.
The localized dynamic model accounts for local backscatter,
but due to long correlation time of the negative eddy viscos-
ity numerical instabilities occurred. The time scale and vari-
ance of the backscatter predicted by the proposed model is
adjustable. For the suggested model parameters the intermit-
tency of the subgrid dissipation was of the same order of
magnitude as for the standard Smagorinsky model and real-
istic. The local negative eddy viscosity occurring in LES
with the stochastic model did not cause numerical instabili-
ties since the correlation time scale of these events is short.

FIG. 11. �a� Mean SGS dissipation ��	; �b� �Var���; �c� Lx��� /� �the symbols are the velocity integral length scale Lx�u� /� from DNS�; �d� averaged
backscatter ��−	. Stochastic model, dashed line; Smagorinsky model, dotted line; dynamic model, dashed-dotted line; filtered DNS, solid line.
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The LES with the dynamical model using spatial averaging
did not provide for any backscatter.

In fully developed turbulent channel flow the stochastic
model improved the fluctuation magnitudes as well as the
anisotropy of the fluctuations, compared to the standard
Smagorinsky model with wall damping of CS. These im-
provements in the Reynolds stresses were comparable to
those obtained with the dynamic model with averaging of the
model constants along the homogeneous directions, but the
computational cost was much lower than for the dynamic
model. Moreover, the stochastic model improved the descrip-
tion of the energy transfer by reducing its length scale and
increasing its variance in better agreement with observations.
The stochastic backscatter seems to be an important part of
the SGS dynamics in wall bounded flows.

Further investigations are needed to account for the ad-
vection of the stochastic fluctuations. In the future we also
wish to investigate the implications for reacting flows where
the small scale scalar statistics are important, see Pitsch.27

The stochastic model may here offer an interesting approach
to this challenging area for LES computations.
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