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Chapter 1

Angular Momentum of Particle
Systems

This chapter presents the principles of linear and angular momentum in the form they
take for a system of particles. The elimination of the internal forces and moments is
discussed. The forms that the principle of angular momentum takes for some special
cases are derived and applied.

1.1 Linear and Angular Momentum of Particle Systems

In particle mechanics we have come across the concepts: (linear) momentum, p = mv,
and angular momentum, LA = AP × p, of a single particle of mass m and velocity v
at P. In terms of these concepts one finds that the equations of motion lead to

ṗ = F (1.1)
L̇A = MA (1.2)

and these equations are referred to as the principles of linear momentum and angular
momentum respectively. In the second of these equations it is assumed that the base
point A with respect to which the moments are taken is at rest. Moving base points
require special treatment and are discussed in a separate section. The purpose of this
section is to generalize these principles to a system of particles.

1.1.1 Centre of Mass Relations

A system of particles is simply a set of particles, at points Pj(t) at time t, with masses
mj where j = 1, . . . , N . Any mechanical system can be thought of as a system of
particles, so this is a very important concept. To start with we define the (linear)
momentum of the system to be the vector sum of the individual momenta

p =
N∑
j=1

pj =
N∑
j=1

mjvj . (1.3)

We denote the total mass m so that

m =
N∑
j=1

mj . (1.4)

If we multiply and divide with this in the left hand side of the previous equation we
get, using the centre of mass definition

rG =
∑N

j=1 mjrj∑N
j=1 mj

, (1.5)

1



2 CHAPTER 1. ANGULAR MOMENTUM OF PARTICLE SYSTEMS

the relationship

p = m

∑N
j=1 mjvj∑N
j=1 mj

= mvG . (1.6)

So, for a system of particles we find that the momentum can be expressed as total mass
times velocity of centre of mass:

p = mvG . (1.7)

The angular momentum of a system is also defined as the vector sum of the the
corresponding quantities for the individual particles

LA =
N∑
j=1

LAj =
N∑
j=1

APj ×mjvj . (1.8)

Here we can again attempt to introduce the centre of mass but things will not become
as simple as for linear momentum. We first put APj = AG + GPj and, since A is
assumed to be at rest, we get

vj =
d
dt

APj =
d
dt

(AG + GPj) =
d
dt

(AG + r′j) = vG + v′
j . (1.9)

Here r′j = GPj is the position vector of particle j with respect to the centre of mass
and v′

j is the velocity of particle j with respect to the centre of mass or, equivalently,
the velocity of particle j in the ‘centre of mass system’. According to their definition
these quantities obey

N∑
j=1

mjr′j =
N∑
j=1

mjv′
j = 0, (1.10)

see figure 1.1. We now rewrite the angular momentum using this:

LA =
N∑
j=1

(AG + r′j)×mj(vG + v′
j). (1.11)

When the parentheses are expanded we get four terms but two of these are seen to give
zero because of the relationships 1.10 so finallythe two parts of

the angular
momentum

LA = AG ×mvG +
N∑
j=1

r′j ×mjv′
j

⇐⇒
LA = AG × p + L′

G . (1.12)

The total angular momentum of a system is thus the sum of two parts: one, external,
which only refers to the centre of mass of the system and one, internal, L′

G , which
depends only on the positions and velocities of the particles with respect to the centre
of mass system. When the system reduces to a single particle this second internal part
vanishes.

The angular momentum with respect to the centre of mass, LG , is by definition

LG =
N∑
j=1

GPj ×mjvj (1.13)

so if we use that GPj = r′j and insert the result 1.9 we get

LG =
N∑
j=1

r′j ×mj(vG + v′
j) = (

N∑
j=1

mjr′j)× vG + L′
G . (1.14)
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Figure 1.1: This figure shows the definition of the centre of mass system (G, X ′, Y ′, Z ′)
of a three particle system. The position vectors of the particles in the fixed system,
OP i = ri (i = 1, 2, 3), are shown with filled black heads. The position vectors of the
particles in the centre of mass system, GP i = r′i, are shown with dashed heads. By
definition we then have that

∑
miri = mOG while

∑
mir′i = mGG = 0.
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4 CHAPTER 1. ANGULAR MOMENTUM OF PARTICLE SYSTEMS

Figure 1.2: Two examples of internal (inter particle) forces that both obey Newton’s third law
f12 = −f21. In the example on the left the forces are parallel to the vector between the particles,
f21 ‖ r21. In the example on the right this is not the case. Such cases must be excluded if the
angular momentum principle for systems is to hold in its usual form.

Because of 1.10 we now find
LG = L′

G . (1.15)

It should be noted that this equality is non-trivial since the symbol L′
G not only means

that the base point is taken to be G. The prime on the symbol indicates that the
velocities of the particles are to be taken relative to the centre of mass system, a
system which may be accelerated and thus not necessarily an inertial system.

1.1.2 Eliminating the Internal Forces

The force on one of the particles of a system can always be thought of as a sum of two
contributions: an internal force from the other particles in the system and an external
force from outside the system. The force on particle number k is then

Fk = Fi
k + Fe

k (1.16)

where the superscript ‘i’ stands for internal and ‘e’ stands for external. The internal
force on a given particle can always be thought of as arising from the other particles
of the system and it can therefore be expressed as the vector sum of of contributions
from the rest of the system. If we denote the force from particle j on particle k by

Force on k from j = fkj (1.17)

we can thus write

Fi
k =

N∑
j=1

fkj . (1.18)

It is natural to define fkk = 0 so that the term for j = k does not have to be excluded
from the sum. This is also a natural consequence of Newton’s third law,

fjk = −fkj , (1.19)

should we extend it to the case j = k, see figure 1.2
Let us now use this knowledge of the forces to study the time derivative of the

momentum for the particle system. We get

ṗ =
d
dt

N∑
j=1

mjvj =
N∑
j=1

mj r̈j = (1.20)
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=
N∑
j=1

Fj =
N∑
j=1

(Fi
j + Fe

j) = (1.21)

=
N∑
j=1

N∑
k=1

fjk + Fe = Fi + Fe. (1.22)

Here Fe denotes the force sum of the external forces. The double sum over the internal
forces gives 0 because of the relations 1.19 so that

Fi = 0, (1.23)

and consequently we now have
ṗ = Fe. (1.24)

This equation is called the principle of (linear) momentum for a system, or simply the
‘momentum principle’.

We now try to do the same thing for angular momentum. If we take the time
derivative we get

L̇A =
d

dt

N∑
j=1

APj ×mjvj =
N∑
j=1

(vj ×mjvj +APj ×mj r̈j) = (1.25)

=
N∑
j=1

APj × (Fi
j + Fe

j) =
N∑
j=1

APj × Fi
j +

N∑
j=1

APj × Fe
j = (1.26)

=
N∑
j=1

APj × Fi
j + Me

A = Mi
A +Me

A. (1.27)

Here Me
A stands for the moment of the external forces with respect to A. The sum of

the moments of the internal forces corresponds to the sum that became zero when we
derived the momentum principle. We can rewrite it as follows:

Mi
A =

N∑
j=1

APj × Fi
j =

N∑
j=1

(APj ×
N∑

k=1

fjk) =
∑
k,j

APj × fjk = (1.28)

=
1
2


∑

k,j

APj × fjk +
∑
k,j

APk × fkj


 = (1.29)

=
1
2

∑
k,j

(
APj × fjk +APk × fkj

)
=

1
2

∑
k,j

(
APj −APk

)
× fjk = (1.30)

=
1
2

∑
k,j

PkPj × fjk =
1
2

∑
k,j

rjk × fjk = Mi, (1.31)

where rjk ≡ rj − rk. So Newton’s third law makes the internal moment independent of
base point, but it does not make it zero. This expression shows that the sum will become
zero provided that the force from particle k to particle j is parallel to the vector from
particle k to particle j, i.e. if fjk ‖ rjk. This behavior of inter-particle forces agree with
those of the gravitational and electrostatic interactions. When magnetic interactions
are taken into account, however, it may be violated. Since magnetic forces are many
orders of magnitude weaker than the corresponding Coulomb forces between charges
it seems as if it might at least be a good approximation to neglect this sum. We thus
assume that

Mi
A = 0, (1.32)

and obtain the principle of angular momentum for a system, on the form



m 

m 

ϑ

X

Y 

Z
v

6 CHAPTER 1. ANGULAR MOMENTUM OF PARTICLE SYSTEMS

Figure 1.3: This figure shows the skew rotating two particle system discussed in example 1.1.

the principle of
angular
momentum L̇A = Me

A. (1.33)

That is, the time derivative of the angular momentum vector is equal to the total
moment of the external forces. This equation, or something equivalent which amounts
to the fact that the internal moments sum to zero, is often postulated in classical
mechanics. There are magnetic phenomena in physics where it seems to be violated
but this only means that the electro-magnetic field can carry an angular momentum
which is not taken into account by classical mechanics. In conclusion, one can safely
use equation 1.33, the angular momentum principle, when solving problems in classical
mechanics.

Example 1.1 At each end of a light rod of length 2R there is a small, heavy ball of mass
m. At its midpoint the rod is fixed to a rotating axis with which it makes an angle ϑ. The
axis rotates, with fixed direction, with constant angular velocity ω. Calculate the momentum,
angular momentum, external force and moment, with the midpoint of the rod as base point,
for this two particle system.
Solution: We choose the coordinate system as in figure 1.3, so that the rotation axis is along
the Z-axis. For the particle with positive z-coordinate we then have

r1(t) = R sinϑ(cosωt ex + sinωt ey) +R cosϑ ez, (1.34)
v1(t) = R sinϑω(− sinωt ex + cosωt ey) (1.35)

while the other particle has r2 = −r1 and v2 = −v1. This means that the linear momentum is

p = mv1 +mv2 = m(v1 − v1) = 0. (1.36)

The force is thus also zero: Fe = ṗ = 0. The angular momentum is

LO = r1 ×mv1 + r2 ×mv2 = 2mR2 sinϑω[− cosϑ(cosωt ex + sinωt ey) + sinϑ ez] (1.37)

Note that LOz = 2mR2 sin2 ϑω =const. but that LO(t) as a whole is not. By taking the time
derivative we find

Me
O = L̇O = 2mR2ω2 sinϑ cosϑ(sinωt ex − cosωt ey) (1.38)

The rotation axis must thus act with this moment on the light rod at its midpoint. ✷
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1.1.3 Summary

To sum up this section we have found that the two principles of linear and angular
momentum for a particle also hold, in the same form, for systems of particles provided
the total force and moment acting on the particle are replaced by the sum of the external
forces and their moments, respectively:

ṗ = Fe, (1.39)
L̇A = Me

A. (1.40)

The superscript ‘e’ on the right hand side quantities appear because we have needed to
carefully distinguish between internal and external forces in this section. In what follows
we will assume that it has been understood that only the external forces contribute
and skip the superscript. The momentum and angular momentum appearing here can
be expressed as follows

p = mvG , (1.41)
LA = AG × p + L′

G . (1.42)

The centre of mass motion of a particle system or body is thus just like the motion of
a particle, but the angular momentum will behave differently because of the presence
of the internal part L′

G . We will investigate this further below.

1.2 Moving the Base Point

We first investigate what happens to the angular momentum LA of system of particles
when the base point is changed from A to another point B. According to the definition
1.8 we get

LB =
N∑
j=1

LBj =
N∑
j=1

BPj ×mjvj = (1.43)

=
N∑
j=1

(BA+APj)×mjvj = BA×
N∑
j=1

mjvj +
N∑
j=1

APj ×mjvj (1.44)

= BA× p+ LA. (1.45)

We have thus derived the connection formula for angular momentum connection
formula for
angular
momentum

LB = LA + BA× p. (1.46)

This formula is of the same form and is derived in the same way as the corresponding
formula for the moment of a force system: MB = MA + BA× F.

1.2.1 The Angular Momentum Principle for a Moving Base Point

When the angular momentum principle in the form of equation 1.33 was derived it was
assumed that the base point A was at rest. We will now investigate how this formula
changes if we allow the base point to move.

Consider the connection formula 1.46 and assume that the point A is fixed but that
the point B is moving, and take the time derivative of both sides of the equation. This
gives

dLB
dt

=
dLA
dt

+
d(BA)
dt

× p+ BA× dp
dt

. (1.47)
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Since d(BA)

dt = −d(AB)

dt = −vB and we can rearrange this into the form

L̇A = L̇B + vB × p+AB × ṗ. (1.48)

We now put this expression into L̇A = MA and use the fact that ṗ = F:

L̇B + vB × p+AB × F = MA. (1.49)

When the last term on the left hand side is moved to the right and the connection
formula for moments is taken into account we end up with the resultangular

momentum
principle for
moving base
point

L̇B + vB × p = MB. (1.50)

The angular momentum principle must thus have the additional term vB × p on the
left hand side when the base point B moves with velocity vB. When this velocity is
zero this formula correctly reduces to the old result.

The use of a moving base point is particularly convenient when the extra term
vanishes. There are two (non-trivial) cases when this happens. Firstly is clearly zero if
p = mvG = 0, i.e. if the centre of mass of the body is at rest. Secondly it is zero if the
the two vectors of the vector product are parallel, that is, if vG ‖ vB. This happens if
the base point moves so that its velocity is parallel to that of the centre of mass.

1.2.2 Centre of Mass as Base Point

If we put B = G the above formula 1.50, use of p = mvG , gives the resultangular
momentum
principle for
centre of mass as
base point

L̇G = MG . (1.51)

When the centre of mass is used as base point no extra terms arise independently of
how G moves. If we recall the result of equation 1.15 we also have

L̇′
G = MG (1.52)

which means that one may calculate the angular momentum using quantities in the
centre of mass system.

With the help of the connection formula for moments, MB = MA + BA × F, and
ṗ = F, one can rewrite the above formulae so that one gets, for example,

L̇′
G +AG × ṗ = MA. (1.53)

This form is valid independently of the motion of the point A.

1.3 Time Integrals and Conservation laws

If we time integrate the principle of momentum ṗ = F from t = t1 to t = t2 we find

p(t2)− p(t1) =
∫ t2

t1
Fdt. (1.54)

The time integral of the external force is a vector quantity, the impulse of the force and
we write

I ≡
∫ t2

t1
Fdt. (1.55)

If a force acts continuously the impulse will depend on the two integration limits.
Mostly, however, one speaks of the impulse of a force that is non-zero only for some
finite time. The quantity I is then independent of the integration interval as long
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it contains the time-interval when the force is non-zero. The integrated form of the
momentum principle can also be written

∆p = I (1.56)

which says that the change in momentum for a system, or a body, is given by the
impulse of the ( external) force on the system. If there is no external force there will
consequently be no change in the momentum, i.e.

p = const. when F = 0. (1.57)

This is sometimes called the conservation law for the momentum.
Results and definitions analogous to those above can also be found for the angular

momentum principle L̇A = MA. The time integrated form is

LA(t2)− LA(t1) =
∫ t2

t1
MA dt (1.58)

so if one defines the angular impulse as follows

HA ≡
∫ t2

t1
MA dt (1.59)

one finds that the change in the angular momentum vector ∆LA over some time interval,
is given by the angular impulse delivered by the external moment during this time
interval

∆LA = HA. (1.60)

Should the (external) moment on the system be zero the angular momentum will be
constant and we have the conservation law for angular momentum:

LA = const. when MA = 0. (1.61)

The conservation laws for momentum and angular momentum are often useful in prob-
lem solving. Note that these equations are vector equations and that they thus really
correspond to three real equations each. With suitable choice of basis vector directions
one can often find that the conservation laws apply, if not in full, at least for one or
more of the component equations.

The ideas of impulse and angular impulse are of particular importance when large
forces act during short times, i.e. when one has impact. We will return to this later.

1.4 Continuous Mass Distributions

Even if all kinds of matter, in principle, may be thought of as systems of particles it
is often more convenient to to describe a body with the help of the continuous scalar
field, the mass density �m(r). This field has the property that the amount of mass, in
the small volume element dV at r, is dm = �m dV . With the help of this one finds the
expression

rG =
∫

Ω r�m(r) dV∫
Ω �m(r) dV

=
1
m

∫
Ω
r�m(r) dV (1.62)

for the centre of mass of the body.
If the body moves there one also has a velocity field v(r) which gives the velocity

of the element of mass dm(r) = �m dV at the point with position vector r. The
momentum of a body can now be written

p =
∫

Ω
v(r) dm =

∫
Ω
v(r)�m(r) dV (1.63)
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and the angular momentum

LA =
∫

Ω
[(r− rA)× v(r)] dm. (1.64)

Many of the derivations that we have made above become more intricate when we
must consider integrals over the bodies but these difficulties are mainly of a technical
nature and it is often taken as a postulate that the same laws hold for for continuously
distributed matter as for systems of particles. We shall adhere to this view in this text.
We will, however, mostly present the general definitions and derivations assuming the
particle system description and pass to the integrals over continuous distributions only
when it is convenient.

1.5 Projection on a Fixed Direction

All vector equations derived so far will give rise to scalar component equations if we
take the scalar product of the equations with a unit vector in the desired direction. This
can be done for any direction, or unit vector e, but we will, as a matter of convention,
choose this direction as the z-direction. The angular momentum principle thus gives

L̇A · ez = MA · ez =⇒ L̇Az = MAz (1.65)

Recall that if the point A is on the Z-axis then MAz = Mz is the moment with respect
to the Z-axis.

Let us now calculate the z-component of the angular momentum. To simplify the
notation we put the origin at the base point A = O. We now have

LOz =
N∑
j=1

(OPj ×mjvj) · ez (1.66)

=
N∑
j=1

mj(rj × vj) · ez =
N∑
j=1

mj(xj ẏj − yj ẋj). (1.67)

We now introduce cylindrical (polar) coordinates ρ, ϕ, and z. In terms of these we have
for the position vectors rj = ρj eρ+zj ez and for the velocities ṙj = ρ̇j eρ+ρjϕ̇j eϕ+żj ez,
see figure 1.4. This gives us

(rj × vj) · ez = [(ρj eρ + zj ez)× (ρ̇j eρ + ρjϕ̇j eϕ + żj ez)] · ez = ρ2
j ϕ̇j , (1.68)

so that

LOz(t) =
N∑
j=1

mjρ
2
j (t)ϕ̇j(t). (1.69)

If we now define the average angular velocity of the body (with respect to the Z-axis)
by

ωav(t) ≡
∑N

j=1 mjρ
2
j (t)ϕ̇j(t)∑N

j=1 mjρ2
j (t)

(1.70)

and the moment of inertia, Jz, of the body with respect to the Z-axis by

Jz ≡
N∑
j=1

mjρ
2
j (1.71)

we see that we get
LOz = Jzωav. (1.72)



ϕ  

ϕ  

ρ 

ρ 

m 

m 
m 

X 

Y  

v 

v v 1

1

1

1

2

2

3

3 
3

3

ρ 
2

ρ 
2

ϕ  
2

ϕ  
2

ρ 
2

. 

. 

1.5. PROJECTION ON A FIXED DIRECTION 11

Figure 1.4: A system of three particles viewed along the Z-axis, which points up from the
paper. The cylindrical coordinates ρi, ϕi (i = 1, 2, 3) of the particles are shown as well as their
velocity vectors vi. For particle number 2 the components of the velocity along the radial (eρ)
direction and the eϕ-direction are indicated.

We can now apply these results to the z-component of the angular momentum
principle, equation 1.65, in the form

L̇Oz = MOz. (1.73)

We find that
J̇zωav + Jzω̇av = MOz, (1.74)

and this is thus a general expression for the z-component of the angular momentum
principle.

If all particles have the same angular velocity ϕ̇ then, of course, ωav = ϕ̇. The most
important case for which this happens is when the system is rigid and rotates around
the Z-axis. In general, however, it will happen whenever the velocities of the particles
are such that the ϕ̇i all are equal while ρ̇i and żi are arbitrary. For these cases, when
the angular velocity is well defined, one can simply write

LOz = Jzϕ̇. (1.75)

If we furthermore assume that all ρi are constant, which they will be if the body is rigid
and rotates around the Z-axis, then Jz is constant. In this case equation 1.74 reduces
to

Jzϕ̈ = MOz, (1.76)

i.e. the angular accelaration is simply proportional to the moment.
If there is no external moment with respect to the Z-axis throughO so thatMOz = 0

then the z-component of the angular momentum vector will be conserved, LOz =const.,
and this thus implies that

Jzωav = const. (1.77)

This equation tells us that a large moment of inertia Jz implies small (average) angular
velocity and vice versa, a fact used by springboard divers and figure skaters, see figure
1.5.

Example 1.2 A person walks on a horizontal platform that can rotate freely around a vertical
Z-axis. The empty platform has the moment of inertia Jz. The person P, which can be treated
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Figure 1.5: This picture shows a person on a platform that can rotate with negligible friction
around a fixed vertical axis. Then Jz(t)ωav(t) = constant and this means that the angular
velocity is larger when the weights in the hands are held close to the body and the body is close
to the rotation axis, and vice versa.

Figure 1.6: This figure shows the platform discussed in example 1.2 as seen from above. It
also shows the path that the person walking on the platform has taken between points A and
B of the platform and the cylindrical coordinates (ρ, ϕ) of a point P on this path relative to
a coordinate system fixed to the platform. The angle −α is the angle that the platform has
rotated relative to a fixed direction (the X-axis) when the person has walked from the initial
point A to P.
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as a particle, has mass m. The position of the person relative to a coordinate system OX ′Y ′Z ′

fixed to the platform is measured in terms of cylindrical coordinates ρ and ϕ, see figure 1.6.
a) Find a relationship between the small change in angle dϕ of the person and the corresponding
absolute rotation angle dα of the platform relative to a fixed direction (the X-axis).
b) Use this relationship to calculate the rotation angle ∆α of the platform when the person
walks along a given path (ρ(t), ϕ(t)) on the platform from points A, with ϕ = 0, to B, with
ϕ = ∆ϕ, and show that this angle depends in general on the path.
Solution:
a) There is no external moment with respect to the Z-axis on the system of particles defined
by the platform and the person on it. Therefore Lz = constant. There are two contributions
to Lz, that of the platform, which is Jzα̇, and that of the person which is given by mρ2(α̇+ ϕ̇).
Note that the angular velocity of the person with respect to the fixed system is equal to the
angular velocity of the platform, α̇, plus the angular velocity of the person with respect to the
platform, which is ϕ̇. We thus have

Lz = Jzα̇+mρ2(α̇+ ϕ̇). (1.78)

If we have initial conditions such that α̇(0) = ϕ̇(0) = 0 we get Lz = 0 and the above equation
can be written

0 = Jz
dα
dt

+mρ2(
dα
dt

+
dϕ
dt

). (1.79)

This gives us the relation

dα
dt

= −
mρ2 dϕ

dt
Jz +mρ2

(1.80)

between the two angular velocities.If we multiply by dt we get the differential relation

dα = − mρ2dϕ
Jz +mρ2

(1.81)

for small angles.
b) If we integrate the relation 1.80 between the time t = 0, when the person is at A, and

the time t = T , when the person is at B, we get

∆α =
∫ T

0

α̇ dt = −
∫ T

0

mρ2(t)ϕ̇(t)
Jz +mρ2(t)

dt = −
∫ ∆ϕ

0

mρ2(ϕ)dϕ
Jz +mρ2(ϕ)

. (1.82)

This integral will obviously depend on e.g. the function ρ(ϕ). If the radius ρ is kept constant,
ρ(ϕ) = ρ0, during the walk, the integral can be evaluated and one finds the relation

∆α = − mρ2
0

Jz +mρ2
0

∆ϕ (1.83)

between the two angles. Note that the angle of rotation of the platform is of opposite sign to
that of ∆ϕ as indicated in figure 1.6. ✷
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Figure 1.7: This picture refers to problem 1.3 and shows the rod, its rotation axis, and the
placement in the coordinate system.

1.6 Problems

Problem 1.1 A particle P of mass m has constant speed v in a circular trajectory of
radius r in the xy-plane with centre at the origin of the coordinate system.
a) Calculate the angular momentum LA with respect to a point A with Cartesian
coordinates (a, b, c).
b) Then calculate the time derivative of this quantity to getMA and investigate whether
the point A can be chosen so that MA = 0.
c) Use the result of b) to find the direction of the force acting on the particle.

Problem 1.2 A three particle system consists of particles with masses 3m, m, and
5m. Their position vectors have Cartesian components (t,−2, 3t2), (t − 1, t3, 5), and
(2− t2, t, t3) respectively. Calculate as functions of time
a) the total force acting on the system,
b) the total moment with respect to the origin.

Problem 1.3 A thin straight homogeneous rod of length a + b rotates in a plane
parallel to the xy-plane around an axis which is parallel to the Z-axis and which lies in
the xz-plane. The axis goes through the rod at a point which is at the distance a from
one endpoint and the distance b from the other. The axis is at the distance c from the
Z-axis along the positive X-axis, see figure 1.7. Determine the distance c so that the
angular momentum of the rod with respect to the Z-axis is zero when the rod is in the
position shown in the figure i.e. when the rod is parallel to the X-axis and the end of
length a points towards the Z-axis. Use the following two methods to get Lz:
a) Integration along the rod.
b) Use of the connection formula 1.46.

Problem 1.4 In order to measure the moment of inertia JL of the complicated rotor
of an electric motor one mounts the rotor on bearings of negligible friction so that it can
rotate freely around a horizontal axis L. A thin flexible string is then wound around
the axis of the rotor. This axis has radius r. A mass M is then hung in the string and
it is found that, when starting from rest, a length x of the string becomes unwound in
time T . What is JL? (See figure 1.13 in the hints and answer section if necessary.)
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Figure 1.8: This picture refers to problem 1.6 and shows the disc, the lever arm AB, the
counterweight at B. It also indicates the vertical rotation axis of the disk and the fixed vertical
rotation axis of the horizontal lever arm.

Problem 1.5 A person stands at rest on a horizontal platform that can rotate freely
around a fixed vertical axis. By turning the upper body relative to the lower the
person tries to look backwards. When the system is in this position the upper body
has been turned an angle α while the lower part of the body together with the platform
has turned an angle β, both with respect to the same fixed direction. The moment
of inertia of the upper body is J1 while that of the lower body plus platform is J2.
Calculate α as a function of the relative ‘twist’ angle α− β.

Problem 1.6 A homogeneous circular disc of mass M and radius R is being rotated
by a small electric motor at A, around a vertical axis, see figure 1.8. The electric motor
has mass m and is mounted at one end of a horizontal lever arm AB. At the other end
B of the lever arm, which can rotate freely around a fixed vertical axis at the distance
a from A, there is a counterweight. The distance of the counterweight from the fixed
axis is b and it balances the mass at the other end of the arm. The power supply of
the motor is suddenly cut off and the disc starts to slow down due induction effects in
the electric motor. Assume that the angular velocity of the disc initially was ω while
the lever arm was at rest. Calculate the final angular velocity of the disc.

Problem 1.7 A homogeneous solid sphere of mass M and radius R is rotating freely
with angular velocity ω0 around a vertical axis through its centre of mass. Along a
horizontal diameter a smooth narrow channel has been drilled through the sphere. Two
small balls each of mass m are initially at rest in the middle of the channel, see figure
1.9. A small charge between the balls suddenly explodes and gives them initial speeds
v in opposite directions. When the balls leave the sphere the angular velocity has
changed. Calculate the change in angular velocity and explain how it came about.

Problem 1.8 A horizontal homogeneous circular platform of mass m and radius R if
is mounted on a bearing so that it can rotate around a vertical axis with negligible
friction. A person of mass M walks on the platform along the path shown in figure
1.10. First 90◦ in a positive sense in a circular path at radius R, then radially inwards
from R to R/2, then 90◦ in a negative sense along a circular arc of radius R/2 and
finally back to the starting point along a radial path from R/2 to R. The 90◦ angles are
measured with respect to directions fixed on the platform. Use the result of example
1.2 to calculate the net absolute rotation of the disc after completion of the closed path.

Problem 1.9 A straight homogeneous bar AB of length # and mass m is suspended
horizontally in two vertical strings from each of its two endpoints A and B. A match
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Figure 1.9: The figure on the left refers to problem 1.7. Two small balls are initially in a
drilled channel in the middle of the rotating sphere.

Figure 1.10: The figure on the right refers to problem 1.8 and shows, from above, the closed
path followed by the person on the freely rotating platform.

Figure 1.11: The figure on the left refers to problem 1.10. Two particles are attached to two
springs symmetrically placed in a smooth pipe which can move on a smooth horizontal plane.

Figure 1.12: The figure on the right refers to problem 1.11. The cylinder starts with the
velocity and the angular velocity shown in the figure. It moves on a rough horizontal plane.

is held to the string at B so that it burns off. Calculate the ratio of the tensions in the
other string before and just after the burning.

Problem 1.10 A homogeneous straight smooth pipe of mass M and length a can
move on a smooth horizontal plane. In the middle of the pipe the ends of two identical
springs, each of unloaded length L and stiffness k, are attached. At the other ends of
the springs there are particles of mass m attached, see figure 1.11. At time t = 0 the
two particles are pulled out a distance b from their symmetric equilibrium positions
inside the pipe and are then released from rest. The pipe is at the same time given an
angular velocity ω0. Describe the qualitative motion of the pipe.

Problem 1.11 A homogeneous circular cylinder of mass m and radius r is given a
speed v and an angular velocity ω on a rough horizontal floor with coefficient of (kinetic)
friction f . Determine the value of ω so that the cylinder returns to the starting point
after a tour along the floor. See figure 1.12.
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Figure 1.13: This picture refers to answer 1.4 and is a view of the rotor along its axis (of
radius r). It also shows the string, wound round the axis, in which the mass M hangs down.
The forces acting on M are indicated.

1.7 Hints and Answers

Answer 1.1
a) LA = mv

(
c cos(vr t), c sin(

v
r t), r − a cos(vr t)− b sin(vr t)

)
b) L̇A = MA = 0 only for a = b = c = 0.
c) MO = 0 requires that F is parallel to OP.

Answer 1.2
a) F =

∑
mkr̈k = 2m(−5, 3t, 9 + 15t),

b) MO =
∑
rk ×mkr̈k = 2m(−18− 15t+ 15t2,−39t+ 10t3, 2t+ 3t2).

Answer 1.3
a) Elements of the rod of length dx have mass dm = mdx/(a+ b) and the velocities of
these elements are

v(x) = ẏ(x) = (x− c)ω

so that they are negative for x < c and positive otherwise. Now

dLz = (r× dm ṙ) · ez = xdmẏ(x)

. Integration thus gives

Lz =
∫ c+b

c−a
dLz(x) =

∫ c+b

c−a
x
mdx
a+ b

(x− c)ω =
mω

a+ b

[
c
1
2
(b2 − a2) +

1
3
(a3 + b3)

]
.

From this one finds that Lz = 0 when

c =
2
3
a2 + b2 − ab

a− b

which thus is the answer. One notes that when a → b it is not possible to make Lz = 0
except in the limit c → ∞.

Answer 1.4
The equations of motion can be written

JLϕ̈ = rS,

Mẍ = Mg − S.
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See figure 1.13 for notation. The length of unwound string x must obey

x = rϕ ⇒ ẍ = rϕ̈.

This system of equations is easily solved and then integrated with respect to time.
Finally solving for JL gives

JL =
1
2
Mgr2

x
T 2 −Mr2

for the moment of inertia of the rotor.

Answer 1.5
The answer is α = J2(α− β)/(J1 + J2). Note the limits J2 → 0 and J2 → ∞.

Answer 1.6
Use the fact that Lz is conserved since there is no external moment with respect to
the fixed vertical axis through the lever arm. Also note that the disc will slow down
until it has the same angular velocity as the motor and lever arm. The mass m′ of the
counterweight is calculated from the relation bm′ = a(M+m). The relation J0ω = J1ω

′

with J0 = 1
2MR2 and J1 = (J0 +Ma2) +ma2 +m′b2 then gives

ω′ =
ω

1 + 2 (M+m)
M

a(a+b)
R2

and this is the answer.

Answer 1.7
Use the fact that Lz is conserved for the system as a whole. The two balls contribute
the amount 2mr[rω(r)] to Lz when at radius r. Here ω(r) is the angular velocity of
the sphere when the ball are at radius r. The initial angular velocity is thus, with this
notation, ω0 = ω(0). The moment of inertia of the sphere itself is Js = 2

5MR2, the
balls contribute the amount Jb = 2mr2, when at radius r. The final angular velocity
is thus ω(R) = ω(0)M/(M + 5m) and the this gives

∆ω = ω(0)− ω(R) = ω0
5m

M + 5m

for the decrease.

Answer 1.8
The angle is given by

∆α = −
∫ π/2

0

MR2 dϕ
1
2mR2 +MR2

−
∫ 0

π/2

M(R/2)2 dϕ
1
2mR2 +M(R/2)2

= −π

2
3m
M

(2 + m
M )(1 + 2m

M )
.

Note that it goes to zero when m/M → ∞ i.e. when the platform becomes heavy. It
also becomes zero when the platform has negligible mass (m = 0). If the numerator
and denominator of the formula are both multiplied by M2/m2 the simplified result is
the same formula with m/M replaced by M/m.

Answer 1.9
Before the burning the tension in each string must be S′ = mg/2. Immediately after
the burning the bar is still horizontal. With a vertical Y -axis and with ϕ the angle
that the bar makes with the horizontal the principles of linear and angular momentum
give the equations of motion:

mÿG = S −mg,

JGϕ̈ = S#/2,
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where S is the tension in the string at A and JG = 1
12m#2 is the moment of inertia of

the bar for an axis perpendicular to the bar through it centre of mass (mid point). We
also have that for small ϕ (immediately after the burning)

yG = − #

2
sinϕ ⇒ ẏG = − #

2
ϕ̇ cosϕ ⇒ ÿG =

#

2
(ϕ̇2 sinϕ− ϕ̈ cosϕ)

The initial conditions ϕ(0) = ϕ̇(0) = 0 thus give

ÿG = − #

2
ϕ̈.

This equation together with the two equations of motion give us a system of three
equations for three unknowns (S, ÿG , ϕ̈). Solution of this system of equations gives us
the result S = mg/4. The ratio of the two tensions is thus

S′/S = (mg/2)/(mg/4) = 2

and this is the answer.

Answer 1.10
Since there are no external forces on the pipe its centre of mass will move with constant
velocity; if this velocity is initially zero the centre of mass (the middle of the pipe) will
remain at rest. The two particles will oscillate radially in the pipe and this means that
the moment of inertia of the pipe will vary and therefore the angular velocity of the
pipe will also vary.

Answer 1.11
The velocity of the centre of mass of the cylinder must have changed direction when
rolling without slipping occurs. This gives the condition ω > 2v/r.
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Chapter 2

Kinematics of Rigid Bodies

This chapter presents rigid body kinematics. This means that methods for describing
the position, the orientation, and the velocity state of the rigid body are presented.

2.1 Position and Orientation of a Rigid Body

A rigid body is a piece of matter for which it is possible to find a reference frame with
respect to which the mass distribution of the body is constant and all mass of the
body at rest. This reference frame will be called the body fixed reference frame. If one
considers the mass distribution to be a system of particles, {{mk, rk}; k = 1, . . . , N},
the rigid body is characterized by the fact that the distance between any pair of particles
is fixed and constant:

|ri − rj | = cij = constants for all i, j = 1, . . . , N. (2.1)

There are two types of displacement of a body, or system of particles, which conserve
the the distances within the body: translations and rotations (see figure 2.1).

A translation is characterized by a translation vector, d, and all points of a body
move in the same way under a translation

r′i = ri + d for all i = 1, . . . , N. (2.2)

Here r′i are the position vectors of the new positions of the particles that where at ri
before the translation.

A rotation can be defined to be a rigid displacement of space which leaves one point
fixed. We will study rotations in more detail below. It turns out that a rotation in
three-dimensional space leaves not just one point fixed but a line of points which define
an axis of rotation. A rotation can thus always be thought of as a turn some angle φ
around some axis parallel to ea through some point A of space.

In order to specify completely the position of the particles of a given rigid body, A,
with respect to a reference position in the observer reference frame O, we must, first
of all, know the position of some given point A of the body or rigidly connected to the
body. To give the position of the point A all we need is its position vector,

OA = rA = xA eO
1 + yA eO

2 + zA eO
3 , (2.3)

from the origin O of the observer fixed coordinates system with components xA, yA, zA
in the observer fixed basis eO

1 , eO
2 , eO

3 . This thus requires three coordinates. Secondly
we must know how the body has rotated around an axis through A. This requires
the knowledge of the direction of the rotation axis ea, i.e. two parameters, plus the
angle φ of rotation around the axis, one more parameter. Sometimes it is convenient
to formally combine these three parameters into the ‘rotation vector’

φ = φ ea, (2.4)

21



d

φ 

22 CHAPTER 2. KINEMATICS OF RIGID BODIES

Figure 2.1: This figure illustrates translation of a rigid body (on the left). A translation is a
displacement of the body such that all points of the body undergo the same translation. On
the right a rotation is illustrated. A rotation of a rigid body is a displacement of the body such
that one point, of the body or rigidly connected to the body, remains fixed.

but one must keep in mind that finite rotations do not add vectorially. The symbol
φ is, in this sense, only a convenient way of writing the three parameters specifying
the rotation. We will see later, however, that infinitesimal rotations do add, so that it
is meaningful to write for example δφ = δφ1 + δφ2. Rotations around a fixed axis
direction also are additive in this way.

To summarize we see that we need six numbers, three coordinates and three angles,
to specify the position and orientation of a rigid body. We can take the reference state
of the body to be one for which the point A coincides with the origin and for which
it has some given orientation. To bring it to any other position one then translates
it with d = rA without rotation. One then rotates it around an axis through A with
rotation vector φ to bring it to the desired orientation. One says that the rigid body
has six degrees of freedom and the six coordinates can be taken as the six components
of the vectors rA,φ.

The translational degrees of freedom of the body are similar to those of a particle
which we already know about. The rotational degrees of freedom are, however, quite
different and in order to understand the kinematics of the rigid body we must now
study the properties of rotations in greater detail.

2.2 Rotation Matrices

To describe the orientation of a rigid body A quantitatively one fixes an orthonormal
triad of basis vectors in the body. We shall denote these body fixed basis vectors
by eA

1 , eA
2 , eA

3 , where the superscript A indicates that these are fixed in the reference
frame defined by the body A. To specify the orientation of the body one can now give
the directions of these basis vectors in terms of basis vectors eO

1 , eO
2 , eO

3 , fixed in the
reference frame O of the observer. We then have

eA
1 = (eA

1 · eO
1 ) e

O
1 + (eA

1 · eO
2 ) e

O
2 + (eA

1 · eO
3 ) e

O
3 (2.5)

eA
2 = (eA

2 · eO
1 ) e

O
1 + (eA

2 · eO
2 ) e

O
2 + (eA

2 · eO
3 ) e

O
3 (2.6)

eA
3 = (eA

3 · eO
1 ) e

O
1 + (eA

3 · eO
2 ) e

O
2 + (eA

3 · eO
3 ) e

O
3 (2.7)

This cumbersome system of equations can be written much more concisely if we intro-
duce matrix notation. We first introduce the three by one (3× 1) column matrices of
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Figure 2.2: In example 2.1 the rotation matrix connecting the two bases in this figure according
to formula 2.10 is given.

basis vectors

EO =


 eO

1

eO
2

eO
3


 and EA =


 eA

1

eA
2

eA
3


 , (2.8)

and then the three by three (3× 3) matrix

ARO =


 (eA

1 · eO
1 ) (eA

1 · eO
2 ) (eA

1 · eO
3 )

(eA
2 · eO

1 ) (eA
2 · eO

2 ) (eA
2 · eO

3 )
(eA

3 · eO
1 ) (eA

3 · eO
2 ) (eA

3 · eO
3 )


 =


 cosα1 cosβ1 cos γ1

cosα2 cosβ2 cos γ2

cosα3 cosβ3 cos γ3


 (2.9)

of direction cosines of the body-fixed basis vectors with respect to the basis vectors
fixed in the observer reference frame. The equation connecting the two bases can now
be written on the form

EA = ARO EO (2.10)

where matrix multiplication is implied.

Example 2.1 Calculate the rotation matrix 2.9 explicitly for the case when EA is obtained
by rotating the basis EO the angle ψ around eO

3 in the positive sense, see figure 2.2.
Solution: The figure shows that eA

1 = cosψ eO
1 +sinψ eO

2 and that eA
2 = − sinψ eO

1 +cosψ eO
2 .

This means that the rotation matrix becomes

ARO = R3(ψ) =


 cosψ sinψ 0

− sinψ cosψ 0
0 0 1


 (2.11)

and, as indicated, we will denote this matrix by R3(ψ) which thus stands for a matrix that
rotates an angle ψ around the third basis vector. ✷

The rotation matrix ARO, being a 3× 3 matrix, has nine elements but these cannot
all be independent since the rows of the matrix are the components of orthonormal
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basis vectors in an orthonormal basis. Like any orthonormal basis the body-fixed basis
is characterized by the six relations

eA
i · eA

j = δij ≡
{

1 if i = j,
0 if i �= j.

(2.12)

between the scalar products. When these are written in terms of the components they
give the six conditions

cosαi · cosαi + cosβi · cosβi + cos γi · cos γi = 1 for i = 1, 2, 3
cosαi · cosαj + cosβi · cosβj + cos γi · cos γj = 0 for i, j = 1, 2; 1, 3; 2, 3

(2.13)

which the nine elements of the of the rotation matrix 2.9 must obey. The matrix can
thus depend only on (9 − 6 = 3) three independent parameters. A rotation is thus
completely specified by three parameters and this is in agreement with the statement
of the previous section where we explained how a rotation can be specified by three
components of the rotation vector φ.

The matrix equation 2.10 can be ‘solved’ for the basis EO in terms of EA by multi-
plying both sides with the inverse of ARO. We get

(ARO)−1 EA = (ARO)−1 ARO EO = 1 EO = EO. (2.14)

In order for our notation to be consistent we should have EO = ORA EA so that
(ARO)−1 = ORA. But if we interchange A and O in the first matrix of formula 2.9,
to get ORA, then we get a new matrix with rows which are equal to the columns of the
old and vice versa. A matrix obtained by interchanging rows and columns in another
matrix is called the transpose of the old and is denoted by a superscript T . We have
now shown that

(ARO)−1 = (ARO)T . (2.15)

A matrix which has this property, that the inverse is equal to the transpose, is called
an orthogonal matrix and the rotation matrices are thus orthogonal matrices. This
fact is closely related to the fact that the elements in the rows of such matrices are the
components of orthonormal basis vectors in an orthonormal basis. This is best seen by
the fact that the relations 2.13 (using 2.9) are equivalent to the matrix equations

ARO ORA = ARO (ARO)T = ARO (ARO)−1 = 1

⇐⇒ (2.16)
 cosα1 cosβ1 cos γ1

cosα2 cosβ2 cos γ2

cosα3 cosβ3 cos γ3




 cosα1 cosα2 cosα3

cosβ1 cosβ2 cosβ3

cos γ1 cos γ2 cos γ3


 =


 1 0 0

0 1 0
0 0 1


 .

2.3 Rotation of Vectors

Now that we know how to rotate a set of basis vectors we can study the effects of
rotation on any vector r. In order to do this we introduce a new way of writing a
vector which often is useful. If we denote the 1 × 3 row matrix of the components of
the vector in some basis as follows

r = (x1 x2 x3) (2.17)

we can express the vector r = x1e1 + x2e2 + x3e3, using the notation introduced in
formula 2.8, as the matrix product

r = r E = (x1 x2 x3)


 e1

e2

e3


 (2.18)
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Figure 2.3: This figure illustrates the effect of the rotation implied by the rotation vectorφ on
an arbitrary vector r. Note that |ea×er| = sinα so that the three vectors with open triangular
heads make up an orthonormal triad of basis vectors. When the rotated vector r′ is expressed
in terms of these one obtains formula 2.23.

If more than one basis is involved in the problem at hand we will indicate this with
superscripts on the relevant matrices, components, etc, so that we write

r = rO EO = (xO
1 xO

2 xO
3 )


 eO

1

eO
2

eO
3


 = rA EA. (2.19)

Note that the vector r itself is independent of the basis so that r = rO EO = rA EA. Use
of this and 2.10 and 2.16 shows that the components of a vector transforms according
to

rA = rO ORA. (2.20)

This equation essentially says that when we rotate the basis we must make a compen-
sating ‘rotation’ of the components in order to keep the vector the same. In order to
study the rotation of rigid bodies we, however, need to know how to actually rotate
vectors. One way of doing this is to rotate the basis without the compensating rotation
of the components. The vector then simply follows the basis in its rotation. To every
rotation matrix ARO there therefore corresponds a rotation operator R̂O→A defined by

r′ = R̂O→A r = rO ARO EO = rO EA. (2.21)

This can also be expressed as follows: the original vector is r = xO
1 e

O
1 + xO

2 e
O
2 + xO

3 e
O
3

while the rotated vector is R̂r = r′ = xO
1 e

A
1 + xO

2 e
A
2 + xO

3 e
A
3 .

One can also define a rotation operator R̂(φ) by means of the rotation vector
φ = φ ea. This is done as follows: the rotated vector r′ = R̂(φ)r is the vector
obtained by turning the vector r with its foot fixed at the origin an angle φ around the
axis through the origin parallel to the vector ea, in the positive sense according to the
right hand rule. This is illustrated in figure 2.3 which shows that the vector moves on
the surface of the cone with axis along φ, vertex at the origin and generators making
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an angle α = [φ, r] with the axis. If α = 0 the vectors in the figure become undefined
but then r is parallel to ea so the rotation has no effect. It should be clear from the
figure that

r = (r · ea) ea + (ea × r)× ea (2.22)

and that the rotated vector is given by (note that r = r er)

r′ = R̂(φ) r = (r · ea) ea + cosφ (ea × r)× ea + sinφ ea × r. (2.23)

The rotation matrix ARO corresponding to the rotation operator R̂(φ) will now be
calculated.

The two equations 2.21 and 2.23 can be used to calculate the elements of the rotation
matrix 2.9 explicitly in terms of the quantities of the rotation vectorφ = φ ea. In order
to do this we insert the expressions

r = rO EO = xO
1 eO

1 + xO
2 eO

2 + xO
3 eO

3 , (2.24)
ea = cosα1 eO

1 + cosα2 eO
2 + cosα3 eO

3 (2.25)

into equation 2.23. Here αi are the angles between the observer fixed (non-rotated)
basis vectors and the direction of the rotation axis ea. When this has been done it is
only a matter of some algebra to rewrite this equation (2.23) on the form

r′ =
3∑

i=1

3∑
j=1

xO
i Rij eO

j , (2.26)

where Rij stand for algebraic expression in terms of the quantities of the rotation vector.
When we compare this with the equation r′ = rO ARO EO written explicitly as a sum
over the matrix elements

r′ =
3∑

i=1

3∑
j=1

(rO)i (ARO)ij (EO)j =
3∑

i=1

3∑
j=1

xO
i (ARO)ij eO

j (2.27)

we see that the algebraic expressions Rij are in fact the matrix elements of the rotation
matrix ARO. When this program is carried out one finds the result

ARO(φ) = (2.28)(
(1 − cosφ) cos2 α1 + cosφ (1 − cosφ) cosα1 cosα2 + sinφ cosα3 (1 − cosφ) cosα1 cosα3 − sinφ cosα2

(1 − cosφ) cosα2 cosα1 − sinφ cosα3 (1 − cosφ) cos2 α2 + cosφ (1 − cosφ) cosα2 cosα3 + sinφ cosα1

(1 − cosφ) cosα3 cosα1 + sinφ cosα2 (1 − cosφ) cosα3 cosα2 − sinφ cosα1 (1 − cosφ) cos2 α3 + cosφ

)

This expression can be broken up into a sum of somewhat simpler parts

ARO(φ) = cosφ


 1 0 0

0 1 0
0 0 1


+ sinφ


 0 cosα3 − cosα2

− cosα3 0 cosα1

cosα2 − cosα1 0




+(1− cosφ)


 cos2 α1 cosα1 cosα2 cosα1 cosα3

cosα2 cosα1 cos2 α2 cosα2 cosα3

cosα3 cosα1 cosα3 cosα2 cos2 α3


 (2.29)

where the first and last matrices are seen to be symmetric and the middle one is
anti-symmetric. For small rotation angles φ the three terms in the sum represent
constant+quadratic, linear, and quadratic terms in φ, respectively. Note that the cosαi

are direction cosines of the axis direction so they obey cos2 α1+cos2 α2+cos2 α3 = 1 and
only two of them are independent. This means that this rotation matrix depends on
three independent parameters as we have discussed above. We will now find a different,
more direct way of parameterizing a rotation matrix.
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Figure 2.4: This figure shows the effect of the first step of the three necessary to achieve
general rotation. The rotation is from the fixed basis triad EO to the intermediate basis EC

and corresponds to rotation an angle ψ around the direction given by eO
3 .

2.4 Euler Angles and Non-commutation of Rotations

One way of constructing a general rotation and its matrix is to use three steps of the
kind used in example 2.1. The strategy then is to build up the rotation in terms of
three simple rotations each around one of the coordinate axes. Rotation matrices that
rotate around the respective axes are given by (see example 2.1)

R1(α) =

(
1 0 0
0 cosα sinα
0 − sinα cosα

)
,R2(α) =

(
cosα 0 − sinα

0 1 0
sinα 0 cosα

)
,R3(α) =

(
cosα sinα 0
− sinα cosα 0

0 0 1

)
(2.30)

In order to make a rotation matrix that rotates from the fixed basis EO to an arbitrarily
oriented basis EA we use now use these as follows. We first rotate an angle ψ around
eO

3 and get a new basis EC given by

EC = CRO EO = R3(ψ)EO. (2.31)

This step is illustrated in figure 2.4. We now rotate an angle θ around eC
1 from the

basis EC to the basis EB so that

EB = BRC EC = R1(θ)EC. (2.32)

This step is shown in figure 2.5. Note how the plane spanned by eB
1 and eB

2 now is
tilted an angle θ. The orientation of the basis EB is still not arbitrary since the basis
vector eB

1 necessarily is in the original 1,2-plane. This is now changed by the third step:
a rotation an angle ϕ around eB

3 . This is shown in figure 2.6 and the formula is

EA = ARB EB = R3(ϕ)EB. (2.33)

Any desired orientation of the basis triad EA can clearly be achieved with this sequence
of steps. If we now put it all together we have

EA = ARB BRC CRO EO = R3(ϕ)R1(θ)R3(ψ)EO = ARO(ψ, θ, ϕ)EO. (2.34)
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Figure 2.5: This figure shows the effect of the second rotation from the basis triad EC to the
second intermediate basis EB. This rotation is an angle θ around eC

1 . The line of intersection,
parallel to eC

1 = eB
1 , between the 1,2-plane of the O-system and the 1,2-plane of the B-system,

is sometimes called the line of nodes.

Figure 2.6: This figure shows the effect of the third and final rotation from the basis EB to
the new desired basis EA. The three angles, ψ, θ, and ϕ, which parameterize the total rotation
from EO to EA are called Euler angles. The symbols ψ̇, θ̇, and ϕ̇ indicate the axes around which
rotation takes place if the corresponding angle changes while the two others are held fixed.
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Figure 2.7: This figure illustrates the effect of two consecutive rotations of a rectangular box.
In the upper row the box is first rotated 90◦ around a vertical axis, then 90◦ around a horizontal
axis. In the lower row the same two rotations are performed in the opposite order. The end
results are clearly different and this shows that finite rotations do not commute; the order in
which they are done matters.

The parameters in the parameterization of the rotation matrix constructed in this way
are called Euler angles. The rotation matrix in terms of Euler angles ψ, θ, ϕ is thus

ARO(ψ, θ, ϕ) = R3(ϕ)R1(θ)R3(ψ). (2.35)

When the matrix multiplications are carried out explicitly one obtains

ARO(ψ, θ, ϕ) = (2.36)
 cosϕ cosψ − sinϕ cos θ sinψ cosϕ sinψ + sinϕ cos θ cosψ sinϕ sin θ

− sinϕ cosψ − cosϕ cos θ sinψ − sinϕ sinψ + cosϕ cos θ cosψ cosϕ sin θ
sin θ sinψ − sin θ cosψ cos θ


 ,

but this form is not particularly useful and is only given here for reference. By equating
the antisymmetric part of this matrix with the antisymmetric part in equation 2.29 one
can easily find the axis and angle of the net rotation produced by the three steps.

It is important to understand that the first and the last rotations R3 are not around
the same axis; the first is around eO

3 but the last is around eB
3 . From this one realizes

that the order in which rotations are done is important; the end result will change if
the order is changed. As long as one rotates about a fixed axis this is not true since,
clearly,

R3(ϕ)R3(ψ) = R3(ψ)R3(ϕ) = R3(ϕ+ ψ). (2.37)

This, however, makes it obvious that

R3(ϕ)R1(θ)R3(ψ) �= R1(θ)R3(ϕ)R3(ψ). (2.38)

Algebraically this depends on the fact the matrix multiplication is not commutative but
the reader should also try to visualize the geometric difference between the two rotations
implied by the left and the right hand side. The non-commutation of rotations is also
illustrated in figure 2.7.

2.5 Infinitesimal Rotations and Angular Velocity

Rotations by very small angles do commute, the condition being that one can ignore
quadratic terms. This is most easily seen as follows. For a small rotation vector δφ,
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using sin δφ ≈ δφ and cos δφ ≈ 1 in equation 2.29 we get

ARO(δφ) =


 1 0 0

0 1 0
0 0 1


+


 0 δφ3 −δφ2

−δφ3 0 δφ1

δφ2 −δφ1 0


 . (2.39)

Now let δφi
(i = 1, 2) be two rotation vectors of small magnitude given by

δφi
= (δφi

1, δφ
i
2, δφ

i
3) = δφi

1e
O
1 + δφi

2e
O
2 + δφi

3e
O
3 (2.40)

in the basis EO. Putting these into the matrix formula above we find that


 1 0 0

0 1 0
0 0 1


+


 0 δφ1

3 −δφ1
2

−δφ1
3 0 δφ1

1

δφ1
2 −δφ1

1 0








 1 0 0

0 1 0
0 0 1


+


 0 δφ2

3 −δφ2
2

−δφ2
3 0 δφ2

1

δφ2
2 −δφ2

1 0






=


 1 0 0

0 1 0
0 0 1


+


 0 δφ1

3 + δφ2
3 −δφ1

2 − δφ2
2

−δφ1
3 − δφ2

3 0 δφ1
1 + δφ2

1

δφ1
2 + δφ2

2 −δφ1
1 − δφ2

1 0


+O(δφ2). (2.41)

From this it is easy to show that

ARO(δφ1
)ARO(δφ2

) = ARO(δφ2
)ARO(δφ1

) = ARO(δφ1
+ δφ2

) (2.42)

provided quadratic terms can be neglected.
For a small rotation we now have according to 2.10 that

EA = ARO(δφ)EO =




 1 0 0

0 1 0
0 0 1


+


 0 δφ3 −δφ2

−δφ3 0 δφ1

δφ2 −δφ1 0






 eO

1

eO
2

eO
3




= EO + δEO = EO +


 δφ× eO

1

δφ× eO
2

δφ× eO
3


 = EO + δφ× EO. (2.43)

The effect of the antisymmetric matrix on the basis is thus equivalent to a vector
product. In the last term here the vector product in front of the column matrix EO of
basis vectors means that each vector in the matrix is to be multiplied vectorially by
δφ = δφ1eO

1 + δφ2eO
2 + δφ3eO

3 . The change in the basis vectors for a small rotation can
thus be written

δEO = δφ× EO (2.44)

by means of the vector product with the infinitesimal rotation vector.
We’ll now assume that the parameters of the rotation matrix are functions of time

so that the matrix describes the rotation of a rigid body A to which the basis EA is
attached with respect to the observer frame O. We wish to find the time derivatives of
the basis vectors of EA. The time derivative of a vector will depend on which reference
frame is considered as fixed. When it is the frame O which is fixed we denote this
by writing the time derivative

Od
dt . We can now define a matrix which gives this time

derivative as follows:

Od

dt
EA = Ė

A =


 ėA

1

ėA
2

ėA
3


 =

Od

dt
ARO EO =

(
Od

dt
ARO

)
ORA EA = OΩA EA (2.45)

Here we have introduced the angular velocity matrix for the rotation of the basis EA

with respect to the fixed basis EO

OΩA ≡
(

Od

dt
ARO

)
ORA. (2.46)
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We now show that this is an anti-symmetric matrix. We denote the three by three unit
matrix (with ones on the diagonal) by 1 and the three by three null matrix, with all
elements zero, by 0. We can now write, using equation 2.16

0 =
Od

dt
1 =

Od

dt
(ARO ORA) =

(
Od

dt
ARO

)
ORA + ARO

(
Od

dt
ORA

)
(2.47)

so that we have shown (
Od

dt
ARO

)
ORA = −ARO

(
Od

dt
ORA

)
. (2.48)

But if we use the rule (AB)T = BTAT for the transpose of a matrix product, we find
that [(

Od

dt
ARO

)
ORA

]T
= (ORA)T

(
Od

dt
ARO

)T

= ARO

(
Od

dt
ORA

)
. (2.49)

We thus find that (
Od

dt
ARO

)
ORA = −

[(
Od

dt
ARO

)
ORA

]T
(2.50)

or, equivalently,
OΩA = −(OΩA)T (2.51)

and this proves that the angular velocity matrix is anti-symmetric.
Just as in equation 2.43 above we can take the three elements of the anti-symmetric

matrix to define a corresponding vector. The vector corresponding to OΩA is the angular
velocity vector OωA

OΩA =


 0 OωA

3 −OωA
2

−OωA
3 0 OωA

1
OωA

2 −OωA
1 0


 (2.52)

and this matrix contains the components of this vector in the basis EA. Using this
vector we can now write the result of equation 2.45 in the form

Od

dt
EA =


 ėA

1

ėA
2

ėA
3


 = OΩA EA =




OωA × eA
1

OωA × eA
2

OωA × eA
3


 = OωA × EA. (2.53)

This equation should be compared to equation 2.44. It then shows that the small
change in the basis EA during the time dt is given by dEA = OωAdt × EA so that the
basis is rotated by the infinitesimal rotation vector

δφ = OωAdt. (2.54)

One should note, however that the angular velocity vector is not the derivative of the
rotation vector for finite rotation angles φ.

Example 2.2 Calculate the angular velocity matrix and vector of the rotation matrix

ARO = R3(ψ) =


 cosψ sinψ 0

− sinψ cosψ 0
0 0 1


 . (2.55)

calculated in the example 2.1.
Solution: Using the definition 2.46 we get

OΩA =
(

Od

dt
ARO

)
ORA =


Od

dt


 cosψ sinψ 0

− sinψ cosψ 0
0 0 1






 cosψ − sinψ 0

sinψ cosψ 0
0 0 1


 (2.56)

=


 −ψ̇ sinψ ψ̇ cosψ 0

−ψ̇ cosψ −ψ̇ sinψ 0
0 0 0




 cosψ − sinψ 0

sinψ cosψ 0
0 0 1


 =


 0 ψ̇ 0

−ψ̇ 0 0
0 0 0


 . (2.57)
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From this we get the angular velocity vector

OωA = (0, 0, ψ̇) = ψ̇ eA
3 (2.58)

which thus is parallel to the axis of rotation. In this example the axis of rotation is fixed,
but this is a general result; the angular velocity vector is parallel to the instantaneous axis of
rotation as indicated by equation 2.54. ✷

2.5.1 The Time Derivative of Vectors

The time derivative of a vector r will, as mentioned, depend on what reference frame
is used to measure its motion. By definition we have that the time derivative of the
vector r with respect to a reference frame A in which the triad of basis vectors EA is
fixed can be written, using the notation of equation 2.19,

Ad

dt
r =

Ad

dt
(rA EA) = (

d

dt
rA)EA = (ẋA

1 ẋA
2 ẋA

3 )


 eA

1

eA
2

eA
3


 (2.59)

since in this basis only the components are time-dependent. If we now assume that the
reference frame A rotates with respect to the observer frame O, then when taking the
time derivative of the vector, as measured in O, one must take account of the fact that
also the basis EA is timedependent. We get

Od

dt
r =

Od

dt
(rA EA) = (

d

dt
rA)EA + rA

Od

dt
EA =

Ad

dt
r+ rA OΩA EA. (2.60)

Use of this and equation 2.53 leads to the important resultconnection
between the time
derivatives of a
vector in
relatively
rotating reference
frames

Od

dt
r =

Ad

dt
r+ OωA × r. (2.61)

Note that this is a vector equation and that it therefore is independent of the bases
that are used. The components of the four vectors appearing in this equation may be
with respect to any suitable basis. When the basis is changed the components change
according to equation 2.20.

2.5.2 Additivity of the Angular Velocity

It is a reasonably well known and obvious fact that relative velocities are additive. This
means that if reference frame B has velocity OvB with respect to a fixed frame O, and
reference frame A has velocity BvA as seen from B, then the velocity of A with respect
to O is given by

OvA = OvB + BvA. (2.62)

It is much less trivial that the same thing holds for relative angular velocities. If a
basis triad EB has angular velocity vector OωB with respect to the reference frame O
in which EO is fixed, and if EA has angular velocity BωA with respect to the frame of
EB, then the angular velocity vector of A as seen from O is given by

OωA = OωB + BωA. (2.63)

Proof: We use equation 2.61 three times. First we get
Odr
dt =

Bdr
dt + OωB × r and into

this we insert
Bdr
dt =

Adr
dt + BωA × r to get

Odr
dt =

Adr
dt + (OωB + BωA)× r. Comparison

with equation 2.61 then proves the desired equality.
The result can, of course, be generalized to an arbitrary number of intermediate

frames. As a concrete example one might consider time derivatives of vectors with
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respect to the Euler angle rotated frame A given in equation 2.34 and figure 2.6. The
construction of this frame by means of a sequence of frames having simple rotations
relative to each other makes it easy to find its angular velocity. Generalizing the formula
2.63 to two intermediate frames, C and B, gives

OωA = OωC + CωB + BωA. (2.64)

Since the relative rotation of these frames are of the simple type studied in example
2.2 reference to figure 2.6 immediately gives

OωA = ψ̇ eC
3 + θ̇ eB

1 + ϕ̇ eA
3 . (2.65)

Using

eC
3 = sin θ sinϕ eA

1 + sin θ cosϕ eA
2 + cos θ eA

3 , (2.66)
eB

1 = cosϕ eA
1 − sinϕ eA

2 , (2.67)

this gives

OωA = ψ̇ (sin θ sinϕ eA
1 + sin θ cosϕ eA

2 + cos θ eA
3 ) + (2.68)

θ̇ (cosϕ eA
1 − sinϕ eA

2 ) + ϕ̇ eA
3

for the components of the angular velocity in the body fixed basis EA. We can write
this in the form

OωA
1 = ψ̇ sin θ sinϕ+ θ̇ cosϕ,

OωA
2 = ψ̇ sin θ cosϕ− θ̇ sinϕ, (2.69)

OωA
3 = ψ̇ cos θ + ϕ̇.

These equations are called Euler’s kinematic equations.

2.6 Position and Velocity of Points of a Rigid Body

Let OP i = ri (i = 1, . . . , N) be the position vector of one particle (or point) Pi of
a rigid body A with respect to an origin O fixed in the observer frame O. When the
body moves the different particles will move along trajectories ri(t) but these will not
be independent when the particles make up a rigid body. We can, in fact, parameterize
the positions of all particles of the body with six coordinates. This can be done as
follows. Choose one point A fixed in the body and a set of basis vectors EA with fixed
directions in the body and write

ri = OA+AP i = rA + ai = rOA EO + aA
i EA. (2.70)

In this expression the lengths of the vectors ai are constant since they are vectors
between points of a rigid body. The components, aA

i , of the vectors ai with respect to
the basis EA, must also be constant since both follow the body in its rotation. Thus
we can write the positions of the particles of the body in the form

ri(t) = rA(t) + ai(t) = rOA(t)EO + aA
i EA(t) (2.71)

= rOA(t)EO + aA
i

ARO(φ(t))EO.

The time-dependence of all N particles of the body is thus known once one knows
the time-dependence of the three components rOA(t) of the vector rA and the time-
dependence of the three parameters,φ(t), of the rotation matrix ARO from the observer
fixed basis EO to the body fixed basis EA. These parameters may be chosen as the three
components of the rotation vector or the three Euler angles or by other methods that
we have not treated here.
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2.6.1 The Connection Formula for Velocities

The velocity of the point Pi of the body with respect to the observer fixed frame O can
now be found by differentiating the expression 2.71 with respect to time:

vi =
Od

dt
ri = vA + OωA × ai. (2.72)

Here we have used equation 2.61 and the fact that
Ad
dt ai = 0. If we now let B=Pi

be some, arbitrary point of the body, different from A, and use the fact that then
ai = AP i = AB, we can rewrite this in the form

vB = vA + OωA ×AB. (2.73)

As long as one deals with a single rigid body moving with respect to a given fixed
reference frame, as will mostly be the case, there is no need for the superscripts O
and A on the angular velocity vector; we then simply write ω for the angular velocity
vector of the body. The above formula now takes the simple formconnection

formula for
velocities in rigid
body

vB = vA + BA×ω (2.74)

where we have used AB = −BA. This formula is analogous to the connection formulae
for moments (MB = MA + BA × F) and for angular momenta (LB = LA + BA × p).
Once the angular velocity vector and the velocity of one point are known this formula
gives the velocities of all other points of the body.

2.6.2 The Instantaneous Axis of Rotation

By means of the connection formula for moments one finds that a force system defines
an axis such that, at this axis, the moment and the force sum F are parallel to this
axis. This is called the equipollent reduction of the system of forces to a wrench. Since
the velocities of a rigid body are connected by a similar formula the analogous result
holds. One can find an axis through the body, or rigidly connected to the body, such
that for all points C of the body on this axis the velocity is parallel to the angular
velocity vector, vC = vC eω ‖ ω = ω eω. We will now prove this.

Since the vector BA ×ω of formula 2.74 is perpendicular to ω a suitable point
B=C in the plane through A perpendicular to ω, should be able to make this vector
cancel the component of vA perpendicular to ω. Put

vA = vA‖ + vA⊥ (2.75)

where
vA‖ = (vA · eω) eω (2.76)

is the vector component of vA parallel to the angular velocity vectorω and where vA⊥
is the vector component perpendicular to the angular velocity vector (see figure 2.8).
If we now choose the point C such thatinstantaneous

axis of rotation
goes through the
point C

AC = (ω × vA)/ω2 (2.77)

we find algebraically, using 2.74 and the vector triple product, that

vC = vA + CA ×ω = vA − [(ω × vA)/ω2]×ω (2.78)
= vA + [(vA ·ω)ω − (ω ·ω)vA]/ω2 (2.79)

= vA + (vA · eω) eω − vA = vA‖. (2.80)
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Figure 2.8: In this figure one sees the construction of the point C in the plane through A
perpendicular to the angular velocity vector ω. The velocity of the point C is parallel to ω
and so are the velocities of all points of the body, or rigidly connected to the body, on the axis
defined by C and ω. This axis is therefore the instantaneous axis of rotation.

At the point C, therefore, one has vC = vA‖ = vC eω. This concludes the proof of the
existence of the instantaneous rotation axis.

We have now shown that, at a given instant of time, the velocities of a rigid body
can be seen as the combination of a translational motion along the instantaneous axis
of rotation, through C and parallel to ω, and a rotational motion around this axis.
The general velocity state of the rigid body is thus said to be that of a screw. In the
general case the direction and position of this axis changes with time and in such cases
it may be very difficult to visualize the screw.

Example 2.3 The position vectors and velocities of the three points P1,P2, and P3 of a
rigid body have, at some instant of time, been found to be

r1 = (0, 0, 1)#, v1 = (1, 1,−3)v, (2.81)
r2 = (0, 2, 0)#, v2 = (3, 2,−1)v, (2.82)
r3 = (1, 0, 1)#, v3 = (1, 0,−3)v. (2.83)

a) Calculate the angular velocity vector ω.
b) Show that

ω · vi = const. (2.84)

for all points Pi of the body.
c) Calculate the vector P1C from P1 to the point C on the instantaneous rotation axis (nearest
to P1).
d) Find the translational velocity vC along the instantaneous rotation axis.
Solution:
a) The connection formula for the velocities of different points of a rigid body, 2.74, gives us

v2 = v1 +ω × (r2 − r1), (2.85)
v3 = v1 +ω × (r3 − r1). (2.86)

Writing out the components of these equations explicitly we get the six equations

3v = 1v + [ωy · (−1) − ωz · 2]#
2v = 1v + [ωz · 0 − ωx · (−1)]#

−1v = −3v + [ωx · 2 − ωy · 0]#
(2.87)
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1v = 1v + [ωy · 0 − ωz · 0]#
0v = 1v + [ωz · 1 − ωx · 0]#

−3v = −3v + [ωx · 0 − ωy · 1]#
(2.88)

The third of these gives ωx = 1v
� , the sixth gives ωy = 0v

� , and the fifth ωz = −1 v
� . Thus we

get
ω = (1, 0,−1)

v

#
(2.89)

for the components of the angular velocity vector.
b) Since

vi = v1 +ω × (ri − r1) (2.90)

we get that
vi ·ω = v1 ·ω + [ω × (ri − r1)] ·ω = v1 ·ω. (2.91)

This scalar product thus has the same constant value for all points of the body and this is what
was to be shown.

c) Use of formula 2.77 gives us

P1C = (ω × v1)/ω2 = [(1, 0,−1)
v

#
× (1, 1,−3)v]/(2v2/#2) =

1
2
(1, 0, 1)#. (2.92)

Since P1C = rC − r1 the coordinates of the point C (the ‘centre of velocity’) are given by
P1C + r1 = (1, 0, 1)#+ (0, 0, 1)# = (1, 0, 2)#.

d) By definition vC = vC · eω. This can be written vC = vC ·ω/ω and because of the result
in part b the scalar product is the same for all points of the body so we can replace vC with v1

in this formula. Thus we get

vC = vC · eω = v1 · eω = (1, 1,−3)v · (1, 0,−1)/
√
2 =

4√
2
v = 2

√
2v. (2.93)

This is the answer to the last question of this example. ✷

2.6.3 Plane Motion of the Rigid Body

In the special case of rigid body motion when the angular velocity vector (and with
it the instantaneous rotation axis) has a fixed direction eω independent of time, the
number of degrees of freedom is only four since two of the rotational degrees of freedom
then won’t be needed. The motion of the body along this fixed direction is then a pure
translation. When also this translational velocity is zero (vC = 0) one has a special case
of particular importance, namely that of plane motion. The velocities of the body are
now all perpendicular to the fixed direction ofω, and the number of degrees of freedom
reduces to three: two translational degrees of freedom in the plane perpendicular to
ω, and one rotational degree of freedom (the angle of rotation around the fixed axis
direction).

For the study of plane motion we will use the convention that the plane with which
the velocities are parallel is the xy-plane (or 1,2-plane) and the direction of the angular
velocity is the z-direction (or 3-direction). Using this we get from formula 2.77 the
explicit formula for the coordinates of the point C

(xC − xA) ex + (yC − yA) ey = [ω ez × (ẋA ex + ẏA ey)]/ω2 (2.94)
= (ẋA ey − ẏA ex)/ω.

The two components become

xC = xA − ẏA
ω

and yC = yA +
ẋA
ω

. (2.95)

The point C of the body, or rigidly connected to the body, with coordinates constructed
in this way will, for this plane case, have zero velocity. This point is therefore often
called the instantaneous centre of zero velocity. Note that the geometric point C as such
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Figure 2.9: Graphic construction of the instantaneous centre of zero velocity C with the help
of two velocities of the body at points A and B. The diagram on the left is used when the
velocity vectors are parallel. The one on the right if they are not.

is not at a fixed point of space, it may move and have some velocity. It is the point of
the body, or rigidly connected to the body, which is at C at the given time which has
zero velocity. The point C of the body really has zero velocity but, in general, it will
have non-zero acceleration so it need not remain at rest.

When a wheel rotates around a fixed axis the instantaneous centre C is at rest at
the fixed point where the axis intersects the wheel. When a wheel rolls without slipping
on the ground the instantaneous centre is at the point of contact with the ground. The
material of the wheel must be at rest at that point since the wheel is not slipping and
the ground is at rest.

If we write the connection formula 2.74 for B= C, with vC = 0, as one of the points
we get (in the case of plane motion)

vA = AC ×ω. (2.96)

This formula tells us that the velocity of a point is always perpendicular to the line from
the instantaneous centre C to the point, and that the magnitude of the velocity grows
linearly with the distance from C (vA = |AC|ω). These two facts lead to convenient
graphic methods for finding C from two known velocities of the body. This is illustrated
in figure 2.9.

Consider the plane motion of a rigid body and attach one coordinate system to the
body and let another coordinate system be fixed in space. The instantaneous centre
C will then trace out (plane) curves with time in these two systems. The curve in the
body fixed system is called the polehode curve and the curve in the space fixed system is
called the herpolehode curve. At a given instant of time these two curves touch (meet)
at the point where C is at that instant. The touching point of the polehode curve is
then at rest since it coincides with C while the herpolehode curve is fixed in space so
all its point are at rest. This means that the plane motion of the rigid body can be
viewed as the rolling without slipping of the polehode curve on the herpolehode curve.
As an example one might consider a circular wheel which rolls without slipping along a
straight line. Then the polehode curve is then the circle which defines the circumference
of the wheel and the herpolehode curve is the straight line.
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Figure 2.10: The figure on the left refers to problem 2.4. The arrow on the cog-wheel with
centre at P must always point upwards.

Figure 2.11: The figure on the right refers to problem 2.5. Six identical cylindrical rollers are
connected by the rods AB, BC, and CA, so that they can rotate about their central axes and
roll on each other.

2.7 Problems

Problem 2.1 Use equation 2.65 (on page 33) to find the components of the angular
velocity vector OωA along the fixed basis vectors EO.

Problem 2.2 By making measurements on two stereographic photographs of a rigid
body taken at times t and t + ∆t the position and velocity vectors of three points
P1,P2,P3, fixed on the body, have been found to have components

r1 = (1, 0, 0)#, v1 = (0, 1, 0)v,
r2 = (0, 2, 3)#, v2 = (0,−5, 4)v,
r3 = (2, 0, 1)#, v3 = (2, 3,−2)v,

relative to a coordinate system fixed in the body. The velocities are relative to a
reference frame in which the camera is fixed but their components have been determined
by projection to the body fixed basis. Find the components of the velocity of the origin
of the body fixed system and the components of the angular velocity vector of the body
in this body fixed system.

Problem 2.3 A homogeneous circular disc of mass m and radius r is rolling and sliding
in a vertical position along a straight line on a horizontal table. The uppermost point
of the disc has speed v1 and the geometric contact point with the table has speed v2

(note that this point is not a material point of the disc).
a) Find the angular velocity of the disc.
b) Calculate the angular momentum of the disc with respect to the geometric contact
point.

Problem 2.4 Three cog-wheels are connected as shown in figure 2.10. The wheel with
centre at the fixed point O has radius ro and is fixed so that it can’t rotate. A second
wheel of radius rk can roll on the fixed wheel and a third cog-wheel of radius rp can roll
on the second wheel. The centres of the three wheels are connected by an arm which
keep them on a straight line at fixed distances (such that they always touch). When
the arm is rotated an arrow painted on the outermost (third) wheel is required to point
upwards at all times. What relation between the radii ro, rk, and rp must hold if this
is to be the case?
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Figure 2.12: This figure refers to problem 2.7. Two different positions of the ladder sliding
down are shown. The direction of the velocities of the end points of the ladder are indicated.

Problem 2.5 Six identical cylindrical rollers of radius r are connected by three rods
that keep them in contact with parallel axes so that they can roll on each other. The
six rollers form a pyramid with three at the base, see figure 2.11. Rods connect their
central axes and two, AB and BC, have length 4r while the one along the base, AC,
has length 6r. Use graphical methods to determine the instantaneous centres of zero
velocity for all six cylinders when the pyramid rolls to the right with speed v (with no
slipping anywhere).

Problem 2.6 The position vectors and velocities of the three points P0,P1, and P2

of a rigid body have, at some instant of time, been found to be

r0 = (0, 0, 0)#, v0 = (0, 0, 0)v,
r1 = (−2, 2, ζ)#, v1 = (0, 0, 0)v,
r2 = (1, 3,−2)#, v2 = (−4, 2, 1)v.

a) Determine, ζ, the unknown z-component of r1.
b) Find the velocity of the point P3 with position vector r3 = (−5, 0, 5)# at this time.

Problem 2.7 A ladder of length # has been erected against a vertical wall. The
coefficient of friction against the horizontal floor is not large enough to keep the ladder
in equilibrium so it slides down as shown in figure 2.12. Determine the position of the
instantaneous centre of zero velocity C and find the equation for the curve described
by C when the ladder slides down,
a) with respect to a fixed coordinate system (the herpolehode curve), and
b) with respect to a coordinate system fixed in the ladder (the polehode curve).
c) Investigate how the two curves of a and b move relative to each other as the ladder
slides down.
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2.8 Hints and Answers

Answer 2.1 In figure 2.5 one finds that the vector eA
3 , which is the same as eB

3 , can
be expressed as

eA
3 = sin θ sinψ eO

1 − sin θ cosψ eO
2 + cos θ eO

3 .

Since eB
1 = cosψ eO

1 + sinψ eO
2 , collecting the components gives the result

OωA
x = ϕ̇ sin θ sinψ + θ̇ cosψ,

OωA
y = −ϕ̇ sin θ cosψ + θ̇ sinψ, (2.97)

OωA
z = ϕ̇ cos θ + ψ̇.

for the fixed frame components of the angular velocity in terms of Euler angles.

Answer 2.2 Use the connection formula 2.74 twice for the pairs P1P2 and P1P3. This
gives six equations for the three unknowns ωx, ωy, ωz. Using these one finds

ω = (1, 2, 3)
v

#

for the angular velocity vector.
The connection formula also gives

vO = v1 +OP1 ×ω = v1 + r1 ×ω

and use of this gives the velocity of the body fixed origin

vO = (0,−2, 2)v

when use is made of the components of ω determined above.

Answer 2.3 The crucial point to notice is that the speed of the geometric contact point
is the speed of the centre of the disc. This is best seen by going to a reference frame
that moves with the same velocity as the geometric contact point. In such a reference
frame the disc will only rotate and thus its centre will be at rest. Consequently the
centre must move with the speed of this reference frame i.e. the speed of the geometric
contact point. The answers are:
a) (v1 − v2)/r.
b) 1

2mr(v1 + v2).

Answer 2.4 Use the fact that the outermost wheel must have purely translational
velocity so that all its points have the same velocity. One finds that it is necessary that
ro = rp while rk is arbitrary.

Answer 2.5 See figure 2.13. The bottom rollers must have instantaneous centres of
zero velocity at the floor since they are assumed to roll without slipping. At the contact
points the rollers must have equal velocities for the same reason. The direction of the
velocity at the contact point with a roller of the second layer can be found by drawing a
line (dashed in the figure) from the instantaneous centre of zero velocity at the floor to
the contact point. The (common) velocity at the contact point must be perpendicular
to this line. The centres of the rollers must all have the common translational velocity
of the whole pyramid. By drawing lines perpendicular to these centre velocities (dashed
vertical lines in the figure) we get lines that have to go to the instantaneous centres
of zero velocity. In this way one finds that this point is at the top of the cylinders of
the second layer. By a line starting at this point and going through the contact point
with the top cylinder one gets the velocity of the contact point as a perpendicular to it.
Finally one then gets that the instantaneous centre of zero velocity of the top cylinder
is at its lowest point.
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Figure 2.13: This figure shows the instantaneous centres of zero velocity of three representative
rollers as black dots and refers to answer 2.5. The dashed lines are lines that are perpendicular
to the velocity vectors of certain points with known velocities.

Answer 2.6 Use the connection formula for velocities in a rigid body. The answers
should be:
a) ζ = −12,
b) v3 = −5

4(1, 7, 1)v.

Answer 2.7
a) The construction of the point C, the instantaneous centre of zero velocity, is indicated
graphically in figure 2.14. It is at the intersection of the two dashed lines, since these
are perpendicular to the velocities of the end points of the ladder.

If we denote the angle between the ladder and the floor α (this angle is π/2 when
the ladder is vertical and 0 when it is lying on the floor) we easily get that the position
of the point C is given by

OC(α) = #(cosα eO
x + sinα eO

y ) (2.98)

where O is at the intersection of the floor and the wall and the basis vector eO
x points

along the floor while eO
y points vertically upwards, see figure 2.14. # is the length of

the ladder. When α ∈ [0, π/2] this is the equation for a quarter circle with centre at O
and radius #.

b) To get an equation for the position of C with respect to a system fixed in the
ladder we take the origin at the middle of the ladder and denote it A. We let the basis
vector eA

x point down along the ladder and eA
y be perpendicular to it. Note that the

point A is always halfway between O and C. Therefore

OA(α) = AC(α) = #

2
(cosα eO

x + sinα eO
y ). (2.99)

We now wish to express the vector AC in terms of the A-basis. In order to do this we
use the expressions

eA
x = cosα eO

x − sinα eO
y , (2.100)

eA
y = sinα eO

x + cosα eO
y , (2.101)
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Figure 2.14: This figure shows the construction of the instantaneous centre of zero velocity C
for the ladder of answer 2.7. It also shows the curves that C traces out relative to a fixed system
and relative to a system fixed in the ladder when the ladder slides down. The former curve is
the herpolehode curve and is a quarter circle while the latter curve, which is a half circle, is the
polehode curve.

which can be read off from figure 2.14. An expression for the position vector of the
point C in the A-system can now be found using

AC(α) = (AC · eA
x ) e

A
x + (AC · eA

y ) e
A
y =

#

2
(cos2 α− sin2 α) eA

x +
#

2
(2 sinα cosα) eA

y .

(2.102)
Standard formulae for the trigonometric functions can then be used to simplify this to
the final form

AC(α) = #

2
[cos(2α) eA

x + sin(2α) eA
y ]. (2.103)

When the angle α varies from zero to π/2 this vector clearly describes a half circle with
radius #/2. This half circle is the polehode curve.

c) From figure 2.14 it should be clear that when the ladder moves and the angle
α varies the two curves move as if the polehode curve (the half circle attached to the
ladder) rolls, without slipping, on the herpolehode curve (the fixed quarter circle). This
is thus in agreement with the general theory of the plane motion of the rigid body.



Chapter 3

Energy of Particle Systems and
Bodies

This chapter generalizes the definitions of the concepts of power, kinetic energy, work etc
to systems of particles. We discuss the concept of conservative force and its connection
with elasticity. Special attention is given to the special formulae obtained for rigid
bodies. We discuss which forces that do work and which don’t and the role of the law
of conservation of energy

3.1 Power and Kinetic Energy

The power delivered by the force Fk acting on particle k at rk is defined as the scalar
quantity Pk = Fk · ṙk. If there is a system of particles, k = 1, . . . , N , the power P is
defined as the sum of the Pk: power

P =
N∑

k=1

Pk =
N∑

k=1

Fk · ṙk. (3.1)

The kinetic energy T for a particle system is, likewise, defined as the sum of the kinetic
energies, Tk = 1

2mkv2
k, of the individual particles kinetic energy

T =
N∑

k=1

Tk =
N∑

k=1

1
2
mkṙk · ṙk. (3.2)

Since
Ṫk =

1
2
mk(r̈k · ṙk + ṙk · r̈k) = mkr̈k · ṙ = Fk · ṙk, (3.3)

where we have used mkr̈k = Fk, we find immediately, that, with these definitions, the
power and the kinetic energy obey the relationship

P = Ṫ (3.4)

in the same way as for a single particle.
We now split the velocities vk of the system into centre of mass velocity vG and

velocity v′
k relative to the centre of mass, as we did in subsection 1.1.1, so that vk =

vG + v′
k, and use this in the kinetic energy expression. We get

T =
N∑

k=1

1
2
mkvk · vk =

N∑
k=1

1
2
mk(vG + v′

k) · (vG + v′
k) (3.5)

=
1
2
vG · vG(

N∑
k=1

mk) + vG · (
N∑

k=1

mkv′
k) +

N∑
k=1

1
2
mkv′

k · v′
k. (3.6)

43
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Because of the centre of mass constraint the sum in the middle term of the last line
here, is zero (see equation 1.10), and we thus getthe two parts of

the kinetic energy
or, König’s
theorem T =

1
2
mvG · vG +

N∑
k=1

1
2
mkv′

k · v′
k =

1
2
mv2

G + T ′. (3.7)

The kinetic energy can thus be thought of as having two parts, one due to the translation
of the centre of mass and the rest which comes from the internal motions of the system
relative to its own centre of mass system. In Germanic literature this formula is often
referred to as ‘König’s’ theorem.

3.1.1 The Kinetic Energy of Rigid Bodies

We now assume that the particle system is a rigid body and calculate the kinetic energy.
According to the connection formula 2.74 for the velocities of the points of a rigid body
we have

vk = vG + v′
k = vG +ω × GPk = vG +ω × r′k. (3.8)

The velocity in the centre of mass system is thus given by

v′
k =ω × r′k. (3.9)

When this is inserted into the expression T ′ for the internal part of the kinetic energy
we get

T ′ =
N∑

k=1

1
2
mkv′

k · v′
k =

N∑
k=1

1
2
mk(ω × r′k) · (ω × r′k). (3.10)

To evaluate this further we must find a formula for the scalar product and this can be
done as follows

(ω × r′k) · (ω × r′k) = |ω × r′k|2 = |ω|2|r′k|2 sin2[ω, r′k] = (3.11)
|ω|2|r′k|2(1− cos2[ω, r′k]) = |ω|2|r′k|2 − |ω|2|r′k|2 cos2[ω, r′k] = (3.12)

= (ω ·ω)(r′k · r′k)− (ω · r′k)2. (3.13)

The internal kinetic energy T ′ thus becomes

T ′ =
1
2
(

N∑
k=1

mkr′k · r′k)(ω ·ω)− 1
2

N∑
k=1

mk(ω · r′k)2. (3.14)

If we now introduce the components of the vectors in some basis, ω = ωx ex + ωy ey +
ωz ez, and r′k = x′

k ex + y′k ey + z′k ez, we find thatinternal kinetic
energy of rigid
body

T ′ =
1
2
JG
x ω2

x +
1
2
JG
y ω2

y +
1
2
JG
z ω2

z −DG
xyωxωy −DG

xzωxωz −DG
yzωyωz (3.15)

wheremoment of inertia

JG
x ≡

N∑
k=1

mk(y′
2
k + z′2k), (3.16)

product of inertia

DG
xy ≡

N∑
k=1

mkx
′
ky

′
k (3.17)

and the other moments and products of inertia are obtained by cyclic replacements
x → y → z → x. We see, first of all, that if the body does not rotate then T ′ = 0
since ω = 0. This is the reason why a rigid body with only translational motion can
be treated like a particle. One should also note that the moments and products of
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inertia (with respect to axes through the centre of mass) will, in general, depend on
time unless the basis vectors (or equivalently, the direction of the coordinates axes) are
taken as fixed in the body. When this is done these quantities become constant.

In case one point C of the rigid body has zero velocity, permanently due to some
constraint, or instantaneously as the instantaneous centre of zero velocity that exists
for plane motion, we can write the velocities of the particles as

vk =ω × CPk (3.18)

according to the connection formula. If we put the origin of the coordinate system at
C this takes the form

vk =ω × rk. (3.19)

The (complete) kinetic energy T now takes the form

T =
1
2

N∑
k=1

mkvk · vk =
N∑

k=1

1
2
mk(ω × rk) · (ω × rk). (3.20)

This is formula is identical in form to 3.10 so the same kind of calculation gives kinetic energy of
rigid body with
pure rotationT =

1
2
JC
xω

2
x +

1
2
JC
y ω

2
y +

1
2
JC
z ω

2
z −DC

xyωxωy −DC
xzωxωz −DC

yzωyωz. (3.21)

This is thus the kinetic energy of a rigid body whose motion is a pure rotation around
the point C. The moments and products of inertia must now be calculated with respect
to axes through the point C. As above, they are, in general, constants only if the
components of the vectors ω and rk are taken with respect to a basis that rotates with
the body.

3.1.2 Matrix Form of the Rigid Body Kinetic Energy

Both expressions 3.15 and 3.21 are of the same algebraic form. They are ‘quadratic
forms’ in the components of the angular velocity vector. We will now show how they
can be written on a more compact form using matrix notation.

Introducing the notation of equation 2.18 we consider the angular velocity vector
as the product of a row matrix of components and a column matrix of basis vectors

ω = wE = (ωx ωy ωz)


 ex

ey
ez


 . (3.22)

If we now introduce the three by three symmetric matrix, the ‘inertia tensor’,

JG =


 JG

x −DG
xy −DG

xz

−DG
yx JG

y −DG
yz

−DG
zx −DG

zy JG
z


 . (3.23)

we see that the kinetic energy 3.15 can be written as the matrix product

T ′ =
1
2
(ωx ωy ωz)


 JG

x −DG
xy −DG

xz

−DG
yx JG

y −DG
yz

−DG
zx −DG

zy JG
z




 ωx

ωy

ωz


 =

1
2

wJG wT . (3.24)

The superscript G on the inertia tensor indicates that it depends on the the choice
of origin of the coordinate system used to calculate it. This point is, for both the case
of equation 3.15 (G) and of equation 3.21 (C) assumed to be fixed in the body. One
should note that the quantities of the ‘inertia tensor’, as defined here, also depends on
the basis E which defines the directions of the coordinate axes. Only if these also are
fixed in the body are the matrix elements of the matrix in equation 3.23 guaranteed
to be constants (independent of time) depending only on the shape of the body. We’ll
come back to these matters later.
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3.1.3 Rigid Body Kinetic Energy for Fixed Axis Direction

We now assume that the angular velocity vector ω has a direction which is fixed in
space so that

ω = ωz ez = ϕ̇ ez, (3.25)

where ez has been chosen in this fixed direction. The two formulae for the kinetic
energy, 3.15 and 3.21 above, reduce to simple forms. The internal energy becomes

T ′ =
1
2
JG
z ϕ̇2. (3.26)

Pure rotation around C gives the kinetic energy

T =
1
2
JC
z ϕ̇

2. (3.27)

It can be instructive to derive this last result directly from the definition using
cylindrical coordinates. Since, with the origin at C,

vk =ω × rk = ϕ̇ ez × (ρk eρ + zk ez) = ϕ̇ρk eϕ, (3.28)

we get

T =
N∑

k=1

1
2
mkvk · vk =

N∑
k=1

1
2
mk(ϕ̇ρk eϕ) · (ϕ̇ρk eϕ) (3.29)

=
N∑

k=1

1
2
mkϕ̇

2ρ2
k =

1
2
(

N∑
k=1

mkρ
2
k)ϕ̇

2 =
1
2
JC
z ϕ̇

2. (3.30)

There is a connection between formulae 3.26 and 3.27 which is derived in the example
below.

Example 3.1 Use the parallel axis theorem for moments of inertia to show that in the case
of plane motion

1
2
JC
z ϕ̇

2 =
1
2
mv2

G +
1
2
JG
z ϕ̇2. (3.31)

and thus verify equation 3.7 (T = 1
2mv2

G + T ′). The point C is assumed to be in the same
xy-plane as G.
Solution: The parallel axis theorem gives us

JC
z = JG

z +m|CG|2 (3.32)

so we get
1
2
JC
z ϕ̇

2 =
1
2
(JG

z +m|CG|2)ϕ̇2 =
1
2
JG
z ϕ̇2 +

1
2
m(|CG|ϕ̇)2. (3.33)

But the connection formula for velocities gives us

vG =ω × CG (3.34)

and in our plane situation this means that |vG | = |ω||CG| = |ϕ̇||CG| so that

1
2
JC
z ϕ̇

2 =
1
2
JG
z ϕ̇2 +

1
2
mv2

G (3.35)

and this is what was to be shown. Note how the parallel axis theorem and the connection
formula for the velocities act together to give this result. ✷
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3.2 The Work of External and Internal Forces

When the particles of an N -particle system, {{mk, rk}; k = 1, . . . , N}, move through
space the forces acting on them do work. We define the work done on the system
between times t = t1 and t = t2 as the time integral of the power delivered to the
system during this time and denote it by

W1,2 ≡
∫ t2

t1
P (t) dt. (3.36)

Since P = Ṫ we get, just as for a single particle, that work as increase
of kinetic energy

W1,2 = T (t2)− T (t1), (3.37)

so the work done on the system is equal to the increase in kinetic energy.
Using the definition, equation 3.1, we can rewrite 3.36 in the form

W1,2 =
∫ t2

t1
(

N∑
k=1

Fk · ṙk) dt =
N∑

k=1

∫
Ck(1,2)

Fk · drk, (3.38)

where we have introduced the line integral
∫
Ck(1,2) Fk · drk along the path Ck(1, 2) : t ∈

[t1, t2] → rk(t) followed by particle k between the points rk(t1) and rk(t2) during the
time from t1 to t2. The work done on the particle system can thus also be expressed as
such a sum of the work on the individual particles expressed in terms of line integrals.
To simplify the notation we shall now consider this sum to be a single line integral along
the curve (x1(t), y1(t), z1(t), x2(t), . . . , xN (t), yN (t), zN (t)) through the 3N -dimensional
configuration space of the system. We denote this 3N -dimensional curve, traversed
between t1 and t2, by CN (1, 2) and thus write the work on the particle system as the
single configuration space line integral work as line

integral along
configuration
space curveW1,2 =

∫
CN (1,2)

N∑
k=1

Fk · drk. (3.39)

This is in principle a different, time-independent, way of calculating the work on the
system. In some cases the forces acting are such that one really can get an explicit
expression for the work done in this way and this new way of calculating it can then be
combined to with the result in terms of kinetic energy increase to yield the powerful law
of conservation of mechanical energy. This is possible when all forces that do work on
the system are conservative. Unfortunately all the forces acting on systems, or bodies,
in the real world rarely are conservative. There are, however, real systems that come
sufficiently close to this idealization for the theory to be of interest, and since part of
the work quite often is done by conservative forces, this type of analysis is of general
importance.

We now calculate the work done on a system of particles by the external and internal
forces acting on the particles. In the momentum principle and angular momentum
principle only the external forces contribute but for work and energy this is not the
case. To investigate this in more detail we introduce the notation used in subsection
1.1.2: the force on one of the particles is the sum of two contributions

Fk = Fe
k + Fi

k, (3.40)

where the superscript ‘e’ stands for external and ‘i’ stands for internal, and the

force on k from j = fkj (3.41)
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so that the internal force itself is the sum

Fi
k =

N∑
j=1

fkj . (3.42)

We assume that Newton’s third law fjk = −fkj holds. The total work of formula 3.39
can now be analyzed into external and internal contributions as follows

W1,2 =
∫
CN (1,2)

N∑
k=1

Fe
k · drk +

∫
CN (1,2)

N∑
k=1

N∑
j=1

fkj · drk ≡ W e
1,2 +W i

1,2. (3.43)

The internal part can be transformed as the following steps indicate

W i
1,2 =

∫
CN (1,2)

N∑
k=1

N∑
j=1

fkj · drk =
∫
CN (1,2)

N∑
k,j=1

fkj · drk (3.44)

=
∫
CN (1,2)

1
2

N∑
k,j=1

(fkj · drk + fjk · drj) =
∫
CN (1,2)

1
2

N∑
k,j=1

fkj · (drk − drj) (3.45)

=
∫
CN (1,2)

1
2

N∑
k,j=1

fkj · d(rk − rj) =
∫
CN (1,2)

1
2

N∑
k,j=1

fkj · drkj = W i
1,2 (3.46)

Here we have used only the ‘anti-symmetry’ part of Newton’s third law. We now express
the working external and internal forces as sums of a conservative part, which is the
negative gradient of a potential energy, and a non-conservative part:

Fe
k = −∇kΦk(rk) + Fen

k , (3.47)
fkj = −∇kjΦkj(rkj) + fn

kj . (3.48)

We can now split the external work into contributions from decrease in potential energy
and non-conservative work as follows:

W e
1,2 =

∫
CN (1,2)

N∑
k=1

−[∇kΦk(rk)] · drk +
∫
CN (1,2)

N∑
k=1

Fen
k · drk (3.49)

=
N∑

k=1

−[Φk(rk(t2))− Φk(rk(t1))] +W en
1,2 (3.50)

A similar treatment of the internal work giveswork expressed as
decrease of
potential energy
plus
non-conservative
work

W i
1,2 =

1
2

N∑
k,j=1

−[Φkj(rkj(t2))− Φkj(rkj(t1))] +W in
1,2 (3.51)

To be able to write the conservative work in a more compact way we define the external
and internal total potential energies respectively as

Φe(i) ≡
N∑

k=1

Φk(rk(ti)), (3.52)

Φi(i) ≡ 1
2

N∑
k,j=1

Φkj(rkj(ti)). (3.53)

If we now collect all results we have the following expression for the work done on a
particle systemthe four types of

work

W1,2 = W e
1,2+W i

1,2 = {−[Φe(2)−Φe(1)]+W en
1,2} + {−[Φi(2)−Φi(1)]+W in

1,2}. (3.54)
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The total work can thus be analyzed into these four contributions from external and
internal, conservative and non-conservative forces. The parts of the work which depend
only on the change in total potential energies have the fundamental property that they
only depend on the positions of the particles, i.e. on the position of the system in
configuration space, and not on the path followed between the positions. If the system
returns to the original position no net work has been done by the conservative forces.
The internal total potential energy Φi has the interesting property that it only depends
on the relative positions and thus not on the position and orientation of the system
as a whole. For rigid motions, translations and rotations, Φi does not change; only
changes in the shape of the system changes Φi. This part of the energy of a body is
the elastic energy. It is large when the body has been deformed but can be recovered
as mechanical work when the body returns to its un-loaded shape.

Example 3.2 Calculate the external total potential energy Φe due to the weights of the
particles of the system.
Solution: If we denote the acceleration due to gravity by g we have that

Φk(rk) = −mkg · rk (3.55)

since then −∇kΦk(rk) = mkg is the weight of particle k. We now get

Φe =
N∑

k=1

−mkg · rk = −mg ·
∑N

k=1 mkrk∑N
k=1 mk

= −mg · rG = mgh. (3.56)

The total potential energy is thus completely determined by the total mass m, the acceleration
due to gravity g, and the vertical projection of the centre of mass position vector. ✷

Example 3.3 Find the internal total potential energy Φi of an elastic rubber-band assuming
that the force required to stretch the band the length ∆# is given by F = k∆#, where k is a
constant.
Solution: The work done by the internal forces during the stretching is easily found by
integration and the result is that

Φi =
{

1
2k(∆#)2 for ∆# > 0

0 for ∆# ≤ 0 . (3.57)

Only stretching leads to internal work since the flexible rubber-band does not take up compres-
sive forces. ✷

We have found two different expressions for the total work done on a particle system,
namely in terms of kinetic energy in equation 3.37, and that of equation 3.54. If these
two expressions are set equal we can rearrange the equation and find that

[T (2) + Φe(2) + Φi(2)]− [T (1) + Φe(1) + Φi(1)] = W en
1,2 +W in

1,2. (3.58)

One defines the total mechanical energy Em to be the kinetic plus the total potential
energies: mechanical

energyEm ≡ T +Φe +Φi. (3.59)

The previous formula now states that the change in the mechanical energy is equal
to the work of, external and internal, non-conservative forces. One can often arrange
the external non-conservative forces to be small or negligible. Deformations of bod-
ies, however, always entail some amount of non-conservative internal work. The best
chances for mechanical energy conservation (Em =const.) therefore come about when
deformations are negligible. In the following subsection we will find that the internal
work is zero for rigid bodies, but one should remember that complete rigidity is an
idealization which is only approximated by nature.
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Example 3.4 Consider a pole-vaulter with an elastic glass-fiber pole as a particle system and
analyze the work on the system in terms of the four kinds of work in equation 3.54.
Solution: When the athlete starts his run work is done by his muscles and this must be
considered as coming from internal non-conservative forces so we have the type W in. At the
end of the run this work has produced a lot of kinetic energy. The pole-vaulter now transforms
this kinetic energy plus some more muscle work from the arms into elastic deformation energy
of the pole i.e. type Φi. The pole then straightens out again and raises the athlete vertically
upwards. The internal potential energy of the pole then is transformed into external potential
energy Φe of the gravitational field. At the highest point of the jump all energy has become
external potential energy. When he falls down it again becomes kinetic energy. This kinetic
energy is then destroyed by negative work by (mainly) external non-conservative forces W en

from the shock absorber that bolsters his impact with the ground. ✷

3.2.1 The Work on a Rigid Body

In this sub-section we specialize the discussion above to rigid bodies. It turns out that
the assumption of rigidity leads to considerable simplification, in particular the internal
forces do no work in a rigid body.

One of the reasons for the simplification is that the displacements drk of the particles
of the rigid body are connected due to the connection formula for the velocities, equation
2.74. We can write this formula vk = vA + (rA − rk) ×ω, where A is an arbitrary
point fixed in the body. If we now multiply this formula by dt we get

drk = drA + (rA − rk)× δφ, (3.60)

where δφ is the infinitesimal rotation vector. We now insert this in the expression for
the external work as given by equation 3.43, and get

W e
1,2 =

∫
CN (1,2)

N∑
k=1

Fe
k · drk =

∫
CN (1,2)

N∑
k=1

Fe
k · (drA + (rA−rk)×δφ) = (3.61)

∫
CN (1,2)

N∑
k=1

{Fe
k · drA + Fe

k · [(rA−rk)×δφ]} =
∫
CN (1,2)

(Fe · drA +Me
A · δφ). (3.62)

Here we have rearranged the scalar triple product and used the definitions Fe =∑N
k=1 F

e
k and

Me
A =

N∑
k=1

(rk − rA)× Fe
k. (3.63)

For the work of the internal forces we only have to replace the superscript ‘e’ above
with i’. This tells us that W i

1,2 =
∫
CN (1,2)(F

i · drA +Mi
A · δφ) so, if we assume that the

total internal force and moment are zero (see equations 1.23 and 1.32), we get that the
work of the internal forces

W i
1,2 = 0 for a rigid body. (3.64)

Summarizing we have now found that the work on a rigid body is given bywork done on
rigid body by
external force
and moment W1,2 =

∫
CN (1,2)

(Fe · drA +Me
A · δφ), (3.65)

i.e. as a line-integral depending on the external force and the external moment.
It can be instructive to calculate the internal work directly in terms of inter-particle

forces to see in more detail why (or when) it is zero. To do this we need an expression
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for drkj = d(rk − rj), and to get that we put rA = rj in the connection formula 3.60.
Some rearrangement then gives

drkj = δφ× rkj . (3.66)

We now use this in formula 3.46 for the internal work and get

W i
1,2 =

∫
CN (1,2)

1
2

N∑
k,j=1

fkj · drkj =
∫
CN (1,2)

1
2

N∑
k,j=1

fkj · (δφ× rkj). (3.67)

Just as in subsection 1.1.2 we now see that this is manifestly zero only if assume that the
internal forces are parallel to the inter-particle vectors: fkj ‖ rkj since then fkj ⊥ drkj .
Now that we have established that the internal forces do not contribute to rigid body
work we will not bother with the superscripts ‘e’ on forces and moments any more.

The notation CN (1, 2) which we introduced for the path through configuration space
of the N -particle system is not well suited for the rigid body case, since in this case the
number of particles is immaterial; only the change in the six degrees of freedom rA,φ
with time matters. The first part of the work in equation 3.65 is thus an ordinary line
integral along the curve on which the point A moves through space, but the second
part is a curve in the space of orientation (rotation) parameters (e.g. Euler angles). If
we take the centre of mass as base point we can thus express the work in the form

W1,2 =
∫
CG(1,2)

F · drG +
∫
CR(1,2)

MG · δφ. (3.68)

If the external force is the gradient of a total potential energy, as is the case for gravity,
the first of these two parts can be expressed with the help of decrease in potential
energy in the way discussed above. Also, if there is only gravity, then by the definition
of centre of mass as the point of application of the resultant, we have MG = 0, so that
the second, rotational part of the work gives zero. One then gets

W grav
1,2 =

∫
CG(1,2)

−∇GΦ(rG) · drG = −[Φ(rG(t2))− Φ(rG(t1))] (3.69)

for the work of gravity on a rigid body, the same as for any particle system. Here
Φ = Φe is given by equation 3.56.

Should the moment, on the other hand, be non-zero there is, in general, no hope of
representing the rotational part of the work with a ‘rotational’ potential energy since
the integration element δφ is not the differential of a vector. The exception is when
there is a fixed direction, ez, of the rotation axis. In this case one has δφ = dφ ez so
the rotational part of the work is simply

W rot
1,2 =

∫
CR(1,2)

MAz dφ. (3.70)

Should one be able to find a model for the moment in which it is a function of the
rotation angle φ alone: MAz = MAz(φ) then there is also a rotational potential energy
given by

Φrot(φ) = −
∫ φ

MAz(φ′) dφ′. (3.71)

The following example illustrates this.

Example 3.5 A homogeneous circular disc of mass m and radius R is attached horizontally
to a thin vertical staff at its mid-point. See figure 3.1. The vertical staff has the property
that when it is twisted an angle φ it responds with a moment in the opposite direction which
is proportional to the amount of twisting: M(φ) = −τ0φ. Determine the period for twisting
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Figure 3.1: The torsion pendulum of example 3.5 is shown in the figure on the left. In the
figure the disc has been twisted an angle φ. The line fixed on the disc is assumed to be parallel
to be fixed direction of the arrow at equilibrium, when the vertical staff is not twisted.

Figure 3.2: The figure on the right shows a cylinder rolling down an incline which makes an
angle α with the horizontal. In example 3.6 the speed of the cylinder, after it has sunk a vertical
distance h, is calculated.

oscillations of the disc around the axis determined by the staff.
Solution: We take the vertical axis defined by the staff to be the Z-axis. The moment of
inertia for the disc is Jz = 1

2mR2. This problem can be solved directly using the equation
of motion 1.76 which gives Jzφ̈ = −τ0φ in this case. We will, however, solve it by using the
conservation of mechanical energy. The rotational potential energy of equation 3.71 gives in
this case

Φ(φ) = −
∫ φ

0

MOz(φ′) dφ′ = −
∫ φ

0

(−τ0φ
′) dφ′ =

1
2
τ0φ

2. (3.72)

This potential energy is of course an elastic (internal) potential energy of the staff. The only
other form of energy in the system is the kinetic energy of the rotating disc and it is given by
equation 3.26 (note that C = G in this case). The total mechanical energy of the system, which
is called a ‘torsion pendulum’, is thus

Em = T +Φ =
1
2
Jzφ̇

2 +
1
2
τ0φ

2 = const.. (3.73)

If we take the time derivative of this we get

Jzφ̇φ̈+ τ0φφ̇ = 0 (3.74)

and after division with φ̇ this gives the equation of motion

φ̈+
τ0
Jz

φ = 0. (3.75)

This equation is easily solved using the theory of linear oscillations. The angular frequency is
given by ω0 =

√
τ0
Jz

and the period is thus

Tp =
2π
ω0

= 2π
√

τ0
Jz

= 2π

√
2τ0
mR2

. (3.76)

In this example it was not particularly advantageous to use the conservation of mechanical
energy, but in other more complicated cases it can be very useful as we’ll see below. ✷

3.2.2 Forces that do not Work

In the previous subsection we found that the internal forces in a rigid body do not
perform any work on the body. There are, however, also a number of cases when
external forces do not perform work on a body which are useful to know about.
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When rigid bodies are in contact they act with contact forces upon each other. Such
contact forces can be classified into three types: a) Normal forces, b) Static friction,
and c) Sliding (or kinetic) friction. Of these three only the last type, kinetic friction,
does any net work on the combined system of bodies in contact. We now discuss why
this is so.

First consider the normal force on a moving body from the surface of a fixed body.
By definition of normal force it acts perpendicularly to the possible direction of motion normal force does

no workof the moving body at the point of contact. The work dW = N · dr must then be
zero since the force vector N and the displacement vector dr are perpendicular. If
on the other hand both bodies move then the component of the motion along N will
give non-zero net work on the body on which N acts. Because of Newton’s third law,
however, a reaction force of equal magnitude but opposite direction must act on the
other body. Since this body has the same velocity component perpendicular to the
surface of contact as the other body, the net work of force and reaction force is zero.

The case of static friction forces is similar. When such a force acts from a body at static friction
does no workrest on a moving body, the point of the moving body in contact must, by definition of

static friction, be at rest. This means that the motion of the moving body must be a
rotation about the point of contact. The work done by the force must thus be zero since
the displacement vector dr at the point of contact is zero dr = 0. If both bodies are
moving the same reasoning as above, for normal forces, shows that the static friction
force and its reaction force on the other body, together produce zero net work.

The two non-working forces discussed above occur, for example, when there is rolling
without slipping. They also occur when there are smooth constraints, i.e. well lubricated
hinges, bearings, ball and socket joints, tracks to slide along etc. Should these devices
not be well lubricated kinetic friction will occur as non-conservative internal force (with
respect to the system as a whole) which does negative work. The mechanical energy
then decreases (dissipates) and becomes heat, vibration and noise.

Example 3.6 A homogeneous circular cylinder of mass m and radius r rolls without slipping
on an incline which makes an angle α with the horizontal. See figure 3.2 for the geometry.
Assume that the cylinder starts from rest. Find the centre of mass speed of the cylinder after
it has sunk the vertical distance h.
Solution: Since there is rolling without slipping the mechanical energy is conserved and only
the gravitational force does work on the rolling cylinder. In figure 3.2 the angle φ is the angle
that a line fixed on the cylinder has rotated from the initial position. Rolling without slipping
means that the length x traversed along the incline must be equal to the length rφ along the
circumference of the cylinder:

x = rφ. (3.77)

This is usually called the ‘rolling constraint’. We now write down the energy of the cylinder
using equations 3.7 and 3.26 and the expression 3.56 for the potential energy

E =
1
2
mẋ2 +

1
2
JGφ̇

2 −mgx sinα. (3.78)

Here JG = 1
2mr2 and vG = ẋ. If we use the rolling constraint we get φ̇ = ẋ/r. At the initial

position we have ẋ = 0 and x = 0 so the energy E = 0. Since h = x sinα we now get

0 =
1
2
mẋ2 +

1
2
1
2
mr2(ẋ/r)2 −mgh. (3.79)

From this one easily calculates

ẋ =

√
4gh
3

(3.80)

and this is thus the desired speed. ✷

Example 3.7 A smooth stiff wire of mass 3m has been given the shape of a semi-circle with
radius r. The semi-circle hangs vertically down from a smooth horizontal axis through small
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loops at its end points. A small pearl of mass m can slide with negligible friction along the
semi-circular wire. The pearl is released from rest at one of the end points of the wire in contact
with the horizontal axis.
a) Show that the trajectory of the pearl is an ellipse.
b) Find the speed of the pearl in its lowest position.
Solution: a) Let the horizontal axis be the x-axis and place the origin at the initial position
of the mid-point between the ends of the semi-circular wire:

(xw(0), yw(0) ) = (0, 0).

The position of the pearl is then: (x(0), y(0) ) = (r, 0). We choose the y-axis vertically down-
wards. The absence of external horizontal forces means that the x-coordinate of the center of
mass will be at rest and we get

xG =
mx(t) + 3mxw(t)

m+ 3m
=

mx(0) + 3mxw(0)
4m

=
r

4
. (3.81)

This directly gives the relationship

xw(t) =
1
3
[r − x(t)] (3.82)

between the x-coordinates. The fact that the pearl at (x, y) is on part of the circle with radius
r and mid-point (xw, 0) gives the following relationship

(x− xw)2 + y2 = r2. (3.83)

We now eliminate xw from this using the previous equation and get

[x− 1
3
(r − x)]2 + y2 = r2. (3.84)

Some algebra leads to the expression

(
x− r/4
3r/4

)2

+
(y
r

)2

= 1 (3.85)

which, clearly, is the equation for an ellipse with center at (r/4, 0) and the pearl must move on
this ellipse.

b) Since there is no friction in this problem the only force that does work is gravity and
the energy is thus conserved. The wire cannot move vertically and must thus have constant
potential energy. We get the following expression for the total energy

1
2
m(ẋ2 + ẏ2) +

1
2
3mẋ2

w −mgy = E. (3.86)

Since initially everything is at rest and y = 0 we have E = 0. Differentiating the relationship
xw(t) = 1

3 [r− x(t)] above with respect to time gives ẋw = −ẋ/3. Inserting this into the energy
expression gives

1
2
m(ẋ2 + ẏ2) +

1
2
3m
(
ẋ2

9

)
−mgy = 0. (3.87)

At its lowest position the pearl has vertical velocity so ẏ = 0 and y = r. This now gives for the
speed v = ẋ at this position

1
2
m

[
v2 +

(
v2

3

)]
−mgr = 0 (3.88)

so we find that

v =

√
3
2
gr. (3.89)

is the speed of the pearl at the lowest position. ✷
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Figure 3.3: The figure refers to problem 3.3 and shows the steam roller and how the braking
force is applied to its front wheel.

3.3 Problems

Problem 3.1 Find the kinetic energy of the rolling and sliding circular disc of problem
2.3 (on page 38).

Problem 3.2 Consider the pyramid of rollers of problem 2.5 on page 39. Assume
that each cylindrical roller is homogeneous and of mass m, radius r and has speed v.
Calculate the kinetic energy of the pyramid
a) using König’s theorem, formula 3.7, and
b) using the existence of the instantaneous centre of zero velocity in the plane motion
of the rigid body.

Problem 3.3 In order to reduce the transport weight and braking distance of the
steam roller shown in figure 3.3 it is suggested that the wheels are made as hollow
cylindrical shells. These are then filled with water when the steam roller is to be used.

Assume that such a steam roller with empty wheels, has a braking distance of 2m
at a speed of 5 km/h. The brake consists of a chock which is pressed against the front
wheel with a force of F = 125 ·gN, the coefficient of (sliding) friction being 0.8 between
wheel and chock. The wheels have a diameter of 1m and a width of 2m. Calculate the
braking distance when the wheels are filled with
a) liquid water, and
b) ice.

Problem 3.4 One can specify the performance of a car engine by giving either the
maximum power Pmax that it can deliver, or its maximum moment (or torque) Mmax.
Since Mmax determines the acceleration of the car it is common to specify at what
number of revolutions (per unit time) nmax that this maximum torque is achieved.
Assume that the torque, M , is a known function, M(n), of the number of revolutions
n.
a) Derive a formula for the power as a function of n.
b) Show that the maximum power and the maximum torque cannot correspond to the
same n.

Problem 3.5 One part of a friction clutch rotates freely around its axis with angular
velocity ω as shown in figure 3.4. The moment of inertia of this part is J . It is suddenly
pressed with force P against an identical but initially non-rotating part. The coefficient
of friction between the two parts is f and the contact area is the plane annulus with
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Figure 3.4: A vertical cross section through the symmetry (rotation) axis of the friction clutch
of problem 3.5 is shown in the figure on the left.

Figure 3.5: The figure on the right refers to problem 3.6. Two identical discs rotate in opposite
directions around parallel axes through the ends of a light bar AB. The bar can rotate around
an axis through its midpoint C around a fixed axis parallel to those of the discs.

inner radius r and outer radius R. All other friction is negligible. Calculate
a) the final common angular velocity of the clutch, and
b) the total heat loss in the clutch.

Problem 3.6 Two identical homogeneous circular discs, of mass m and radius R,
rotate in opposite directions around parallel axes through the ends of a light bar AB,
see figure 3.5. The bar can rotate around a fixed axis, parallel to those of the discs,
through its midpoint C. The rotation axes are all perpendicular to the plane of the
figure 3.5, and the friction can be neglected in the bearings at B and C. Initially the
bar, which has length #, is at rest and the discs have angular velocity ω. Calculate the
heat loss in the bearing at A once the rotation with respect to this bearing has stopped.
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3.4 Hints and Answers

Answer 3.1
The kinetic energy is T = 1

4m(v2
1 + 3v2

2 − 2v1v2).

Answer 3.2
a) 6

[
1
2mv2 + 1

2JG(v/r)
2
]
= 9

2mv2.

b) 6
[

1
2JC(v/r)

2
]
= 9

2mv2, since the parallel axis theorem gives JC = JG +mr2.

Answer 3.3 Introduce the notation:

m0 = mass of steam roller without wheels,
me = mass of one empty wheel,
mw = mass of water in one wheel,
Je = moment of inertia of one empty wheel,

Jw =
1
2
mwr

2, moment of inertia of water in one wheel,

#e = 2m, empty braking distance,
v = 5km/h, initial speed of steam roller,
r = 0.5m, radius of wheel,
µ = 0.8 coefficient of sliding friction.

Equating the work done by the braking force F to the initial kinetic energy of the steam
roller we get

1
2
(m0 + 2me)v2 + 2

1
2
Je

(
v

r

)2

= µF#e.

When the wheels contain water the steam roller can come to halt without dissipating
the rotational energy of the water. The extra kinetic energy that the brake force must
make zero is thus 21

2mwv
2. Using the previous result, this gives

µF#e +mwv
2 = µF#w

where #w is the braking distance with liquid water in the wheels. This gives

#w = #e +
mwv

2

µF

Putting numbers in we find that mw = π · 500 kg, v = (5/3.6)m/s, and µF = 0.8 · 125 ·
9.81N so that the extra braking distance with water in is roughly 3m. Since #e = 2m
we thus find
a) answer #w = 5m.
When the water is frozen to ice one must also dissipate the rotational energy of the
water to brake the steam roller. The extra kinetic energy is then 21

2Jw
(
v
r

)2. In the
same way as above one then finds that

#i = #w +
1
2
mwv

2

µF

is the new braking distance. This thus adds an extra 1.5m to give
b) answer #i = 6.5m.

Answer 3.4
a) Use of

P =
d

dt

∫ t

M dϕ = Mϕ̇
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and n = ϕ̇/(2π) gives
P (n) = 2πM(n)n.

b) Show that the derivative of the power with respect to n cannot be zero at n = nmax.

Answer 3.5
Note that the details of the process between the initial and final state of motion is
irrelevant. the answers will thus not depend on P and f .
a) The final angular velocity is ω/2.
b) The heat loss is Jω2/4.

Answer 3.6
Use of Lz =const. gives the angular velocity of the bar after the braking. It is found
to be

Ωfinal = − R2

#2 +R2
ω,

where the sign assumes that the disc at B has positive angular velocity before the
braking (as well as after). The heat loss is given by

Tinitial − Tfinal =
1
4
mR2ω2

(
1− R2

#2 +R2

)

and is thus always positive. Note that when # → 0 the heat loss goes to zero. The
reason for this is that when # = 0 the bar will have no inertia and the disc at A can
tranfer its angular velocity to the bar with no loss of energy. Energy is then conserved.



Chapter 4

Dynamics of Rigid Bodies

In this chapter we present the general form that the laws of linear and angular mo-
mentum take for rigid bodies. The law of angular momentum leads to Euler’s dynamic
equations for the rigid body. The concept of the inertia tensor is discussed and it is
stressed that the equations of motion should be given in such a way that the elements
of the inertia tensor are constant. Pendulums and reaction forces on rotating bodies
are also treated.

4.1 The Angular Momentum of a Rigid Body

We wish to calculate the angular momentum LA for a rigid body. Only two types of
base point A will be of interest; either the centre of mass G or a fixed point C of the
body. We place the origin of the coordinate system at the relevant base point so that
the definition of angular momentum gives

L =
N∑

k=1

rk ×mkvk. (4.1)

Here rk are the position vectors of the particles of the body with respect to the relevant
base point (G or C) and vk are the velocities of the particles. In the case of a fixed point,
C, these are absolute velocities and are given by equation 3.19. In the case of the centre
of mass we use velocities relative to the centre of mass system (so that we calculate
L′
G) and these are given by equation 3.9. Both these equations for the velocities have

the form
vk =ω × rk. (4.2)

The angular momentum that we want to calculate will thus in both cases have the
algebraic form

L =
N∑

k=1

rk ×mk(ω × rk) (4.3)

and this can be rewritten, using the formula for the triple vector product,

L =
N∑

k=1

[ωmk(rk · rk)−mk(ω · rk)rk]. (4.4)

The three components of this equation now give the result: angular
momentum of
rigid bodyLx = Jxωx −Dxyωy −Dxzωz,

Ly = Jyωy −Dyxωx −Dyzωz, (4.5)
Lz = Jzωz −Dzxωx −Dzyωy.

59
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If we introduce the matrix L=(Lx Ly Lz) of components of L and use the symmetric
matrix of equation 3.23 we can express these three equations with the single formula

L = wJ ⇐⇒ (Lx Ly Lz) = (ωx ωy ωz)


 Jx −Dxy −Dxz

−Dyx Jy −Dyz

−Dzx −Dzy Jz


 . (4.6)

One should remember that the elements of these matrices depend on the basis triad
used. There is, however, an invariant geometric relationship between the two vectors
L and ω expressed by this equation. We now investigate this.

4.1.1 Linear Transformations and the Inertia Tensor

We now investigate what happens to the matrix J when we change the basis. To do this
we must introduce a superscript on the component matrices so that we can distinguish
between the components with respect to different bases. For the vector L we thus write

L = LO EO = (LO
1 LO

2 LO
3 )


 eO

1

eO
2

eO
3


 = LA EA (4.7)

and correspondingly for ω and its components w. The equation 4.6 now gives

L = LO EO = wOJO EO (4.8)

in the fixed (observer) basis triad O. The same formula can also be expressed in a body
fixed basis triad EA so that we also have

L = wAJA EA. (4.9)

We now make use of the formulas 2.10 and 2.20 to transform from the O to the A basis
with the rotation matrix ARO and its inverse (=transpose) ORA. The above equation
then gives

L = wO ORA JA ARO EO. (4.10)

If we now compare this with equation 4.8 we find that the matrix of moments and
products of inertia for the two sets of basis vectors must be related according totransformation of

the inertia tensor
under rotation JO = ORA JA ARO. (4.11)

Once the moments and products of inertia have been calculated for one set of axis
directions one can thus find the corresponding quantities for any other set of axes
simply by multiplying with the relevant rotation matrix according to this formula.

In the chapter on rigid body kinematics we found that to each rotation matrix
there corresponds a rotation operator R̂ which operates on vectors to give new rotated
vectors. The operator is a linear operator , i.e. it obeys R̂(λa + µb) = λR̂a + µR̂b.
Such linear operators are geometric ‘objects’, independent of any particular basis in
which their components are given, and they are sometimes called (second rank) tensors
or ‘dyads’.

Since equation 4.6 clearly defines a linear transformation from the components of
ω to L there is a corresponding linear operator Ĵ which transforms the vector ω to
the vector L

L = Ĵω = wAJA EA. (4.12)

This linear operator is thus what properly should be called the inertia tensor of the
body even though this name is often used for the matrix of its components in some
basis. Unlike the rotation operators more general linear operators change both the



4.1. THE ANGULAR MOMENTUM OF A RIGID BODY 61

direction and the length of the vector on which it operates. Nor is the rotating part of
the operation a rigid rotation; different vectors are rotated in different ways.

When a rigid body moves its inertia tensor will, in general, be constant only if
it is calculated with respect to a point fixed in the body, or rigidly connected to the
body, and with respect to axis directions fixed in the body. The requirement that the
axis directions are fixed in the body, however, does not specify any particular direc-
tions for these axes; they can still be chosen in an infinity of different ways differing
from each other by constant rotations. General mathematical theory of linear trans-
formations, however, indicates that when such transformations are represented by real
symmetric matrices there might exist unique mutually orthogonal eigen-vectors of the
transformation. These eigen-vectors eA′

i are defined by the equation

ĴeA′
i = J ′

ie
A′
i i = 1, 2, 3 (4.13)

and the numbers J ′
i are the eigen-values 1. These eigen-vectors of the inertia tensor

define the principal axis directions of the body and the component matrix of the inertia
tensor in this principal basis is diagonal with the eigen-values along the diagonal:

J’ =


 J ′

x 0 0
0 J ′

y 0
0 0 J ′

z


 . (4.14)

These diagonal matrix elements are the principal moments of inertia of the body. In
what follows we will normally omit the primes on the principal moments of inertia and
simply write Jx etc.

The principal axes of a body can sometimes be found by means of the following two
rules:

(I.) Any plane of symmetry of a body is perpendicular to one of the principal axes.
(II.) A symmetry axis of a body is a principal axis. Any pair of axis perpendicular

to the symmetry axis will be principal axes and correspond to equal principal moments
of inertia.

A body for which two of the principal moments of inertia are equal is said to be a
symmetric top. The two eigen-vectors in the plane corresponding to these two moments
are then not unique; any pair will do. If all three moments of inertia are equal, the
inertia tensor does not single out any direction of the body as special; all vectors are
eigen-vectors. Such a body might be called a ‘spherical top’.

Example 4.1 A rigid body has mass m and principal moments of inertia Jx, Jy, and Jz.
Show, by explicit construction that there exists a rigid four particle system with the same mass
and inertia tensor.
Solution: Consider the four particle system in figure 4.1, where all particles have mass m/4
so that the total mass is m. The position vectors are given by

r1 = ( a, 0, c), (4.15)
r2 = (−a, 0, c), (4.16)
r3 = ( 0, b,−c), (4.17)
r4 = ( 0,−b,−c). (4.18)

The elements of the inertia tensor matrix for this system are

Dxy =
∑

mixiyi =
m

4
(a · 0− a · 0 + 0 · b− 0 · b) = 0 (4.19)

Dxz =
∑

mixizi =
m

4
(a · c− a · c− 0 · c− 0 · c) = 0 (4.20)

1One sometimes finds that the terms ‘characteristic vectors’ and ‘characteristic values’ are used
instead.
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Figure 4.1: This figure shows the four particle system for which the inertia tensor is calculated
in example 4.1. The total mass is m and the four identical particles are connected by light rigid
rods.

Dyz =
∑

miyizi =
m

4
(0 · c+ 0 · c− b · c+ b · c) = 0 (4.21)

Jx =
∑

mi(y2
i + z2

i ) =
m

4
(2b2 + 4c2) (4.22)

Jy =
∑

mi(x2
i + z2

i ) =
m

4
(2a2 + 4c2) (4.23)

Jz =
∑

mi(x2
i + y2

i ) =
m

4
(2a2 + 2b2). (4.24)

Since the inertia tensor is diagonal the axes are the principal axes for this case. The principal
moments of inertia for this four particle system are thus given by

Jx =
m

2
(b2 + 2c2), Jy =

m

2
(a2 + 2c2), Jz =

m

2
(a2 + b2). (4.25)

Since we consider the moments of inertia as given and the particle system geometry as unknown,
we must solve these equations for the distances a, b, and c in terms of Jx, Jy, and Jz. Some
algebra shows that

Jx + Jy − Jz = 2mc2, (4.26)
Jz + Jx − Jy = mb2, (4.27)
Jz − Jx + Jy = ma2, (4.28)

so the our four particle system will have the desired inertia tensor provided the distances are
chosen as follows:

a =

√
1
m
(Jz − Jx + Jy), b =

√
1
m
(Jz + Jx − Jy), c =

√
1
2m

(Jx + Jy − Jz). (4.29)

The four particles can thus be arranged to have any desired inertia tensor.
Should two principal moments of inertia be equal, Jx = Jy say, one finds that this means

that the two distances a and b must be equal: a = b. A body with two equal principal moments
of inertia is said to be a symmetric top. All three principal moments of inertia will be equal if
a = b and a =

√
2c; in this case the inertia tensor is said to have spherical symmetry. The four

particles are then at the corners of a regular tetrahedron.
The fact that a three particle system cannot produce a general inertia tensor is best seen

from the fact that such a system always will be plane (the plane of the three particles). If this
plane is chosen as the xy-plane the moments of inertia will necessarily obey Jx + Jy = Jz and
a general inertia tensor can thus not be produced. ✷



4.1. THE ANGULAR MOMENTUM OF A RIGID BODY 63

Example 4.2 Calculate the inertia tensor with respect to a basis which has been rotated by
the angle ψ around e3 of the principal basis, using equation 4.11.
Solution: In the principal basis the matrix of the inertia tensor is given by equation 4.14.
The new matrix in the rotated system becomes

JO = ORAJA′ ARO =


 cosψ − sinψ 0

sinψ cosψ 0
0 0 1




 J ′

x 0 0
0 J ′

y 0
0 0 J ′

z




 cosψ sinψ 0

− sinψ cosψ 0
0 0 1




=


 cos2 ψJ ′

x + sin2 ψJ ′
y cosψ sinψ (J ′

x − J ′
y) 0

cosψ sinψ (J ′
x − J ′

y) sin2 ψJ ′
x + cos2 ψJ ′

y 0
0 0 J ′

z


 . (4.30)

This calculation thus shows that the product of inertia in the non-principal axis system is given
by

DO
xy = − cosψ sinψ (J ′

x − J ′
y). (4.31)

From this it is clearly seen that in the case of a symmetric top, J ′
x = J ′

y, the directions of the
X- and Y -axes, in the plane perpendicular to the Z-axis, do not matter since then Dxy ≡ 0.
When two principal moments of inertia are equal rotation about the third axis will not make
the inertia tensor matrix non-diagonal. ✷

In a principal axis system the rotational kinetic energy, equation 3.15, takes the
simple form

T =
1
2
(Jxω2

x + Jyω
2
y + Jzω

2
z). (4.32)

The angular momentum vector components of equation 4.5 become simply

L = (Lx Ly Lz) = (Jxωx Jyωy Jzωz) (4.33)

in a such a system.

4.1.2 The Structure of the Inertia Tensor

We have obtained the inertia tensor twice by now. First when we calculated the kinetic
energy of the rigid body in equations 3.14 and 3.15. We also found the inertia tensor
when we calculated the angular momentum of a rigid body in equations 4.4 and 4.6.
From these equations we see that the inertia tensor matrix elements can be written in
the form

Jkl = [
∑

m(x2
1 + x2

2 + x2
3)]δkl −

∑
mxkxl, (k, l = 1, 2, 3) (4.34)

where we have omitted the particle index, for simplicity, and where δkl = 1 when k = l
and δkl = 0 when k �= l. If we define the spherical moment of inertia a by

JS ≡
∑
i

mi ri · ri (4.35)

and then extend the definition of the products of inertia, 3.17, to diagonal terms so
that e.g.

Dxx ≡
∑
i

mi xixi, (4.36)

and similarly for y and z, we can rewrite the above formula for the inertia tensor matrix
in the form

J = JS1 − D = JS


 1 0 0

0 1 0
0 0 1


−


 Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz


 . (4.37)
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We now see that the first term in this sum of matrices is invariant under the transfor-
mations 4.11. Eigen-values and eigen-vectors are thus completely determined by the
second part, the symmetric matrix D of products of inertia.

The division of the inertia tensor matrix into the two terms above simplify the
derivation of some of the properties of the inertia tensor. One such property is the
parallel axis theorem for the inertia tensor. We have come across the parallel axis
theorem for moments of inertia before. The corresponding theorem for the tensor is
found in exactly the same way. It states that the inertia tensor JC calculated with
respect to a point C of the body can be expressed in terms of the inertia tensor JG with
respect to the centre of mass G of the body and the vector from G to C: GC = R =
(R1, R2, R3) according to the formulaparallel axis

theorem for
inertia tensor JC = JG +m(R21 −R⊗R). (4.38)

Here m is the total mass of the body and

R⊗R ≡


 R1R1 R1R2 R1R3

R2R1 R2R2 R2R3

R3R1 R3R2 R3R3


 . (4.39)

The addition to the centre of mass inertia tensor when the origin is moved is thus simply
the inertia tensor of a particle with the mass of the body and the position vector of
the new point. Note this formula generalizes the parallel axis theorem for moments of
inertia. A diagonal component of the formula, e.g. the 33 or zz-component

JC
z = JG

z +m(R2
x +R2

y), (4.40)

is in fact our old friend the parallel axis (or Steiner’s) theorem.

4.2 Euler’s Dynamic Equations

The translational motion of a rigid body is given by the equation of motion

mr̈G = F (4.41)

which is a direct consequence of the principle of linear momentum. In order to determine
the motion of other points of the body than the centre of mass we must find the angular
velocity vector ω(t) as a function of time. The velocities of all other points can then
be found in terms of the centre of mass velocity by means of the connection formula
2.74. We will now derive the equations of motion for the rotational motion of a rigid
body in the form of differential equations for the angular velocity vector components.

The starting point is now the principle of angular momentum on one of the forms

L̇′
G = MG or L̇C = MC (4.42)

where the first form is the general one while the second may be used when there is a
point C of the body which is fixed in space. We write simply

L̇ = M (4.43)

in what follows to simplify the notation. In order to take the time derivative of the
angular momentum vector, as given by equations 4.5, we must decide which basis
vectors the components refer to. In order for the inertia tensor matrix elements to be
guaranteed to be constant we must use a basis fixed in the body, i.e. a rotating basis.
The time derivative must thus be calculated using the formula 2.61, i.e.

L̇ =
Od

dt
L =

Ad

dt
L+ω × L. (4.44)
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To simplify matters further we choose, among all possible basis vectors fixed in the
body, the principal basis, which we denote EA, and in which the angular momentum
vector has the simple form (see equation 4.33)

L = J1ω1 eA
1 + J2ω2 eA

2 + J3ω3 eA
3 . (4.45)

We now find that

L̇ = J1ω̇1 eA
1 + J2ω̇2 eA

2 + J3ω̇3 eA
3 +ω × L. (4.46)

If we now expand the vector product in terms of components we find that the angular
momentum principle gives Euler’s dynamic

equations for the
rigid bodyJ1ω̇1 + (J3 − J2)ω2ω3 = M1,

J2ω̇2 + (J1 − J3)ω3ω1 = M2, (4.47)
J3ω̇3 + (J2 − J1)ω1ω2 = M3.

These equations are called Euler’s dynamic equations. Together with Euler’s kinematic
equations, 2.69, which give the components of the angular velocity vector, in the same
body fixed frame, in terms of Euler angles, these equations determine the rotational
motion of the rigid body.

4.3 Fixed Axis Rotation and Reaction Forces

In this section we first derive some results for the ‘physical’ pendulum. i.e. the the
rotation of a rigid body around a fixed axis under the influence of gravity. We then use
the equations of motion to calculate the reaction (or constraint) force on the body from
the axis. This requires both the principles of linear and angular momentum, albeit only
the z-component of the latter. Finally we show how the reaction force can be resolved
into two contributions from two bearings if the remaining components of the angular
momentum principle are used.

4.3.1 The Physical Pendulum

In particle dynamics we have come across the ‘mathematical’ pendulum which con-
sists of a particle in a string acted on by gravity and the tension in the string. The
physical pendulum is a rigid body which can rotate freely around a fixed axis which
we conventionally take to be the Z-axis. It is acted on by the resultant of gravity,
mg, at the centre of mass G, and we denote by h the distance between the axis and G
(see figure 4.2). If one is only interested in the rotational motion the only equation of
motion needed is the z-component of the angular momentum principle, equation 1.76
(L̇z = Mz). This gives

Jzϕ̈ = −mgh sinϕ. (4.48)

If we introduce the ‘reduced length’ # of the physical pendulum according to

# ≡ Jz
mh

(4.49)

we can rewrite the above equation in the form

ϕ̈ = −g

#
sinϕ. (4.50)

This is exactly the same equation as for a mathematical pendulum of mass m and length
#, so the problems are mathematically equivalent. For small oscillations (sinϕ ≈ ϕ)
one finds that the angular frequency is

ω0 =
√

g

#
(4.51)
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Figure 4.2: The physical pendulum is a rigid body which can rotate freely around the fixed
Z-axis. It is acted on by gravity mg at the centre of mass G. The reaction force R from the
axis is due to a smooth constraint and does no work.

and the period is

Tp = 2π

√
#

g
= 2π

√
Jz

mgh
. (4.52)

In this formula one should note that when h is changed Jz also changes.

Example 4.3 A straight homogeneous rod of length l and mass m has been suspended so
that it can swing freely about one of its ends.
a) Calculate the period for small plane oscillations around the vertical (equilibrium) position.
b) What length should a simple pendulum of the same mass have in order to have the same
period?
Solution:
a) In this case the moment of inertia is Jz = 1

3ml2 and the distance from the rotation axis (at
the end of the rod) and its center of mass (in the middle) is h = l/2. Formula 4.52 then gives

T = 2π

√
1
3ml2

mgl/2
= 2π

√
2l
3g

(4.53)

for the period of the rod.
b) The period for a simple pendulum of length # is given by T = 2π

√
#/g. It will thus have the

same period as a rod of length l provided that # = 2l/3. Note that this is independent of the
mass. ✷

Let us investigate how the small amplitude period changes when the position of the
axis is changed. According to the parallel axis theorem

Jz = md2
z = JG

z +mh2 = md2
Gz +mh2 (4.54)

where JG
z is the moment of inertia with respect to a parallel Z-axis through the centre of

mass. Here dz and dGz are the radii of gyration corresponding to Jz and JG
z respectively.

If we insert this into equation 4.52 we get

Tp(h) = 2π

√
d2
Gz + h2

gh
. (4.55)

This shows that both limh→0 Tp = ∞ and limh→∞ Tp = ∞. Consequently there must
be some value for h between zero and infinity for which the period is minimized. The
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minimum h-value is easily found by putting the derivative of Tp with respect to h equal
to zero. This gives hmin = dGz and therefore

Tp(hmin = dGz) = 2π

√
2
dGz
g

. (4.56)

is the smallest possible period for small amplitude oscillations of a physical pendulum.
The energy of the physical pendulum is given by

1
2
Jzϕ̇

2 −mgh cosϕ = E. (4.57)

This equation can be used to find the angular velocity as a function of angle, ϕ̇(ϕ), as
in the following example.

Example 4.4 A straight homogeneous rod of length l and mass m has been suspended so
that it can swing freely about one of its ends. It is released with zero velocity in a horizontal
position. Calculate the angular velocity of the rod when it is vertical.
Solution:
In this case Jz = 1

3ml2 and h = l/2. The initial conditions are ϕ(0) = π/2 and ϕ̇(0) = 0. We
put these into equation 4.57 and get E = 0. In the vertical position we then get, from the same
equation, that

1
2

(
1
3
ml2
)

ϕ̇2 −mg

(
l

2

)
cos 0 = 0. (4.58)

Using cos 0 = 1 we easily solve this equation to get

ϕ̇ =

√
3g
l

(4.59)

for the angular velocity of the rod in the vertical position. ✷

Problems with small oscillations of systems involving complicated constraints, such
as rolling, are sometimes best treated by deriving an equation of motion by differentiat-
ing the conservation of energy with respect to time. This is illustrated in the following
example.

Example 4.5 A homogeneous circular cylinder of mass m and radius r rolls without slipping
on a cylindrical track of radius R(> r). See figure 4.3 for the geometry. Determine the period
for small oscillations of the cylinder around the equilibrium position.
Solution: Since there is rolling without slipping the mechanical energy is conserved and only
the gravitational force does work on the rolling cylinder so we can use the method of example
3.5. The kinetic energy can be found using the method of example 3.1.

In figure 4.3 two angles are introduced. The angle ψ is the angle that the vector from the
centre of the track to the midpoint of the cylinder makes with the vertical. The angle φ is the
angle between this vector and the line on the cylinder which is vertical at equilibrium. Because
of the rolling without slipping constraint we have the following connection between these:

Rψ = rφ. (4.60)

This says that the length Rψ along the track from the equilibrium position must be equal to
the length rφ along the circumference from the point of contact at equilibrium to the current
point of contact. Note, however, that the angle of rotation of the cylinder with respect to the
fixed vertical direction is given by φ− ψ.

The potential energy is given by Φ = mgh, where h is the height of the centre of mass
which is given by

h = (R− r)(1− cosψ). (4.61)

To get the total kinetic energy we need the angular velocity which is (note that ψ = r
Rφ)

ω = φ̇− ψ̇ = φ̇− r

R
φ̇ = (1− r

R
)φ̇ (4.62)
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Figure 4.3: This figure shows a non-equilibrium position for a cylinder rolling on a cylindrical
track. In example 4.5 the period for small oscillations of the rolling cylinder around the equi-
librium at the bottom of the track, is calculated. The angle φ is the angle that the cylinder has
turned when the vector from the center of the track to its mid-point has rotated the angle ψ.

so T is given by

T =
1
2
JCω

2 =
1
2
(mr2 +

1
2
mr2)(1− r

R
)2φ̇2. (4.63)

Using ψ = r
Rφ again we now get for the total energy

Em =
1
2
(
3
2
mr2)(1− r

R
)2φ̇2 +mg(R− r)[1− cos(

r

R
φ)]. (4.64)

We can now differentiate this with respect to time. When the resulting expression is divided by
φ̇ we get an equation of motion. In this equation one then makes use of the assumption of small
amplitude and put sin( r

Rφ) ≈ r
Rφ. One then gets the usual equation of motion for harmonic

oscillations and the period becomes

Tp = π

√
6(R− r)

g
. (4.65)

Note correct behavior Tp → ∞ in the limit when R → ∞. ✷

4.3.2 The Reaction Force from the Axis

In this subsection we calculate the reaction force R from the axis on the rigid body of
figure 4.2. This can be done if one assumes that the rotational motion ϕ(t) is known
since then the motion of the centre of mass is given and thus the total force on the
system. The momentum principle gives

F = mr̈G (4.66)

and here F = Fa + R where Fa is the ‘applied’ force. In figure 4.2 the only applied
force is gravity so Fa = mg but in the general case there may be other known external
forces applied to the body. If we now write down the three Cartesian components of
the equation of motion above we get

Rx = mẍG − F a
x , (4.67)

Ry = mÿG − F a
y , (4.68)

Rz = −F a
z . (4.69)
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In order to make use of the known rotational motion it is, however, better to introduce
cylindrical coordinates and take the components along the position dependent basis
vectors eρ and eϕ. The acceleration of the centre of mass, for which ρ = h, is then
given by

r̈G = −hϕ̇2 eρ + hϕ̈ eϕ. (4.70)

The ρ- and ϕ-components of the equations of motion above now give

Rρ = −mhϕ̇2 − F a
ρ , (4.71)

Rϕ = mhϕ̈− F a
ϕ .

These equations thus determine the interesting components of the reaction force on
the body from the axis. The force −R is then, of course, the force on the axis and its
bearings from the body.

We now calculate the right hand sides as explicitly as possible for the case of figure
4.2. We have that

Fa = F a
ρ eρ + F a

ϕ eϕ = mg = mg(cosϕ eρ − sinϕ eϕ). (4.72)

The angular acceleration ϕ̈ is determined as a function of ϕ by equation 4.48 and is
thus

ϕ̈ = −mgh

Jz
sinϕ. (4.73)

The angular velocity squared is determined as a function of ϕ once the total energy E
is known since

E =
1
2
Jzϕ̇

2 +mgh(1− cosϕ) (4.74)

gives

ϕ̇2 =
2
Jz

[E −mgh(1− cosϕ)]. (4.75)

If we now put all these results together into equations 4.71 we get

Rρ(ϕ) =
2mh

Jz
(mgh− E)−

(
1 +

2mh2

Jz

)
mg cosϕ, (4.76)

Rϕ(ϕ) =

(
1− mh2

Jz

)
mg sinϕ, (4.77)

and this is thus the final result. Once the initial conditions are known one can calculate
E and get numbers out of these equations. Note that the small amplitude approxima-
tion has not been needed in this derivation.

4.3.3 The Reaction Forces at Two Bearings

We now again consider a rigid body rotating around a fixed axis, the Z-axis. We again
assume that the rotational motion ϕ(t) of the body can be determined from Jzϕ̈ = Mz

and that it is known. In the previous subsection we calculated the total reaction force
R on the body from the axis. We now assume that the axis is mounted in bearings at
two points A and O, as shown in figure 4.4, and we wish to calculate the contributions,
R1 and R2, to the total force R = R1 +R2, from each of these bearings.

To solve this problem we can use the momentum principle as above and rederive
the equations 4.71 for this case. We take the coordinate system OXY Z to be fixed in
the body, see figure 4.4, and choose it so that G is in the xz-plane. Then ex plays the
same role as eρ did when we found 4.71, so we get

R1x +R2x = −mhϕ̇2 − F a
x , (4.78)

R1y +R2y = mhϕ̈− F a
y .
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Figure 4.4: A rigid body can rotate around a fixed Z-axis. The axis is held in place by
bearings at A and at O. The reaction forces at these are R1 and R2 respectively. There is also
an applied force Fa, normally its weight, acting on the body.

There are, however, now four unknowns but still only two equations, so this does not
suffice to determine the separate bearing reactions.

We’ll now show that the missing equations are provided by the two unused x- and
y-components of the principle of angular momentum L̇O = MO. Since the angular
velocity vector is ω = ϕ̇ ez equations 4.5 give us (as usual we leave out the base point
index O)

Lx = Jxωx −Dxyωy −Dxzωz = −Dxzϕ̇,

Ly = Jyωy −Dyxωx −Dyzωz = −Dyzϕ̇, (4.79)
Lz = Jzωz −Dzxωx −Dzyωy = Jzϕ̇.

To find the time derivative L̇ we use equation 4.44 and find for the x- and y-components

L̇x =
d

dt
(−Dxzϕ̇) + ωyLz − ωzLy = −Dxzϕ̈+Dyzϕ̇

2, (4.80)

L̇y =
d

dt
(−Dyzϕ̇) + ωzLx − ωxLz = −Dyzϕ̈−Dxzϕ̇

2. (4.81)

We now need the corresponding components of the moment. Reference to figure 4.4
immediately gives (zA is the distance between the two bearings)

Mx = Ma
x − zAR1y (4.82)

My = Ma
y + zAR1x (4.83)

so the angular momentum principle now provides us with the two equations for the
reaction force at bearing A:

R1y =
1
zA

(Dxzϕ̈−Dyzϕ̇
2 +Ma

x ), (4.84)

R1x = − 1
zA

(Dyzϕ̈+Dxzϕ̇
2 +Ma

y ). (4.85)

These two equations together with the equations 4.78 completely solve the problem i.e.
determine the four components, perpendicular to the axis, of the the two reaction forces
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Figure 4.5: The figure on the left refers to problem 4.1. The notation used in the problem is
indicated. The rod can swing around a horizontal axis through A.

Figure 4.6: The figure on the right refers to problem 4.2. The straight narrow rod, which
hangs in two strings of equal length, one from each end, can swing as a pendulum in a vertical
plane.

at the bearings. The force along the axis can be determined if it is assumed to arise
from one of the bearings, in which case it is simply the negative of the z-component
of the applied force. Should both bearings apply forces along the axis the problem is
statically indeterminate.

If one wishes to minimize the reaction forces on the bearings it is obvious from
equations 4.71 that one should make h = 0, i.e. put the centre of mass on the axis,
since then only the applied force will contribute to the net reaction force R. A rotating
system for which this has been done is sometimes called ‘statically balanced’. If the
total force is made small in this way there is, however, still no guarantee that the
individual forces on the two bearings of this section are small. To achieve this one must
also make the products of inertia Dxz and Dyz zero, according to our findings above.
This means that the rotation axis should be a principal axis of the body. The system
is then said to be ‘dynamically balanced’. Wheels that rotate rapidly should thus be
both statically and dynamically balanced. An example of a system which is statically
but not dynamically balanced is the one of example 1.1 on page 6.

4.4 Problems

Problem 4.1 A straight narrow homogeneous AB rod of mass m and length # can
swing, with negligible friction, around a fixed horizontal axis at A, as shown in figure
4.5. The instantaneous angle that it makes with the vertical is ϕ and the maximum
value for this angle is α. Calculate, as functions of ϕ and x, the tension N , the shear
T , and the bending moment M on the part CB of the rod in an imaginary cut at C a
distance x from B.

Problem 4.2 A straight narrow rod AB, hangs in two strings of equal length, one
from each end and both fixed at O. The rod can swing as a pendulum in a vertical
plane around a horizontal axis through O, see figure 4.6. The lengths of the rod and
the strings have the ratio 6/5(= |AB|/|AO|). What maximum value of the angle of
deflection is allowed if the strings are to remain taut at all times?
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Figure 4.7: The figure on the left refers to problem 4.3. A circular disc hangs in a string fixed
at the two points A and B. The string goes round the circumference of the disc. The part BC
of the string has been replaced by a spring.

Figure 4.8: The figure on the right refers to problem 4.4. A cube stands on a semi-cylinder.

Problem 4.3 A circular homogeneous circular disc of mass m and radius R hangs
vertically in a string fixed at the two points A and B of a horizontal ceiling. The points
are a distance 2R apart. The string goes round the circumference of the disc one and
a half times. The part BC of the string has been replaced by a spring of stiffness k, as
shown in figure 4.7. The string will not slip on the circumference of the disc. Calculate
the period for small vertical oscillations.

Problem 4.4 A homogeneous cube of side length 2a stands on a rough semi-cylinder
of radius R, see figure 4.8. The semi-cylinder has horizontal axis and four of the edges
of the cube are parallel to this axis. At equilibrium the bottom face of the cube and
the cylinder touch along a straight horizontal line in the middle of the bottom face of
the cube. Calculate the period for small oscillations of the cube near this equilibrium.

Problem 4.5 A tall factory chimney made of brick is being demolished. It is severed
at the base by means of an explosion an starts to fall. Assume constant thickness.
Assume that it breaks again somewhere during the fall. Use the results of problem 4.1
to calculate where this is likely to happen and in which direction.
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Figure 4.9: This figure refers to answer 4.3. It shows why the elongation of the spring is twice
the vertical displacement, x, of the disc.

4.5 Hints and Answers

Answer 4.1 Use conservation of energy to get ϕ̇ as a function of ϕ and α. This gives

N(ϕ, x) = mg
x

2#2
[(8#− 3x) cosϕ− 3(2#− x) cosα],

and
T (ϕ, x) = mg

x

4#2
(2#− 3x) sinϕ.

To find the moment of force, use L̇G = MG for the piece of length x. This relation gives

JG(x)ϕ̈ = −M(x) +
x

2
T (x),

from which one finds

M(ϕ, x) = mg

(
x

2#

)2

(#− x) sinϕ.

One notes that dM
dx = T (x), a well known relation in strength of materials.

Answer 4.2 Do the experiment at home and observe on which side the string first
becomes slack. The maximum allowed angle is given by

α = arctan
19
4

and this is the answer.

Answer 4.3 The string has fixed length and must go one and a half times round the
disc at all times. The disc then translates and rotates in such a way that the vertical
displacement is R times the rotation angle, see figure 4.9. The elongation of the spring
must be twice the vertical displacement of the disc. One finds that

T = π

√
3m
2k

is the period of the oscillations.
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Answer 4.4 The kinetic energy of the cube is

T =
1
2
JC(ϕ)ϕ̇2,

where C is a contact point and JC is the instantaneous moment of inertia of the cube
for an axis through a contact point parallel to the axis of the cylinder. The potential
energy is

Φ = mg(R cosϕ+Rϕ sinϕ+ a cosϕ),

where ϕ is the tilt angle of the cube. The period is found to be

T = 2π

√
5a2

3g(R− a)
.

Answer 4.5 The chimney is likely to break where the bending moment M(x, ϕ) has
its maximum. This happens at x = 2#/3.



Chapter 5

Three Dimensional Motion of
Rigid Bodies

In this chapter we discuss the general non-planar rotational motion of rigid bodies.
In particular we discuss the free motion (no external moment) and the motion of the
symmetric top in the gravitational field.

The general rotational motion of an asymmetric top rigid body is in principle given
by solving Euler’s dynamic equations 4.47 and Euler’s kinematic equations 2.69 together
as a system of coupled non-linear differential equations for the three functions ψ(t), θ(t),
and ϕ(t). In the general case, for some given external moment M acting on the body,
the only method for finding a solution is by numerical techniques. In the free case
when the external moment is zero M = 0 it is possible to find a solution of Euler’s
dynamic equations in terms of elliptic functions but we will not go into this. In order
to get reasonably simple closed form solutions we concentrate on the symmetric top
with principal moments of inertia given by J1 = J2 �= J3. For the free asymmetric top
we discuss the Poinsot construction and stability of rotation around the principal axes.

5.1 The Spherical Top

The free motion of the spherical top is the easiest of all to treat. The inertia tensor
matrix for such a body is by definition diagonal and proportional to the unit matrix in
all basis triads: J = J11. Note that a body need not be spherical in order to have such
an inertia tensor. For example a body with the symmetry of a cube or tetrahedron (see
example 4.1, page 61) will be a ‘spherical top’.

For the free spherical top the total external moment M = 0. The equation of
motion L̇ = 0 together with the relation L = Ĵω = J1ω immediately gives ω̇ = 0.
The solution is solution of the

free spherical topω = L/J1 = const. (5.1)

so the body spins with an angular velocity which is constant both in magnitude and
direction and parallel to L.

For bodies that really have spherical shape there are many interesting rolling prob-
lems that can be attacked by means of the basic equations of mechanics. One such
problem is treated in the following example.

Example 5.1 A sphere of mass m and radius R rolls on a rough inclined plane. The angle
of inclination is β, see figure 5.1. The moment of inertia of the sphere is J for any axis through
its center of mass (=centroid) G. Let the X-axis point downwards along the incline.
a) Find the trajectory of the sphere on the plane for arbitrary initial conditions.
b) Use conservation of mechanical energy to find an equation connecting x and ẋ.
Solution:
a) Since the sphere rolls without slipping the point C on the sphere in contact with the plane is

75
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Figure 5.1: The notation used in example 5.1 is defined in this figure. The sphere rolls without
slipping on the inclined plane.

instantaneously at rest. The motion of the sphere is thus pure rotation around C. The moment
of inertia of the sphere with respect to any axis in the plane through C is, according to the
parallel axes theorem,

JC = J +mR2. (5.2)

We will use the equation of motion L̇C = MC and we thus need expressions for LC and MC .
These are found to be (see equation 1.12)

LC = CG × p+ L′
G = R ez ×mvG + Jω, (5.3)

and
MC = M = CG ×W = Rmg sinβ ey (5.4)

where W = −mg(cosβ ez− sinβ ex) is the weight of the sphere as indicated in figure 5.1. Since
vC = 0 the connection formula for velocities in a rigid body, equation 2.74, gives us

vG = v =ω × CG = (ωx ex + ωy ey + ωz ez)×R ez (5.5)

for the center of mass velocity, v, of the sphere. The three components of this equation can be
written

ẋ = Rωy (5.6)
ẏ = −Rωx (5.7)
ż = 0 (5.8)

so that v = Rωy ex −Rωx ey. Use of this in the expression for LC gives

LC = mR ez × (Rωy ex −Rωx ey) + Jω = (5.9)
= (J +mR2)ωx ex + (J +mR2)ωy ey + Jωz ez, (5.10)

and the equation of motion L̇C = M thus yields

(J +mR2)ω̇x ex + (J +mR2)ω̇y ey + Jω̇z ez = Rmg sinβ ey. (5.11)

The components of this vector equation are

(J +mR2)ω̇x = 0 (5.12)
(J +mR2)ω̇y = Rmg sinβ (5.13)

Jω̇z = 0 (5.14)
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If we put

α ≡ ω̇y =
Rmg sinβ

J +mR2
(5.15)

for the angular acceleration around the Y -axis, we can solve these equation for the angular
velocity components as follows

ωx = ωx(0) = const., (5.16)
ωy = ωy(0) + αt, (5.17)
ωz = ωz(0) = const. (5.18)

This can be inserted into equation 5.6 above and integrated to give

ẋ = Rωy = R(ωy(0) + αt) (5.19)

⇒
∫ t

0

R(ωy(0) + αt′) dt′ = x(t)− x(0) (5.20)

⇒ Rωy(0) t+R
1
2
αt2 = x(t)− x(0), (5.21)

⇒ x(t) = x(0) +Rωy(0) t+
1
2
R

(
Rmg sinβ

J +mR2

)
t2. (5.22)

To find the time dependence of the y-coordinate we use equation 5.7 and proceed in a similar
way. The result is

y(t) = y(0)−Rωx(0) t. (5.23)

We have thus found the trajectory of the sphere on the inclined plane in terms of the initial
conditions x(0), y(0), ωx(0), and ωy(0).
b) Use of equation 3.21 gives us the expression

T =
1
2
[(J +mR2)ω2

x + (J +mR2)ω2
y + Jω2

z ] (5.24)

for the kinetic energy of the rolling sphere. The potential energy is as usual given by mg times
the height of the center of mass of the sphere. This gives us

Φ = −mgx sinβ. (5.25)

Note that gravity is the only force doing work on the sphere since the other forces, normal force
and (static) friction, do no work. Thus the mechanical energy

E = T +Φ (5.26)

is conserved. Since ωx and ωz are also constants use of equation 5.6 allows us to write

const. =
(
E +

1
2
(J +mR2)ω2

x +
1
2
Jω2

z

)
=

1
2
(J +mR2)

(
ẋ

R

)2

−mgx sinβ. (5.27)

This concludes our treatment of the sphere rolling down a rough incline. ✷

5.2 The Symmetric Top

In this section we treat the motion of the symmetric top in some detail. One of the
facts that make it easier to treat the symmetric top is that the inertia tensor matrix
is constant, not only in a body fixed basis EA, but also in any basis where one basis
vector is along the axis with different moment of inertia J3, as for example the basis
EB of figure 5.2. This axis is the symmetry axis of the body’s inertia tensor. Relative
to the reference frame B of this basis the angular velocity vector of the body is

BωA = ϕ̇ eB
3 . (5.28)

The angular velocity of the frame B relative to the fixed frame O is given by

OωB = ψ̇ eO
3 + θ̇ eB

1 = θ̇ eB
1 + ψ̇(sin θ eB

2 + cos θ eB
3 ). (5.29)
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Figure 5.2: To study the motion of the symmetric top there is no need to use the body fixed
basis EA. Because of the equality of two of the moments of inertia all elements of the inertia
tensor matrix are constant already in the basis EB where the 1,2-plane corresponds to the plane
of the equal moments of inertia. For the free symmetric top the origin O is taken at the center
of mass (O = G) and the third axis of the observer fixed system, eO

3 , is taken along the constant
angular momentum vector L.

According to the theorem on the additivity of angular velocities the angular velocity
of the body relative to the fixed reference frame is then

ω = OωA = OωB + BωA = θ̇ eB
1 + ψ̇ sin θ eB

2 + (ψ̇ cos θ + ϕ̇) eB
3 (5.30)

(compare equation 2.65 where the same vector is given in the A basis).

5.2.1 The Free Symmetric Top

For the free symmetric top, see figure 5.2, we write down the components of the vector
equation L = Ĵω in the basis EB, i.e. the elements of the matrix equation LB = wBJB.
The angular velocity is given above in equation 5.30 so we have that

wBJB = (θ̇ ψ̇ sin θ ψ̇ cos θ + ϕ̇)


 J1 0 0

0 J1 0
0 0 J3


 . (5.31)

We select the fixed 3-axis along the (constant) angular momentum vector so that L =
L eO

3 . The components of L in the B basis are then given by

LB = (0 L sin θ L cos θ). (5.32)

so we get the result

0 = J1θ̇,

L sin θ = J1ψ̇ sin θ, (5.33)
L cos θ = J3(ψ̇ cos θ + ϕ̇).
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The first of these equations says that θ = θ0 =const. I.e. the axis of the top makes a
constant angle with the angular momentum vector L. The second of the three equations
gives us

ψ̇ =
L

J1
(5.34)

unless θ0 = 0. This is the angular velocity with which the axis of the top rotates around
L. The third equation gives

ϕ̇ =
L

J1
cos θ0

J1 − J3

J3
(5.35)

for the angular velocity of the body in the B frame. Note that the sign of this angular
velocity depends on the shape of the body; it is positive when J1 > J3 as is the case for
the ‘prolate’ body in figure 5.2 (assuming it is homogeneous) but it would be negative
for an ‘oblate’ (flattened) body.

In the case θ0 = 0, when the axis of the top is parallel to the angular momentum,
the third of our equations give L/J3 = ψ̇ + ϕ̇ and this is simply the magnitude of the
angular velocity of the top around the common fixed direction of L and its axis. In this
case one cannot resolve the two angular velocities since the B frame becomes undefined.

This last result, that if the symmetric top spins around its axis, then this axis is
parallel to the angular momentum vector and is fixed in space, is the principle behind
the gyroscope. A symmetric top body which has been mounted in a pair of gimbal
rings so that the external moment on it is negligible will be a free symmetric top. If
it spins around its symmetry axis this axis will have a fixed direction in space so the
system can be used as a compass.

Example 5.2 Consider Euler’s dynamic equations 4.47 for the free symmetric top:

J1ω̇1 + (J3 − J1)ω2ω3 = 0,
J1ω̇2 − (J3 − J1)ω1ω3 = 0, (5.36)

J3ω̇3 = 0.

Here ωi, (i = 1, 2, 3) are the body fixed components of the angular velocity vector. Find the
time dependence of these.
Solution:
The third of the equations 5.36 immediately gives

ω3(t) = ω3(0) = const. (5.37)

The first two can then be rewritten in the form

ω̇1 + βω2 = 0, (5.38)
ω̇2 − βω1 = 0 (5.39)

where

β ≡ J3 − J1

J1
ω3(0). (5.40)

If we now multiply the equation for ω2 by the imaginary unit i and add the result to the
equation for ω1 we find that the quantity

ζ ≡ ω1 + iω2 (5.41)

obeys
ζ̇ − iβζ = 0. (5.42)

The solution to this simple differential equation is

ζ(t) = A exp(iβt) (5.43)



80 CHAPTER 5. THREE DIMENSIONAL MOTION OF RIGID BODIES

Figure 5.3: Just as the free symmetric top the heavy symmetric top is best studied in the
basis EB. The origin O is taken at the (fixed) point of contact, C, with the ground (O = C)
and the third axis of the observer fixed system, eO

3 , is taken along the vertical direction. The
moment is given by M = CG ×mg = −# eB

3 ×mg eO
3 = mg# sin θ eB

1 .

where A is a complex constant that depends on the initial conditions. The result is thus that

ω1(t) = |A| cos(βt+ α), (5.44)
ω2(t) = |A| sin(βt+ α), (5.45)

where α is the argument of A = |A| exp(iα). This means that the angular velocity vector, in
the body fixed system, rotates with angular velocity β, around the third principal axis (the one
with different moment of inertia). ✷

5.2.2 The Heavy Symmetric Top

The heavy symmetric top is essentially a model of the well known toy top with which
everyone has played at one time or another. It is set spinning by rotating an axis on
it between the thumb and the other fingers. This axis goes through the top and has a
relatively pointed end which is in contact with the floor or table surface on which the
top is left spinning after starting it. Usually a fairly oblate (flat) body is mounted on
this axis since this makes the resulting motion more stable as we’ll see below.

Our model is that of a rigid body which can rotate with negligible friction around
a fixed point C, which does not coincide with the center of mass, G, of the body.
The well defined principal axis of the body goes through both C and G. Any pair of
perpendicular directions in the plane perpendicular to this axis, the axis of the top, will
define principal axes of the body with equal principal moments of inertia. In a suitably
chosen coordinate system with axis directions given by the basis EB and origin at C,
see figure 5.3, the inertia tensor matrix of the body will be

JC = JG +


 m#2 0 0

0 m#2 0
0 0 0


 =


 J1 +m#2 0 0

0 J1 +m#2 0
0 0 J3


 =


 J ′

1 0 0
0 J ′

1 0
0 0 J3


 .

(5.46)
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Here m is the mass of the body and # is the distance between G and C. We have
used formula 4.38 in which we have put that the components of R in the B coordinate
system are (R1 R2 R3) = (0 0 #). Note that this inertia tensor in the B coordinate
system is exactly the same as in the body fixed A system because of the symmetry
(i.e. equality of the principal moments of inertia), just as we found in our treatment of
the free symmetric top. The reason, in both cases, being that the body fixed frame is
obtained by a rotation of the B frame an angle ϕ around the axis of the top.

The angular velocity vectors of the frame B and the body are given by the same
expressions as in equation 5.30 and those above it. We now calculate the equations of
motion L̇ = M and we wish the components in the B frame. We get

L̇ =
BdL
dt

+ OωB × L (5.47)

according to equation 2.61 and we have that

L = Ĵω = Ĵ(OωB + BωA) = J ′
1(θ̇ e

B
1 + ψ̇ sin θ eB

2 ) + J3(ψ̇ cos θ + ϕ̇)eB
3 . (5.48)

Here we have introduced J ′
1 ≡ J1 +m#2. If we now use the expression in equation 5.29

for OωB we can calculate the vector product that we need for the time derivative of L
in the B frame. The moment of the weight of the body can be read off directly from
figure 5.3 and is

M = mg# sin θ eB
1 . (5.49)

Finally the angular momentum law, L̇ = M, now gives us

d

dt
(J ′

1θ̇) + [(J3 − J ′
1)ψ̇

2 sin θ cos θ + J3ψ̇ϕ̇ sin θ] = mg# sin θ (5.50)

d

dt
(J ′

1ψ̇ sin θ)− [(J3 − J ′
1)ψ̇θ̇ cos θ + J3θ̇ϕ̇] = 0 (5.51)

d

dt
[J3(ψ̇ cos θ + ϕ̇)] = 0 (5.52)

Of these complicated equations only the third gives some simply useful information. It
tells us that

L3 ≡ J3(ψ̇ cos θ + ϕ̇) = const. (5.53)

i.e. that the component of the angular momentum along the axis of the top is conserved.
The reason for this is that neither the vector product OωB × L nor the moment M
have components along eB

3 , and this depends crucially on the fact that the two first
moments of inertia are equal. The corresponding conserved quantity therefore does not
exist for an asymmetric top.

Since the moment M always lies in the horizontal plane, M = Mx eO
1 +My eO

2 , one
can conclude that the vertical component of L also must be conserved; just consider
the third (Z-component) of L̇ = M in the fixed O-system. Use of equation 5.48 gives
us the following expression for this component of the angular momentum vector

L · eO
3 = L · (sin θ eB

2 + cos θ eB
3 ) = ψ̇(J ′

1 sin
2 θ + J3 cos2 θ) + J3ϕ̇ cos θ. (5.54)

We thus also have the following conserved quantity

Lz ≡ (J ′
1 sin

2 θ + J3 cos2 θ)ψ̇ + J3ϕ̇ cos θ = const. (5.55)

for the heavy symmetric top. The constraint force acting on the top at C does no work
so the only work done on the body is done by the conservative force of gravity. This
means that the mechanical energy of the top is conserved. We’ll use these conserved
quantities later to study the ‘nutation’.
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5.2.3 Precession of the Heavy Symmetric Top

Everyone who has played with a top has observed that it normally moves in a special
way. The top spins rapidly around its axis while the axis rotates slowly around the
vertical direction while maintaining a constant angle with the vertical. This slow ro-
tation of the axis is called ‘precession’. Since this is an observed fact it is natural to
check whether this type of motion can be a solution to the equations of motion 5.50 -
5.52. We thus put

Ω = ψ̇ = const., (5.56)
θ0 = θ = const. (5.57)

for the constant angular velocity of precession and the constant angle between axis and
vertical respectively. When this is inserted in equation 5.53 one immediately finds that
also the angular velocity of the top around its own axis must be constant

ϕ̇ =
L3

J3
− Ωcos θ0 = const. (5.58)

The third equation 5.52 is then automatically satisfied. The second equation, 5.51, is
easily seen to satisfied by this type of motion; all its terms become zero. The first
equation (5.50) gives after some algebraic manipulation that

ϕ̇ =
1
J3

[
mg#

Ω
− Ω(J3 − J ′

1) cos θ0

]
. (5.59)

We thus see that provided the value of L3 is given by

L3 =
mg#

Ω
+ J ′

1Ωcos θ0. (5.60)

all these results agree and constitute one possible solution of the equations of motion.
One finds the following expression for the angular velocity of precession

Ω =
mg#

J3ϕ̇− (J3 − J ′
1)(ϕ̇− L3/J3)

. (5.61)

One might call this kind of motion ‘pure’ precession. It is characterized by the constancy
of the angle θ. Changes in θ are called nutations and are treated below.

It is fairly easy to see that the precessional motion always is a good approximation
to the exact motion when the top spins rapidly enough. If ϕ̇ is very large one should
have L ≈ J3ϕ̇ eB

3 . Then however L is parallel to the moment arm of the weight and we
get from L̇ = M that (in the fixed reference frame)

OdL
dt

+
m#

L
g × L = 0 (5.62)

after moving the moment to the left hand side. This, however, is the equation (see
equation 2.61)

PdL
dt

=
OdL
dt

+ PωO × L = 0. (5.63)

that L would obey if it was at rest in a reference frame P with respect to which O
rotates with the angular velocity

PωO =
m#

L
g = −m#g

J3ϕ̇
eO

3 . (5.64)
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The conclusion must be that L and with it the axis of the top, rotates around the
vertical axis with an angular velocity OωP which is the negative of PωO. This angular
velocity is thus

Ω =
m#g

J3ϕ̇
eO

3 . (5.65)

If we compare with the result 5.61 above we see that these agree reasonably with each
other when ϕ̇ ≈ L3/J3 and according to equation 5.58 this happens when |Ωcos θ0| �
|L3/J3|. It is thus exact also when θ0 = π/2.

5.2.4 Nutation of the Heavy Symmetric Top

The energy of the heavy symmetric top is the sum of the kinetic energy, which can be
calculated from equation 4.32, and the potential energy. One finds

E =
1
2
J ′

1(θ̇
2 + ψ̇2 sin2 θ) +

L2
3

2J3
+mg# cos θ (5.66)

where the constant L3 is given in equation 5.53. However, using the two conserved
components of the angular momentum in equations 5.53 and 5.55 one can easily find
that

ψ̇ =
Lz − L3 cos θ

J ′
1 sin

2 θ
(5.67)

and thus also eliminate ψ̇ from the expression for the energy. The result is that

E′ =
1
2
J ′

1θ̇
2 +Φeff(θ) (5.68)

where E′ is the constant

E′ ≡ E − L2
3

2J3
−mg# (5.69)

and

Φeff(θ) ≡
(Lz − L3 cos θ)2

2J ′
1 sin

2 θ
−mg#(1− cos θ). (5.70)

Conservation of energy has thus given us a one-dimensional effective energy conserva-
tion law for the θ-motion.

We can now find the limits (turning points) of the θ-motion as the roots of the
equation

E′ − Φeff(θ) = 0. (5.71)

It turns out that there are in general two roots, θ1 ≤ θ2, of this equation between which
‘nutation’ takes place. When the two roots coincide one has the special case of pure
precession.

Example 5.3 Find the condition for the rotation of the heavy symmetrical top in a vertical
position to be stable.
Solution: For θ = 0 the two vectors eB

3 and eO
3 coincide so we must have that L3 = Lz.

We also see that E′ = 0. The rotation will be stable if the function Φeff(θ) has a minimum at
θ = 0. To check if this is the case one puts L3 = Lz in and then approximate the trigonometric
functions according to sin θ ≈ θ and cos θ ≈ 1− 1

2θ
2. The result is that

Φeff(θ) ≈
(

L2
3

8J ′
1

− mg#

2

)
θ2. (5.72)

This function thus has a minimum when L2
3 > 4J ′

1mg#. So when the angular momentum is
large enough this motion is stable, but when friction has reduced the angular momentum to
this limiting value the top starts to wobble and soon falls to the ground. ✷
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5.2.5 The Resal System

Sometimes the motion of a rigid body of symmetric top type is partly known. In this
section we will consider the problem of the symmetric top for the case that the motion
of the B-system of figure 5.3 is known. The angles ψ and θ thus have some known
time dependence and the angular velocity vector OωB of formula 5.29 is assumed
known. In this case the equations of motion are equations connecting ϕ(t) and the
three components of the moment M. If one of these is known one can solve for the
other three.

We now denote the known angular velocity of the B-system, the so called Resal1

system, by Ω. Since the angular velocity of the A-system with respect to the B-system
is ϕ̇ eB

3 (= ϕ̇ eA
3 ), equation 5.30, where now Ω = OωB, gives

ω = Ω+ ϕ̇ eB
3 (5.73)

for the total angular velocity vector of the body.
To find the equations connecting M and ϕ̇ we now consider L̇ = M and calculate

the components of this vector equation in the B-system. In this system we have

LB = (Ω1, Ω2, Ω3 + ϕ̇)


 J1 0 0

0 J1 0
0 0 J3


 = (J1Ω1, J1Ω2, J3(Ω3 + ϕ̇)) (5.74)

To get the B-system components we also need

L̇ =
BdL
dt

+Ω× L = M, (5.75)

and the B-componenets of this equation are

(J1Ω̇1, J1Ω̇2, J3(Ω̇3 + ϕ̈))+Ω× (J1Ω1, J1Ω2, J3(Ω3 + ϕ̇)) = (M1,M2,M3). (5.76)

The three component equations thus are

J1Ω̇1 + (J3 − J1)Ω2Ω3 + J3Ω2ϕ̇ = M1,

J1Ω̇2 − (J3 − J1)Ω1Ω3 − J3Ω1ϕ̇ = M2, (5.77)
J3Ω̇3 + J3ϕ̈ = M3,

and they are clearly linear in M(t) and ϕ(t). If ϕ(t) is known one can calculate the
moment M, or if one component of M is known one can calculate ϕ(t) and the other
two components of M.

Example 5.4 On a light horizontal axis OB, of length #, is mounted a bicycle wheel of mass
m that can rotate freely around it at B, see figure 5.4. The moment of inertia of the wheel,
which can be considered to be thin, with respect to the axis OB is J and the axis is connected
by a ball and socket joint at O to a fixed vertical axis. This vertical axis rotates with constant
angular velocity Ω. By means of an arm, which has a smooth ring at A through which OB goes,
it keeps the axis OB horizontal, and carries it around in the rotation. The angular velocity of
the bicycle wheel around the axis OB is ϕ̇. Calculate the force F at A from the ring on the
axis OB, assuming that the distance |OA| = d (< #).
Solution:
The symmetric top in this case is the bicycle wheel together with the axis OB which also is the
symmetry axis. We introduce a B-system just as in figure 5.3 so that eB

3 is along OB, the angle
θ = π

2 and Ω = ψ̇. The angular velocity vector of the B-system is thus

Ω = Ω1 eB
1 +Ω2 eB

2 +Ω3 eB
3 = Ω eB

2 (5.78)

1The name refers to the french nineteenth century mathematician H. Resal.



2

B

3

 

BeA 
.
ϕ  

Ω 

B O 

e

5.2. THE SYMMETRIC TOP 85

Figure 5.4: This figure shows the rotating bicycle wheel discussed in example 5.4. The vertical
axis through O together with its arm to A rotates with angular velocity Ω around the vertical
direction. The bicycle wheel rotates with angular velocity ϕ̇ on the light horizontal axis OB.

so that Ω1 = Ω3 = 0, Ω2 = Ω while all time derivatives are zero: Ω̇1 = Ω̇2 = Ω̇3 = 0. Only the
third term in the first two of equations 5.77 will thus survive. Since the wheel is thin one must
have J1 = J2 = J/2 for axes through B, in the plane of the wheel. The fixed base point is at
O, however, so we really need J ′

1 = J1 + m#2. In this case therefore the quantity (J3 − J1) of
equations 5.77 is given by J − (J/2 + m#2) = J/2 − m#2. However, we found above that we
don’t need this quantitiy, only J3 = J is needed. The system of equations 5.77 gives

JΩϕ̇ = M1,

0 = M2, (5.79)
Jϕ̈ = M3.

The moment with respect to O is given by

M = M1 eB
1 +M2 eB

2 +M3 eB
3 = OB × (−mg eB

2 ) +OA× F, (5.80)

where F is the unknown force acting at A. Since the ring is smooth this force cannot have any
component along OB and can thus be expressed in the form

F = F1 eB
1 + F2 eB

2 . (5.81)

Since OB = # eB
3 and OA = d eB

3 we now find that

M = (mg#− F2d) eB
1 + F1d eB

2 . (5.82)

The three equations of motion thus become

JΩϕ̇ = mg#− F2d,

0 = F1d, (5.83)
Jϕ̈ = 0,

The force is thus

F =
(mg#− JΩϕ̇)

d
eB
2 (5.84)

Do this experiment yourself with a bicycle wheel on an axis, by putting one hand at O and the
other at A while you rotate around around a vertical axis. Note how the rotation of the wheel
reduces or increases the necessary force at A, depending on relative sign of Ω and ϕ̇. ✷
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5.3 The Free Asymmetric Top

5.3.1 The Inertia Ellipsoid

The energy, E, as well as the angular momentum, L, of the free asymmetric top are
conserved. Using components of ω along the body fixed principal axes system the
energy, E, is given by (see equation 4.32)

2E = J1ω
2
1 + J2ω

2
2 + J3ω

2
3. (5.85)

Note that this equation defines a quadratic surface in ‘angular velocity space’. Since the
inertia tensor is positive definite this surface is an ellipsoid which is called the inertia
ellipsoid. Let us denote the components of the angular velocity, and the inertia tensor
with respect to a space fixed basis by ωα and Jαβ respectively, where α, β = x, y, z. If
we now put

f(ω, t) ≡
∑
αβ

Jαβ(t)ωαωβ, (5.86)

where we we have indicated explicitly the time dependence of the elements of the inertia
tensor (due to the rotation of the body), we can write the conservation of energy

f(ω, t) = 2E = const. (5.87)

For each value of the time this expression represents a quadratic surface in angular
velocity space, namely the inertia ellipsoid rotating with the body.

5.3.2 The Poinsot Construction

The gradient, in angular velocity space, of the function f(ω, t), will at each point
of this space be perpendicular to the ellipsoidal level surfaces (f(ω, t)=const.). This
gradient has the components

∂f

∂ωα
=
∑
β

2Jαβωβ, (5.88)

where the symmetry of the inertia tensor has been used. If we compare with equations
4.5 we find that these components are, in fact, two times the components of the angular
momentum

∂f

∂ωα
= 2Lα. (5.89)

But the space fixed components of the (conserved) angular momentum L must be
constants, so this shows that the time dependence of the inertia tensor components are
such that they cancel the time dependence of the angular velocity components in the
expression Lα =

∑
β Jαβ(t)ωβ(t) = const.

The energy equation can also be written

2E = L ·ω =
∑
α

Lα ωα(t). (5.90)

This is the equation for a (fixed) plane in angular velocity space, with L as normal
vector. This plane is called the invariable plane. Since L is perpendicular to the inertia
ellipsoid, at the pointω(t), the invariable plane must be tangent to the ellipsoid at this
point, see figure 5.5. The angular velocity vector, which can be regarded as defining
the instantaneous axis of rotation of the body (passing through its center of mass), is
thus seen to move in such a way that its tip always is both on the inertia ellipsoid and
on the invariable plane. These surfaces are thus always in contact and the tip of the
angular velocity vector traces out a curve on each surface, the two curves touching at
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Figure 5.5: This figure illustrates the Poinsot construction. The inertia ellipsoid is in contact
with the invariable plane which has L as fixed normal vector.

the point of contact. The curve on the inertia ellipsoid is called the polehode and the
curve on the invariable plane is called the herpolehode.

In summary we have thus found that the motion of the free asymmetric top can be
described as the rolling (without slipping) of the inertia ellipsoid on the invariable plane.
The angular velocity vector goes from the center of the inertia ellipsoid (the origin and
the center of the body) to the instantaneous point of contact. This geometric view of
the dynamics was first given by Poinsot in 1834.

5.3.3 Stability of Rotation around the Principal Axes

Consider the free rotation of an asymmetric top. As we have just seen this motion
can be fairly complex but with suitable initial conditions the rotation can also be quite
simple as we’ll now show. For the free top (M = 0) Euler’s dynamic equations (4.47)
are

J1ω̇1 + (J3 − J2)ω2ω3 = 0,
J2ω̇2 + (J1 − J3)ω3ω1 = 0, (5.91)
J3ω̇3 + (J2 − J1)ω1ω2 = 0.

Using these we can check whether there are solutions of the form

ω = ωi(t) eA
i (5.92)

where i = 1, 2, or 3. When this ‘ansatz’ is inserted into the equations above two of
them give 0 = 0 and the third, the i-equation, gives

Jiω̇i = 0. (5.93)

This equation is satisfied if ωi =constant and we have thus found that rotation around
one of the principal axes, with constant angular velocity, is one possible motion of the
free top. For this simple rotation the angular velocity vector is parallel to the angular
momentum, L = Jiωi eA

i . Consequently this principal axis then has a fixed direction
in space.
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In practice there will always be small perturbations on a body and one might ask
whether the principal axis parallel rotations, found above, are stable. For the motion
of satellites in space, which may be required to point in some fixed direction, this is
a question of practical interest. To investigate this stability we rewrite the system of
equations 5.91 in the form

ω̇i = Ciωjωk, i, j, k = 1 → 2 → 3 → 1. (5.94)

Here we assume that the axes have been labeled so that

J1 < J2 < J3 (5.95)

so the constants Ci are given by

C1 ≡ J3 − J2

J1
< 0, C2 ≡ J3 − J1

J2
> 0, C3 ≡ J2 − J1

J3
< 0. (5.96)

We now assume a perturbed rotation around the j-axis: ω(t) = ω0
j e

A
j + δω(t). Here

δω is a small perturbation to the exact unperturbed solution. The components of this
ω(t) are

ωi(t) = ω0
j δji + δωi(t) (5.97)

where δij is the Kronecker delta (see equation 2.12) and summation over j from 1 to 3
is implied. When this is inserted into the equations 5.94 one gets

˙δωj = Cjδωiδωk, (5.98)
˙δωi = Ci(ω0

j + δωj)δωk, (5.99)
˙δωk = Ck(ω0

j + δωj)δωi. (5.100)

If we differentiate the second of these equations with respect to time and insert the
third equation in the resulting expression we get

¨δωi = Ci
˙δωjδωk + Ci(ω0

j + δωj)Ck(ω0
j + δωj)δωi. (5.101)

If we neglect higher powers of the perturbations and their time derivatives this gives

¨δωi ≈ CiCk(ω0
j )

2δωi. (5.102)

This equation shows that the perturbation will have an oscillatory behavior provided
CiCk < 0, otherwise it will be exponential. For j = 1 this constant is C2C3 and
negative, for j = 3 it is C1C2 and also negative, but for j = 2 the constant is C1C3 and
consequently positive. This shows that rotation around a principal axis with constant
angular velocity is stable for the axes corresponding to the maximum and minimum
moments of inertia but unstable when the axis corresponds to the middle moment of
inertia.

5.4 Problems

Problem 5.1 The following problem illustrates the behavior of a bowling ball. A
homogeneous solid sphere of radius R is, at time t = 0, given a center of mass velocity
v(0) = v0 ex and an angular velocity ω(0) = ω0 ex and is placed on a rough horizontal
floor that coincides with the xy-plane of the coordinate system. Calculate the center
of mass velocity v of the sphere when is has started to roll without sliding.
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Figure 5.6: This figure refers to problem 5.3 and shows the wheel, of radius a, from the edge.

Problem 5.2 An astronaut has managed to set a thin flat homogeneous metal square
spinning freely in space with no translational velocity. The component of the angular
velocity around the axis through the center of the square and perpendicular to it, is ϕ̇.
This axis precesses (rotates) around a fixed direction in space with which it makes an
angle θ = π/4. What is the angular velocity of this precession?

Problem 5.3 A wheel in the shape of a homogeneous circular disc of mass m and
radius a can rotate around a light axis of length l. The other end of this axis is
attached to a vertical axis by a hinge, so that it can rotate freely about a horizontal
axis, see figure 5.6, but when the vertical axis rotates the axis of the wheel must follow
and have the same vertical component of angular velocity. The hinge on the vertical
axis is at a distance a below a rough horizontal plane.

Assume that the vertical axis rotates with angular velocity Ω and that the wheel
rolls without slipping on the rough plane above it. Clearly, if Ω is too small this cannot
happen, and if Ω is zero the wheel and its axis will hang straight down. What is the
minimum value of Ω needed for this rolling to take place?

Problem 5.4 A (millstone) wheel of radius r and mass m is mounted on a light axis
OG as shown in figure 5.7. The axis is connected to a fixed ball and socket joint at O
and rotates around a vertical axis with constant angular velocity Ω. The angle between
the axis OG and the vertical has the constant value β = π/3. The wheel, which has
moment of inertia J3 with respect to the axis OG and J = J1 = J2 for all perpendicular
axes through O, rolls without slipping on the horizontal ground so that the geometric
contact point traces out a circle of radius r.
a) Find the magnitude, ω, of the angular velocity vector ω of the wheel.
b) Find the moment M = MO acting on the wheel.
c) Calculate the force N acting on the wheel from the ground at the point A in terms
of Ω, β, and mg.
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Figure 5.7: The figure refers to problem 5.4 and shows the wheel, of radius r, head on. It also
indicates the geometry of the problem. Note that the point of contact of the wheel with the
ground is at a distance r from the point on the ground below the ball and socket joint at O.

5.5 Hints and Answers

Answer 5.1 If we denote by C the point of the sphere in contact with the floor we
have the following basic equations for this problem

mv̇ = F,

Jω̇ = −R ez × F,

vC = v +R ez ×ω,

where J = 2mR2/5 is the moment of inertia of the solid sphere, and F is the friction
force from the floor. Eliminating F by putting the first equation into the second we get

Jω̇ = −R ez ×mv̇

This vector equation has the components

Jω̇x = Rmÿ,

Jω̇y = −Rmẍ,

Jω̇z = 0.

Integration of the x- and y-components gives

2R
5
[ωx(t)− ωx(0)] = [ẏ(t)− ẏ(0)],

2R
5
[ωy(t)− ωy(0)] = −[ẋ(t)− ẋ(0)].

The connection formula for the velocities has the components

ẋ = ẋC +Rωy,

ẏ = ẏC −Rωx,

ż = żC .
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Using the initial conditions at t = 0: ẋ(0) = v0, ẏ(0) = 0, ωx(0) = ω0, and, ωy(0) = 0,
we get form this that

ẋC(0) = v0, and ẏC(0) = Rω0.

The components of the connection formula for the velocities also give

ωy(t) =
1
R
[ẋ(t)− ẋC(t)], and ωx(t) = − 1

R
[ẏ(t)− ẏC(t)].

When these expressions for the components of ω are inserted into the two integrated
equations above one finds (again using the initial conditions)

−2
5
[ẏ(t)− ẏC(t)]−

2R
5

ω0 = [ẏ(t)− 0],

2
5
[ẋ(t)− ẋC(t)] = −[ẋ(t)− v0].

and these can be simplified to

7
5
ẏ(t) =

2
5
ẏC(t)−

2
5
Rω0,

7
5
ẋ(t) =

2
5
ẋC(t) + v0.

As time increases the velocity of point C of the sphere in contact with the ground slows
down and when the sphere rolls without slipping, at t > T , this velocity is zero so
ẋC(t) = ẏC(t) = 0 for t > T . These last two equations then give the final result

ẋ(t) =
5
7
v0, and ẏ(t) = −2

7
Rω0

for t > T . Thus
v =

1
7
(5v0 ex − 2Rω0 ey)

is the final center of mass velocity of the sphere.

Answer 5.2 Here we have J1 = J2 = 1
12ma2 and J3 = 1

6ma2 if m is the mass of the
square and a its side length. Use of equation 5.35 now gives

ϕ̇ =
L

J1
cos(π/4)

J1 − J3

J3
=

L

J1

1√
2

(
−1
2

)

so that L/J1 = −ϕ̇2
√
2. When this is inserted into equation 5.34 one finds that

ψ̇ =
L

J1
= −ϕ̇2

√
2

is the angular velocity of the precession.

Answer 5.3 Use the methods of example 5.4. The rolling condition is

lΩ = aω

if ϕ̇ = ω is the angular velocity of the wheel about its horizontal axis.
The moment (with respect to the hinge) is

M = l eB
3 × (N +mg)(−eB

2 ) = l(N +mg) eB
1 ,

where N is the normal force from the plane on the wheel. The angular velocity of the
B-system is, just as in example 5.4, given by

Ω = Ω eB
2 .
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The first of equations 5.77 now gives us

ΩωJ = l(N +mg).

Here J = 1
2ma2 is the moment of inertia of the wheel with respect to its axis. The

condition that the normal force is positive (N > 0), and the rolling condition (lΩ = aω)
now give

0 < lN = Ω
(

l

a
Ω
)(

1
2
ma2

)
− lmg.

Thus one finds that

Ω >

√
2g
a

is the answer.

Answer 5.4
a) ω =

√
2(1 + cosβ)Ω =

√
3Ω,

b) Using the standard basis of the (B) Resal system (see figure 5.3) we find that
M = [J3(1 + cosβ)− J cosβ]Ω2 sinβ eB

1 .
c) N = mg(1 + cosβ) + 1

r [J3(1 + cosβ)− J cosβ]Ω2 sinβ.



Chapter 6

Impact

Impact is characterized by the occurrence of large forces acting for short times and is the
technical term used to describe things like collisions, bounces and similar phenomena
where there are large, rapid velocity changes. As an idealized limit one can then use
the approximation that the time is zero and the force infinite so that a finite impulse
results. The velocities of particles and rigid bodies then change instantaneously with no
change in position. Momentum and angular momentum are useful concepts in dealing
with impact phenomena. Energy, on the other hand, is normally not conserved since
the large forces involved usually produce sound, heat and irreversible deformation.

6.1 The Impact Phenomenon

We define impact as a mechanical process in which the velocity state of the system
changes in such a short time that the corresponding change in position can be neglected.
We will mainly consider impacts involving rigid bodies and we will normally assume
that the bodies are in contact at a point during the impact. We will call this point the
point of impact and denote it by S. At this point then the bodies act on each other
with very large contact forces, K(t), for the short duration, τ , of the impact. The force
K thus obeys

K(t) =




0 for t < ti
large for ti < t < tf = ti + τ
0 for tf < t

(6.1)

The meaning of the words ‘large’ for K and ‘short’ for τ can be made more precise
by demanding that the contribution of ordinary forces to the impulse delivered during
impact should be negligible. The impulse of the force K is given by (see equation 1.55)

S =
∫ ti+τ

ti

K(t′) dt′. (6.2)

If there is also an ordinary force, Fa, acting, the total impulse, or change of momentum,
is

∆p = p(tf )− p(ti) =
∫ ti+τ

ti

F(t′) dt′ = (6.3)
∫ ti+τ

ti

[Fa(t′) +K(t′)] dt′ ≈ Fa(ti) τ + S. (6.4)

Since we assume that the force Fa remains of normal magnitude during the impact the
limit τ → 0 gives

p(tf )− p(ti) = S (6.5)

We can thus say that the the words ‘large’ for K and ‘short’ for τ apply when this
approximation, the ‘impulse approximation’, is valid.

93
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The mean force during impact is defined by

Kav = S/τ. (6.6)

If the force K is constant during the impact it will have the value Kav but normally
the impact force rises to a maximum and the goes to zero again.

Example 6.1 A ball of mass m falls vertically. It bounces against the floor and rises vertically
again. Assume that the speed just before the bounce is 12 m/s and that the speed just after
the bounce is 10 m/s. The time during which the ball is in contact with the floor is τ = 10−3s.
Calculate the relative size of weight and mean force, i.e. the ratio mg/Kav.
Solution: If we choose a vertical X-axis we have the equation of motion

mẍ = −mg +K. (6.7)

Time integration gives
m[ẋ(tf )− ẋ(ti)] = −mgτ +Kavτ. (6.8)

If we insert numbers we get

− g +Kav/m = {[10− (−12)]/10−3}m/s2 = 22 · 103m/s2 (6.9)

Since g = 9.81m/s2 � 22 · 103m/s2 we get that Kav/m ≈ 22 · 103m/s2 and thus that the ratio
is

mg/Kav ≈ 9.81
22 · 103

≈ 0.4 · 10−3 (6.10)

The weight can thus be neglected during the bounce and we have a case where the impact
approximation is excellent. ✷

To summarize, an impact is characterized by the following idealizations

∆r = rf − ri = 0, (6.11)
|∆v| = |vf − vi| �= 0, (6.12)
|a| → ∞, and τ → 0. (6.13)

I.e. no change in position, finite change in velocity, and infinite acceleration for zero
time.

We now classify the impact, or collision, of two bodies. When two bodies, 1 and
2, collide they are in contact at the point of impact S. If at least one of the bodies is
smooth one can define a tangent plane which contains the point S and which is tangent
to the surface of the body. The normal (perpendicular line) to this plane is the normal
of the impact. The unit vector parallel to this normal and pointing into body 1 we
denote en. The impact between the two bodies is said to be central if both centres
of mass, G1 and G2, lie on the normal of the impact through the point S. (see figure
6.1). Otherwise the impact is said to be eccentric. When the velocities of the bodies
at S, both before and after impact, are parallel to en the impact is said to be direct,
otherwise it is oblique.

6.2 Impact and the Momentum Principles

Consider two colliding bodies, 1 and 2, moving under the influence of the total external
force Fe. The momentum principle then gives

d

dt
(p1 + p2) = Fe. (6.14)

The impact forces with which the two bodies act on each other are internal forces of the
system and thus do not contribute on the right hand side. If this equation is integrated
from the initial time ti to the final time tf = ti + τ of the impact, we obtain

[p1(tf ) + p2(tf )]− [p1(ti) + p2(ti)] = 0, (6.15)
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Figure 6.1: This figure illustrates some concepts presented in the text. It shows the point of
impact S and the normal of impact en. The impact to the left is central and that to the right
is eccentric.

in the limit when τ → 0. With suitable notation we can rewrite this result as follows

p1f + p2f = p1i + p2i, (6.16)

i.e. the total linear momentum just before the impact is the same just after the impact.
The corresponding calculation based on the angular momentum principle,

d

dt
(L1 + L2) = Me, (6.17)

gives in the same way
L1f + L2f = L1i + L2i. (6.18)

Here any continuously moving base point may be used since the extra term arising from
the velocity of the base point, see equation 1.50, gives zero contribution when τ → 0.

Equation 6.5 can be written for body 1, on the form

S12 = p1f − p1i (6.19)

where S12 is the impulse of the impact force from body 2 on body 1. According to the
law of action and reaction (or Newton’s third) one has that S12 = −S21. For body 1
we also have

L̇1 = Ma
1 + rS ×K12 (6.20)

where the origin is base point. Time integration of this from ti to ti + τ gives

rS × S12 = L1f − L1i (6.21)

when τ → 0 if we take into consideration the fact that rS , the position vector of the
point of impact, does not move during the impact. There is, of course, a corresponding
equation for body 2. If one chooses the point of impact S as origin (base point) this
equation gives the simple result

LS1f = LS1i. (6.22)

Provided that one knows the impulse of impact S12 one can use the three formulae
above to get the velocity state of the body just after impact in terms of the state just
before impact.

Example 6.2 A bat in the form of a straight narrow homogeneous rod of mass m and length
# is hit by a ball when at rest. The ball imparts an impulse S to the bat perpendicular to it at
the distance x from one of its ends, see figure 6.2.
a) Calculate the kinetic energy T (x) of the bat after the hit.
b) Is there a point on the bat which is at rest immediately after the impact? If so, where is it?
c) Which values of x correspond to maximal speed of the point of impact after the hit?
Solution:
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Figure 6.2: A bat in the form of a narrow homogeneous rod receives an impulse S at the
distance x from one end. The properties of the subsequent motion are discussed in example
6.2.

a) To find the kinetic energy we need to know the translational and angular velocities after the
impact. Use of equations 6.19 and 6.21 give us directly

S ey = mvG , (6.23)

(x− #

2
) ex × S ey = JGϕ̇ ez, (6.24)

where JG = 1
12m#2. Thus vG = S/m and ϕ̇ = 12S(x− #/2)/(m#2). The kinetic energy can now

be calculated from
T =

1
2
mv2

G +
1
2
JGϕ̇

2 (6.25)

and we get

T (x) =
1
2
m

(
S

m

)2

+
1
2

(
1
12

m#2
)(

12S(x− #/2)
m#2

)2

=
S2

2m

[
1 + 12

(
x

#
− 1

2

)2
]
. (6.26)

This shows directly that the kinetic energy has a minimum for x = #/2. This happens when the
ball hits in the middle of the rod so that only translational and no rotational motion results.
b) Equation 2.95 gives the x-coordinate (and the y-coordinate) of a point rigidly connected to
the body which has zero velocity. If we take the point A to be the centre of mass of the rod we
get

xC = xG − ẏG
ω

=
#

2
− S/m

ϕ̇
. (6.27)

For this case then some algebra gives the result

xC(x) =
#

3
(3x− 2#)
(2x− #)

(6.28)

A small table of this function looks as follows

xC(0) = 2#/3, (6.29)
xC(#/3) = #, (6.30)
xC(#/2) = ±∞, (6.31)

so one sees that for 0 ≤ x ≤ #/3 there is a point on the bat that is at rest immediately after
the hit. This is, of course, a point at which it is good to hold one’s hand since then no part of
the impulse from the ball is imparted to the hand. For #/3 < x < #/2 the instantaneous centre
of zero velocity will lie to the right of the rod (# < xC).
c) The velocities of the points on the bat after the hit are given by the connection formula for
velocities of a rigid body. For the point P on the bar with x-coordinate xP we find the velocity

vP = vG + PG ×ω =
S

m
ey + (xG − xP) ex × ϕ̇ ez =

[
S

m
−
(

#

2
− xP

)
ϕ̇

]
ey (6.32)

in terms of the centre of mass velocity. Some algebra and use of results above gives

ẏP =
S

m

[
1 + 12

(
x

#
− 1

2

)(
xP
#

− 1
2

)]
(6.33)
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To get the speed of the point of impact we simply put xP = x and get

ẏ =
S

m

[
1 + 12

(
x

#
− 1

2

)2
]
. (6.34)

For 0 ≤ x ≤ # this function clearly takes maximum values at the end points so the answer is
that hits at x = 0 or x = # gives maximum speed of the point of impact. ✷

6.3 The Coefficient of Restitution

As we have mentioned mechanical energy is normally not conserved when impact occurs
since the available energy is lost as energy of sound, heat, and deformation. Since the
position of the system does not change during impact the potential energy, of external
or internal forces, cannot change so the energy loss can be expressed as a loss as kinetic
energy. We can thus write

Q ≡ Ti − Tf ≥ 0 (6.35)

for the loss of mechanical energy during impact.
For direct impact, i.e. impacts in which the velocities just before and just after

the impact are parallel to the impact normal, one can characterize the energy loss by
a single number. We take the X-axis along the normal and define the coefficient of
restitution, e, for direct impact of bodies 1 and 2, as the number

e ≡ −∆ẋf

∆ẋi
= − ẋ2f − ẋ1f

ẋ2i − ẋ1i
. (6.36)

The negative sign insures that the coefficient always is positive (because of the reversal
of the relative velocity at impact). One also sees that it normally will be less than one
(e < 1) since the relative velocity ∆ẋ = ẋ2 − ẋ1 after impact is less that before due to
the energy loss.

The coefficient of restitution has a status similar to that of the coefficients of static
and kinetic friction. It may be a ‘constant’ that characterizes the collision of two bodies
with a given pair of materials, but it is certainly not constant in any other sense of the
word. It will, for example, always decrease with increasing relative speed.

Let us calculate the energy loss Q in terms of the coefficient of restitution e. We
assume that there is no rotation. Equation 6.16 gives

m1ẋ1f +m2ẋ2f = m1ẋ1i +m2ẋ2i (6.37)

while the definition of e can be written

ẋ1f − ẋ2f = eẋ2i − eẋ1i. (6.38)

This set of equations can be used to express the final velocities ẋf in terms of the
initial ones, ẋi, and e. The result can then be inserted into the expression for the
kinetic energy

T =
1
2
m1ẋ

2
1 +

1
2
m2ẋ

2
2 (6.39)

and the change Q = Ti − Tf calculated. It is more instructive, however, to use the
ideas introduced in connection with the two particle problem. There we showed that
the kinetic energy for two particles can be expressed as follows

T =
1
2
mẋ2

G+
1
2
µ(∆ẋ)2 ≡ 1

2
(m1+m2)

(
m1ẋ1 +m2ẋ2

m1 +m2

)2

+
1
2

m1m2

m1 +m2
(ẋ2−ẋ1)2. (6.40)

That is, it can be expressed in terms of the centre of mass velocity ẋG and relative
velocity ∆ẋ as if there were two particles with masses m = m1 + m2 and µ = m1m2

m1+m2
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respectively, having these velocities. µ is called the reduced mass. It is now trivial to
calculate the energy change since the centre of mass term will be unchanged while the
relative velocity change is directly given by the definition of e. One finds

Q = Ti − Tf = (1− e2)
1
2
µ(∆ẋi)2. (6.41)

From this one draws the conclusion that when e = 1 the energy loss is zero and the
energy is conserved. Such collisions are said to be elastic. Maximal energy loss occurs
at the opposite extreme when e = 0. The relative velocity after the impact is then zero
and the collision is said to be totally inelastic (or plastic).

Example 6.3 Consider a direct central collision between two bodies A and B in which the
coefficient of restitution is e. During the time interval [−δ1, 0] the two bodies are in contact
and have negative relative velocities (i.e. they approach each other). From time t = 0 to t = δ2
they are in contact but recede from one another (i.e. they have positive relative velocity), see
figure 6.3. The total collision time is thus τ = δ1 + δ2.

The motion is assumed to take place along an X-axis. The (x-component of the) impulse
on body A, SA, can be split into two parts corresponding to the approaching stage (1) and the
receding stage (2): SA = SA1 + SA2 and similarly for body B. Show that

SA2

SA1
=

SB2

SB1
= e (6.42)

i.e. that the ratio of the receding stage impulse to the approaching stage impulse is the same
as the coefficient of restitution.
Solution: According to formula 6.19 we have

SA1 = mA[ẋA(0)− ẋA(−δ1)] and SA2 = mA[ẋA(δ2)− ẋA(0)], (6.43)
SB1 = mB[ẋB(0)− ẋA(−δ1)] and SB2 = mB[ẋB(δ2)− ẋB(0)]. (6.44)

According to the definition of the coefficient of restitution, equation 6.36 we have

e = − ẋA(δ2)− ẋB(δ2)
ẋA(−δ1)− ẋB(−δ1)

(6.45)

Since we assume that there are no external forces acting on the two bodies the law of action
and reaction (Newton’s third) gives us

SA1 + SB1 = 0, and SA2 + SB2 = 0. (6.46)

From these two there follows that SA1 = −SB1 and SA2 = −SB2 and thus that

SA2

SA1
=

−SB2

−SB1
=

SB2

SB1
. (6.47)

There remains to show that this ratio is equal to e.
Since there is no relative velocity at t = 0 both bodies must move with the same velocity.

This velocity must be that of the centre of mass so that ẋA(0) = ẋB(0) = vG . When this is
inserted into equations 6.43 and 6.44, they, together with equation 6.47, give{

SA2

SA1
=

mA[ẋA(δ2)− vG ]
mA[vG − ẋA(−δ1)]

}
=
{

SB2

SB1
=

mB[ẋB(δ2)− vG ]
mB[vG − ẋB(−δ1)]

}
. (6.48)

From this we get

− SA2

SA1
=

ẋA(δ2)− vG
ẋA(−δ1)− vG

=
ẋB(δ2)− vG
ẋB(−δ1)− vG

. (6.49)

But if a
b = c

d then a−c
b−d = c

d . (Proof: a
b = c

d ⇒ c = ka and d = kb, but then a−c
b−d = a−ka

b−kb =
a(1−k)
b(1−k) = a

b , Q.E.D.) Use of this identity gives us

− SA2

SA1
=

ẋA(δ2)− vG − [ẋB(δ2)− vG ]
ẋA(−δ1)− vG − [ẋB(−δ1)− vG ]

=
ẋA(δ2)− ẋB(δ2)

ẋA(−δ1)− ẋB(−δ1)
= −e (6.50)

according to equation 6.45. This is what we wanted to show. ✷
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Figure 6.3: This figure shows an inelastic bounce between bodies A and B moving along the
X-axis. Time increases upwards and the time t = 0 is taken to be the instant at which the two
centres of mass of the bodies are closest together. The duration of contact between the bodies
is τ = δ1 + δ2 where δ1 corresponds to a compression of the bodies while δ2 is the time during
which they decompress. The dashed line indicates the motion of the common centre of mass of
the bodies. In example 6.3 it is shown that the coefficient of restitution e can be expressed as
the ratio of the impulses on the bodies during these two time intervals.
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Figure 6.4: The figure on the left refers to problem 6.3. The bat rotates around the end with
the handle, with angular velocity ω, when it hits the ball at a distance x from this end.

Figure 6.5: The figure on the right refers to problem 6.4. A football is given a horizontal
impulse S at height h.

6.4 Problems

Problem 6.1 A straight narrow homogeneous rod of mass m = 75 kg and length
# = 180 cm stands vertically on horizontal ground. It is given a horizontal impulse S
at height h above the ground. For what values of h and S will the top end of the rod
hit the ground first in the ensuing motion?

Problem 6.2 A tugboat of mass 800 tonnes is connected to a ship of mass 23000 tonnes
(1 tonne = 103 kg) by a rope of mass 375 kg. The tugboat reaches a speed of 3 knots (i.e.
5.5 km/h) when the rope suddenly becomes taut so water spurts out of it and the ship
starts to move. Since neither boat moves very far while the rope is taut and transfers
force the process can be approximated as an impact. Assume that a reasonable value
for the relevant coefficient of restitution is e = 0.5.
a) Calculate the speed (in knots) of the ship after the impact.
b) Calculate the average force in the rope while it spurts water if this goes on for 1.5 s,
and express the force in terms of an equivalent mass by dividing by the acceleration
due to gravity g = 9.8 kg/s2.

Problem 6.3 A bat rotates around the end with the handle, with angular velocity ω,
when it hits a ball at a distance x from this end, as shown in figure 6.4. The moment of
inertia of the bat with respect to the axis of rotation (perpendicular to the bat through
the end with the handle) is J and its length is #. The ball is assumed to be at rest
before the hit. Determine the maximal speed of the ball, as a function of x, assuming
that the coefficient of restitution is e.

Problem 6.4 A football, which can be thought of as a homogeneous spherical shell of
mass m and radius r, is given a kick that is parallel to the horizontal ground, see figure
6.5. The kick imparts a horizontal impulse S to the ball at height h above the ground.
a) For what value of h will the the ball have pure translational motion immediately
after the kick?
b) How large fraction of the kinetic energy of the ball remains when it has started to
roll without sliding (due to the friction from the ground)?

Problem 6.5 A homogeneous rectangular door leaf of height h = 2m, width b = 0.8m,
and mass m is mounted on hinges at A and B, see figure 6.6, so that it can rotate freely
around a vertical axis. The hinges are placed symmetrically and are a distance 0.25m
from the upper and lower edge respectively (the distance d in figure 6.6 is thus 0.75m).
When the door rotates around its axis, with angular velocity ω, it hits a knob C in the
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Figure 6.6: This figure refers to problem 6.5 and shows a door hinged at A and B which hits
a door stop (knob in the floor) at C.
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Figure 6.7: This figure refers to problem 6.6 and shows the two hinged rods and the impulse
S at A.

floor (a door stop) at a distance y from the axis along the lower edge of the door. This
impact gives the door a horizontal impulse SC normal to the plane of the door such
that the door comes to rest.
a) Determine the reaction impulses SA and SB from the hinges on the door at the
impact.
b) Can one choose y so that one of the reaction impulses vanish?
c) Can one choose y so that the magnitudes of the reaction impulses are equal?

Problem 6.6 Two straight narrow homogeneous rods AB and BC are smoothly hinged
at B. The two rods are lying on a smooth horizontal plane and the rod AB is restricted
to slide parallel to itself along a smooth track in the plane. Suddenly an impulse S is
delivered at A making an angle α with the rod, see figure 6.7. Calculate the resulting
reaction impulse in the hinge B.
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6.5 Hints and Answers

Answer 6.1 After the impact the centre of mass of the rod will move along a parabola
while the rod will rotate around the centre of mass with constant angular velocity. One
finds that the height must obey

1.8m ≥ h ≥ 0.9m +
74Nsm

S

where one must have S ≥ 82Ns.

Answer 6.2
a) 0.15 knots.
b) The rope will spurt water while the tension in it increases. This period corresponds
to the time interval t ∈ [−δ1, 0] of example 6.3. One finds that the force corresponds
to the weight of a mass of 80 tonnes.

Answer 6.3 If
√

J/m ≤ # then the optimal distance is

x =
√

J/m

and the speed attained is vmax = 1
2

√
J
mω(1 + e). If

√
J/m > # (is this really possible?)

then x = # and vmax = ,ω(1+e)
1+m,2/J

.

Answer 6.4
a) This happens at h = r since the friction force from the ground has no time to produce
any effect on the motion.
b) The ratio of remaining kinetic energy to initial is 3/5.

Answer 6.5 The basic equation 6.19 gives (SA+SB +SC) ex = 0− (−m b
2ω ex). Here

−(b/2)ω ex is the centre of mass velocity of the door before the impact. The equation
6.21 gives rA ×SAex + rB ×SBex + rC ×SCex = −Jzω ez for this problem, since there
are three points at which the door impacts. It is convenient to move the origin to the
intersection of the Z and Y ′ axes of figure 6.6; the position vectors of the impact points
A, B, and C, then become

rA = d ez,

rB = −d ez,

rC = y ey −
h

2
ez.

The y- and z-components of the angular momentum principle equation then yield

d(SA − SB)−
h

2
SC = 0,

ySC = Jzω,

respectively, where Jz = mb2/3. From these two equations, plus

SA + SB + SC = mbω/2

obtained from 6.19 above, one can calculate the answers that follow.

a) The impulse from the door stop is found to be SC = 2
3
b
y (m

b
2ω). The answer is

SA =
1
2

[(
1− 2

3
b

y

)
+

1
3
h

d

b

y

](
m

b

2
ω

)
,
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and
SB =

1
2

[(
1− 2

3
b

y

)
− 1

3
h

d

b

y

](
m

b

2
ω

)
.

b) SA cannot be made zero for positive values of y but SB is zero if

y =
b

3

(
2 +

h

d

)
=

0.8
3

(
2 +

2
0.75

)
= 1.24m

c) It turns out that SA = SB has no solution but that SA = −SB when [1−(2/3)(b/y)] =
0 i.e. when

y =
2
3
b =

2
3
0.8 = 0.53m.

This is thus a good place to put the door stop since then the two hinges will share the
reaction impulse evenly.

Answer 6.6
The reaction impulse should be SB = (S/5) cosα.



Chapter 7

Open Systems

This chapter discusses the equations of motion for systems which gain or loose matter
through flow through the bounding surface. Such mechanical systems are called open
systems. Rockets, jet-planes and turbines are examples of such systems. The theo-
retical basis for this type of problem is given by the principles of linear and angular
momentum. Mechanical energy, on the other hand, is rarely conserved since internal
non-conservative forces usually are at work in these systems.

7.1 The Momentum Principle for Open Systems

We shall consider the motion of a system of particles S(t) = {mi, ri; i = 1, . . . , N(t)}
which is defined as the set of N(t) particles that, at a given time t, lie in a region of
space Ω(t) i.e.

S(t) = {mi, ri; ri(t) ∈ Ω(t)}. (7.1)

The region Ω may move so that it follows the majority of the particles in their motion,
but the system S(t) is by definition an open system if it loses or gains particles which
flow in and/or out through the bounding surface of Ω. The centre of mass position rG
of the system is given by

m(t)rG(t) ≡
N(t)∑
i

miri(t). (7.2)

and can be regarded as the mass weighted average position of the N(t) particles in the
system at time t.

The momentum of this open system S is defined as

po(t) ≡
N(t)∑
i

mivi(t) = m(t)vo(t), (7.3)

where the sum is over the particles inside the system at time t and where vo can be
regarded as the centre of mass velocity of the open system. We use the notation vo

here since this vector is not the time derivative of rG .
To find the equation of motion for the system S we must study the time rate of

change of the momentum po. When we do this we must remember that the particles
in S are not the same all the time. If we assume that in the time ∆t the open system
S has gained ∆N+ particles and lost ∆N− then

N(t+∆t) = N(t) + ∆N = N(t) + (∆N+ −∆N−) (7.4)

is the number of particles of S at time t+∆t. We can thus write

po(t+∆t) ≡
N(t+∆t)∑

i

mivi(t+∆t) (7.5)
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Figure 7.1: This figure illustrates the relationships in equation 7.6. The open system is
represented by the solid line box and moves to the left. The closed system with a fixed number
of particles Nc, corresponding to the time ∆t, is indicated by the dashed line box.

for the momentum of S at time t+∆t where the sum now is over the particles in S at
this time.

The equation of motion for S follows from the momentum principle in the general
form ṗ = Fe but it must be remembered that the expression p = mvG cannot now
simply be differentiated as was the case for a closed system of particles. To get around
this problem we define a closed system for the time interval t to t + ∆t as the set of
all Nc particles that have been in the system S in this time interval. This number is
clearly

Nc = N(t) + ∆N+ = N(t+∆t) + ∆N− (7.6)

i.e. the number of particles in the system at t plus those gained at t+∆t, or the number
of particles in the system at time t + ∆t plus those lost since t. This is illustrated in
figure 7.1.

The total momentum of this closed system is by definition

pc(t,∆t) =
Nc∑
i

mivi(t), (7.7)

and it is on this system that some total external force Fe may act so that

ṗc = Fe. (7.8)

When the time interval ∆t → 0 the momentum of the closed system we have defined
becomes identical to that of the open system,

lim
∆t→0

pc(t,∆t) = po(t), (7.9)

but the time derivative of the two momenta are not the same as we’ll now see.
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The change in pc in time ∆t is

∆pc = pc(t+∆t,∆t)− pc(t,∆t) =
Nc∑
i

mivi(t+∆t)−
Nc∑
i

mivi(t) = (7.10)


N(t+∆t)∑

i

mivi(t+∆t) +
∆N−∑

j

mjvj(t+∆t)


−


N(t)∑

i

mivi(t) +
∆N+∑
k

mkvk(t)


 (7.11)

=


po(t+∆t) +

∆N−∑
j

mjvj(t+∆t)


−


po(t) +

∆N+∑
k

mkvk(t)


 , (7.12)

where we have used equation 7.6. We have thus found that the changes in the momenta
of the closed and the open systems are related as follows:

∆pc = ∆po +
∆N−∑

j

mjvj(t+∆t)−
∆N+∑
k

mkvk(t). (7.13)

Here ∆po is the change of the momentum of the open system, the first sum is over the
particles that have been lost by the system in the time from t to t+∆t, and the second
sum is over the particles that have been gained in the same time.

If the system consists of a lot of particles with different velocities this is all one can
say about the change in its momentum. We now assume that we can make a continuum
approximation of the matter that flows in and out of the system. We also assume that
there is only a finite number n− of velocities v−

a with which the masses ∆m−
a flow out

in time ∆t and a finite number n+ of velocities v+
b with which the masses ∆m+

b flow
in. We can then rewrite the above equation in the form

∆pc = ∆po +
n−∑
a=1

∆m−
a v

−
a −

n+∑
b=1

∆m+
b v

+
b . (7.14)

The first term on the right hand side is the momentum change of the open system S
which we can write

∆po = m(t)∆vo(t) + ∆m(t)vo(t). (7.15)

One should note that the net mass change

∆m =
n+∑
b=1

∆m+
b −

n−∑
a=1

∆m−
a (7.16)

contributes to this change in the momentum po but that ∆pc �= ∆po even if ∆m = 0
since the velocities of the in and out flows also contribute.

We now divide equation 7.14 by ∆t and take the limit ∆t → 0. If we denote the
mass flows by

q−a ≡ lim
∆t→0

∆m−
a

∆t
and q+

b ≡ lim
∆t→0

∆m+
b

∆t
(7.17)

we get

ṗc = ṗo +
n−∑
a=1

q−a v
−
a −

n+∑
b=1

q+
b v

+
b . (7.18)

Since ṗc = Fe rearrangement now gives equation of
motion for open
system

ṗo = Fe −
n−∑
a=1

q−a v
−
a +

n+∑
b=1

q+
b v

+
b . (7.19)
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Figure 7.2: This figure illustrates the situation in example 7.1. Water flows through the 90
degree bend in the pipe. What is the force needed to keep the pipe at rest? The dashed line
shows the boundary of the open system of pipe with moving water that one must consider.

This is thus the basic equation of motion for the open system S. Note that the mass
flows q are defined to be positive (q ≥ 0) and that all velocities in this equation are
with respect to an inertial system. In the limit ∆t → 0 equations 7.15 and 7.16 give

ṗo(t) = m(t) v̇o(t) + ṁ(t)vo(t), (7.20)

ṁ(t) =
n+∑
b=1

q+
b −

n−∑
a=1

q−a . (7.21)

These together with the equation of motion 7.19 provide sufficient information for
solving many open system problems.

Example 7.1 Water flows at a rate of q = 1 kg/s through a pipe of constant cross-section A
in which there is a 90 degree bend. The speed of the water, which is assumed uniform in the
pipe, is v = 1m/s. Calculate the external force F needed to keep one meter of the pipe around
the bend at rest. See figure 7.2.
Solution: Since in this case the centre of mass velocity vo of the open system is constant,
and since the loss of mass is exactly balanced by the gain its mass m(t) is constant, and we get
that ṗo = m v̇o + ṁvo = 0. Equation 7.19 now gives

0 = F− qv− + qv+. (7.22)

With suitably directed basis vectors this gives

0 ex + 0 ey = Fx ex + Fy ey − (−qv) ex + qv ey (7.23)

and thus Fx = −qv and Fy = −qv. The magnitude of the force is thus F =
√
2qv =

√
2N, and

this is the answer. ✷

Equation 7.19 can also be written in an alternative form if we note that ṗo =
mao + ṁvo so that

mao = Fe − ṁvo −
n−∑
a=1

q−a v
−
a +

n+∑
b=1

q+
b v

+
b , (7.24)

and that ṁ =
∑

q+ −∑ q−. Combining these we get

mao = Fe −
n−∑
a=1

q−a u
−
a +

n+∑
b=1

q+
b u

+
b , (7.25)

where the u− = v− − vo stand for the velocities of the out-flowing matter relative to
the system itself and correspondingly for the u+.
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Example 7.2 A rocket has a motor which ejects mass with a constant rate q with a constant
speed u relative to the rocket. It rises vertically starting with zero velocity at time t = 0.
Calculate its velocity as a function of time.
Solution: Equation 7.25 gives

m(t)
dvo

dt
= m(t)g − q u−. (7.26)

With the Z-axis vertically upwards we have vo = vo(t) ez, g = −g ez, and u− = −u ez. The
mass of the rocket is

m(t) = m0 − qt (7.27)

so that q = −dm
dt . All this gives us

m(t)
dvo

dt
= −m(t) g − dm

dt
u. (7.28)

Multiply by dt, divide by m and integrate from t = 0 to t to get∫ t

0

dvo =
∫ t

0

(−g dt− u
dm

m
). (7.29)

This gives

vo(t) = −g t− u ln
m(t)
m0

= −g t+ u ln
m0

m0 − qt
. (7.30)

This solution is of course only valid until the time t = T at which all the fuel mf = qT is gone.
✷

7.2 Angular Momentum of Open Systems

In some problems, usually involving rotation, it is of interest to find the time rate of
change of the angular momentum of an open system. To find this we can use the same
method as in the previous section. We use the origin as base point throughout and
define the angular momentum of the open system S to be

Lo(t) ≡
N(t)∑
i

ri(t)×mivi(t), (7.31)

where, again, the sum is over the particles in the system at time t. We also use the
closed system corresponding to the time interval t to t +∆t. It will have the angular
momentum

Lc(t,∆t) ≡
Nc∑
i

ri(t)×mivi(t). (7.32)

According to the principle of angular momentum we have L̇c = Me where Me is the
total moment of the external forces on the system. We can now find the relationship
between the changes in the two angular momenta in time ∆t in the same way as we
did for the linear momenta in the previous section. The result found for momentum
changes in equation 7.13 translates directly to

∆Lc = ∆Lo +
∆N−∑

j

rj(t+∆t)×mjvj(t+∆t)−
∆N+∑
k

rk(t)×mkvk(t) (7.33)

in the angular momentum case. We assume, as before, that the mass flows through the
system boundary can be considered as continuous with mass per unit time q± flowing
in/out with a finite number of different velocities v±. We now also assume that these
mass flows take place at well defined positions r±. The above equation then gives

∆Lc = ∆Lo +
n−∑
a=1

r−a × q−a ∆tv−
a −

n+∑
b=1

r+
b × q+

b ∆tv+
b . (7.34)
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Figure 7.3: This figure illustrates the situation in example 7.3. The dashed line is the trajectory
along which the bullets move. They hit the wooden carousel and come to rest in it near the
circumference.

Dividing by ∆t and taking the limit now gives the final result angular
momentum
principle for open
systemL̇o = Me −

n−∑
a=1

r−a × q−a v
−
a +

n+∑
b=1

r+
b × q+

b v
+
b (7.35)

for the angular momentum principle for an open system.

Example 7.3 A carousel (merry-go-round) of radius R can rotate freely around a vertical
axis. The moment of inertia with respect to this axis is J0. Find the expression for the angular
acceleration ϕ̈ of the carousel if it is shot at by a machine gun which produces a horizontal
mass flow q+ of bullets with speed v+. Also find the limiting angular velocity if the shooting
goes on for long. The bullets hit the carousel at a perpendicular distance r from its centre, see
figure 7.3, and are embedded in it near the circumference.
Solution: If we assume that the shooting started at time t = 0 the moment of inertia of the
carousel will be

J(t) = J0 + q+tR2 (7.36)

since the bullets increase the mass at radius R. The angular momentum of this open system
(carousel under fire) is

Lo = J(t)ϕ̇(t) ez, (7.37)

with respect to an origin at its centre. Equation 7.35 now gives

d

dt
(J(t)ϕ̇(t) ez) = r+ × q+v+ = −rq+v+ ez. (7.38)

This gives
(J0 + q+tR2)ϕ̈ = −rq+v+ − q+R2ϕ̇ (7.39)

and this is the desired differential equation for ϕ̈.
If ϕ̇(0) = 0 the angular acceleration is negative for small t > 0. This gives a negative angular

velocity ϕ̇ as the sign conventions of the figure 7.3 demands. However, when the angular velocity
becomes increasingly negative, the right hand side of the equation for ϕ̈ decreases. Eventually
the acceleration will approach zero. When ϕ̈ = 0 the above equation gives the limiting angular
velocity

ϕ̇lim = −rv+

R2
(7.40)

and this concludes our example. ✷
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Figure 7.4: The figure on the left refers to problem 7.2. The water flows out through the hole
of cross sectional area a. The height of the water surface above the hole is h.

Figure 7.5: The figure on the right refers to problem 7.3. A toroidal space station is given an
angular acceleration from zero angular velocity up to a value that corresponds to the acceleration
of gravity on the perimeter.

7.3 Problems

Problem 7.1 A jet plane of mass m is propelled by maintaining an air flow of q mass
units per unit time through its engine. The speed of the air relative to the engine is
w = const.. Calculate the speed v(t) of the plane as a function of time assuming the
initial condition v(0) = v0. Neglect the effects of fuel consumption and air resistance.

Problem 7.2 A vehicle is propelled by letting water flow out backwards from a tank
of rectangular horizontal cross sectional area A that has collected rain water, see figure
7.4. The cross sectional area of the hole through which the water flows out is a and we
assume that a � A. One can assume that the water flows out with the speed u =

√
2gh

(see example 8.1) relative to the tank, where h is the height of the water surface above
the hole. Show that the acceleration of the vehicle must be less than (a/A)2g.

Problem 7.3 A toroidal space station has (outer) radius r, initial mass m, and radius
of gyration d. To achieve an angular velocity ω, corresponding to an artificial gravity
g, the space station, which initially is at rest, is accelerated by means of two identical
rockets on the outer rim. The two rockets are placed at opposite ends of a diameter,
see figure 7.5, and are directed along the tangent of the circumference. Each rocket
has mass flow q (mass per unit time) and exhaust velocity u (relative to the rocket).
Assume that all expelled mass was contained in the rockets (i.e. at radius r). How long
must the rockets be turned on? (Note that rotation with angular velocity ω gives an
artificial ‘gravity’ corresponding to the centripetal acceleration rω2.)

Problem 7.4 A chain has constant mass per unit length λ. It is held at one end so
that it hangs vertically with its lower end at a height h above a horizontal table surface.
It is released from rest and starts to fall onto the table. Find the force F (x) from the
chain against the table as a function of the length x of the chain that has reached the
table.
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7.4 Hints and Answers

Answer 7.1 One finds the equation of motion ṗ = mv̇ = (−q)(−w + v) which gives
v̇ = − q

m(v − w). Integration of this gives

v(t) = w + (v0 − w) exp
(
− q

m
t

)
.

As t → ∞ this is seen to go to w, a reasonable result.

Answer 7.2 Denote the density of the water by � and the speed of the vehicle by v.
Use of equation 7.25 then gives mv̇ = qu where q = �au so that v̇ = �au2/m. The
mass of the vehicle is m = m0 + �Ah where m0 is the remaining mass when the height
of the water surface above the hole has become zero. Since u2 = 2gh we find

v̇ =
�a2gh

m0 + �Ah
.

Since m0 ≥ 0 we find that v̇ ≤ a
A2g and this is what we wanted to show.

Answer 7.3 Use equation 7.35 with Me = 0 and with Lo = J(t)ω ez. One finds that
J(t) = md2 − 2(qt)r2 and thus that the z-component of the equation of motion is

d

dt
[J(t)ω(t)] = −2rq(rω − u).

Some calculations then give

ω̇ =
2rqu

md2 − 2qtr2

and integration yields

ω(t) =
u

r
ln

(
md2

md2 − 2qrt2

)
.

If one now puts ω =
√

g
r and solves for t one finds that

t =
md2

2qr2

[
1− exp

(
−
√
gr

u

)]

is the required burning time of the rockets.

Answer 7.4 Use energy conservation to get the speed of the chain. Consider the
following forces on the heap of chain on the table: the normal force N(x) from the
table, the weight of the heap of chain, gλx, and the the ‘force’ due to the fact that the
heap of chain gains mass. Use of equation 7.25 now gives

(ma = 0) = N(x)− gλx− q+u

where u =
√
2g(x+ h) and q+ = λu. This gives us

N(x) = λg(3x+ 2h)

for the normal force from the table on the chain heap. The force from the chain heap on
the table F (x) is then of equal magnitude according to the law of action and reaction.



Chapter 8

The Mechanics of Fluids

The mechanics of fluids (gases and liquids) belongs to continuum mechanics, that is,
the number of degrees of freedom can be regarded as infinite. This means that fluids
must be described by fields. The most important kinematic object is the velocity field
v(r, t) which gives the velocity vector at each point r of the fluid at time t. The
mathematical techniques required to handle fluids are those of vector analysis. This
chapter presents derivations of some equations which govern the behavior of the velocity
field. The scalar fields of (mass) density �(r, t) and pressure p(r, t) are introduced. The
distinction between laminar and turbulent flow is explained as well as the concepts of
ideal contra viscous fluids.

8.1 The Velocity Field

A substance is called a fluid if arbitrarily small (tangential) forces lead to flow, that
is, motion on a macroscopic scale as long as the force acts. A substance which is not
a fluid is called a solid . A small force on a solid only leads to a small deformation
because it is counteracted by internal forces in the material. A fluid may thus be seen
as a substance which does not have internal forces that try to maintain any particular
form or shape of the substance.

From a fundamental point of view a fluid consists of a large number of particles
(molecules) and predicting its detailed behavior requires the solution of the equations
of motion for each of these particles. This is, of course, impossible in practice and
it turns out that it is not necessary to carry out this program in order to get an
understanding of the behavior of fluids. Instead of studying the individual molecules
one considers quantities that are averages over a number of molecules which is large
from the microscopic point of view but which is small from the macroscopic point of
view. Such average quantities are said to be ‘mesoscopic’. Quantities such as density,
temperature, and pressure are mesoscopic quantities which become undefined on the
microscopic level of individual molecules.

The average velocity v of a large number of fluid molecules at time t, which never-
theless can be regarded as essentially localized to a point r from the macroscopic point
of view, defines the velocity field , v(r, t), of the fluid. This quantity is a vector field
and its study belongs to the area of vector analysis.

8.1.1 Divergence and Curl of the Velocity Field

Let us consider the fluid inside some region Ω(t) of space. The volume of the fluid
inside this region at time t is then

V (t) =
∫

Ω(t)
dV. (8.1)
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Let us investigate how this volume changes if we allow the region Ω and its bounding
surface S ≡ ∂Ω to follow the fluid in its motion. Consider a small element of area dA
of the surface S and denote by en the outward directed normal to the surface S at dA.
One then defines the vector element of area

dA ≡ en dA. (8.2)

The change in volume of Ω due to the fluid flow during the time interval ∆t will be
localized at the bounding surface and it is easy to see that, at a given element of area
dA of the surface S, the change in volume will be given by

d∆V = ∆tv · dA. (8.3)

This volume is the base area dA times the ‘height’, that is, the component of the
displacement dr = ∆tv along the unit normal en. It is negative if the flow has a
component into the region Ω since then v has a negative projection on en. It is zero if
the flow is parallel to the surface, and it is positive if the flow has a component out of
the region. The total change in volume in time ∆t is then the sum of all these changes
in the limit when the dA → 0, i.e. the surface integral

∆V =
∫
S
∆tv · dA. (8.4)

This means that the time derivative of the volume is given by

dV

dt
=
∫
S
v · dA. (8.5)

One of the fundamental results of vector calculus is Gauss’ theorem which says that∫
Ω ∇ · v dV =

∫
S v · dA. Using this we find that

dV

dt
=
∫

Ω
∇ · v dV. (8.6)

This shows us that the divergence of the velocity field, divv ≡ ∇ · v is a measure of
the change of volume of the fluid.

If the fluid moves like a rigid body we know that its velocity field must have the
form

v(r) = v(0) +ω × r (8.7)

(see equation 2.74). The divergence is then identically zero ∇ · v = 0, which is natural
since the parts of a rigid body have fixed volumes. Another important quantity in
vector calculus if the ‘curl’ (or rotation) of a vector field: curlv ≡ ∇× v. For the case
of ‘rigid’ flow one finds that

∇× v(r) = ∇× [v(0) +ω × r] = 2ω. (8.8)

From this one concludes that, in general, the curl of the velocity field, which sometimes
is called the vorticity , is twice the local angular velocity of the fluid. Fluid flow for
which ∇× v = 0 is said to be ‘irrotational’.

8.1.2 The Total Time Derivative

The time derivative of some quantity in the fluid can be measured in two different ways.
Either one can study the time derivative by measuring the quantity at some fixed point
of space. If the quantity is temperature T for example, the time rate of change of
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the readings of a thermometer at some fixed point of space corresponds to the partial
derivative

lim
∆t→0

(
∆T (r, t)

∆t

)
r=const

=
∂T

∂t
(8.9)

of the scalar field T (r, t) with respect to time.
If, on the other hand, one measures some quantity, such as temperature for example,

in some (material) fluid element with trajectory r(t) and considers the time rate of
change of these measurements one finds what is called the total time derivative

lim
∆t→0

∆T (r(t), t)
∆t

=
dT (r(t), t)

dt
= (8.10)

=
∂T

∂t
+

dx

dt

∂T

∂x
+

dy

dt

∂T

∂y
+

dz

dt

∂T

∂z
=

∂T

∂t
+ v · ∇T. (8.11)

This quantity is sometimes referred to as the ‘substantial’ or ‘material’ time derivative.
This time rate of change of temperature is measured by a small light thermometer
which follows the fluid in its flow. We will write total time

derivative
d

dt
≡ ∂

∂t
+ v · ∇ (8.12)

for the total time derivative operator.

8.1.3 The Equation of Continuity

The amount of mass in a fixed region Ω of the fluid is found by integrating the (mass)
density � over the volume of that region:

m[Ω] =
∫

Ω
�(r, t) dV. (8.13)

The rate of increase of the mass in the region is then

∂

∂t
m[Ω] =

∂

∂t

∫
Ω
�(r, t) dV =

∫
Ω

∂�

∂t
dV. (8.14)

Since mass is conserved the change (increase) per unit time of the mass in Ω must be
due to flow of mass through the surface S bounding the region. The mass per unit time
flowing in through the boundary must be given by

∂

∂t
m[Ω] = −

∫
S
�v · dA (8.15)

where the minus sign is due to the convention that the area element vector dA is
directed outwards, so that �v · dA is positive where matter flows out. Equating these
two expressions and using Gauss’ theorem in the form Gauss’ theorem∫

S
�v · dA =

∫
Ω
∇ · (�v) dV, (8.16)

gives us ∫
Ω

[
∂�

∂t
+∇ · (�v)

]
dV = 0. (8.17)

Since the region Ω is arbitrary one finds that mass conservation is expressed by the
partial differential equation equation of

continuity∂�

∂t
+∇ · (�v) = 0 (8.18)

relating the partial derivatives of the fields � and v. This equation is called the equation
of continuity.
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8.1.4 Laminar contra Turbulent Flow

Empirically one finds that there are two qualitatively different types of fluid flow. At
low velocities the flow is often laminar which means that the particles of the fluid follow
smooth, well defined, trajectories called streamlines. Then the direction of the velocity
field is given by the tangent vectors to these streamlines. The velocity field at a point is
either constant, in which case one has steady flow with ∂v

∂t = 0, or it varies in a regular
fashion (unsteady flow). Essentially all cases for which there are analytic solutions to
the fluid equations of motion correspond to laminar flow.

If other conditions remain constant an increase in the speed of the flow will even-
tually lead to a qualitative change in the flow pattern which is called the onset of
turbulence. Turbulent flow is characterized by irregular fluctuation of the velocity field
as well as of other fields such as e.g. pressure. Turbulent flow is also characterized by
the simultaneous presence of vortices and eddies of many different length scales. In
the turbulent domain the fluid equations of motion, which usually consist of a set of
non-linear, coupled differential equations, exhibit, so called sensitive dependence on
initial conditions. This means that very small changes in the conditions at the starting
time soon will lead to radically different solutions of the differential equations. When
this is the case prediction of the flow pattern is limited to some given finite time. After
this time no details are known about the flow. One sometimes describes this situation
as an example of deterministic chaos. Weather prediction entails the prediction of fluid
flows in the atmosphere of the Earth and these turn out to be turbulent. There is thus
a limit to the scope of such predictions.

8.2 The Equation of Motion for an Ideal Fluid

We now wish to find the equation of motion for the fluid, that is, we wish to find the
form that the momentum principle ṗ = F takes when it is expressed in terms of the
relevant fields.

8.2.1 Mass Times Acceleration in Fluids

The momentum dp = dmv of a fluid particle of volume dV at r is

dp(r, t) = [�(r, t) dV ]v(r, t). (8.19)

Here we follow a given fluid particle with constant mass, dm = � dV=const., so the
time derivative is given by

dṗ =
d

dt
[(� dV )v] = (� dV )

(
∂

∂t
+ v · ∇

)
v, (8.20)

where we have used equation 8.12 for the total time derivative. This is thus the time
rate of change of the momentum for the fluid particle in dV .

8.2.2 Forces in Fluids

To get an equation of motion for the fluid we must now equate this time rate of change
of the momentum with the force dF on the fluid particle in dV at r. This force will
usually include the force of gravity (weight) of the fluid particle. This part is given by

dW = (� dV )g, (8.21)

where g is the acceleration due to gravity. In continuum mechanics this type of force is
called a volume (or body) force since it is proportional to the volume dV . Apart from



8.2. THE EQUATION OF MOTION FOR AN IDEAL FLUID 117

body forces there are also surface forces acting on the elements of the fluid. These are
of two basic types: those perpendicular to the surface, that is, parallel to the vector
surface element dA, and those tangent to the surface. The first type is due to the
pressure p(r, t) and the total force on the fluid in the region Ω due to pressure is force due to

pressure

Fp =
∫
S
−p(r, t) dA (8.22)

where S is the surface surrounding Ω. The minus sign here is needed because of the
convention that the vector surface element points out from the region and we want the
force on the fluid inside S from the rest of the fluid. Let a be a constant vector. Then
use of Gauss’ theorem gives us

a ·
∫
S
p dA =

∫
S
(pa) · dA =

∫
Ω
∇ · (pa) dV = (8.23)

=
∫

Ω
a · ∇p dV = a ·

∫
Ω
∇p dV. (8.24)

Since a is an arbitrary vector this gives us the result

Fp = −
∫

Ω
∇p dV. (8.25)

The surface force due to pressure on the small element of fluid in dV can thus be written

dFp = −∇p dV. (8.26)

It is seen to be proportional to the gradient ∇p of the pressure.
Tangential surface forces in fluids arise when the component of the velocity parallel

to the surface varies along the normal and these forces tend to decrease such ‘velocity
gradients’. Such forces are said to be due to viscosity and are non-conservative dissi-
pative, i.e. decrease the mechanical energy. Pressure, on the other hand, turns out to
give rise to conservative forces in the fluid. In some fluids viscosity is small and can be
neglected as a first approximation. Such a fluid is called an ideal fluid.

8.2.3 Euler’s Equation for an Ideal Fluid

If we now collect the three results of equations 8.20, 8.21, and 8.26 we find an equation
of motion, dṗ = dW+ dFp, for an ideal fluid moving under the influence of gravity, in
the form Euler’s equation

for fluid∂v
∂t

+ (v · ∇)v = g − ∇p

�
. (8.27)

This equation was first derived by Leonhard Euler in 1755.
Vector analysis provides the identity

1
2
∇v2 = v × (∇× v) + (v · ∇)v, (8.28)

where v = |v| and this allows us to rewrite Euler’s equation above in the form

∂v
∂t

+
1
2
∇v2 − v × (∇× v) = g − ∇p

�
. (8.29)

We will now investigate one of the special cases in which this equation has a first
integral.
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8.2.4 Bernoulli’s Theorem for Steady Incompressible Flow

We now assume that the flow is steady, i.e. that ∂v
∂t = 0, and that the fluid is incom-

pressible, which means that it has constant density, �(r, t) = �0 =constant. Liquids are
normally fairly incompressible while gases are more easily compressed. For this case
we can write equation 8.29 on the form

v × (∇× v) =
1
2
∇v2 − g +

∇p

�0
. (8.30)

We now integrate the vector fields on both sides of this equation along a curve C : t �→
r(t) which is the solution of the equation

dr
dt

= v. (8.31)

Such a curve C is said to be a ‘streamline’ and in the case of steady flow it will simply
be the trajectory of a fluid particle. If we let 1 stand for some, arbitrary, start point
on the streamline and 2 for some end point we get∫

C(1,2)
[v × (∇× v)] · dr =

∫
C(1,2)

[
∇
(
1
2
v2 − g · r+ p

�0

)]
· dr. (8.32)

Here we have used that ∇(g ·r) = g. The left hand side of this equation is easily seen to
be zero since v×(∇×v) is perpendicular to v but dr is parallel to v when one integrates
along a streamline. The scalar product under the integral sign is thus identically zero
for such a curve. On the right hand side we find the differential d(1

2v
2 − g · r + p

00
)

under the integral sign so we now get

0 =
[
1
2
v2(r2)− g · r2 +

p(r2)
�0

]
−
[
1
2
v2(r1)− g · r1 +

p(r1)
�0

]
. (8.33)

We now choose the coordinate system to have a vertical Z-axis pointing upwards so
that g = −g ez. Using this we can express the above result as followsBernoulli’s

equation 1
2
�0 v2(r) + �0 gz + p(r) = const. along streamline. (8.34)

Note that the first term in this equation is the kinetic energy per volume and that the
second is the potential energy of gravity per volume. The pressure p must consequently
also have dimensions of energy per volume and the entire equation can be regarded
as an energy integral for the steady flow of the ideal incompressible fluid. The kinetic
energy per volume is sometimes called the ‘dynamic pressure’. The equation 8.34 is
called Bernoulli’s equation and can be used to obtain a qualitative understanding of
many phenomena associated with the motion of fluids.

Example 8.1 Find the speed u with which an ideal liquid flows out of a tank from a small
hole at depth h. The acceleration due to gravity is g. See figure 8.1.
Solution: When the hole is small one can assume that the flow is approximately stationary
so that one can use Bernoulli’s equation. Consider a stream line from the surface of the liquid
A to the hole B, as in the figure. We can assume that v(rA) = 0, that zA = 0, and that
p(rA) = p(rB) = p0 The constant in Bernoulli’s equation 8.34 is thus given by

0 + 0 + p0 = const. (8.35)

At the hole we thus get
1
2
�0u

2 − �0gh+ p0 = p0, (8.36)

since zB = −h. Solving for u we finally find that

u =
√

2gh (8.37)

is the speed with which the liquid flows out. ✷
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Figure 8.1: This figure illustrates the situation in example 8.1. There is a small hole in the
tank at depth h below the liquid surface.


