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Abstract

The (Darwin) Lagrangian, and energy, valid for systems of charged
particles when radiation is negligible, are derived in a new way that avoids
the usual v/c-expansion. This shows more clearly their range of validity.
Expressing the energy in terms of canonical momenta gives the corre-
sponding Hamiltonian. When there are many particles it is intractable
but useful approximations are given and general conclusions about mag-
netism of matter are drawn from these. Macroscopic energy extremising
self-consistent vortex solutions are presented which can be interpreted
as corresponding to superconductivity and ferromagnetism. There is a
discussion of the quantum mechanics of the Hamiltonian for conduction
electrons in a metal and a phase transition is predicted at low tempera-
ture.
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1 Introduction

In 1920 C. G. Darwin [1] (a grandson of the famous Darwin) derived the La-
grangian of a system of charged particles from the full Lagrangian of particles
and fields, under the assumption that radiation can be neglected. He also found
an approximate Hamiltonian corresponding to this Lagrangian. Considering
the ubiquity of charged particle systems and the importance of Hamiltonians
in statistical and quantum mechanics, one would assume that there is a large
literature on the subject by now. This is not at all the case. The literature on
the Darwin approach is rather small and, when it comes to the Hamiltonian it
is even smaller and quite confused.

It is a well known fact that parallel currents attract each other, and that
anti-parallel repel. This implies a magnetic interaction force between moving
charges which is correctly described by the Darwin approach. The author has,
for some time, been investigating the relevance and consequences of this force
to statistical and quantum dynamics of systems of moving charged particles i.e.
plasmas and metals [2, 3, 4]. General results have been found implying the
presence of currents, as well as magnetic structures and activity, in thermal
equilibrium of these systems. In particular it is clear that the interaction must
play a role in low temperature superconductivity. A lot, however, remains to
be done. The entire approach is unfamiliar and thus difficult to most physi-
cists. Also, reliable quantitative techniques that can be used to derive stringent
quantitative results need to be developed by statistical, solid state, and plasma
physicists. The present article attempts to begin to address these problems.

We start with a somewhat novel rederivation of the Darwin Lagrangian and
energy expression for a system of charged particles. Since we will be interested
in macroscopic systems we can not assume that magnetic effects are small rela-
tivistic corrections, as they are in the few-body systems that Darwin originally
had in mind. The derivation presented here requires no expansion in v/c; all that
is required for its validity is that acceleration terms, i.e. c−2A · (∂2A/∂t2) and
c−2(∂A/∂t)2 can be neglected, compared to other contributions to the energy
density. A itself need not be small.

We then discuss the physical significance of the resulting (Darwin) energy
expression. A Hamiltonian is obtained when the velocities in the energy expres-
sion are replaced by expressions in terms of canonical coordinates and momenta.
For a many-body system this exact Darwin Hamiltonian does not have a mean-
ingful simple closed form but relevant useful approximations are presented and
motivated.

Finally we consider some physical consequences of these Hamiltonians. It
is pointed out that a London type relation between the electric momentum
current density and the (internal, Coulomb gauge) vector potential must hold
if magnetic energy is to be minimized. Using this we then study self-consistent
vortex solutions and find one which corresponds closely to the vortices of type II
superconductors. Finally we study the quantum mechanical two-body problem
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and discuss how the attractive interaction might cause a phase transition among
metallic conduction electrons at low temperature.

It is important to be aware of the fact that the vector potential A throughout
this article is that produced by the particles of the system itself. It is thus not
an external field and as a result some relations may seem unfamiliar.

2 Lagrangian and Energy of Charged Particle
Systems with Negligible Radiation

The full Lagrangian for a system of charged particles and the electromagnetic
fields that they produce is given by

L = Ek + Lint + Lem (1)

where Ek is the kinetic energy of the particles,

Lint =
∑

i

(qi

c
vi · A(ri) − qiφ(ri)

)
, (2)

and Lem is the Lagrangian (3) of the electromagnetic field. From (1), using
the principle of least action, one can derive equations of motion for the parti-
cles (the Lorentz force) assuming a given field and Maxwell’s equations for the
electromagnetic field assuming a given charge and current distribution.

The electromagnetic field that arises from a system of charges can be decom-
posed into bound and radiation fields (for a recent discussion, see Comay [5]).
The radiation field is small, arises only if there is acceleration, and decreases
slowly with distance. If acceleration terms are neglected this field vanishes and
only the bound electromagnetic field, determined entirely by the positions and
velocities of the charged particles, remains. When this is the case the elec-
tromagnetic field does not have independent degrees of freedom and can be
eliminated from the Lagrangian. This will be done below and the result is the
Darwin Lagrangian containing only particle degrees of freedom. In a relativis-
tic context Wheeler and Feynman [6] showed that one can get rid of the field
degrees of freedom without approximation but the result is then a non-local
theory.

2.1 The Electromagnetic Lagrangian

The electromagnetic part of the Lagrangian (1) is

Lem =
1
8π

∫
(E2 − H2)dV. (3)

Use of Maxwell’s equations, various vector identities, and the Coulomb gauge,

∇ · A = 0, (4)
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allows us to rewrite this as

Lem =
1
2

∫
(φ� − 1

c
A · j)dV +

1
8πc2

∫ [(
∂A

∂t

)2

+ A · ∂2A

∂t2

]
dV

(5)

+
1

8πc

∮ (
φ

∂A

∂t
+

∂φ

∂t
A

)
· ds − 1

8π

∮
(φE + A × H) · ds

as is shown in appendix A. Note that the second and the third integral in this
expression are both total time derivatives.

Normally a total time derivative can be dropped from the Lagrangian. If
radiation from the system is negligible, the surface integral, goes to zero as the
distance to the control surface surrounding the system goes to infinity. In this,
negligible radiation approximation, therefore only the first term survives, and

Lem =
1
2

∫
(φ� − 1

c
A · j)dV. (6)

We see that, in this approximation, it can be expressed entirely in terms of the
potentials and the sources.

2.2 The Total Lagrangian

The total Lagrangian of a system of charged particles L = Ek + Lint + Lem

becomes using (6), instead of (3),

L =
∑

i

(
1
2
miv

2
i +

qi

c
vi · A(ri) − qiφ(ri)

)
+

1
2

∫
(φ� − 1

c
A · j)dV. (7)

If we put

�(r, t) =
∑

i

qiδ(r − ri), (8)

j(r, t) =
∑

i

qiviδ(r − ri), (9)

into the volume integral we now get

L =
∑

i

(
1
2
miv

2
i +

qi

2c
vi · A(ri) − qi

2
φ(ri)

)
. (10)

To appreciate this expression it is important to recall that, here, the fields, A
and φ, are not external fields but are, in fact, the fields that are produced by
the charged particles of the system itself.
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To complete the removal of the electromagnetic degrees of freedom we must
now calculate A and φ in terms of the particle variables. In the Coulomb gauge,
the Coulomb potential is simply the solution of Poisson’s equation

∇2φ = −4π�, (11)

and this solution is

φ(r, t) =
∫

�(r′, t)
|r − r′|dV ′ =

∑
i

qi

|r − ri| , (12)

assuming the charge density (8). The equation for the vector potential, in the
Coulomb gauge, is

∇2A − 1
c2

∂2A

∂t2
−∇

(
1
c

∂φ

∂t

)
= −4π

c
j. (13)

No approximation has been made here so the solution will contain the radiation
field. If we neglect the second time derivative c−2∂2A/∂t2, we get rid of the
radiation part, and get

∇2A = −4π

c
jt, (14)

where jt is the, transverse, divergenceless current density

jt = j − 1
4π

∇∂φ

∂t
. (15)

One sees, using the Poisson equation (11), that the divergence of this is zero
because of charge conservation as expressed through the continuity equation.
Interesting aspects of the Coulomb gauge have been discussed by Brill and
Goodman [7].

The solution of equation (14) is treated in Jackson [8], section 12.7. Assum-
ing a current density (9) one finds that

A(r, t) =
∑

i

qi[vi + (vi · ei)ei]
2c|r − ri| . (16)

Here ei = (r − ri)/|r − ri|. Time dependence here, as in φ(r, t), enters only
through the time dependence of the position and velocity vectors of the particles,
ri(t),vi(t).

When the expressions (12) and (16) are inserted into equation (10) one finds
infinite contributions from self-interactions. When these are discarded, so that
each particle only interacts with the field from the others, one obtains

L =
∑

i

1
2
miv

2
i +

∑
i<j

qiqj

rij

[vi · vj + (vi · eij)(vj · eij)]
2c2

−
∑
i<j

qiqj

rij
, (17)
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where now rij is the distance between particles i and j and eij is the unit vector
pointing from i to j. This is the so called Darwin Lagrangian [1] for the system.
It includes both electric and magnetic interactions between the particles and
is valid in when radiation can be neglected. The present derivation is only
slightly different from some that can be found in the literature. Note that we
have not assumed that v/c is small. Some textbooks that present standard
derivations are [8, 9, 10, 11, 12]. Other interesting discussions can be found in
[13, 14, 15, 16, 17]. The fact that the Darwin approach arises from the neglect
of the second time derivative in (13), thereby turning a hyperbolic problem into
an elliptic has been stressed by Nielson and Lewis [18].

Note that we could have kept a relativistic expression for the kinetic energy
from the beginning. When applying the Darwin Lagrangian to few-particle sys-
tems one usually keep terms up to order (v/c)2 in the kinetic energy since, in the
standard derivations, this is the order to which the exact A has been approxi-
mated. In such systems magnetic effects are always relativistic so it would also
be inconsistent not to keep such terms in the kinetic energy. For macroscopic
systems, that we mainly will have in mind here, however, magnetism need not be
relativistic. The long range nature of the (magnetic) interaction and the large-
ness of Avogadro’s number more than compensate for the smallness of (v/c)2. It
is therefore perfectly consistent to keep only the classical kinetic energy expres-
sion in the above Lagrangian, for these systems. The assumption of no radiation
is, of course, also much more reliable, in the non-relativistic case, so actually,
the Darwin Lagrangian should be ideally suited for non-relativistic macroscopic
systems where magnetism may be strong but radiation, and velocities, are small.

2.3 The Electromagnetic Energy

The energy of the electromagnetic field is

Eem =
1
8π

∫
(E2 + H2)dV. (18)

Calculations similar to those for the Lagrangian above and given in Appendix
B, show that, in the Coulomb gauge (∇ · A = 0), the electromagnetic energy
can be written

Eem =
1
2

∫
(φ� +

1
c
A · j)dV +

1
8πc2

∫ [(
∂A

∂t

)2

− A · ∂2A

∂t2

]
dV

(19)

+
1

8πc

∮ (
φ

∂A

∂t
− ∂φ

∂t
A

)
· ds − 1

8π

∮
(φE − A × H) · ds.

It is interesting to note that the terms of this expression are exactly the same as
those in formula (5) except that the second term in each integral has opposite
sign.
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In the case of the Lagrangian (5) two integrals were ignored because they
were total time derivatives. When we then tried to find A in terms of positions
and velocities we found that we had to neglect the second derivative term in
the wave-equation. Here the second integral is no longer a total time-derivative
but the terms in it depend on acceleration (divided by c2) and should thus be
negligible, just as the term in the wave-equation, when radiation is negligible.
As for the Lagrangian one can motivate that the surface integrals should go to
zero for increasing radius of the surrounding surface, provided radiation can be
neglected. We thus get that the energy of the electromagnetic field of a system
can be written

Eem =
1
2

∫
(φ� +

1
c
A · j)dV. (20)

when radiation is negligible. This expression should be as correct as the expres-
sion (6) for the electromagnetic Lagrangian.

2.4 The Kinetic Energy

A system of charged particles in an electromagnetic field has kinetic energy

Ek =
∑

i

1
2
miv

2
i =

∑
i

1
2mi

(
pi −

qi

c
A(ri)

)2

. (21)

The appearance of the vector potential in this expression is nicely explained in
Appendix G of Kittel [19]. It is due to the fact that the generalized momentum,
pi = ∂L/∂vi, as derived from the Lagrangian (1), or (17), has two contributions

pi = mivi +
qi

c
A(ri). (22)

The first of these contributions, mivi, might be called the kinetic momentum
and the second, qi

c A(ri), the field momentum. Kittel [19] shows that, in the
non-relativistic approximation and assuming the Coulomb gauge, ∇ · A = 0,
one has

1
4πc

∫
E × H dV =

qi

c
A(ri), (23)

when the integration is over a delta function density particle at ri. The integral
here is essentially the integral of the Poynting vector (28).

Let us denote the kinetic momentum pv = mv. An expression for the time
derivative of the kinetic energy of a charged particle in an electromagnetic field
will be useful later. From the Lorentz force law

dpv

dt
= qE +

q

c
v × H (24)

and the relation (see Landau and Lifshitz [9] §17)

dEk

dt
= v · dpv

dt
(25)

7



one finds
dEk

dt
= qv · E. (26)

In these expressions both Ek and pv can be replaced by relativistic expressions,
if desired.

2.5 The Total Energy

It can be shown that (Landau and Lifshitz [9] §31) that the time derivative of
the total electromagnetic field energy density is given by

∂

∂t

(
E2 + H2

8π

)
= −j · E −∇ · S. (27)

Here S is the Poynting vector

S =
c

4π
E × H. (28)

The volume integral of this, together with Gauss’ theorem, gives

d
dt

∫ (
E2 + H2

8π

)
dV = −

∫
j · EdV −

∮
S · ds. (29)

If we now use equation (9) for the current density and then formula (26) for the
time derivative of the kinetic energy we find∫

j · EdV =
∑

i

qivi · E(ri) =
dEk

dt
. (30)

Use of this, and equation (18), leads to the result that

d
dt

(Eem + Ek) = −
∮

S · ds. (31)

This tells us that the change in electromagnetic field energy plus particle kinetic
energy is due to flux of energy through a surface surrounding the system.

If there is no energy flux through, some sufficiently large surrounding surface,
i.e. no radiation, we thus find that

Ek + Eem = E = constant. (32)

For the no radiation case we can use formula (20) for Eem. If we also use formula
(21) for the kinetic energy we find that the total energy, E, of the system of
charged particles can be written

E =
∑

i

1
2mi

(
pi −

qi

c
A(ri)

)2

+
1
2

∫
(φ� +

1
c
A · j)dV, (33)
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and is constant, provided radiation can be neglected.
If we now use equation (9) for the current density and insert the velocity,

expressed in terms of momentum and vector potential, as obtained from (22),
we get

j(r) =
∑

i

(
qi

mi
pi −

q2
i

mic
A(ri)

)
δ(r − ri). (34)

Calculations making use this equation, and of equation (8) for the charge density
of point particles, now give us the expression

E =
∑

i

(
p2

i

2mi
− qi

2mic
pi · A(ri) +

qi

2
φ(ri)

)
(35)

for the total energy of the particles and the fields that they produce. Note that
few approximations have been made; essentially only those following from the
assumption of no radiation and the assumption that the non-relativistic form of
the kinetic energy is valid. These two assumptions are not logically equivalent
but definitely have a large range of common validity. Note in particular that A
itself need not be small, only its time derivative. This is in accord with the fact
that magnetism can be very strong without accompanying radiation.

Here it must be remembered that the field A is not an external field; it is
the vector potential generated by the particles of the system, in the Coulomb
gauge. Hence the absence of the A2-term, see below, however. The expression
(35) has been derived before by the present author (see formula (37) of Essén [3])
directly from the Darwin Lagrangian, as the non-relativistic limit of a relativistic
expression.

2.6 Significance of the Energy Expression

The result (35), together with the expression (16), provides us with a very accu-
rate result for the energy of a system of charged particles. Normally when such
an energy is written down only the Coulomb electrostatic part of the interac-
tion energy is included but this is clearly not good enough for a large number
of applications. The negative sign of the term containing the vector potential
shows that energy is lowered by parallel currents in the system, or more pre-
cisely, energy is lowered when the qipi are parallel to the qjvj contributing to A.
Since A falls off like r−1 it decreases slowly and consequently, if many particles
have parallel (correlated) contributions to A it can become very large (and even
diverge, it seems, in the thermodynamic limit).

There is ample evidence for this predicted spontaneous occurrence of current
in various systems. The, so called, bootstrap current [20] in tokamaks is one
example from plasma physics. Another is the phenomenon of runaway electrons.
Superconducting persistent currents are well known. Somewhat less well known
is the occurrence of persistent currents in mesoscopic metal rings in their normal
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state [21]. These turn out to be two orders of magnitude larger experimentally
[22] than predicted by conventional theory (without the Darwin term).

These, seemingly, elementary facts are, however, completely at odds with a
number of, so called, established results in the literature. One of these is that
the magnetic energy always is positive. A large number of papers, for example
[23, 24, 25], calculate the magnetic energy density of plasmas as a positive
quantity. This is in accord with what has been called the Chandrasekhar-Fermi-
Schmidt virial theorem [26]. It should be clear from the result (35) that this
must be wrong, an opinion previously expressed and motivated by Witalis [27].
When self-interactions are correctly removed and only interparticle interactions
are included the magnetic energy, just like the electrostatic, can be both positive
and negative. Nature is then known to chose the latter alternative. The present
author has used the virial theorem to show this rigorously [4].

Another established result that seems irrelevant in the light of the energy
expression (35) is the so called Bohr-van Leeuwen theorem (for discussions see
Alfvén [28] or Van Vleck [29]). According to Pippard [30] this theorem entails
”. . . a general demonstration that classical mechanics does not allow an assem-
bly of charged particles to possess any magnetic properties”. To the extent
that the Darwin approach is part of classical mechanics this is clearly wrong.
Currents in a system will clearly be correlated so as to minimize the energy and
this will result in magnetic properties. Normally these can be predicted to be
diamagnetic since an external field will interfere with the spontaneous energy
minimizing correlations of a system and raise its energy.

3 Hamiltonians of Charged Particle Systems with
Negligible Radiation

The expression (35) for the total energy of a non-radiative system of charged
particles will result in a Hamiltonian for the system provided we can express
A(ri) in terms of positions and momenta of the other particles. Since a Hamil-
tonian is of the utmost importance for investigating the statistical mechanics
and quantum mechanics of such systems this is highly desirable.

The straightforward approach to an expression for A in terms of the mo-
menta is to insert

vi =
1

mi

(
pi −

qi

c
A(ri)

)
, (36)

obtained from (22), into the expression (16) for A. This is seen to lead to the
implicit equation

A(ri) =
∑
j( �=i)

(
qj [pj + (pj · eij)eij ]

2mjc|ri − rj | − q2
j {A(rj) + [A(rj) · eij ]eij}

2mjc2|ri − rj |

)
(37)
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for A(ri) in terms of pj and rj . Here eij = (ri−rj)/|ri−rj | and self interactions
are excluded. If we denote the solution of this equation by Ap, (35) gives us
the exact Darwin Hamiltonian

H =
∑

i

(
p2

i

2mi
− qi

2mic
pi · Ap(ri) +

qi

2
φ(ri)

)
. (38)

Only for a two-body system, however, does this exact solution lead to a tractable
explicit expression [3]. See subsection 3.3 below, however, for a solution in a
continuum approximation.

3.1 Approximate Hamiltonian in the Few-body or Low
Density Limit

If magnetic effects can be assumed small one might keep only the approximation
vi ≈ pi/mi. This approximation, inserted into (16) leads, via (35) or (38), to
Darwin’s original Hamiltonian (see Darwin [1], or Landau and Lifshitz [9] §65).
It represents an excellent approximation for few-body systems. The first order
relativistic correction to the kinetic energy should then also be retained, for
consistency. In atomic physics the Darwin term in the Hamiltonian is often
called the Breit term [31, 32] (to add to the confusion a completely different
term is called the Darwin term). Interesting recent studies of the relevance of
the Darwin approach in atomic physics are by Crisp [33] and De Luca [34].

For macroscopic systems, on the other hand, one can not assume that mag-
netic effects are small (relativistic corrections). This problem was first pointed
out and addressed by Trubnikov and Kosachev [24], who pessimistically con-
cluded that there was no reasonable closed expression for the Hamiltonian in
the case of macroscopic numbers of charged particles, see also Alastuey and Ap-
pel [35, 36]. The present author does not agree with that conclusion. When one
tries to solve the implicit equation for A mentioned above, one finds a solution
in terms of a series expansion [3, 4]. Keeping the first and second order term in
this expansion gives the Hamiltonian

H =
∑

i

(
p2

i

2mi
− qi

2mic
pi · A1(ri) +

q2
i

2mic2
A2

1(ri) +
qi

2
φ(ri)

)
, (39)

where

A1(ri) =
∑
j( �=i)

qj [pj + (pj · eij)eij ]
2mjc|ri − rj | . (40)

The expansion parameter, in the relevant expansion, is Nre/R, where R is the
typical length of a spatial region in which momenta (currents) are correlated,
and N is the number of particles in this region, and, finally, re is the classical
electron radius, e2/(mc2). The author has presented thermodynamic and other
arguments that this parameter should be small enough for the relevant expansion
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to converge. It can also be shown that the full expansion will give terms that all
are of the same qualitative type as the two retained in (39). That is, they are all
either paramagnetic and lead to a lowering of the energy for parallel currents,
like the second term of (39), or diamagnetic and positive definite, like the third
term.

Krizan, in a debate with R. D. Jones, has criticised all improvements on the
traditional Darwin Hamiltonian as being inconsistent since they go beyond the
(v/c)2 order to which the approximation is valid to start with [37, 38, 39, 40].
Our point of view is that this is irrelevant for two reasons. First, since the
derivation of the present work makes it clear that velocity is not really relevant;
only acceleration terms are neglected. Second, because, the correction term
given here is of order (v/c)2. When the speed of light appears to higher powers it
is only in combinations not involving the velocities of the particles but involving
Nre/R, the number of particles, the classical electron radius, and the size of the
system.

A further strong argument in favor of (39) is obtained if one calculates the
effective one-particle Hamiltonian that it leads to. The effective one-particle
Hamiltonian is simply the Hamiltonian that determines the motion of particle i
when one assumes that the positions and momenta of all the other particles of
the system are given. If things work out correctly one should find an effective
Hamiltonian such that particle i moves in the (external) electric and magnetic
fields produced by the other particles. This Hamiltonian is well known to be

Hi =
1

2mi

(
pi −

qi

c
A(ri)

)2

+ qiφ(ri). (41)

The calculation, proceeding from (39), is presented in Essén [4]. It turns out that
one finds an effective one-particle Hamiltonian which differs from the expected
one only in terms that can be expected to be very small, except possibly under
astronomical circumstances.

3.2 Finding the Vector Potential in Terms of Momenta in
the Continuum Limit

Using (8) and (9) we can express the transverse current density (15) in the form
[8]

jt(r) =
∑

i

qiviδ(r − ri) − qi

4π
∇

(
vi · (r − ri)
|r − ri|3

)
=

∑
i

qivi P(r − ri). (42)

Here P(r−ri) is a tensor that operates on vi to ensure that the current density
jt is transverse. From (22) we get that

qivi =
qi

mi
pi −

q2
i

mic
A(ri) (43)
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and this results in

jt(r) = jpt(r) −
∑

i

q2
i

mic
A(ri)P(r − ri) (44)

where jpt is, what might be called the transverse momentum current. The A
that we are working with here is in the Coulomb gauge and therefore already
is transverse. The only effect of the P-operator should then be that of the
delta-function, i.e. to represent the particle density. Also since A(ri) arises,
as a slowly decreasing function, from correlated velocities of the other particles
of the system it should vary slowly on the scale of individual particles. These
considerations indicate that the last term of (44) can be approximated as follows

∑
i

q2
i

mic
A(ri)P(r − ri) ≈ A(r)

∑
a

q2
ana(r)
mac

. (45)

The last sum here is over the types of particles that occur in the system and
na(r) are their respective number densities.

In most systems electrons, because of their small mass, will provide the main
contribution to the last sum in (45) so we might approximate it quite accurately
with e2n/(mc). If we do this equation (44) gives

jt(r) = jpt(r) − e2n(r)
mc

A(r). (46)

When this is inserted in equation (14) one gets

∇2A − 4π
e2n

mc2
A = −4π

c
jpt, (47)

an equation that might be regarded as a continuum version of the algebraic
equation (37), or, more precisely, its Laplacian. This can then be rewritten in
the form (∇2 − λ−2

m

)
A = −4π

c
jpt, (48)

where (recall that re is the classical electron radius)

λm ≡ 1/
√

4πren (49)

has dimension length. Assuming n, and thus λm, constant equation (48) has
the well known (Yukawa) solution

Ap(r) =
1
c

∫ exp(−|r − r′|/λm)jpt(r′)
|r − r′| dV ′, (50)

so when the source is the momentum current there is an exponential damping.
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3.3 Hamiltonian for a Plasma with Constant Charge Den-
sity

Considering that jpt is obtained from (42) by replacing qivi by qipi/mi we find
that this solution can be written

Ap(r) =
∑

i

qi[pi + piR(λm, r − ri)] exp(−|r − ri|/λm)
2cmi|r − ri| . (51)

Compare with equation (16) which this equation must have as limit (assuming
vi = pi/mi) when the length λm → ∞. Here, thus R is a suitably defined
tensor which in the λm → ∞ limit should become the dyad eiei,

lim
λm→∞

R(λm, r − ri) = eiei, (52)

where ei = (r − ri)/|r − ri|. The author is not aware of an explicit expression
for this tensor for finite λm.

The role of the tensor R is to make Ap transverse. The precise form of
this tensor, however, affects neither the strength nor the general nature of the
magnetic interaction between charged particles. It only affects the precise an-
gular dependence of this interaction. For practical purposes we can therefore
normally put R ≈ eiei. We will do this in what follows. We thus suggest that
the expression

Ap(ri) =
∑
j( �=i)

qi[pj + (pj · eij)eij ]
2mic

exp(−rij/λm)
rij

, (53)

is used in the Hamiltonian (38) to yield a Hamiltonian for the case of a constant
density n of charged particles (electrons). In fact this result was derived in 1980
by Jones and Pytte [37], in Fourier transformed form, for a homogeneous one
component plasma. It has also been suggested previously by the present author
on a more heuristic basis [4].

A crucial question when it comes to applications is how the density, n, of
charged particles, in formulas (46) and (49), is to be interpreted when quantum
mechanical effects are taken into account. Since the derivation above is entirely
classical, and assumes that the particles have well defined positions as well as
momenta, it seems reasonable to assume that only classically behaving particles
will contribute.

One might wonder what happened to the long range magnetic interaction
of the Lagrangian formalism. How did it turn into an interaction of the short
range λm in this Hamiltonian (phase space) formalism? Though there is no
precise answer to this question at the moment a guess is that the passage to the
continuum introduce macroscopic elements that result in a mechanism related
to that which limits the range of Coulomb interaction to the Debye length when
polarizability of the medium is considered.
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4 Applications

We will now discuss some applications of the above theory. We first point
out that our Hamiltonians predict that energy extremising solutions must have
current and vector potential parallel. We then use this to find macroscopic self-
consistent vortex solutions to the equations of motion. Finally we apply the
theory to the conduction electrons of a metal.

4.1 A London Type Relation

Some years ago a paper by Edwards [41] containing a classical derivation of
the London phenomenological equation of superconductivity, caused a heated
debate. The main argument of the opponents was that superconductivity is a
quantum mechanical phenomenon and thus a classical derivation must be wrong.

It does not require much insight to see that the energy expressions of equa-
tions (35) or (38) predict a lowering of the energy when nearby currents are
parallel and that an energy minimizing state must have its qipi parallel to the
internal A(ri). In a continuum picture this clearly means that the momentum
current must be parallel to the vector potential:

jp(r) = CA(r), (54)

where C is a positive scalar. This is also seen from equation (50) since it gives
Ap(r) as a superposition of the jpt(r′) essentially within a ball of radius λm.
As long as λm is small compared to macroscopic length scales this implies that
the two vector fields are parallel, to the extent that macroscopic continuum
averages are meaningful. Now that we have established that the momentum
current is parallel to A, equation (46) immediately tells us that the ordinary
current density is

j(r) =
(

C − e2n

mc

)
A(r). (55)

Clearly it also must be parallel, or anti-parallel, to A, depending on the sign of
the quantity in the parenthesis.

We also immediately see that the kinetic and magnetic energies are both
zero when the momenta are zero. According to equation (54) this means that
the constant C must be zero (C = 0). Equation (55) then gives

j(r) = −e2n

mc
A(r). (56)

If we identify j with the superconducting current this is one of London’s relations
[42]. It says that if charges move with zero momentum current, then the current
and the vector potential must be related in this way.

Here one must, again, make an important distinction in order not to be con-
fused. According to equation (50) there is no vector potential if the momentum
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current is zero. The London relation (56) is thus impossible if A refers to a
vector potential produced by the particles of the system. But, as should be well
known, it does refer to the vector potential of an external magnetic field. This
situation has not been treated at all in the present developments.

4.2 Self-Consistent Vortex Solutions

One of the reasons that Edwards [41] thought that a classical system (a plasma)
can obey the London relation, and thus resemble a superconductor, was that
plasmas sometimes seem to exhibit vortex ropes that resemble the vortices or
type II superconductors. We now investigate solutions to the equations of mo-
tion for a charged particle, assuming the London-like relation (54). We will look
for self-consistent solutions i.e. solutions that give momentum currents that yield
vector potentials that give equations of motions that have these momentum cur-
rents as solutions.

Consider the Hamiltonian (38). The effective Hamiltonian for one of the
particles (considering the positions and momenta of the others as given) is then

H =
p2

2m
− q

mc
p · A(r). (57)

Here we assume that the Coulomb interaction can be neglected. The reason for
the doubling of the interaction energy as compared to (38), or (35), is that the
interaction energy occurs twice in the total energy, see Ap of equation (53).

From this Hamiltonian we find the equations of motion

ṙ =
p

m
− q

mc
A, (58)

ṗ =
q

mc
[p × (∇× A) + (p · ∇)A]. (59)

We now assume that the London like relation (54) is fulfilled. We also introduce
cylindrical coordinates ρ and ϕ. To ensure the London relation we look for
solutions of the form: A = A(ρ)eϕ and p = pϕ eϕ. Here eϕ = − sin ϕ ex +
cos ϕ ey = (−yex + xey)/ρ, and ρ =

√
x2 + y2. This gives

H = ∇× A =
(

A

ρ
+

dA

dρ

)
ez = H(ρ)ez (60)

and (p · ∇)A = 0. The equations (58,59) now give

ρ̇ eρ + ρϕ̇ eϕ =
(pϕ

m
− q

mc
A

)
eϕ, (61)

ṗϕeϕ − pϕϕ̇ eρ =
qpϕH

mc
eρ. (62)
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An immediate consequence is ρ̇ = ṗϕ = 0 so that ρ as well as pϕ are constant
in time. Use of these equations and (60) show that

dA

dρ
= − c

q

pϕ

ρ
. (63)

The solution for A depends on the ρ - dependence of pϕ. Unless A and pϕ

have the same ρ-dependence one finds that the scalar C of equation (54) will be
position dependent. Some solutions are displayed in Table 1.

The assumption A = µ/ρk is seen to give the same ρ-dependence for A
and pϕ. In the first row of the Table a general solution is given, for arbitrary
integer k. The following three rows give the specific results for k = 0, 1, and,
−1, respectively. In the Table µ, β, A0, and H0 denote constants of suitable
physical dimension. Inserting our basic assumption into equation (54) gives

q

m
pϕ(ρ)neϕ = CA(ρ)eϕ. (64)

Table 1 shows that only for positive k-values, in A = µ/ρk, do we get the positive
C-values that are required if the vector potential arises from the momentum
current of the system itself.

The solution, with k = 1 and H = 0, gives C = q2n/(mc). Identifying q
with ±e and use of equation (55) then shows that j(r) = 0 in this case. This
agrees with the result that vϕ = 0 for this solution. This remarkable, seemingly
non-classical, k = 1 solution thus has a non-zero circulating momentum current
simultaneously caused by, and acting as source of, a non-zero vector potential.
The constant C-value means that the solution is relevant to a spatially homo-
geneous system. The fact that the magnetic field is zero leads, irresistibly, one’s
thoughts to the Meissner effect and superconductivity. Of course, near the z-axis
(ρ = 0) the solution must break down and a magnetic field go through, just as
they do in the vortices of type II superconductors.

For k = 0 one gets a solution that obeys the traditional London relation.
As discussed above this is only possible for an external magnetic field. The
solution with k = −1 is of some interest. The vector potential must be external.
Since our theory deals with scalar particles magnetic moment arising from spin
of the particles is external (to the theory, but not necessarily to the physical
system). Such a magnetic field is present in the k = −1 solution. Since C is
negative we see that magnetic energy is maximized for this solution. This can
be understood as a ferromagnetic solution. The reason it can exists, in nature,
is that maximizing the magnetic energy may minimize the electrostatic energy,
and thus the total energy.
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4.3 Magnetic Interaction of Metallic Conduction Electrons

Combining (38) with (53) we find that the Hamiltonian for a system of (classi-
cal?) electrons (charge e, mass m), including magnetic interaction, is

H(rj ,pj) =
∑

i

(
p2

i

2m
+

e

2
φ(i) − e

2mc
pi · A(i)

)
. (65)

Here the potentials at particle i are assumed given in terms of positions and
momenta of the other particles. In particular we have

A(i)(rj ,pj) =
∑
j( �=i)

e[pj + (pj · eij)eij ]
2mc

exp(−rij/λm)
rij

. (66)

Here eij is a unit vector from j toward i, rij = |ri − rj |, and λm = 1/
√

4πren
where re = e2/mc2, the classical particle radius, and n the number density of
particles. Note carefully that there are no external fields and no gauge freedom;
H, and A(i), are phase space functions. We take the Coulomb interaction to be
given by

φ(i)(rj) =
∑
j( �=i)

e exp(−rij/λD)
rij

, (67)

where λD is the Debye length.
We apply this Hamiltonian to conduction electrons of a metal in the Som-

merfeld approximation. Its derivation above is classical. In Jones and Pytte
[37] it is quantum mechanical in but the random phase approximation is made.
It can not be expected to apply to the degenerate electrons in the interior of
the Fermi sphere. These should at least not be contributing to the magnetic
damping. We thus apply it only to the electrons on and above the Fermi surface
and assume that these can be approximately dynamically separated from the
rest. These mobile electrons can behave semi-classically since they move among
a continuum of quantum states. A quantized version of the above Hamiltonian
should thus describe them reasonably well. The positive ions and the conduc-
tion electrons in the interior of the Fermi sphere contribute a positively charged
polarizable background that determines the constant λD. Such a background is
well known not to screen magnetic fields much. Therefore the density n deter-
mining λm of equation (66) can only be the density of the mobile, semi-classical,
electrons themselves.

This density will be temperature dependent and can be estimated as the
density of one electron levels at the Fermi energy, EF, times the range dE = kBT .
This gives

n(T ) = g(EF)kBT =
mkF

h̄2π2
kBT = T

a0

rs
4.15 · 1024 m−3K−1, (68)

18



where rs is the radius of a sphere whose volume is the volume per conduction
electron [19] and a0 is the Bohr radius. This gives

λm(T ) = 4.93 · 104

√
K
T

√
rsa0. (69)

The Debye length in a metal (see Kittel [19], pp.280–2) can be estimated by
λD = 0.64

√
rsa0 and is thus many orders of magnitude smaller than λm for

normal temperatures. We thus neglect the Coulomb interaction in what follows,
in agreement with the Sommerfeld free electron gas model.

To understand the dynamics of the Hamiltonian (65) – (66) we now investi-
gate its two particle version

H(r1, r2,p1,p2) =
2∑

i=1

p2
i

2m
− e2 exp(−r/λm)

2m2c2r
[p1 · p2 + (p1 · e)(p2 · e)] . (70)

If we make the usual canonical transformation, R = 1
2 (r1 + r2), r = (r1 − r2),

we get

H =
P 2

2(2m)
+

p2

2(m/2)
− e2 exp(−r/λm)

8m2c2r
{[P 2 +(P ·e)2]−4[p2 +(p ·e)2]}. (71)

The last term has an ordering problem upon canonical quantization but is easily
seen to be negligible for the present application. The remaining Hamiltonian
has the peculiar property that center of mass momentum squared, P 2, acts as
an attractive coupling parameter. Consider two electrons on the Fermi surface
with |k| = kF. Clearly the lowest energy is obtained when they have maximum
center of mass momentum and this is the case when they have (essentially) the
same momentum p1 = p2 = h̄k = h̄kFek. As an ansatz for the wave function
we thus use

Ψ(R, r) = exp(ik · r1) exp(ik · r2)Φ(r) = exp(i2kFek · R)Φ(r), (72)

where Φ(r) is a symmetric function since the electrons must have opposite spins.
This ansatz leads to the Schrödinger equation(

2EF − h̄2

2(m/2)
∇2 − EF

mc2

e2 exp(−r/λm)
r

[1 + cos2 θ]
)

Φ(r) = EΦ(r), (73)

for the relative motion. Note that, for example, the ansatz Ψ(R, r) = sin(2kFek ·
R)Φ(r) leads to the same result. There is thus no need for a net center of
mass momentum. A state with a superposition of two opposite center of mass
momenta gives the same result.

To roughly estimate the solution of (73) we replace 1+cos2 θ by its spherical
average: 1 + cos2 θ = 4/3. If we further put ∆E ≡ E − 2EF we get(

− h̄2

2(m/2)
∇2 − 4EF

3mc2

e2 exp(−r/λm)
r

)
Φ(r) = ∆E Φ(r). (74)
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For low density (λm → ∞) this becomes a Hydrogen-like equation. Its Bohr-
radius is

am =
3mc2

2EF

a0 = 1.52 · 104

(
rs

a0

)2

a0. (75)

The ground state energy becomes ∆E = −4[e2EF/(mc2)]2/(9h̄2). In a typical
metal with EF ≈ 10 eV this gives ∆E ≈ 4 · 10−10EH where EH is the Hydrogen
ground state energy.

An estimate for the possibility of a phase transition can be obtained by
requiring that the two body problem should lead to bound states. A rough
estimate for this is given by λm(T ) > am, which can be rewritten

T < 10.5
(

a0

rs

)3

K. (76)

For typical metals this pessimistic estimate gives transition temperatures in the
range 0.06 K to 1.6 K.

The energy of our bound pairs correspond to a temperature of only ∆E/kB ≈
10−4 K. On the other hand, at 1K, there are na3

m ∝ 106 other semi-classical
electrons within its ‘Bohr’ radius am. This makes it clear that any phase transi-
tion must be the result of collective effects. When T → 0, λm → ∞ and (65, 66)
become the traditional Darwin Hamiltonian. Its effect on metallic conduction
electrons at T = 0 was estimated in [2] (the result is summarized in [3]). For a
finite density of particles with correlated momenta the magnetic energy would
go to minus infinity. The density n, on the other hand, becomes the density
of electrons on the surface of the Fermi sphere and this density goes to zero in
the thermodynamic limit. The combined result of these two effects is that the
maximum Darwin energy per conduction electron (all of them) is ∆D ≈ rekFEF.
This value assumes that one hemisphere of the Fermi surface is occupied and
the other empty, for maximal momentum correlation. Numerically this number
agrees well with the energy gap of low temperature superconductors and this
indicates that also collective effects of the Hamiltonian have the correct order
of magnitude.

At higher temperatures phonons may, of course, break up the magnetically
bound pairs but, as we have seen above, in equation (76), they will vanish at
higher temperature independently of phonons due to increased magnetic screen-
ing. This may explain why the isotope effect is not universal. The theory also
shows that if the density of mobile charges can be reduced without reducing
their momentum much higher transition temperatures can be achieved. Such
materials can then not be typical metals, also in agreement with current knowl-
edge.

The above discussion indicates that magnetic interaction is a promising can-
didate for explaining superconductivity. This was originally suggested by Welker
in the nineteenthirties. More recently the importance of relativistic effects in
superconductivity have been stressed by Capelle and Gross [43].
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5 Conclusions

The main conclusion of the studies above is that the subject of the Darwin
Hamiltonian deserves to be studied much more intensely. Many promising in-
sights into the nature and physics of magnetism of matter seem to spring natu-
rally from our studies. The precise connection with quantum mechanics deserve
to be much better studied. Techniques that extend the usual statistical mechan-
ical results to Hamiltonians with this type of interaction need to be developed.
The author is certain, however, that insight into the importance of the con-
cept of the Darwin Hamiltonian and its predictions must, and will, grow in the
physics community.
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A Rewriting the Electromagnetic Lagrangian

In §75 (problem 2) of Landau and Lifshitz’ The Classical Theory of Fields [9] it
is shown that the Lagrangian (3) can be written

Lem =
1
2

∫
(φ� − 1

c
A · j)dV

(77)

− 1
8πc

d
dt

∫
E · AdV − 1

8π

∮
(φE + A × H) · ds.

The calculation makes use of the definitions

E = −1
c

∂A

∂t
−∇φ (78)

H = ∇× A (79)

and the Maxwell equations

∇ · E = 4π� (80)

1
c

∂E

∂t
−∇× H = −4π

c
j (81)

plus Gauss’ theorem, directly, or after partial integration.
If we use equation (78) we get∫

E · AdV =
∫

φ(∇ · A)dV − 1
c

∫
A · ∂A

∂t
dV −

∮
φA · ds. (82)

The time derivative of this formula inserted into (77) leads to equation (5) when
the Coulomb gauge is used.
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B Rewriting the Electromagnetic Energy

If one uses the same relations as those of Appendix A to rewrite the electro-
magnetic energy (18) one obtains

Eem =
1
2

∫
(φ� − 1

c
A · j)dV − 1

4π

∫
A · [∇2A −∇(∇ · A)]dV

(83)

− 1
8πc

d
dt

∫
E · AdV − 1

8π

∮
(φE − A × H) · ds.

If we now use the (gauge independent) relation

∇2A − 1
c2

∂2A

∂t2
−∇

(
∇ · A +

1
c

∂φ

∂t

)
= −4π

c
j (84)

(see Jackson [8] p.220) we get

Eem =
1
2

∫
(φ� +

1
c
A · j)dV − 1

4π

∫
A ·

(
1
c2

∂2A

∂t2
+

1
c
∇∂φ

∂t

)
dV

(85)

− 1
8πc

d
dt

∫
E · AdV − 1

8π

∮
(φE − A × H) · ds.

Using equation (82) we find that the second and third integrals of equation
(85) give us

− 1
4π

∫
A ·

(
1
c2

∂2A

∂t2
+

1
c
∇∂φ

∂t

)
dV − 1

8πc

d
dt

∫
E · AdV =

=
1

8πc2

∫ [(
∂A

∂t

)2

− A · ∂2A

∂t2

]
dV (86)

+
1

8πc

∫ [
∂φ

∂t
(∇ · A) − φ

∂

∂t
(∇ · A)

]
dV − 1

8πc

∮ (
∂φ

∂t
A − φ

∂A

∂t

)
· ds

If we finally use the Coulomb gauge we see that this result together with (85)
leads to the result (19).
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