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Abstract

Using basic theoretical considerations we show that the elastic
continuum and conduction electrons interact via a vector field, to
first order. This interaction must therefore be closely related to
a magnetic interaction. We then study the magnetic interaction
between conduction electrons using the Darwin approach and the
free electron gas model. We show that pairing of conduction
electrons may result and we calculate the total energy lowering
due to the Darwin term in the Hamiltonian. The relevance of the
results to superconductivity is considered.

1 Introduction

The free (Fermi) electron gas is a very successful model that, suitably per-
turbed, explains the essential features of ordinary conductivity and resistivity
in metals [1]. In the case of resistivity the perturbation is scattering of elec-
trons by thermal fluctuations of the crystal lattice. When the temperature
goes down these fluctuations go to zero. Empirically three different things
may then happen: Either the free electron gas model remains good and the
resistivity goes down all the way to absolute zero, or some other perturbation
becomes important and a phase transition occurs. These are of two types
magnetic and superconducting.

In the magnetic case these perturbations are well known to be related to
electron spin interactions. What other perturbing influences can be contem-
plated? In many-electron problems the most important perturbation of the
independent electron model is, usually, Coulomb correlation. Since the basic
idea here is that the electrons are free it does not seem consistent to consider
the higher order correlation effects. Kohn and Luttinger [2] have shown that
if long range Coulomb correlation is responsible for superconductivity at all,
the transition temperature would be very small.

What perturbations remain? Essentially two. The standard candidate
for superconductivity is the breakdown of the Born-Oppenheimer separation
of electronic and nuclear (lattice) motion. The thermal fluctuations which
cause resistivity result in such breakdown, but there is also a non-thermal
interaction of the electronic degrees of freedom with the classical elastic dis-
placement (vector) field. In the first part of this article we discuss how this
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interaction must look, to first order, and we find that it is closely analogous
to the magnetic interaction. For example, only the transverse part of the
elastic displacement field is of importance. The main difference is that it is
difficult to determine the coupling strength.

There are also the higher order electromagnetic (or relativistic) interac-
tions between the electrons which can not be expected to be screened in the
way the Coulomb repulsion is. These first order correction terms to charged
particle interaction were first derived by Darwin [3] and will be discussed in
the second part of this article. We first show that this interaction will lead to
a bound state for the relative motion of two electrons, if they have (almost)
the same unpaired momenta. That is, we get pairing. We then calculate
the effect of the Darwin term on the Fermi gas as a whole. Only electrons
with unpaired momenta on the Fermi surface will be contribute, but it is
shown that this is enough to result in an energy lowering per electron of
roughly 10−4 of the Fermi energy. This is a typical energy gap in ordinary
superconductors.

The conclusion is that both perturbations cause an attractive interaction
between parallel currents. Because of the Pauli exclusion principle electrons
at the Fermi surface have considerable kinetic energy and thus a considerable
current will result if the distribution of electrons on the Fermi surface is not
isotropic, without cost of kinetic energy. Thus the minimum energy ground
state might be one one with flow of current.

2 The Electron Lattice Interaction

The main idea here is that the interaction between the conduction electrons
and the crystal lattice approximately can be understood in terms of a classi-
cal field. The reason for this is that, to a first approximation, the conduction
electrons are free delocalized non-interacting particles. They are thus not
strongly affected by the detailed atomic structure of the metal but only by
long range average properties. In standard solid state jargon the electrons
are usually described as being scattered by phonons, the quanta associated
with lattice vibrations. Just as most aspects of the interaction of matter
with the electromagnetic field do not require the photon concept, but can be
understood in terms of a classical field, it should be possible to understand
many aspects of conduction electron lattice interaction in terms of the clas-
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sical displacement field. This is a (classical) vector field which describes the
deformation of the crystal in the continuum, elastic, limit.

The basis for the separation of the electronic degrees of freedom from the
nuclear motion is the so called Born-Oppenheimer approximation. The total
Lagrangian for the system is

L = L0 + Lint = (Lel + Lnu) + Lint, (1)

and if the interaction Lint is small and can be neglected the Born-Oppenhei-
mer approximation results. Though the separation, in principle, is symmetric
[4], one finds that, in molecules, the nuclear part will depend on the electronic
state. In metals this is clearly not the case: the vibrational elastic properties
do not depend much on the precise state of the conduction electrons, and vice
versa. Thus in a metal the elastic and the (conduction) electronic degrees of
freedom really separate (symmetrically) in a first approximation.

In the next subsection we discuss the dynamics of the (nuclear) elastic
degrees of freedom and the displacement (vector) field. We then proceed to
investigate what Lint must look like, in a first approximation.

2.1 Dynamics of the Displacement Field

We consider the conduction electrons as moving in a vacuum, albeit a vacuum
with properties rather different from the vacuum of empty space. The dis-
placement field is a vector field and we denote it u, and its three components
by ui. As all vector fields it can be decomposed, according to Helmholtz,
into a rotation-free, longitudinal part, uL, and a divergence-free, transverse
part, uT, (see e.g. Fetter and Walecka [5])

u = uL + uT, (2)

where
∇× uL = 0 and ∇ · uT = 0. (3)

These can then be written

uL = ∇Θ ⇐⇒ uL
i = ∂iΘ (4)

uT = ∇× C ⇐⇒ uT
i = eijk∂jCk. (5)

A constant displacement field will only represent a translation of the crystal
as a whole. Therefore only derivatives of the displacement field will represent
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elastic deformation. The antisymmetric combination, however, represents
rigid rotation, so only the symmetric combination is of interest:

uij =
1

2
(∂iuj + ∂jui). (6)

This is the strain tensor in the linear approximation. In the same linear
(Hookean) approximation the elastic energy of deformation per unit volume
of the crystal is

Vnu =
1

2
λijkluijukl. (7)

where λijkl is the elastic modulus, or stiffness, tensor. This tensor can be
taken to have the symmetries

λijkl = λjikl = λijlk = λklij, (8)

see e.g. Landau and Lifshitz [6].
The kinetic energy per unit volume of the displacement vector field is

given by

Tnu =
1

2
�mu̇iu̇i (9)

where �m is the mass-density, and we thus take the Lagrangian density of
the displacement field to be

Lnu =
1

2
�mu̇iu̇i −

1

2
λijkluijukl. (10)

This determines the dynamics of the vector field u when conduction electron
interaction is neglected.

2.2 Electron Displacement Field Interaction

The unperturbed Lagrangian of the free conduction electrons is

Lel =
∑

i

1

2
mv2

i . (11)

The interaction of these electrons with the vector field u must be a scalar.
Only two scalars arise naturally, vi ·u and Θ . We thus take the interaction
terms to be given by

Lint =
∑

i

[αvi · u(ri) + βΘ(ri)] (12)
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Here α and β are some effective coupling constants, presumably proportional
to the charge of the electron, since physically the lattice electron interaction
is electrostatic in nature. One now notes that only the transverse part of u
contributes to the interaction since

v · uL =
dr

dt
· ∇Θ =

dΘ

dt
(13)

is a total time-derivative and does not affect the dynamics. One also notes
that while Lnu contains the first derivatives of uT, it contains Θ only through
second derivatives. The importance of Θ for the interaction on large length
scales must therefore be smaller than that of uT. The interaction part of the
Lagrangian can thus, to first approximation, be taken as

Lint =
∑

i

αvi · uT. (14)

The role of the transverse displacement field is thus seen to be closely anal-
ogous to the role of the vector potential in the electromagnetic case. In that
case the interaction is well known to be ∼ e(vi/c) · A.

The Lagrangian for the full system of electrons and elastic continuum is
thus seen to be

L = Lel + Lnu + Lint =
∑

i

1

2
mv2

i +
∫

(Tnu − Vnu) dV +
∑

i

αvi · uT. (15)

The corresponding Hamiltonian is then

H =
∑

i

1

2m
(pi − αuT) · (pi − αuT) +

∫
(Tnu + Vnu) dV, (16)

and here too one sees that the interaction with the lattice is similar to mag-
netic interactions. Also the displacement field Lagrangian Lnu is a positive
definite quadratic form in the first derivatives of uT, though interaction with
(first derivatives of) uL in it makes things a bit complicated. If these can be
neglected one can expect the field equation for uT to be an elliptic partial
differential equation with electron current as source.

Just as the Darwin Hamiltonian (18), to be considered below, comes
from a full Hamiltonian for electrons plus magnetic field, a similar set of
approximations can be applied to the theory described by (16). I. e. we
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might assume that the independent degrees of freedom of the field uT are not
important; only the indirect effect that causes an electron-electron interaction
(virtual phonons) need be considered to first order. It then seems clear that
the result must be an attraction between parallel currents, just as in the
Darwin case.

Onset of superconductivity has been observed to be correlated to changes
in the lattice dynamics by Testardi et al. [7], and this may be considered as
evidence that the type of coupling of electronic and elastic degrees of freedom,
discussed above, can be relevant to superconductivity. Such direct evidence
is, however, not common so any change in lattice dynamics must normally
be quite small.

Concerning the strength of the coupling one notes that the velocity fac-
tor, (vF/c)

2, which limits the strength of magnetic interactions, will not be
a problem in the elastic displacement field case. In this case the relevant
electron velocity, will still be the Fermi velocity, vF, but c must be replaced
by the speed of transverse acoustic waves, cT, and thus make this factor more
favorable (by ten orders of magnitude). The actual coupling constant, α, on
the other hand, is difficult to predict without more detailed considerations,
but it is clearly quite small.

Below, equation (40), we estimate the magnetic interaction between elec-
trons to give to an energy lowering per electron which is roughly

∆D ∼ R0kFEF =
1

2
e2

(
vF

c

)2

kF. (17)

If the present mechanism is to have some chance of explaining high-tempera-
ture superconductivity, one must make this Darwin energy lowering per elec-
tron larger by two orders of magnitude. In view of the improved velocity
factor, (vF/cT)2 ∼ 1010(vF/c)

2, one sees that it is enough if the ‘effective
charge’ in the elastic coupling is roughly 10−4 of the electron charge. One
should also keep in mind that in the complicated crystals that exhibit high-
temperature superconductivity there may be other (structural) vector-fields,
apart from the overall elastic displacement field, that couple to the electron
motion in the manner outlined here.
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3 Effect of Darwin Attraction between Con-

duction Electrons

Relativistic corrections to the dynamics of the conduction electrons are nor-
mally not considered in superconductivity theory, it being taken for granted
that these are too small to be of relevance in comparison with perturbations
from phonons and other effects. The relevant parameter determining their
order of magnitude is (vF/c)

2, where vF is the Fermi velocity and c the speed
of light. This number is, however, of order of magnitude 10−4 and it is thus
not obvious that they are totally negligible. For example the energy gap in
superconductors is typically 10−4EF so for this purpose this interaction has
just the right strength.

3.1 The Darwin Hamiltonian

Darwin [3] derived the first order relativistic corrections to the Lagrangian
for charged particles in 1920. That these relativistic terms can be of im-
portance even in ordinary macroscopic physics when magnetic phenomena
are considered has been shown by Coleman and Van Vleck [8]. Physically
the approximation arises from the full Lagrangian of particles plus electro-
magnetic fields when the independent degrees of freedom of the fields are
neglected. This corresponds to radiation being negligible so that there are
no (non-virtual) photons present.

The Hamiltonian for a system of electrons, including Darwin’s first order
relativistic corrections, is according to Landau and Lifshitz [9] (we ignore
spin)

H =
∑

i

p2
i

2m
−

∑
i

p4
i

8c2m3
+

∑
i<j

e2

rij

−
∑
i<j

e2[pi · pj + (pi · eij)(pj · eij)]

2c2m2rij

. (18)

Here the second term reduces the kinetic energy compared to the classical
value, but does not lead to qualitatively interesting changes of the dynamics,
so we ignore it. The Coulomb repulsion is strongly screened in metals; from
the point of view of a conduction electron the rest of the metal has charge
+e and this positive charge must be localized near the electron, since any
other distribution would be energetically very unfavorable. This is the main
reason that the free electron approximation is so successful as a model for the
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conduction electrons [1]. Our main interest will be in conduction electrons
near the Fermi energy, and we assume these are so far apart that the screened
Coulomb interaction can be neglected. We are thus left with the first and
the last terms in our Hamiltonian (18).

The last term corresponds to the interaction of currents and shows that
parallel currents attract each other. In classical electrodynamics this is a
well known effect and is sometimes referred to as the ‘pinch’ effect. The
corresponding contribution to the energy for a current distribution j(r) is

− 1

4c2

∫ ∫ (
j(r) · j(r′)
|r − r′| +

j(r) · (r − r′) j(r′) · (r − r′)
|r − r′|3

)
dV dV ′. (19)

The second term has the effect that electrons moving one after the other
attract twice as much as electrons moving side by side. The (spherical)
average effect of the two terms is given by

− 1

3c2

∫ ∫ j(r) · j(r′)
|r − r′| dV dV ′. (20)

It is thus not obvious that the ground state of a system must correspond
to j = 0. Classically the kinetic energy associated with motion will give a
positive contribution that outweighs this term, but in quantum mechanics
the Pauli principle forces electrons to have large velocities even in the ground
state, so the possibility of a macroscopic (or mesoscopic) current distribution
in the ground state of a metal cannot be ruled out on theoretical grounds.

Heisenberg, long ago, suggested that current flows in the superconducting
ground state [10]. The mechanism suggested by Heisenberg was, however,
not convincing. A ground state current makes the zero resistance property
of superconductors easier to understand. Their other main property, the
Meissner effect, or complete diamagnetism, can be understood as due to an
energy gap above the Fermi level as originally outlined by Welker [11], who,
however did not explain the origin of the gap. Welker [12] also originally
suggested that the magnetic attraction of currents might be responsible for
superconductivity. Unfortunately he did not calculate the ground state en-
ergy properly and thus early attempts in this direction ended in confusion.
Part of the motivation for the present work is to once again consider these
possibilities.
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3.2 Electron Pairing

Consider two electrons, in a metal, interacting via the Darwin term. This, of
course, means that we assume that all other electrons have paired momenta
and do not contribute to the current density. We neglect the uninteresting
correction to the kinetic energy and the screened Coulomb repulsion and take
the Hamiltonian for these to be (see equation (18))

H =
p2

1

2m
+

p2
2

2m
− e2

2m2c2

[p1 · p2 + (p1 · e12)(p2 · e12)]

r12

. (21)

We now make the (canonical) transformation

P =
1√
2
(p1 + p2), p =

1√
2
(p1 − p2),

R =
1√
2
(r1 + r2), r =

1√
2
(r1 − r2), (22)

p1 =
1√
2
(P + p), p2 =

1√
2
(P − p).

The Hamiltonian then becomes

H =
P 2

2m
+

p2

2m
− e2

4
√

2m2c2

P 2 + (P · e)2

r
+

e2

4
√

2m2c2

p2 + (p · e)2

r
. (23)

Here e = e12 = (r1 − r2)/|r1 − r2| is the unit vector from electron 2 to
electron 1.

For two electrons, at the Fermi surface, with (nearly) the same momentum
and opposite spin we can make the ansatz (|k| = kF, the Fermi wave number,
see Appendix)

Ψ(R, r) =
1

L3
exp(ik · r1) exp(ik · r2)Φ(r) =

1

L3
exp(

i

h̄
P · R)Φ(r) (24)

where the function Φ is symmetric and describes the relative motion of the
two electrons. If we assume that the relative momentum, p, is small com-
pared to the common momentum, P /

√
2 = h̄k, we can neglect the last term

in the Hamiltonian (23), and find that the relative wave function, Φ, obeys
the Schrödinger equation(

− h̄2

2m
∇2 − h̄2e2kF

2

2
√

2m2c2

1 + cos2 ϑ

r

)
Φ = EΦ. (25)
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Here ϑ is the angle between the vector r and k. The long range (Coulomb)
nature of the interaction shows that the ground state for the relative mo-
tion of the two electrons will be bound. Thus a single pair of electrons at
the Fermi surface will form a bound state when they move in the same di-
rection. The fact that the interaction is weak does not matter since it is
long range. Classically the interaction corresponds to a magnetic interaction
and magnetic fields are known to be badly screened by metals, except in the
superconducting state.

To estimate the properties of this bound state quantitatively we first
replace 1 + cos2 ϑ by its spherical average: 1 + cos2 ϑ = 4/3. If we now
replace 4/(3

√
2) = 0.943 by one, we find that the interaction potential in the

Schrödinger equation (25) is roughly

V (r) ≈ −EFR0

r
(26)

where R0 ≡ e2/(mc2) is the classical electron radius and EF ≡ h̄2kF
2/(2m)

is the Fermi energy. The corresponding Bohr-radius is then (the ‘Darwin-
Fermi’-radius)

RDF =
h̄2

mEFR0

=
mc2

EF

h̄2

me2
=

mc2

EF

rB, (27)

where rB is the ordinary Bohr-radius. Since mc2 = 5.11 · 105 eV while EF

typically is 10 eV we find that

RDF ∼ 5 · 104 rB . (28)

The ground state energy can be estimated to be

EDF = −1

2

m
[
e2

(
EF

mc2

)]2

h̄2 ∼ 4 · 10−10 EH, (29)

where EH is the ground state energy of the Hydrogen atom. This is an
extremely small energy. In the next section we will see how conduction
electrons can collaborate to get much lower energy.

3.3 Ground State Darwin Energy

We now consider the effect of the last term in the Hamiltonian (18) considered
as a perturbation on free (conduction) electrons. Assuming a Hartree wave
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function, only the electrons at the Fermi surface will contribute since those
inside are paired and have no net current density. The electrons are thus
considered to be in states

ψi(r) =
1√
L3

exp(iki · r) (30)

with |ki| = kF. To find the expectation value of the Darwin term we need the
electrostatic interaction energy of two electrons with constant charge density
within a cubic box of volume L3. This quantity can be written κe2/L where
κ is the dimensionless constant given by

κ ≡
∫
Ω

∫
Ω

dV1 dV2

|r1 − r2|
≈ 1.882312645, (31)

where the integrations are over the unit cube [13].
The Darwin energy of the Nc electrons on the Fermi surface is then found

to be

ED = − h̄2

2c2m2

κe2

L

Nc∑
i<j

ki · kj. (32)

We have ignored exchange.
The perturbation energy can be written

ED = −EFR0

(
κ

L

) Nc∑
i<j

cos θij. (33)

Here θij is the angle between the directions of the two wave vectors ki and
kj. Clearly the sum of the scalar products is zero if the distribution of the
wave vectors is isotropic on the Fermi surface (sphere), since then cos θij

must be positive as often as negative. The value of this perturbation thus
depends essentially on how anisotropic this distribution can become. This,
in turn, depends on the ratio, γ, of the number of electrons, Nc, and number
of states, Ns, on the Fermi sphere. This number is (see Appendix)

γ ≡ Nc

Ns

where, Ns =
2L2kF

2

π
, (34)

and it must obey 0 < γ < 1. The most anisotropic distribution of k-vectors
on the Fermi sphere corresponds to these all falling within a solid angle
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Ω = γ4π around some arbitrary direction. Using this we can approximate
the sum of the cosines as follows

Nc∑
i<j

cos θij ≈
1

2
N2

s γ2 cos(
√

γπ/2). (35)

Here we have used that the number of terms in the sum is roughly N2
c /2 =

N2
s γ2/2 and that the average value of θij must be proportional to the square

root of the solid angle, i.e. to
√

γ. The proportionality factor has been chosen
so that the average angle is π/2 for γ = 1, as it should. If we now put

χ(γ) ≡ γ2 cos(
√

γπ/2) (36)

we can write the perturbation energy, equation (33), as follows

ED ≈ −EFR0

(
κ

L

)
1

2
N2

s χ(γ). (37)

In order to estimate the maximum size of this energy we note that the func-
tion χ(γ) has its maximum at γmax ≈ 0.648 and that the value of this maxi-
mum is χmax ≡ χ(γmax) ≈ 0.127 (see figure 1). If we also insert the value for
the number of states at the Fermi surface, from equation (34), we get

ED ≈ −EFR0

(
2κ χmax

π2

)
kF

4L3 (38)

for the total ‘Darwin’ energy of the conduction electrons. One should note
that it is only the last term in the Hamiltonian (18) that is sensitive to the
distribution of k-vectors on the Fermi-sphere. The other terms have thus not
been neglected; they are constant under variation of this distribution.

One notes that this energy is proportional to the volume as it should
be (‘size consistency’). Normally one would expect the effect of the long
range Coulomb-like interaction to diverge for some constant bulk current
density, see equation (20). The fact that this does not happen is due to
the two-dimensionality of the Fermi surface. Quantum mechanics thus plays
two roles here. The Pauli principle forces electrons to have large speeds,
even in the ground state so, in principle, the ground state might be one
with macroscopic currents. If a three dimensional bulk current density was
possible its (negative) energy contribution would diverge as the size of the
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sample increased. The Pauli principle, however, also restricts the mobile
electrons to a two-dimensional surface (in momentum space) and thus this
divergence is prevented. This fact was not discovered by Welker [12] and thus
early attempts in this direction stranded on what was called the ”magnetic
catastrophe”.

3.4 Darwin Energy per Conduction Electron

The total Darwin energy, found above using first order perturbation theory,
does not say anything about the spectrum of the conduction electrons. It is
wrong, however, to assume that only the electrons at the Fermi surface (which
are responsible for the energy lowering) will be affected. The energy gain due
to the electrons at the Fermi surface distributes itself among all conduction
electrons since these are identical particles and their orbitals must remain
orthogonal. Exactly how it distributes itself among the conduction electrons
we don’t know. To get a rough estimate it seems reasonable to assume that
it is distributed evenly among them. This is assumed below.

We now calculate the Darwin energy per conduction electron. We get
this energy lowering per electron, ∆D, by multiplying ED/L3 by L3/N = 1/n
where n, given by (see Appendix)

n ≡ N

L3
=

1

3π2
kF

3, (39)

is the number density of conduction electrons. The result is

∆D ≡ −ED

N
≈ (6κ χmax)R0kFEF ≈ 1.43 · R0kFEF (40)

In atomic units the classical electron radius is R0 = 5.3 · 10−5 so, collecting
numbers, we get that

∆D ≈ (7.6 · 10−5) kFEF. (41)

Since kF is roughly one (kF ∼ 1 in atomic units) for many metals we see that
this predicts the gap energy to be roughly ∆D ∼ 10−4EF, assuming, of course,
that we can identify the energy lowering per electron with the energy gap (at
zero temperature).

There is in fact good agreement between ∆D and the smaller experimental
energy gaps. For example, for Zn formula (41) gives ∆D = 2.1 · 10−5 which
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may be compared to the experimental value 1.7 · 10−5. The corresponding
values for Al are ∆D = 3.1 · 10−5 and 2.5 · 10−5 which thus indicates both
correct order of magnitude and a correct trend. For Pb, however, (41) gives
∆D = 2.1 · 10−5 while the experimental result is 20 · 10−5 (experimental
data are taken from Kittel [14]). One reason for this might be effects that
have been neglected in the simple free electron model; e.g. the fact that
the Fermi surface is not spherical in real metals should increase the relative
importance of the Fermi surface. The largest error is, no doubt, due to the
even distribution of the energy lowering among all electrons. It is remarkable
that one obtains nearly correct values for the low Tc energy gaps without a
single free parameter, even if this clearly is is due to several canceling errors
(assuming that the theory is at all relevant).

High temperature superconductivity, on the other hand, can hardly be
explained using this theory. One notes that two-dimensionality does not
help; it only makes things worse. To get considerably better values than the
ones obtained here it is necessary to consider interaction with the lattice as
we did above.

4 Discussion and Conclusions

The most valuable results of the present investigation are, firstly, the formula
for the energy lowering due to the magnetic attraction of parallel currents,
∆D ≈ 1.43 ·R0kFEF, and, secondly, the proof that the coupling to the elastic
displacement field is very similar to a magnetic interaction. If these findings
are of any relevance to the theory of superconductivity, as the author firmly
believes, it is clear that these two effects will be difficult to distinguish.

The first part about the electron lattice interaction might partly be re-
garded as, merely, a different way of deriving the traditional BCS theory
[15, 16, 17], which it, of course, will resemble if put in second quantized form.
Note, however that there are differences. In BCS-theory the attraction and
the pairing of electrons is between electrons with opposite momenta on the
Fermi sphere. Such a phenomenon has no classical analog. Here this attrac-
tion and pairing is between electrons with similar momenta and consequently
small relative motion. Classically it is not at all difficult to understand that
two such electrons may form a bound pair as they move together through
the crystal. Another difference is that BCS-theory does not predict a current
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in the ground state and thus has some difficulty in explaining the observed
fantastic persistency of superconducting currents. In the present theory this
is no problem; the state with a current is simply the ground state. One of the
problems with the above approach is the fact that no macroscopic current
can flow in a simply connected isolated superconducting specimen. If there is
a current distribution in such a specimen it must have the same nature as the
velocity distribution in homogeneous turbulence, i.e. have no net momentum
or angular momentum.

Since the present view, considered as an explanation of superconductivity,
thus is at odds with traditional theory on some points, it is fair to ask, how
relevant the present theory is. The point of view of the author is that it is
possible that the present theory is irrelevant, but, since it is based on quite
conservative and standard theoretical physical methods and arguments, it
would at least be interesting to know exactly why it is irrelevant.

A Appendix; the Free Electron Gas,

the Fermi Surface and the Maximum

Current Density

To make this paper selfcontained some relationships for the free electron gas
are reviewed here (see Madelung [18]). Consider noninteracting, spin 1/2
Fermions, constrained to move in a cubic box of side length L. Assuming
periodic (Born-von Karman) boundary conditions, the allowed states are

ψi(r) =
1√
L3

exp(iki · r), (42)

where the wavenumber vectors ki must obey

ki =
2π

L
(nix, niy, niz) with nix, niy, niz = 0,±1,±2 . . . . (43)

These states have energy Ei =
h̄2k2

i
2m = h2

2mL2 (n2
ix + n2

iy + n2
iz) and the total

number of such states with energy less than EF (corresponding to the Fermi
wavenumber kF) is the volume of the sphere with radius kFL/(2π). This
number is 4π

3
[kFL/(2π)]3. Since there can be two electrons in each such
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spatial state the total number of electrons accommodated by states with
energy less than the Fermi energy is

N = 2
4π

3
kF

3
(

L

2π

)3

=
1

3π2
kF

3L3 (44)

The conduction electron density is thus n = N/L3 = kF
3/(3π2).

Consider the surface of the Fermi-sphere in k-space. The area of this
surface is 4πkF

2. The k-space area per state is (2π/L)2, so, again with two
electrons possible per spatial state, this gives that the maximum possible
number of electrons on the Fermi surface is

Ns = 2
4πkF

2

(2π/L)2
=

2

π
kF

2L2. (45)

This means that the number of such states per surface area (8L2) of quanti-
zation volume is ns = kF

2/(4π). One might note that the ratio of number of
surface states to total number of states is

Ns

N
=

6π

kFL
(46)

and thus goes to zero in the thermodynamic limit L → ∞. This is, of course,
the reason that these rarely are considered, but as we have seen in section
3.3), the Darwin energy per conduction electron remains finite in this limit,
because of its long range nature.

It is of interest to calculate the maximum current density in the free
electron gas when the the Fermi surface is half filled (γ = 1/2) with electrons.
This occurs when all surface states lie on one hemisphere of the Fermi surface.
Each electron contributes a current density

jF =
1

L3
evF (47)

On the surface element dAF = kF
22π sinθ dθ of the Fermi sphere there are

dNs =
2L2

4π2
dAF (48)

one electron states. The contribution of these to the total current density is

dJF(θ) = jF cos θ dNs(θ). (49)

17



Integration of this from zero to pi now gives

JF max =
h̄ekF

3

2πmL
(50)

for the current density (dimension: current per unit area). This quantity is
also seen to go to zero in the thermodynamic limit L → ∞. It is, however,
quite large for normal values of L,

LJF max =
h̄e

2πmrB
3
(kFrB)3 ≈ 2 · 107 (kFrB)3A/m, (51)

and must not be understood as a macroscopic current density. Here rB is the
Bohr-radius.
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Figure 1: Plot of the function χ(γ) = γ2 cos(π
√

γ/2).
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