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Preface

This guide describes how to use the computer program Evclid, a geometric
calculator and editor intended mainly for use by quantum chemists. It
also presents the theoretical concepts that underlie the main part of the
program. Some of these concepts are new and in this sense part of this guide
is simply a scientific publication. In particular the concept of five geometric
coordinates, arising from the three geometric parameters (distance, angle,
dihedral angle), is new.

The first chapter gives the general ideas and principles needed to use the
program. The second chapter gives an overwiew of the available commands
and how they interact. The final chapter presents the geometric ideas and
definitions on which the program is based. This chapter should be readable
even to someone without access to the program. Its later part, however,
consists of example runs.

The program Evclid is now approximately twenty years old and has
been revised several times. The present (1992) version differs from the pre-
vious in the following additions: z-matrix editing, improved automatic z-
matrix construction, possibility to pass reading of input temporarily to file,
possibility to assign input lines to variables, and, finally, an improved save-
facitlity. During the work I have discovered two bugs and fixed them: The
reading of chemical symbols (charge) from z-matrix files was, unintention-
ally, format sensitive. Reflection in an arbitrary plane defined by a normal
vector did not work properly unless the normal vector was a unit vector.

Since the 1992 version two new features have been added. In a sub-
command to ige (input geometric parameters) one can specify a new input
point to have equal distances to two, three, or four other already entered
points. In a subcommand to ipo (input polygon or polyhedron) one can
also get truncated versions of the platonic polyhedra, for exampel the fa-
mous football polyhedron with 60 vertices. A few new references have also
been added in the bibliography.

I would like to thank users of the program that have encouraged me with
their comments and advice. For several years Dr. Mats Svensson, formerly
of the Department of Physics, University of Stockholm, has been especially
helpful. I also would like to thank Göran Gustafssons Stiftelse (foundation)
for providing excellent computer facilities.
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Nowadays there are several commerical programs with graphical inter-
faces that are simpler to use than Evclid, but there are many features in
Evclid that are not available in those. Nor do those programs have as deep
an understanding of Euclidean geometry built in as Evclid has. Ideally, of
course, a graphical interface should be added to Evclid, but that is still in
the future.

Hanno Essén
KTH, Stockholm, Sweden
September, 2001
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Chapter 1

Introduction

1.1 What does Evclid do?

Evclid is a geometric calculator. Just as ordinary calculators work on real
numbers, Evclid handles points of three-dimensional space. When you
start to run the program you must always begin by supplying it with some
input , i.e. a set of points. This can be done in several ways. They can
be entered in terms of coordinates, which may be Cartesian, cylindrical,
or spherical. They can be read from a file that may have a number of
different formats. They can be specified as the corners of a regular polygon
or polyhedron of desired size and type. Last, but not least, one can tell the
program where a point is by giving three geometric parameters (distance,
angle, or dihedral angle) which define the position of the point in terms of
previously entered points. This is the most advanced and unique feature of
the Evclid program.

All the different input methods result in storage of the Cartesian coor-
dinates of the points in the central point-storing array of the program. The
points are identified and referred to through their row number in this array.
One can also, if one wishes, store an atomic number (an integer between -9
and 99) for each point. This can be useful if the points correspond to the
positions of atoms in a molecule.

When one has stored points in the program one can do various things
with them. One can display their coordinates (Cartesian, cylindrical, or
spherical) or various combinations of geometric parameters, which give their
relative positions in a coordinate independent way, on the terminal screen.
Or one can name and create a file on which one can output such data.

Evclid can perform geometric operations (translations, rotations, reflec-
tions, inversions, and scalings) numerically on all or a subset of the stored
points (or on copies of them). The program also can perform an automatic
transformation to a natural coordinate system defined by the (atomic num-
ber) inertia tensor of the point set (molecule).

Finally one can edit the array of points by copying them, by removing
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CHAPTER 1. INTRODUCTION 2

some of them or by renumbering them to some new more desirable order.
In this way one can organize one’s calculations more efficiently.

Of course you don’t need a manual to use the Evclid program. The
purpose of this text is to tell you why and when you should use the program
in the first place and to give you some organizational, geometrical and logical
ideas that you need to use it creatively. A large number of help texts,
contained in the program and displayed on command, explain the details
needed to run the program.

To summarize, the basic features of the Evclid program can be classified
under the following headings:

• Input of

1. Coordinates or Geometric parameters (distance, angle, dihedral
angle) from keyboard or file.

2. Regular polygon or polyhedron.

3. Atomic numbers.

• Display and Output of

1. Coordinates.

2. Geometric parameters.

• Geometric operations:

1. Translations and Rotations

2. Reflections, Inversions, and Scalings

3. Transformation to principal axes system

• Edit features:

1. Copying

2. Removal

3. Renumbering

• Help online

1.2 When and how to use Evclid

The users of Evclid are assumed to have some problem or problems in-
volving geometric calculations. Such problems are most likely to arise when
working with molecular geometries in connection with some kind of quan-
tum chemical calculations. For example, setting up the geometry of a dimer
by copying, translating and rotating the original molecule, was one of the
early applications. Geometry optimization and search for reaction paths
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are applications that are eminently suited to Evclid. This is the type of
problems that the author of the program was faced with and most users of
it also. In particular Evclid communicates well with the quantum chem-
istry program Gaussian 90 [1], [2] (and earlier versions) since one can use it
to read, produce, edit, and write ‘z-matrices’, the coordinate independent
geometry input to that program.

The chemical background explains whyEvclid refers to points as ‘atoms’ .
There may, of course, arise other situations in which it can be useful. If noth-
ing else one can learn much geometry by playing with it. In fact one of the
main difficulties in using the program has nothing to do with Evclid but
relates to the geometry that underlies it. In particular the concept of a
dihedral angle takes some getting used to. One should always, at least in
more complicated situations, use paper and pencil to draw pictures along-
side with the calculations. Evclid cannot do your geometric thinking but
it will make the corresponding calculations trivial.

The best way to learn about the basic use of the program is through
examples and some can be found below. Yet, examples should be tried at
the computer rather than given in the manual. Also, just one example may
be misleading since the number of different ways the program can be used
is almost infinite. The purpose of this ‘manual’ is to give the general ideas
and rules that can make the program into an effective problem solving tool.

1.3 About the Program and its Name

Evclid was first conceived in 1982 [3] and the early versions were called
‘Euclid’ one of which has been available from QCPE (Quantum chemistry
program exchange) [4]. The name was changed after a big revision in 1989
[5] when the ige command (input of geometric parameters) was rewritten to
be able to handle all five (‘V’ in roman notation, hence the ‘v’ in Evclid)
geometric coordinates instead of only the three simple ones as was the case
before. Also the spelling with a ‘u’ had already been used in the computer
world and the ‘v’ spelling is the one the Romans, who did not have the letter
‘u’ in their alphabet, used.

The program is mainly written in Fortran 77 and the source code is
currently over 6300 lines and uses approximately 215 K-bytes of memory.
The Fortran input formats for numbers are not much used, instead Evclid
reads character-strings. The program searches these strings for commands
or numbers. Numbers are converted to integers or double precision reals.
The structure is simple: the main program handles the commands and calls
the appropriate subroutines, one for each command. The subroutine cor-
responding to the command xyz is called ‘xyzcom’. There are 26 of these
but there are many more subroutines, over 70, many of which are common
to several commands. The author has written most of these but some (the
linear equations solving and ‘amoeba’ routines) are adapted from the book
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Numerical Recipes by Press et al. [6].

1.3.1 Portability

The program is highly portable though some features depart from the ANSI
standard (Fortran 77), or are not clearly defined by the standard. It compiles
and runs with no changes on a VAX, a Sun and an Alliant. It also compiles
and runs well on MacFortran/020 except for the save options (see page 18),
which do not work properly. It is only possible to do one save. MacFortran
also requires that one replaces the strings read(5 and write(6 by read(*
and write(* respectively.

The deviations from the ANSI standard consist of use of lower case
letters and of the use of the $ format control specifier which is used to write
a prompt on the same line as the input is read. This, however, only occurs
once in the source file and is easily removed if necessary.

To run properly Evclid needs a terminal with screen of minimum 24
lines 80 characters wide. The number of points (atoms) it can handle is, at
the time of writing, arbitrarily set to 121 but this number is easily changed
with a few replacements at the beginning of the source file as explained
there. It should not be greater than 999 since then some output formats
must be changed too.

It is the authors wish that the program and information about it should
be freely available to anyone who might have use for it. Contact the author
for free copies.

1.4 General Principles

The most basic rule is this: the program asks you to type text or enter num-
bers by issuing prompt-lines and when you are finished typing the input line
you tell the computer this by hitting the (carriage) return key 1 (sometimes
indicated with a symbol like ←↩).

• Rule: Finish input lines with ‘return’

On the next few pages the basic rules for running the program are given in
‘bulleted’ bold face type lines like the above. For a quick overview it is
enough to read them. Information about exceptions to these rules is usually
given in the fine print near it.

On a reasonably fast and available computer input to Evclid should
lead to immediate response. I.e. the program tells you what it has done or
that it didn’t like your input and then what it wants you to do. It is thus
highly interactive and tries to be user friendly.

1The experienced user can type several input lines as a single line with semicolons (;)
instead of returns.
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Type x yz-alternatives
Input i ge co po an sa cf zm h
Display d co zm ge h
Output o zm cf sa h
Geometric g pr tr ro sc re in h
Edit e mo or pe rr rm cp zm h
Help h i d o g e h

Table 1.1: In this table the two letters yz are abbreviations as follows:
(i d o) ge=Geometric parameters, co=Coordinates, po=Polygon or Poly-
hedron, an =Atomic Number, sa =Save, cf =Coordinate File, zm =Z-
Matrix. (g) pr =Principal axes, tr =Translate, ro =Rotate, sc =Scale,
re =Reflect, in =Invert. (e) mo =Move, or =Order, pe =Permute, rr
=Remove & Renumber, rm =Remove, cp =Copy, zm =Z-Matrix.

1.4.1 On Commands in General

A command is a three letter abbreviation xyz which tells the program what
you wish to do. The first letter, x, is an abbreviation for the general type of
option and is one of the letters

• x = i, for Input commands

• x = d, for Display commands

• x = o, for Output commands

• x = g, for Geometric commands

• x = e, for Edit commands

• x = h, for Help commands

The next two letters, yz, are an abbreviation of the specific option of this
type you wish to use and the different possibilities are given in table 1.1. (A
more extensive summary is given on page 17.) In the case x = h only one
more letter, i, d, o, g, e, or h, is needed and the result is the display
of text (maximum one screen) which informs you of the various available
commands for each corresponding general type. Thus if you type hi and
the hit the return key in response to the ‘Type: command’ prompt (the ‘top
level’ of the program) you will be given information of the various available
input commands iyz, for example that the command ico means that you
wish to input coordinates. If you type he you can, among other things, read
that epe means that you wish to edit the points by permuting them. To get
a complete command menu (at the top level), just type h. The help text
then displayed also gives a brief summary of the basic notation. The two
forms hx and xh are equivalent so you don’t have to remember the order.
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• Rule: A command results in a prompt-line

As a rule each command results in a prompt line ‘Enter: ...’ in response
to which the user is expected to enter input and push return whereupon
the program proceeds with some action or computation. The exceptions to
this rule are, apart from the help-commands, the two commands isa and
osa, input from and output to save-file, which result in immediate action.
The prompt-lines remind you of what input the command will accept but
if you don’t understand the notation you can again type h to get a help
text explaining the possible input to this command. At the end of the help
text the ‘Enter: ...’ prompt reappears so that you can type your input while
studying the text. When you have typed your input and finished it with
return the program takes some action. For most commands you then get
the top level prompt ‘Type: command’ again but others assume that you
wish to do more of the same and thus reissues the ‘Enter: ...’ prompt. If you
don’t want to do more of the same there are, in general two alternatives.
Either you can return to the top level by returning a blank line.

• Rule: Back to top level with an empty line

Or you can type a command xyz to go directly to the corresponding new
prompt. Exceptions are the prompts resulting in display or output for which
return of a blank line result in the default display or output. When the
input from or output to file prompts ‘Type: file-name’ have been issued you
cannot give a command (in this case there is a risk for ambiguity). With
this exception there is the:

• Rule: One can always give a command

It doesn’t matter what the prompt is as long as it is not for a file-name. If
the prompt is ‘Enter: ...’ the command must be given in its full three letter
form. At the top level when the ‘Type: command’ prompt is seen one can
use short forms for the full commands. These are given in the corresponding
help texts (displayed on command hx).

• Rule: Top level accepts abbreviated commands

For many commands the two letter abbreviation is sufficient. Also, for each
main type (x = i, d, o, g, e, h) there is a default specific option yz
which is selected if only the first letter of the full command is given. This
default command is the one listed first in each line of the menu in table 1.1.
Finally there are a few exceptional one letter ‘aliases’ for commands that
can be used at top level. These are

1. c for input of coordinates ico.

2. s which stands for isa if the program is empty and for osa if it contains
points (input from and output to save-file).
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3. ←↩ (just return of an empty line) stands for dco i.e. display coordinates.

4. r for the edit option remove erm.

A full list of abbreviations is given on page 17.
Finally it is important to know about the quit command which is used

to terminate the Evclid run.

• Rule: Terminate the run with quit

If you have done some work with the program that you might need in the
future, be sure to store it away with one of the output options before typing
quit since then all input will vanish. This command is also accepted by all
prompts (including the file-name prompts so you can’t have a file named
‘quit’).

1.4.2 On Prompt-lines and Input

There are only three different types of prompt-lines issued by Evclid. These
are listed here:

� 1. The top level prompt for a command which also gives some accounting
information about the contents of the central point array:

Type:command (no of atoms:6) (input charge:2) ?xyz?
Evc>>

� 2. The prompt for input of arguments to the command xyz typically
looks like this:

Enter: arg1 arg2 (arg3...) (& argi) (h = help) *xyz*
xyz>>

� 3. File-name prompts issued by icf, izm, ocf, and ozm for the name
of input and output files:

Type: file-name ( ... ) (h = help) f*xyz*
file>

In general each command corresponds to one prompt of type 2 in this list.
However, two commands have optional input-modes which you can get to by
giving a proper response to the first prompt-line. These are ico where you
will be prompted for Cartesian coordinates but can change this to prompts
for cylindrical or spherical coordinates, and ian, input of atomic numbers,
where you are prompted for atom number and charge but can get a prompt
for charge only. The general rules for responding to the typical prompt-line
are:
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• Arguments are separated with blanks at input

• Numbers must be given in decimal notation (not exponential)

• Angles are always given (and displayed) in degrees

• At least one argument is always needed (exceptions: display
and output)

• Optional arguments are in parenthesis in the prompt-line

• The number of input numbers determines action of Evclid

• One input line is sufficient (exception: ige)

• One can always type h for help

Evclid studies your input line and takes action according to its findings.
First it looks for a (three letter) xyz command or quit. Leading and trailing
blanks are ignored. If there is no command in the input line it is searched
for input numbers which are counted and assigned to variables according to
the specific convention for the corresponding command. In some input lines
Evclid also looks for special symbols and perhaps numbers that follow this
symbol. So, giving one, two, or three numbers may mean entirely different
things to the program. If you are uncertain, type h and study the help
text before typing input. Normally the program does not check that your
input numbers are of correct type (integer or float). This is convenient since
you don’t have to put a decimal point on floats that do not have anything
beyond the decimal point. On the other hand, when integers are expected
1.4 can be taken to mean 1 and 4 (two numbers) or it may be truncated to
1. Evclid always tells you what it has done so you will normally quickly
find out if your input was interpreted as you intended.

1.4.3 Notation

The number of the array row in which the Cartesian coordinates of an atom
are stored is usually referred to as the ‘atom number’. In prompt-lines and
displays the symbol for one such number is n. When two such atom numbers
are of interest the notation is normally m n and when several are needed it
is n1 n2 n3 . . . Thus the notation is:

n for one atom number,
m n for two atom numbers,
n1 n2 n3 . . . for three or more atom numbers.

When the position of an atom is given by means of reference to other atoms,
i j k are used for the numbers of the reference atoms. The notation is thus:

i j k for reference atom numbers.
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The most frequently occurring symbols in the argument lists of prompt-
lines are nf and nl. These are used to specify what subset, or range, of
entered atoms (points) that you wish to operate on. The ‘name’ of a point
as far as Evclid is concerned is the number n at which it is stored where:
1 ≤ n ≤ nmax (currently nmax = 121). A sub-range nf, nl is given when
something is to be restricted to atoms with numbers n fulfilling: nf ≤ n ≤
nl. Thus nf is the first number in the range and nl is the last. Note that
you can choose atom numbers n freely at input, there is no need for a range
to be full of input atoms. Thus the notation is

nf nl for the first and last atom numbers of sub-range of atoms.

When a prompt-line looks as follows: ‘Enter: nf (nl) . . .’ and you do
not intend to specify a sub-range, just enter 1 and all atoms will be affected
by the action of the command. The optional nl is automatically chosen to
include all your input.

The following notation is also used consistently by Evclid:

Z atomic numbers (nuclear charge in units of proton charge),
ct coordinate type
r the distance between two points
rh the distance between a point and the z-axis
tht un-signed angles (take values between 0◦ and 180◦)
phi signed angles (take values between −180◦ and 180◦)
The coordinate type symbol ct takes the values x, c, and s for Cartesian,
cylindrical, and spherical coordinates respectively. The symbol r may be a
distance between two atoms (as in r(m,n)) or the spherical coordinate r,
i.e. the distance between an atom and the origin. rh stands for the greek
letter ρ and is one of the cylindrical coordinates (the radius of the cylindrical
coordinate suface). tht denotes the greek letter θ and stands both for bond
angles (as in tht(i,j,k)) and for the spherical coordinate θ, i.e. the angle
between the position vector of a point and the z-axis. Finally phi, which
stands for the greek letter φ, is either a dihedral angle or the azimuthal angle
in spherical coordinates.

1.4.4 Making Command Macros

If you are an experienced user of Evclid and find that you frequently type
the same sequence of input you may be interested in some shortcut. One
possibility is to do as follows: write the sequence of input in a file named
filename and, when Evclid prompts you for input, type: <<filename. The
program will then read input lines from the file filename instead of from the
terminal. When the file has been read the prompting will come back to the
terminal, unless, of course, there is a quit-command in the file.

If you are using a UNIX-system you can make Evclid read its input from
a file by giving the command evclid <filename to the operating system (you
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might of course use som abbreviation such as, for example, evc instead of the
full name of Evclid). Then, however, Evclid will only read that file. With
the ‘double arrows’ (<<) you temporarily pass the control of the program to
a file and then get it back.

Note that instead of ‘new-lines’ (carriage returns) between the input lines
you can have semicolons. In this way the file can be written somewhat more
compactly. This can also be useful when typing input from the terminal. If
you, for example, wish to read the help-text explaining the input accepted
by the command xyz, just type xyz;h. Note that use of the semicolons or
of command ‘macro’ files requires that you can anticipate the responses of
Evclid correctly.

Evclid allows you to assign (or ‘store’) an input line, or part of an input
line, to a variable. This is done as follows: type

$i= string

(and then return), where i = 0, 1, 2, . . . , 9. For the rest of the session you can
then simply type $i instead of typing string. The string may not contain
any new-lines or semicolons, i.e. it must be a command, a filename, an
argument, or a sequence of arguments. This feature is useful if there is some
long number, or numbers, that you anticipate that you, otherwise, would
have to type several times.

It is also possible to use this feature to make command-‘macros’ with
arguments since it allows a command file, filename, to contain strings like,
for example, $3. If you have assigned an appropriate value, string, to $3
before running the file (with the command <<filename) all occurrences of $3
will be replaced by string before the commands are processed. If you have
forgotten your assignments they will be listed if you type the command $*.

The services mentioned in this section are provided by the subroutine
readin which is Evclid’s ‘user interface’. In summary:

• Separate input lines on a single line with semicolons (;)

• Pass reading of input lines to a file by <<filename

• Assign (part of) input line to variable by $i=string (i=0. . .9)

• Use $i instead of string in input line

• List stored assignments by $*



Chapter 2

Overview

2.1 Top Level Help

The command hh given at the top level of the program results in the ap-
pearance a list of the top level help commands as well as some general
explanations on the form:

BASIC HELP ABOUT EVCLID
The program works on an array of Cartesian coordinates of
points. One can *Input points to this array in various ways
and once this has been done one can *Display properties of
the point set on the screen or *Output such to file. One can
manipulate the point set with *Geometric operations or with
*Edit options (copy, remove, renumber). At the top level you
can get *Help with one of the following commands:
h for command menu hi for input-commands
hd for display-commands ho for output-commands
hg for geometric-commands he for edit-commands
hh for the present text
Once you have selected and given a command:xyz you will get
a prompt something like:
Enter:a1 (a2)... etc. (& a..) (h = help) *xyz*
which tells you what arguments the command expects. Now you
can enter: h for an explanation of what the argument symbols
stand for. This information is maximum one screen long and
then the prompt for input, Enter:. etc., appears again.
Note that the number of arguments is important and deter-
mines the action taken. Input lines always end with return.
Arguments in parenthesis are optional.

The command menu (h) is essentially the same as table 1.1. The other five
top level help texts are given below with some comments.

11



CHAPTER 2. OVERVIEW 12

2.1.1 Input Commands

The following information appears when you type hi (or ih) at the top level:

INPUT FROM TERMINAL
Input of atoms from the terminal can be done using:

Geometric parameters (distances, angles, dihedral angles)
referencing already entered atoms; command:ige (i)
or using Coordinates; command:ico (c)
Make Polygon or Polyhedron with command:ipo (ip)

Atomic Numbers can be entered with command:ian (ia)
When you have entered the command a prompt-line will appear

which tells you what input will be accepted. If you still
don’t understand you can type:h for an explanation.

(Short command-form in parenthesis)
INPUT FROM FILE

If the command:s (or:osa) has been given earlier to Save in-
put this input will come back with command:isa (s)
When the program is empty the command:s is taken to mean:isa
otherwise it means:osa. Note that the command:isa removes all
current contents before it puts back what was stored at save.
To read files containing:

charges and Cartesian coordinates; command:icf
charges and Z-matrix; command:izm (iz)
The z-matrix concept is explained if you give command:dzm

and then type:h. (See also: ho for information on save.)

The command ige is the most advanced feature of Evclid and there is
a lot of further help available after you have given the command. Note that
though normally the geometric parameters must reference already entered
atoms one can use this option from scratch; the first two atoms can be
specified without reference to anything.

The easiest way to generate points for testing the program with is to
use the command ipo which allows you to have the corners (vertices) of a
regular polygon or polyhedron (one of the five Platonic bodies) generated
automatically. Also truncated polyhedra are available.

Note that the commands isa (=s when the program is empty) and osa
are unique in that they do not result in a prompt-line but in immediate
action. If there is input s will mean osa and results in immediate storage of
the current memory contents of the program at the end of the save file. The
command isa, when there is input, will result in a prompt which asks you
which save you wish to read in (the saves are numbered in the order that
you have made them). All the current input is then removed and replaced
by that which existed at the time of the save in question.
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2.1.2 Display Commands

Display is the word for output to the standard output which will normally
be the terminal screen. When you have given some input or read something
from a named file (or the save file) you naturally wish to look at it and
see if it is what it should be. This is done with the display options which
thus normally will be among the most used features of the program. The
following information is called up with command hd:

DISPLAY OPTIONS
Display of Coordinates, command:dco ( )
Display of Z-matrix, command:dzm (dz)
Display of Geometric parameters, command:dge (dg)

(Short command form in parenthesis)
After the command has been typed a prompt line will appear.

No input is needed for the standard (default) display, just
press return and the information will appear on the screen.
As usual you can always type:h for help.
For coordinates the default is Cartesian coordinates

(else you must give coordinate type:ct as c or s).
A z-matrix is a set of 3N-6 geometric parameters that give

the shape of the N-atom set in a coordinate independent way.
Lists of geometric parameters running over all pairs of

atoms are generated with:dge. The default parameter type is
distance. Give the command and type:h for further information.
One can always give a range: nf,nl to limit display.

To cancel display you must type:q (just return will not work).

Note that the display commands are different from most others in that
their prompt-lines only demand optional input. To get the default display
you only have to press return (←↩). Only one screen of information at
the time is displayed; even if there is much input you never get a lot of
information scrolling past.

Once you have entered atomic numbers for your atoms these are also
displayed together with the other information (by all three options). If
atomic numbers Z, also referred to as charge, have not been entered they
are not displayed but have the value one. If you do not want atomic numbers
in the display (or otherwise) you can remove them with ian.

Note that at top level a push of the return key is the short form for dco
and since the resulting prompt does not require any input for the default
display i.e. Cartesian coordinates, two returns are enough to get a list of
your current input.

Display of geometric parameters (dge) will produce a list of the distances
between the atoms if no input is given. Giving the number of one atom
results in a list of the angles at that atom; giving two atom numbers a list
of dihedral angles between planes intersecting at the line between them.
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2.1.3 Output Commands

The top level information about output commands that typing ho produces
looks as follows:

OUTPUT TO FILE
Output options are command:ozm (o) for Z-matrix

and command:ocf (oc) for Coordinates
(short command form in parenthesis)

You will be asked for a name for the output file the first
time the command is given (it must be a new name).
The lines written to the file are also displayed on the

screen. Each time the commands are called and lines appear on
the terminal screen corresponding lines are added at the end
of the output file (because no rewind is done).
In a subsequent run the output files can be read back in

with: izm or: icf but the standard restart should be Save.
ABOUT SAVE

To save all your input to the program at a given time,
just type: s When there are entered atoms this is short for

command:osa (s) for Save
The output is written to file: ecldsv.dat and can be read back
in later in the same or a subsequent run with command:isa.
Each time you give the command s (or osa) output is written to
the end of the file ecldsv.dat. When the program is empty s
will mean isa and the output of the last save is read in.
Otherwise isa issues a prompt which asks which save you wish.

Note that the command osa, or just s if atoms have been entered, does
not result in a prompt-line but results in the immediate writing of current
contents to the end of a file called ‘ecldsv.dat’. Evclid first counts the old
saves in the file and notifies you of the number of the save you just did.

The other two options will prompt you for a (new) file-name the first
time the commands are given. Next time the commands are given it is
assumed that you wish to add more output at the end of the file. If this is
not the case you can close it. You are then prompted for a new file-name.
Once a file-name has been established you get a prompt of the same type
as the display prompts i.e. no input is needed; return of a blank line results
in output of all entered atoms. If you change your mind and don’t want to
write anything (yet) to the file you have to type q to cancel (skip) output.

The files created with the output options will end up in the directory from
which you are running the program. Naturally you must run the program
from the same directory if you wish to read them with input commands
later.
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2.1.4 Geometric Commands

The top level help text on the geometric commands is displayed on command
hg and looks as follows:

The default GEOMETRIC option is a transformation to a
natural molecular coordinate-system: the origin is posi-
tioned at the center of charge, and the axes are made Princi-
pal axes i.e. eigenvectors of the (charge-)inertia tensor.
In a symmetric molecule this system is often a natural sys-
tem. A symmetry-axis becomes z-axis.

Principal axes command:gpr (g)
The continuous transformations translation, rotation and

scaling are optionally performed on a copy. The commands are:
Translation command:gtr (gt)
Rotation command:gro (gr)
Scaling command:gsc

It is also possible to perform reflection or inversion.
These are performed on a copy unless otherwise requested.
The commands for these operations are:

Reflection command:gre
Inversion command:gin

All these options accept input of nf, nl the range to
be affected by the operation. In: gpr one can also, if
desired, specify a (different) range: ndf, ndl to define
the new origin and axes. Further Help available after the
appropriate command has been given.

Note that gtr and gro allow you to specify a translation or rotation
explicitly in terms of numerical input or (often more interesting) in terms
of some desired result that the transformation is to have on your entered
points. Also gpr can be used for doing rotations: if you make the gpr-
transformation defined by three atoms the plane defined by these becomes
rotated to the xy-plane. These rotations are always around an axis through
the origin (which gpr puts at the center of charge). If you wish to rotate
around another point you have to combine translation and rotation with
edit commands (see next section).

When the center of charge or charge ‘inertia tensor’ is calculated any
charges (atomic numbers) that are zero or negative do not contribute. (The
program allows atomic numbers Z to have values from -9 to 99.)

Scaling means multiplying the input (Cartesian coordinates) with a nu-
merical factor. This is equivalent to a change of length unit. The fac-
tor required for changing between atomic units (bohrs) and ångströms (1
Å=10−10 m) is known by the program can be obtained by typing a special
symbol.
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2.1.5 Edit Commands

The command he given at the top level produces following text:

EDIT OPTIONS

The available Edit options can be summarized as follows:

EDIT OF ATOMS (and charges):
(0) RENUMBERING (permutational) options

Move (with automatic renumbering) command:emo (e)
Order (ct or an) command:eor (eo)
Permute command:epe (ep)

(-) REMOVING options
Remove & Renumber (to close gap) command:err (er)
Remove (i.e. Delete) command:erm (r)

(+) ADDING option
Copy (a given range) command:ecp (ec)

EDIT OF Z-MATRIX
Z-matrix (input, display, remove) command:ezm (ez)

When the command has been given a prompt will (as usual)
appear. For all these commands one can then type:h for Help
to get an explanation of the input and its effect.

These options allow you to rearrange your file of atoms in various ways
that can simplify the handling of calculations. They work a bit like a line
oriented text editor. If you have entered atomic numbers these are, of course,
also renumbered and copied together with the coordinates of the correspond-
ing atom. When an atom is removed with erm its charge is not changed so
that if you then put it back in a new position, with ige or ico, it still has
the old atomic number.

Combinations of edit and geometric options extend the capabilities of
the calculator. For example, one can rotate around a point which is not at
the origin, in spite of the fact that gro only rotates around an axis through
the origin. Do as follows: 1. copy the point with ecp, 2. translate all points
except the copy so that the desired point coincides with the origin (using
gtr), 3. rotate all points except the copy as you intended (using gro), 4.
translate all points with the vector from the point at the origin to the copy
point (again using gtr). 5. remove the copy point (with erm).

The z-matrix requires that the position of each atom is specified using
reference atoms. These are automatically calculated by the program unless
a z-matrix file has been read, in which case the reference atoms are stored.
With ezm you can input, display, or remove such stored information.
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2.2 Evclid Command Table

Type Command Abbrev. Description
Input ige i input of geometric parameters

ico c input of coordinates
ipo ip input of polygon or polyhedron
ian ia input of atomic numbers
isa (s) input of save-file (s if empty)
icf input of coordinate file
izm iz input of z-matrix file
ih input help

Display dco ←↩ display of coordinates
dzm dz display of z-matrix
dge dg display of geometric parameters
dh display help

Output ozm o output of z-matrix file
ocf oc output of coordinate file
osa (s) output of save-file (s if input)
oh output help

Geometric gpr g principal axes transformation
gtr gt translation
gro gr rotation
gsc scaling
gre reflection
gin inversion
gh geometric help

Edit emo e move (with renumbering if needed)
eor eo order
epe ep permute
err er remove & renumber (to close gap)
erm r remove
ecp ec copy
ezm ez z-matrix
eh edit help

Help h command menu
hx help about x, same as xh
hh basic help
quit terminate run

Note that the abbreviations can be used only at top level. The reason
for this is that one and two letter commands have special meanings in many
of the sub-levels. In particular the letter h gives a different help text for
each sub-level (command).
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2.3 On Save and Safety

When a lot of work has been done on a geometry with the program one
is naturally anxious not to loose it. Evclid is constructed to protect your
data from minor mistakes; erroneous input will in most cases not terminate
the run but lead to error messages. To make a safety copy of what one has
stored in the program memory one only needs to give the command s (at
top level, otherwise the full name, osa, must be used). If there is anything
to save this command results in immediate writing of the memory contents
to the end of a file called ecldsv.dat. You are notified of how many saves
you have done to this file.

If the program is empty, as it is when you have just started it, the
command s is interpreted as isa (input save). This leads to immediate
reading into memory of the last save done. If this is not the save you wish,
just give the command isa again and you will get a prompt that allows
you to give the number of the save (on the file ecldsv.dat) that you wish.
Whenever the program is not empty isa will give this prompt. You can
thus keep a small library of ‘molecules’ for quick access on the save file.

Since every save is added at the end, the file ecldsv.dat will eventually
become very long. You can then delete it if you don’t need it anymore. If
you have done this Evclid will start a new file next time you do a save.
Another possibility is to remove things from it by editing it. Each save ends
with a dashed line so, by removing such a line and everything above it up
to (but not including) the next dashed line, you get a new, shorter save file
that can be understood by the program. You may not understand the file
ecldsv.dat yourself though; it is not formatted to be readable but to be
accurate and compact.

The commands that can be dangerous to your work are the following:

• quit since this command immediately terminates the run.

• isa since this command will put back the memory contents as they
where at the time of the save (and remove everything else). 1

• erm and err since these removing commands obviously enable you to
wipe out whatever work you have done.

Attempts to over-write already entered atoms with new by means of the
input options (except isa) lead to warnings. If you are uncertain about the
outcome of a command you can perform it on a copy or give the command
s before it is performed. If you don’t like the result, all you have to do is
type isa and read in the save that you made.

1If you want to merge two molecules you must read one from a named file (using icf

or izm) since you can then choose to store what is read at free atom numbers, in response
to the prompt line. This will not affect any previous contents of the program.
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Erroneous use of the geometric operations can, of course, mess up the
input so, in case of doubt, do a save first. The display (and output) options,
on the other hand, are ‘passive’ and are always safe to use.

2.3.1 Memory Organisation

Evclid’s memory consists of three somewhat independent parts. The main
part is the array containing the Cartesian coordinates (x, y, z) of the atoms.
A separate integer vector stores the atomic numbers, Z, of the atoms. These
are all initialized to 1 and if all have the value 1 it is assumed that the user
is not interested in atomic numbers. These will then not be displayed. The
atomic numbers (or charges) can be changed with ian (and with ipo). They
are recorded when a coordinate or z-matrix file is read.

The edit options which renumber atoms will also renumber their atomic
numbers. On the other hand, removing an atom does not remove its charge.
This has the advantage that if you remove an atom temporarily just to
change its position it will still have the atomic number you may have given
it.

There is a third storage for z-matrix reference atoms i, j, k which is even
more independent. If you read a z-matrix file, the reference atoms are stored
so that when you later display or output a z-matrix it will be the one you
read. (If no such reference atoms are stored they are calculated according
to a nearest neighbour principle by the program.) If you wish to change the
contents of this part of the memory you must use the command ezm (edit
z-matrix).

When you make a save (osa) all three parts of the memory are stored if
they have input. If you, on the other hand, output atoms to a coordinate
file, the z-matrix reference atoms, if any, will naturally not be recorded.

The top level prompt line informs you of the contents of these three parts
of the memory. Typically it might look as follows:

Type:command (no of atoms:8) (input charge:2) (z-mtx rows:2) ?xyz?

Note that only a charge differing from 1 (i.e. a non-hydrogen atom) is
counted as an input charge. The number of z-matrix rows should normally
be, at least, two less than the number of atoms since the first and second
atoms do not require referencing.



Chapter 3

Geometric Parameters

3.1 Distance, Angle, and Dihedral Angle

The shape of an N−atom molecule is usually given in a coordinate indepen-
dent way in terms of (minimum) 3N − 6 geometric parameters which can
chosen among the three types:

distance between atoms i and j,

0 ≤ r(i, j), (3.1)

angle (or bond angle) at j between the line segments j-i and j-k

0 ≤ θ(i, j, k) ≤ 180◦, (3.2)

dihedral angle (or torsion angle) between the two planes defined by i-
j-k and j-k-l meeting at the line j-k and counted positive from the
plane containing i to that containing l according to the right hand rule
around the j-k axis oriented from j to k,

− 180◦ < φ(i, j, k, l) ≤ 180◦. (3.3)

The sign convention for dihedral angles is shown geometrically in figure 3.1.
It is in agreement with the convention used in chemistry [8] and crystallog-
raphy [9].

This sign convention can be equivalently expressed as follows: φ is posi-
tive if atom l is on the positive side of the oriented triangle i→ j → k → i,
otherwise negative. Which of the two is more convenient depends on per-
sonal taste and geometric situation. The importance of the sign can be
appreciated from the fact that the specifications of the geometries of the
two enantiomers of a chiral molecule may differ only in such a sign.
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Figure 3.1: Familiarity with the three geometric parameters that are shown
in this figure is imperative for the effective use of the Evclid program.
Note the sign, or orientation, convention for the dihedral angle indicated by
the arrows. It can be expressed as follows: if the thumb of the right hand
points from j to k the fingers curl in the positive direction from the plane
containing i to the plane containing l. If this is the ‘short’ way from i to
l the angle is positive and < 180◦, as in the figure. Otherwise the angle is
either greater than 180◦ or negative. In the program the notation for θ is
tht and that for φ is phi.
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Assuming that one knows the Cartesian coordinates of the atoms in
some coordinate system these definitions can be conveniently translated into
explicit formulas. Let ai be the position vector of atom i, then we have:

r(i, j) ≡ |aj − ai|, (3.4)

bij ≡ (aj − ai)/r(i, j), (3.5)

θ(i, j, k) ≡ arccos(bji · bjk), (3.6)

bijk ≡ (bij × bik)/ sin θ(k, i, j), (3.7)

φ(i, j, k, l) ≡ sign(bij · bjkl) · arccos(bijk · bjkl). (3.8)

It is important to notice the sign attached to the dihedral angle. Though it
is not often discussed one must make a distinction between signed and un-
signed angles. Dihedral angles belong to the first category and the angles
of equation (3.6) to the second, un-signed. Signed angles require that a
positive orientation for rotations in the plane of the angle is defined (see for
example Pedoe [7] for a discussion of this).

The formulas just given determine the relative geometric parameters of
atoms in molecules provided the Cartesian coordinates are known. These
formulae are used by Evclid to calculate geometric parameters for display
(by the commands dzm and dge). The much more difficult problem of finding
the Cartesian coordinates when the position of an atom is given by geomet-
ric parameters referencing atoms with known positions, is also solved by
Evclid. This is discussed in the next section.

3.2 The Five Geometric Coordinates

Since space is three dimensional three coordinates will, in general, specify
the position of a point in space. Any coordinate system will require some
reference point (for example the ‘origin’) and reference directions (the axes).
The coordinate system is then some rule that, at least locally, gives a one to
one mapping between the points of space and three numbers. Well known
examples are Cartesian (or rectilinear) coordinates, cylindrical and spherical
coordinates.

Instead of having one reference point and axes one can define a coordi-
nate system using three reference points. As long as three points are not on
the same line they can be used to define a coordinate system. This means
that in any non-linear molecule one can take three suitable atoms to define
a coordinate system and give the positions of other atoms in the molecule in
terms of this system. In this way one gets a, so called, coordinate indepen-
dent description of the geometry of the molecule. One still needs coordinates
but these are not arbitrary; instead they refer to a system that is fixed in
(and by) the molecule.
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We now assume that we have three atoms, i, j and k, which define a
coordinate system or, equivalently, whose positions we consider given. How
can one then give ‘coordinates’ for another atom n? If we wish to use
the geometric parameters (distance, angle, dihedral angle) discussed in the
previous section it turns out that there are five different ‘coordinates’. These
five are given in table 3.1. Only these five qualitatively different positions for
the unknown atom number n exist because of the permutational symmetries

r(i, j) = r(j, i), (3.9)

θ(i, j, k) = θ(k, j, i), (3.10)

and
φ(i, j, k, l) = −φ(l, j, k, i) = −φ(i, k, j, l), (3.11)

which hold according to the definitions of these quantities.
The reason that one must consider the five ‘rules’ of table 3.1 for finding a

number that describes the position of atom n, as different coordinates is that
they correspond to different surfaces. The points of space that have the same
value for some coordinate lie on a (two-dimensional) surface, the coordinate
surface. For Cartesian coordinates, for example, these surfaces are planes.
For the five specifications listed in the table one gets the surfaces given
in the middle column of table 3.1. It is easy to understand that keeping a
distance fixed corresponds to allowing n to lie on a sphere with that distance
as radius. The other surfaces are a bit more difficult to visualize, see figure
3.2, but only the ‘fifth surface’ is really hard.

Algebraic equations for the surfaces on the general form f(r) = 0 can
easily be derived by means of vector calculus. Using the notation of formulae
3.4 - 3.8, and the obvious shorthand rni for r(n, i) etc., the explicit formulae
for the functions f are as follows:

f1(r; ai, rni) = |r− ai| − rni, (3.12)
f2(r; ai,bij , θnij) = (r− ai) · bij − |r− ai| cos θnij , (3.13)

f3(r; ai,bij ,bijk, φnijk) = (r− ai) · [bijk cosφnijk (3.14)
+(bijk × bij) sinφnijk ],

f4(r; ai,aj , θjni) = (r− ai) · (r− aj) (3.15)
−|r− ai||r− aj | cos θjni,

f5(r; ai,bik,bij , φknij) = [(r− ai)× bik] · [(r− ai)× bij ] (3.16)
−|(r− ai)× bik||(r− ai)× bij | cosφknij .

The equations for the surfaces corresponding to dihedral angles (3.14 and
3.16) must be supplemented with conditions that the point is in the correct
half-space.
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Type no Notation Surface Degree Topology
1 r(n, i) Sphere 2 compact
2 θ(n, i, j) Cone 2 infinite
3 φ(n, i, j, k) Half-plane 1 infinite
4 θ(j, n, i) Torus (rotated circle arc) 4 compact
5 φ(k, n, i, j) ‘Hyperbolic cone’ 4 infinite

Table 3.1: The five geometric coordinates (for atom n in terms of reference
atoms i, j, k)

Figure 3.2: Two dimensional cross sections of the surfaces corresponding to
coordinates of type 1, 2, and 4 of table 3.1. The surfaces are obtained by
rotating around the horizontal dashed line and correspond to a sphere, a
cone and a rotated arc of a circle. For the case that θ(j, n, i) = 90◦ this last
surface is also a sphere since then the arc will be a semi-circle.
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3.2.1 Numerical Calculation of Point of Intersection

When three geometric coordinates for a point are given three surfaces on
which the point must lie have been defined. The position of the point must
then be a common point of all three surfaces. In general this will be a point
where the three surfaces intersect.

The Cartesian coordinates for a point specified by three geometric coor-
dinates must thus be calculated as the point of intersection of three surfaces
of the types given by equations 3.12 - 3.16. This entails finding the root(s)
r = an of the, in general, non-linear system of equations:

fαλ
(r; Cλ) = 0, λ = 1, 2, 3. (3.17)

Here αλ ∈ {1, 2, 3, 4, 5} and Cλ stands for the collection of constants that
determine the shape, size, position, and orientation of the surface. In an
earlier treatment of this problem by the author [3], which only treated the
three first of the five coordinates, it was found that the most stable and
accurate way to solve this system is to look for the minima of the sum of
the squares to the three surface functions

F (r) =
3∑

λ=1

f2
αλ
(r; Cλ). (3.18)

A minimum of this function, F (r), is easily found by searching for a zero of
its gradient by means of the Newton-Raphson method:

rν+1 = rν −H(rν)g(rν), (3.19)

where g(r) is the gradient of F (r) and H is the inverse of its Hessian, see
Dahlquist and Björck [10]. Evclid uses analytic formulae for the gradient
and Hessian of the function F (r), calculated on the basis of the formulae
3.12 - 3.16, to perform this root search. Very near the point of intersection
one can switch to a more direct method based on linearization of the system
3.17. In some cases a specification might involve surfaces that are tangent
rather than intersecting. In this case Evclid resorts to the brute force
‘Amoeba’ method adopted from Press et al. [6], so that an existing root will
nearly always be found.

3.3 Specifying the Relative Positions of Atoms

3.3.1 The First Three Atoms

When one specifies the positions of atoms in a molecule in a coordinate inde-
pendent way the position of one atom must remain completely unspecified.
We will refer to this atom as the first atom, or atom number 1. The second
atom (atom number 2) can only have a given distance, r(2, 1), to the first
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specified. To get a Cartesian coordinate system defined by the molecule it
is convenient to let the first atom define the origin and the second the direc-
tion of the x-axis. Evclid uses this convention; when the program is empty
ige (input of geometric parameters) prompts for one geometric parameter,
which must be a distance. On the terminal this looks as follows:

Type:command (h = help, hh = basic help) ?xyz?
Evc>> ige
Enter: ge i j ( k ( l)) 1 line (h = help) *ige*
ige1> 2.81 2 1
1 0.000000000 0.000000000 0.000000000
2 2.810000000 0.000000000 0.000000000

The second atom is thus taken to define the positive direction of the x-
axis. (It is not necessary to give the first two atoms the numbers 1 and 2,
any numbers will do). Evclid always echos the number and the Cartesian
coordinates of stored atoms when they are entered by means of ige or ico.

We now assume that two atoms have been specified in the above manner.
The six different specifications possible for the third atom are shown in figure
3.3 and tabulated in table 3.2. By convention the third atom is taken to
define the positive y-axis, that is it will get a positive y-coordinate in the
molecule define coordinate system (unless it is on line with 1 and 2). Evclid
will accept any of the six types of specification. Typically this might look
as follows:

Enter: ge i j ( k ( l)) 2 lines (h = help) *ige*
ige1> 2.81 3 1
ige2> 60.0 3 1 2
3 1.405000000 2.433531385 0.000000000

The notation should be clear: the first line means that 2.81 = r(3, 1) and
the second that 60◦.0 = θ(3, 1, 2). Here we used the specification of type 2 in
table 3.2. This is the preferred specification because it always give a unique
root. Specifications that may have two roots (number 3 and 4) should, of
course, be avoided unless you really know what you are doing. One can ask
Evclid to check if there is a second root (see the help-text hx in the ige
command).

One should note that the third atom must not lie on the same line as the
first two if it is to define a direction for the y-axis. Once a y-axis has been
defined a (molecule defined) coordinate system is completely determined.
Any subsequent atoms that you enter must be placed in this coordinate
system and must thus be specified with three parameters (coordinates).
ige allows you to put the third atom on the same line as the first two. In
that case a fourth atom, not on the line, must be treated in a special way
so that its third parameter is suppressed (see the help-text hx in the ige
command). This might look as follows
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1. r(3, 1) r(3, 2) 1 root if r(3, 1) + r(3, 2) > r(1, 2), else 0
2. r(3, 1) θ(3, 1, 2) 1 root, always
3. r(3, 1) θ(3, 2, 1) 1 root if r(3, 1) > r(1, 2), else 2 or 0
4. r(3, 1) θ(1, 3, 2) 1 root if r(3, 1) < r(1, 2), else 2 or 0
5. θ(3, 1, 2) θ(3, 2, 1) 1 root if θ(3, 1, 2) + θ(3, 2, 1) < 180◦, else 0
6. θ(3, 1, 2) θ(1, 3, 2) 1 root if θ(3, 1, 2) + θ(1, 3, 2) < 180◦, else 0

Table 3.2: The six different specifications of the third atom (3) with respect
to atoms 1 and 2. Only the roots on one side of the line 1-2 are counted.
See figure 3.3.

Figure 3.3: The six different ways in which the (two-dimensional) position of
a third point (3) can be specified with respect to two given points (1 and 2)
using distances and angles. Cases which arise simply by permuting atoms
1 and 2 have not been counted as different. The corresponding algebraic
notation is given in table 3.2.
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Evc>> ige
Enter: ge i j ( k ( l)) 1 line (h = help) *ige*
ige1> 1.5 2 1
1 0.000000000 0.000000000 0.000000000
2 1.500000000 0.000000000 0.000000000

Enter: ge i j ( k ( l)) 2 lines (h = help) *ige*
ige1> 180. 3 2 1
When angle 0 or 180 two parameters suffice.
ige2> 1.5 3 2
3 3.000000000 0.000000000 0.000000000

Enter: ge i j ( k ( l)) 3 lines (h = help) *ige*
ige1> 1.5 4 1
ige2> 90.0 4 1 2
ige3> d
4 0.000000000 1.500000000 0.000000000

The letter d is a command that tells ige that this atom is to be treated as
if it was the third atom. We now proceed to the general case when three
coordinates must be given.

3.3.2 The General Case

The specification of the position of an atom in general may be such that
two of the parameters reference two atoms in such a way that one of the
two-dimensional (third atom) cases of table 3.2 arise. The purpose of the
third parameter (or coordinate) is then to fix the orientation of the triangle
of atoms around the axis defined by the two reference atoms. See figure
3.4. The most ‘direct’ way of doing this is tho use a dihedral angle which
measures the angle between two planes that meet at the line defined by the
two reference atoms of the triangle. This is case number v in figure 3.4. If
we start Evclid from scratch again input of the first four atoms might then
look as follows:

Enter: ge i j ( k ( l)) 1 line (h = help) *ige*
ige1> 1.5 2 1
1 0.000000000 0.000000000 0.000000000
2 1.500000000 0.000000000 0.000000000

Enter: ge i j ( k ( l)) 2 lines (h = help) *ige*
ige1> 45.0 1 3 2
ige2> 90.0 3 1 2
3 0.000000000 1.500000000 0.000000000

Enter: ge i j ( k ( l)) 3 lines (h = help) *ige*
ige1> 1.5 4 1
ige2> 90.0 2 1 4
ige3> 90.0 3 1 2 4
4 0.000000000 0.000000000 1.500000000
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Here the specification of atom three is of the type 6 of table 3.2. Note the
dihedral angle 90◦.0 = φ(3, 1, 2, 4) in the last input line. The opposite sign
would have given a point with negative z-coordinate. Since it is common to
make sign-errors, and since it is fairly common that one, in fact, wants both
atoms, there is a special command that will produce the point corresponding
to the opposite sign of the last entered dihedral angle. To get it, just type
the letter a:

Enter: ge i j ( k ( l)) 3 lines (h = help) *ige*
ige1> a
0 0.000000000 0.000000000 -1.500000000
Atom number: n= 4 already stored; to delete old

and store new position, confirm this n, else change it:
Enter: n (n=0 to cancel)
#n?>> 5
5 0.000000000 0.000000000 -1.500000000

Evclid finds the new point but does not know what number it should be
stored as. If you made a sign error you can type 4 and have the old one
replaced. If you, on the other hand, want both, just type 5, as in the
example, (or any free number) to store the new point.

3.3.3 Multiple Roots and the Orientation Convention

As indicated in figure 3.4 there are eight qualitatively different ways of
choosing a third parameter when the first two belong to one of the six two-
dimensional sub-cases of table 3.2. This gives 48 different combinations.
There are also some three-dimensional specifications which do not contain
a two-dimensional sub-case. There is thus a very large number of possibil-
ities, but it is not wise to use them all indiscriminately. The question of
the uniqueness of the roots should considered. The root is unique in the
example above and is so in general for case v of figure 3.4 with the dihedral
angle φ(4, 1, 2, 3) as third parameter. The specifications corresponding to i
and ii of figure 3.4 can also be quite useful even though they give two roots:
the point 4 in the figure and its mirror image below the plane of the 1-2-3
triangle.

To get around this one must use a sign, or orientation, convention. In
Evclid this convention is that, whenever there is no dihedral angle in the
specification, the root is assumed to lie on the positive side of the oriented
triangle1 of reference atoms. This means that the root is sought on the
side of the triangle that the thumb of the right hand points to when the
fingers curl round the vertices in numerical (increasing) order. This is the
side of point 4 in figure 3.4. Should you wish the other point you just give

1If there are more than three reference atoms the first three are taken to define the
triangle.
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Figure 3.4: The eight different ways in which the (three-dimensional) posi-
tion of a fourth point (4) can be specified when the triangle 1-2-4 already is
given by one of the six two-dimensional sub-cases of figure 3.3.
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a minus-sign to one of the parameters. If you got the wrong point you can
get the other one by typing the letter b. This is illustrated in the following
example.

Type:command (h = help, hh = basic help) ?xyz?
Evc>> ipo
Enter: name ( size ( Z)) (h = help) *ipo*
ipo>> 3 1.5
2-dimensional 3-gon in range: 1 - 3

Type:command (no of atoms:3) ?xyz?
Evc>> dco;
Enter:(ct) (nf (nl)) (h=help, q=skip) *dco*

n x y z
1 0.86602540 0.00000000 0.00000000
2 -0.43301270 0.75000000 0.00000000
3 -0.43301270 -0.75000000 0.00000000

Type:command (no of atoms:3) ?xyz?
Evc>> dco; c
Enter:(ct) (nf (nl)) (h=help, q=skip) *dco*

n rh phi z
1 0.86602540 0.00000000 0.00000000
2 0.86602540 120.00000000 0.00000000
3 0.86602540 -120.00000000 0.00000000

Type:command (no of atoms:3) ?xyz?
Evc>> ige
Enter: ge i j ( k ( l)) 3 lines (h = help) *ige*
ige1> 1.5 4 1; 1.5 4 2; -1.5 4 3
4 0.000000000 0.000000000 -1.224744871

Enter: ge i j ( k ( l)) 3 lines (h = help) *ige*
ige1> b
0 0.000000000 0.000000000 1.224744871
Atom number: n= 4 already stored; to delete old

and store new position, confirm this n, else change it:
Enter: n (n=0 to cancel)
#n?>> 4
4 0.000000000 0.000000000 1.224744871

Here the input option ipo (input of regular polygon or polyhedron) first
generates an equilateral triangle of side length 1.5. Then the Cartesian
and the cylindrical coordinates are displayed to check it. After that ige is
invoked to enter a fourth point that completes a regular tetrahedron. Three
distances (1.5) are given. Instead of returning each line separately they are
separated with semicolons (;). The minus sign on the last distance causes
the root to be the one ‘below’ the xy-plane. The command b then gives the
one above the plane.
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3.3.4 Midpoint or Equal Distances Specification

As a subcommand to ige you can specify a new point to be located so that it
has equal distances to two, three, or four previoulsy entered points. This is
useful to get a new point (atom) at the midpoint of some previously entered
atoms. To do this, give the command ige. When the prompt appears you
put the lower case letter r first in the input line. Then the number of the
new atom you wish to add and after that the numbers ofthe atoms to which
it is to have equal distances. For example

Evc>> ige
Enter: ge i j ( k ( l)) 3 lines (h = help) *ige*
r 9 1 3

will put the new atom 9 at the midpoint between atoms 1 and 3.
In the case of two reference atoms the result is simply a new atom at the

midpoint of the two existing atoms. In the case of three reference atoms the
new point will be at the center of the unique circle that goes through the
three atoms. It is thus in the same plane as these. The three atoms may
not be on a line since then this point is not well defined.

In the case of four reference atoms the new point will be at the center
of the sphere defined by the four atoms. These may then, of course, not be
in the same plane.

3.3.5 The Z-Matrix

In the quantum chemistry program Gaussian 90 [1] (and earlier and later
versions) there is a special form for the geometry input called a ‘z-matrix’.
The z-matrix specifies the positions of the atoms relative to each other ac-
cording to a scheme that corresponds to type 2 of figure 3.3 and then case
v of figure 3.4. This means that the position of atom n is given by three
geometric parameters as follows:

r(n, i), θ(n, i, j), φ(n, i, j, k). (3.20)

Here i, j, k are reference atoms with known positions. This scheme, which
was originally suggested by Eyring [11], has the advantage that it always
gives a unique root (position) as mentioned above. It also has the advantage
that one can write down the fairly simple analytic formula

rn = ai + r(n, i) { cos θ(n, i, j)bij+ (3.21)
+ sin θ(n, i, j) [cosφ(n, i, j, k) (bijk × bij)− sinφ(n, i, j, k)bijk] }

for the position vector of atom n. Here the notation of equations 3.4 -
3.8 has been used. The z-matrix has advantages over coordinates when
it comes to geometry optimizations, though this has been questioned in
recent times, see Baker and Hehre [12]. Conceptually such a coordinate
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independent description is superior to using Cartesian coordinates and once
one has got used to z-matrices, or geometric parameters in general, they do
convey much more immediate and useful information about the molecule.
Their usefulness in molecular dynamics has been discussed by Noid et al.
[13].

Evclid can be used to produce, read, write, and edit z-matrices. As an
example, let us input the methane molecule CH4 and display its z-matrix.
First we put a carbon atom at the origin using ico, then we give it charge
Z = 6, then we use ipo to make the tetrahedron (t) of hydrogens (with
radius 1.093 Å).

Evc>> ico
Enter:(n) x y z or: ct (h = help) *ico*
ico>> 0 0 0

1 0.000000000 0.000000000 0.000000000
Enter:(n) x y z (h = help) x*ico*
ico>> ian; 6
Enter: Z or: n1 Z1 ( n2 Z2..( n5 Z5)) or: nf nl Z (h = help) *ian*
Atom no: 1 given Z= 6 i.e. is a C -atom.
All entered atoms have now been given charge.
Type:command (no of atoms:1) (input charge:1) ?xyz?
Evc>> ipo
Enter: name ( size ( Z)) (h = help) *ipo*
ipo>> t -1.093
3-dimensional 4-gon in range: 2 - 5

Type:command (no of atoms:5) (input charge:1) ?xyz?
Evc>> dzm;
Enter: ( nf ( nl ( i j k))) (a) (o) (#) (h=help, q=skip) *dzm*
Symbol Z n, i, r(n,i) , j, tht(n,i,j), k, phi(n,i,j,k)
C1 6 1
H1 1 2 1 1.0930000
H2 1 3 1 1.0930000 2 109.47122
H3 1 4 1 1.0930000 2 109.47122 3 120.00000
H4 1 5 1 1.0930000 2 109.47122 3 -120.00000

Type:command (no of atoms:5) (input charge:1) ?xyz?
Evc>> dzm
Enter: ( nf ( nl ( i j k))) (a) (o) (#) (h=help, q=skip) *dzm*
dzm>> a
Symbol Z n, i, r(n,i) , j, tht(n,i,j), k, tht(n,i,k), sign
C1 6 1
H1 1 2 1 1.0930000
H2 1 3 1 1.0930000 2 109.47122
H3 1 4 1 1.0930000 2 109.47122 3 109.47122 -1
H4 1 5 1 1.0930000 2 109.47122 3 109.47122 1
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Note that the first atom is unspecified, for the second the distance to the
first is given, for the third a distance an angle. Only the fourth and fifth
atoms are given by three parameters. The CHC-angle 109◦.47 is the famous
‘tetrahedral angle’ which has the exact expression 2 arcsin

√
2/3 (see for

example Gillespie and Hargittai [14]). The second z-matrix, obtained by
typing an a in response to the dzm-prompt-line, is a so called ‘alternative’
z-matrix in which the dihedral angle has been replaced by the bond angle
θ(n, i, k). This corresponds to case ii of figure 3.4. As discussed above the
root is then no longer unique but becomes so if one specifies on which side
of the oriented triangle i − j − k it is. This is done by the -1 and 1 in the
rightmost column; 1 means that it is on the positive side and vice versa.

The reference atoms i, j, k for atom n are determined as follows. To
find i the four (if there are that many) nearest neighbours of atom n, with
numbers less than n are found. The nearest is chosen as reference atom i
unless it is a hydrogen Z = 1; these are avoided. If all four are hydrogens the
nearest is taken. If several are equally near the one with the lowest number
is taken. To find j the four nearest atoms to i are found. Hydrogens are
avoided as well as reference atoms that make the angle θ(n, i, j) zero or 180◦.
Finally, for atom k hydrogens are not avoided2 but the angle θ(i, j, k) should
not be zero or 180◦.

To get a good automatic z-matrix one should give low numbers to atoms
with many bonds. If the automatic z-matrix is unsuitable for some reason
one can edit the z-matrix using the ezm-command. This might look as
follows.

Type:command (no of atoms:5) (input charge:1) ?xyz?
Evc>> ezm
Enter: n i j k (a) or: x (n)(#) to edit z-matrix (h = help) *ezm*
ezm>> 3 2 1
Z-matrix reference atoms for atom 3 stored
Enter: n i j k (a) or: x (n)(#) to edit z-matrix (h = help) *ezm*
ezm>> 5 1 2 3 a
Z-matrix reference atoms for atom 5 stored
Enter: n i j k (a) or: x (n)(#) to edit z-matrix (h = help) *ezm*
ezm>> dzm;
Enter: ( nf ( nl ( i j k))) (a) (o) (#) (h=help, q=skip) *dzm*
Symbol Z n, i, r(n,i) , j, tht(n,i,j), k, ang(n,i,(j,) k) sign
C1 6 1
H1 1 2 1 1.0930000
H2 1 3 2 1.7848615 1 35.26439
H3 1 4 1 1.0930000 2 109.47122 3 120.00000
H4 1 5 1 1.0930000 2 109.47122 3 109.47122 1

Type:command (no of atoms:5) (input charge:1) (z-mtx rows:2) ?xyz?

2The middle reference atoms i and j should have two bonds but there is no reason for
k to have that.
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Here we have forced the third atom to have i = 2 and j = 1, and we have
forced the fifth atom to be specified in the alternative way. When there are
stored z-matrix rows these will be used by dzm (and ozm). If you want to
look at the calculated z-matrix you can type the character #.

With the command ozm you can output a z-matrix to a file and get a
format suitable for the Gaussian-programs. This looks as follows:

Evc>> ezm
Enter: n i j k (a) or: x (n)(#) to edit z-matrix (h = help) *ezm*
ezm>> r
All z-matrix information removed
Enter: n i j k (a) or: x (n)(#) to edit z-matrix (h = help) *ezm*
ezm>> ozm
Type: file-name (format) for z-matrix output (h = help) f*ozm*
file> methane.zm
Enter: ( nf ( nl ( i j k))) (a) (/=close) (h=help, q=skip) *ozm*
ozm>>
C
H 1 1.0930000
H 1 1.0930000 2 109.47122
H 1 1.0930000 2 109.47122 3 120.00000
H 1 1.0930000 2 109.47122 3 -120.00000

Here we first removed the stored z-matrix information (rows), since it wasn’t
particularly useful. The output on the screen is the same as the output to
the file. Evclid can also read files produced in this way. When this is done
the Cartesian coordinates are calculated using formula 3.21 and stored. Also
the reference atoms i, j, k are stored so that if you display or output a z-
matrix it will be exactly the one that was read. To display the calculated
(automatic) z-matrix, all you have to do is type dzm;#, but if you wish to
output it you must first go to ezm and remove the stored information.

Evclid can also read, so called symbolic z-matrices used in the Gaussian
programs. For example if the file methane.zm is changed to look as follows

C
H 1 rCH
H 1 rCH 2 109.47122
H 1 rCH 2 109.47122 3 120.00000
H 1 rCH 2 109.47122 3 -120.00000

rCH 1.093

it can still be read by Evclid (for further examples, see below). This looks
as follows.

Type:command (h = help, hh = basic help) ?xyz?
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Evc>> izm
Type: file-name for z-matrix input (h = help) f*izm*
file> methane.zm
Enter: nf (nl) for input atoms from z-matrix-file (h = help) *izm*
izm>> 1

5 atoms read from z-matrix file: methane.zm
Type:command (no of atoms:5) (input charge:1) (z-mtx rows:3) ?xyz?
Evc>> dzm;
Enter: ( nf ( nl ( i j k))) (a) (o) (#) (h=help, q=skip) *dzm*
Symbol Z n, i, r(n,i) , j, tht(n,i,j), k, phi(n,i,j,k)
C1 6 1
H1 1 2 1 1.0930000
H2 1 3 1 1.0930000 2 109.47122
H3 1 4 1 1.0930000 2 109.47122 3 120.00000
H4 1 5 1 1.0930000 2 109.47122 3 -120.00000

Type:command (no of atoms:5) (input charge:1) (z-mtx rows:3) ?xyz?
Evc>> ezm;d
Enter: n i j k (a) or: x (n)(#) to edit z-matrix (h = help) *ezm*
n, i, j, k, alt
3 1 2
4 1 2 3
5 1 2 3

To summarize, the following commands concern themselves with z-matrices:
izm, dzm, ozm, and ezm. For more complete information, study the help texts
of these commands.

3.3.6 Some Final Examples

Assume that we know that the C2H4-molecule has CH-distance 1.086, CHC-
angle 117.3, and CC-distance 1.337 and that we want its Cartesian coordi-
nates (or z-matrix). If we use the ige-command of Evclid we find that it is
easy to input the first carbon and its two hydrogens, but then we miss the
HCC-angle. There are several ways around this. One is, of course, to use
a calculator to find the angle from the formula [360 − θ(HCH)]/2 but this
would not work in the similar case that arises for the C2H6-molecule. Once
the first carbon and its hydrogens have been entered one has an isosceles
triangle, for the case of C2H4 (and a regular trigonal pyramid in the case
of C2H6). This isosceles triangle (or pyramid) is placed ‘obliquely’ in the
Cartesian coordinate system. By means of the gpr-command (transforma-
tion to principal axes system) one can use Evclid to ‘straighten out’ such
oblique objects. This is illustrated in the example below. After gpr has
straightened the isosceles triangle gtr is used to move the origin to the car-
bon atom. It is then trivial to enter the second carbon atom by means of
Cartesian coordinates.
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Evclid, a geometric calculator and editor by H. Essen version:1992
Type:command (h = help, hh = basic help) ?xyz?
Evc>> ige
Enter: ge i j ( k ( l)) 1 line (h = help) *ige*
ige1> 1.086 2 1
1 0.000000000 0.000000000 0.000000000
2 1.086000000 0.000000000 0.000000000

Enter: ge i j ( k ( l)) 2 lines (h = help) *ige*
ige1> 1.086 3 1
ige2> 117.3 3 1 2
3 -0.498093416 0.965038315 0.000000000

Enter: ge i j ( k ( l)) 3 lines (h = help) *ige*
ige1> gpr
Enter: nf ( nl ( ndf ( ndl))) to transform (h = help) *gpr*
gpr>> 1
Translation done; distance: 0.376672
Degeneracy: 0

Transformation done.
Type:command (no of atoms:3) ?xyz?
Evc>> dco
Enter:(ct) (nf (nl)) (h=help, q=skip) *dco*
dco>>

n x y z
1 0.00000000 -0.37667155 0.00000000
2 0.92744958 0.18833577 0.00000000
3 -0.92744958 0.18833577 0.00000000

Type:command (no of atoms:3) ?xyz?
Evc>> gtr
Enter: vector (# dist) (% nf nl) (+ = copy) (h = help) *gtr*
gtr>> 1
Translation done; distance: 0.3767 vector=( 0.0000 0.3767 0.0000)
Type:command (no of atoms:3) ?xyz?
Evc>>
Enter:(ct) (nf (nl)) (h=help, q=skip) *dco*
dco>>

n x y z
1 0.00000000 0.00000000 0.00000000
2 0.92744958 0.56500732 0.00000000
3 -0.92744958 0.56500732 0.00000000

Type:command (no of atoms:3) ?xyz?
Evc>> ico
Enter:(n) x y z or: ct (h = help) *ico*
ico>> 0 -1.337 0

4 0.000000000 -1.337000000 0.000000000
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Enter:(n) x y z (h = help) x*ico*
ico>> emo
Enter: nnew n or: nfnew nf nl to move atom or range (h = help) *emo*
emo>> 2 4

Input atom number: 4 with contents: 1 atom
is now renumbered to: 2

As a result the range: 2 - 3 has become
renumbered and is now: 3 - 4 It contains: 2 atoms
Type:command (no of atoms:4) ?xyz?
Evc>> ian; 1 2 6;
Enter: Z or: n1 Z1 ( n2 Z2..( n5 Z5)) or: nf nl Z (h = help) *ian*
Range 1 - 2 given Z= 6 i.e. are C -atoms.
Enter: Z or: n1 Z1 ( n2 Z2..( n5 Z5)) or: nf nl Z (h = help) *ian*
Type:command (no of atoms:4) (input charge:2) ?xyz?
Evc>> gpr
Enter: nf ( nl ( ndf ( ndl))) to transform (h = help) *gpr*
gpr>> 1 4 1 2
Translation done; distance: 0.668500
Degeneracy: 2

Transformation done.
Type:command (no of atoms:4) (input charge:2) ?xyz?
Evc>> d;
Enter:(ct) (nf (nl)) (h=help, q=skip) *dco*
Symbol Z n x y z
C1 6 1 0.00000000 0.00000000 -0.66850000
C2 6 2 0.00000000 0.00000000 0.66850000
H1 1 3 0.92744958 0.00000000 -1.23350732
H2 1 4 -0.92744958 0.00000000 -1.23350732

Type:command (no of atoms:4) (input charge:2) ?xyz?
Evc>> gre
Enter: plane or: x y z (% nf nl) (/ = no copy) (h = help) *gre*
gre>> z %3 4
Reflected atoms in range: 5 - 6
Type:command (no of atoms:6) (input charge:2) ?xyz?
Evc>> dzm;
Enter: ( nf ( nl ( i j k))) (a) (o) (#) (h=help, q=skip) *dzm*
Symbol Z n, i, r(n,i) , j, tht(n,i,j), k, phi(n,i,j,k)
C1 6 1
C2 6 2 1 1.3370000
H1 1 3 1 1.0860000 2 121.35000
H2 1 4 1 1.0860000 2 121.35000 3 180.00000
H3 1 5 2 1.0860000 1 121.35000 3 0.00000
H4 1 6 2 1.0860000 1 121.35000 3 180.00000

Type:command (no of atoms:6) (input charge:2) ?xyz?
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Evc>> dco;
Enter:(ct) (nf (nl)) (h=help, q=skip) *dco*
Symbol Z n x y z
C1 6 1 0.00000000 0.00000000 -0.66850000
C2 6 2 0.00000000 0.00000000 0.66850000
H1 1 3 0.92744958 0.00000000 -1.23350732
H2 1 4 -0.92744958 0.00000000 -1.23350732
H3 1 5 0.92744958 0.00000000 1.23350732
H4 1 6 -0.92744958 0.00000000 1.23350732

In this example we have also used the edit-command emo to move the sec-
ond carbon-atom so that it becomes atom number 2 (instead of 4) and the
geometric option gre (reflect) to create the two last hydrogens.

The following is an example of input of C2H6. Instead of using gpr to
straighten the trigonal pyramid the second carbon atom is entered by means
of a specification that uses two geometric coordinates of type 5 of table 3.1
(when such exotic specifications are used the result should be checked).
Note that the z-matrix depends on the charge of the atoms; before atomic
numbers have been entered, by means of ian, the z-matrix does not reflect
the symmetry of the molecule.

Type:command (h = help, hh = basic help) ?xyz?
Evc>> ige
Enter: ge i j ( k ( l)) 1 line (h = help) *ige*
ige1> 1.093 2 1
1 0.000000000 0.000000000 0.000000000
2 1.093000000 0.000000000 0.000000000

Enter: ge i j ( k ( l)) 2 lines (h = help) *ige*
ige1> 1.093 3 1; 109.1 3 1 2
3 -0.357649164 1.032829161 0.000000000

Enter: ge i j ( k ( l)) 3 lines (h = help) *ige*
ige1> 1.093 4 1; 109.1 4 1 2; 109.1 4 1 3
4 -0.357649164 -0.502332312 0.902440205

Enter: ge i j ( k ( l)) 3 lines (h = help) *ige*
ige1> 1.534 5 1; 120. 2 5 1 3; 120. 4 5 1 2
5 -0.520629899 -0.731245162 -1.243937708

Enter: ge i j ( k ( l)) 3 lines (h = help) *ige*
ige1> emo; 2 5
Enter: nnew n or: nfnew nf nl to move atom or range (h = help) *emo*

Input atom number: 5 with contents: 1 atom
is now renumbered to: 2

As a result the range: 2 - 4 has become
renumbered and is now: 3 - 5 It contains: 3 atoms
Type:command (no of atoms:5) ?xyz?
Evc>> gpr; 1 5 1 2
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Enter: nf ( nl ( ndf ( ndl))) to transform (h = help) *gpr*
Translation done; distance: 0.767000
Degeneracy: 2

Transformation done.
Type:command (no of atoms:5) ?xyz?
Evc>> gin; 3 5
Enter: nf (nl) (/ = no copy) to invert (h = help) *gin*
3 inverted atoms in range: 6 - 8

Type:command (no of atoms:8) ?xyz?
Evc>> ;
Enter:(ct) (nf (nl)) (h=help, q=skip) *dco*

n x y z
1 0.00000000 0.00000000 0.76700000
2 0.00000000 0.00000000 -0.76700000
3 1.02812436 0.00000000 1.13795729
4 -0.51406218 0.89038181 1.13795729
5 -0.51406218 -0.89038181 1.13795729
6 -1.02812436 0.00000000 -1.13795729
7 0.51406218 -0.89038181 -1.13795729
8 0.51406218 0.89038181 -1.13795729

Type:command (no of atoms:8) ?xyz?
Evc>> ;c
Enter:(ct) (nf (nl)) (h=help, q=skip) *dco*

n rh phi z
1 0.00000000 0.00000000 0.76700000
2 0.00000000 0.00000000 -0.76700000
3 1.02812436 0.00000000 1.13795729
4 1.02812436 120.00000000 1.13795729
5 1.02812436 -120.00000000 1.13795729
6 1.02812436 180.00000000 -1.13795729
7 1.02812436 -60.00000000 -1.13795729
8 1.02812436 60.00000000 -1.13795729

Type:command (no of atoms:8) ?xyz?
Evc>> dzm;
Enter: ( nf ( nl ( i j k))) (a) (o) (#) (h=help, q=skip) *dzm*

n, i, r(n,i) , j, tht(n,i,j), k, phi(n,i,j,k)
1
2 1 1.5340000
3 1 1.0930000 2 109.83994
4 1 1.0930000 3 109.10000 2 -120.44902
5 1 1.0930000 3 109.10000 4 -119.10196
6 2 1.0930000 1 109.83994 3 180.00000
7 2 1.0930000 6 109.10000 1 120.44902
8 2 1.0930000 6 109.10000 7 119.10196
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Type:command (no of atoms:8) ?xyz?
Evc>> ian; 1 2 6;
Enter: Z or: n1 Z1 ( n2 Z2..( n5 Z5)) or: nf nl Z (h = help) *ian*
Range 1 - 2 given Z= 6 i.e. are C -atoms.
Enter: Z or: n1 Z1 ( n2 Z2..( n5 Z5)) or: nf nl Z (h = help) *ian*
Type:command (no of atoms:8) (input charge:2) ?xyz?
Evc>> dzm;
Enter: ( nf ( nl ( i j k))) (a) (o) (#) (h=help, q=skip) *dzm*
Symbol Z n, i, r(n,i) , j, tht(n,i,j), k, phi(n,i,j,k)
C1 6 1
C2 6 2 1 1.5340000
H1 1 3 1 1.0930000 2 109.83994
H2 1 4 1 1.0930000 2 109.83994 3 120.00000
H3 1 5 1 1.0930000 2 109.83994 3 -120.00000
H4 1 6 2 1.0930000 1 109.83994 3 180.00000
H5 1 7 2 1.0930000 1 109.83994 3 60.00000
H6 1 8 2 1.0930000 1 109.83994 3 -60.00000

Type:command (no of atoms:8) (input charge:2) ?xyz?
Evc>> dge; <1.6
Enter:(-i) (m (n)) (< max-dist.) (% nf nl) (h=help, q=skip) *dge*

i j r(i,j) charges symbols
1 2 1.534000000 6- 6 C1-C2
1 3 1.093000000 6- 1 C1-H1
1 4 1.093000000 6- 1 C1-H2
1 5 1.093000000 6- 1 C1-H3
2 6 1.093000000 6- 1 C2-H4
2 7 1.093000000 6- 1 C2-H5
2 8 1.093000000 6- 1 C2-H6

Type:command (no of atoms:8) (input charge:2) ?xyz?
Evc>> dge; 1 <1.6
Enter:(-i) (m (n)) (< max-dist.) (% nf nl) (h=help, q=skip) *dge*

i m j tht(i,m,j) charges symbols
2 1 3 109.839938 6- 6- 1 C2-C1-H1
2 1 4 109.839938 6- 6- 1 C2-C1-H2
2 1 5 109.839938 6- 6- 1 C2-C1-H3
3 1 4 109.100000 1- 6- 1 H1-C1-H2
3 1 5 109.100000 1- 6- 1 H1-C1-H3
4 1 5 109.100000 1- 6- 1 H2-C1-H3

Type:command (no of atoms:8) (input charge:2) ?xyz?
Evc>> dge; 1 2 <1.6
Enter:(-i) (m (n)) (< max-dist.) (% nf nl) (h=help, q=skip) *dge*

i m n j phi(i,m,n,j) charges symbols
3 1 2 4 -120.000000 1- 6- 6- 1 H1-C1-C2-H2
3 1 2 5 120.000000 1- 6- 6- 1 H1-C1-C2-H3



CHAPTER 3. GEOMETRIC PARAMETERS 42

3 1 2 6 180.000000 1- 6- 6- 1 H1-C1-C2-H4
3 1 2 7 60.000000 1- 6- 6- 1 H1-C1-C2-H5
3 1 2 8 -60.000000 1- 6- 6- 1 H1-C1-C2-H6
4 1 2 5 -120.000000 1- 6- 6- 1 H2-C1-C2-H3
4 1 2 6 -60.000000 1- 6- 6- 1 H2-C1-C2-H4
4 1 2 7 -180.000000 1- 6- 6- 1 H2-C1-C2-H5
4 1 2 8 60.000000 1- 6- 6- 1 H2-C1-C2-H6
5 1 2 6 60.000000 1- 6- 6- 1 H3-C1-C2-H4
5 1 2 7 -60.000000 1- 6- 6- 1 H3-C1-C2-H5
5 1 2 8 180.000000 1- 6- 6- 1 H3-C1-C2-H6
6 1 2 7 -120.000000 1- 6- 6- 1 H4-C1-C2-H5
6 1 2 8 120.000000 1- 6- 6- 1 H4-C1-C2-H6
7 1 2 8 -120.000000 1- 6- 6- 1 H5-C1-C2-H6

Here is finally an example of how one can use a command file. Assume
that you wish to input one or more tetrahedra somewhere in a molecule
using ige. It may then be advantageous to have a file tetrah.ang that
contains the single line:

$0= 109.47122063

At the beginning of the Evclid-session one then reads this file and after that
one can type $0 instead of the full numerical expression for the tetrahedral
angle.

Type:command (h = help, hh = basic help) ?xyz?
Evc>> << tetrah.ang
$0 assigned: 109.47122063
Type:command (h = help, hh = basic help) ?xyz?
Evc>> ige
Enter: ge i j ( k ( l)) 1 line (h = help) *ige*
ige1> 1.0 2 1
1 0.000000000 0.000000000 0.000000000
2 1.000000000 0.000000000 0.000000000

Enter: ge i j ( k ( l)) 2 lines (h = help) *ige*
ige1> $0 3 1 2; 1.0 3 1
3 -0.333333333 0.942809042 0.000000000

This concludes our examples of some of the ways in which you can use
Evclid. There are, of course, many more.



Chapter 4

Platonic and Truncated
Polyhedra

4.1 Regular Polygons and Platonic Polyhedra

To input a regular polygon you just have to give the command ipo and enter
the desired number of vertices. If you wish you can also give the length of the
radius (distance to midpoint) or the length of an edge (between two vertices).
The radius is assumed if this number is given as negative, otherwise the edge
is assumed.

To get atoms at the vertices of a regular (platonic) polyhedron you just
type the first letter of its name (c for cube etc.). Then the edge length or
radius length can be given as above.

4.2 Truncated Polyhedra

More or less regular polyhedra figure prominently in the world of molecular
geometries. The five regular (Platonic) polyhedra all exist as cage-structure
molecules. The tetrahedron, the cube, and the dodecahedron in the form
of the hydrocarbons tetrahedrane, cubane, and dodecahedrane. Boron hy-
drides can take octahedral and icosahedral shapes. The most recent addition
to this collection is the famous C60 graphite ball, footballene or Buckmin-
sterfullerene (Kroto, 1992), which has the shape of the truncated icosahe-
dron, one of the thirteen Archimedean semi-regular solids (Williams, 1979,
Holden, 1991).

Considering these facts Evclid naturally allows the input of atoms by
specifying these to be at the vertices (corners) of such solids. The five
Platonic, regular, polyhedra essentially have the coordinates of their vertices
stored, according to formulae that can be found in Coxeter (1973). Apart
from these five Evclid can also generate those that arise from these by
truncation. Truncation here means that the corners of the polyhedra are
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cut off (or ‘sandpapered’ down). Two different ways of doing this exist.
For both methods each old corner gives rise to a polygon with the same
number of vertices as the number of edges (polygons) that previously met
at the corner. If the truncation is so deep that these new corner polygons
meet at the middle of what was an edge, each old edge gives rise to a new
vertex, and the old polygonal faces become new polygonal faces with the
same number of corners as before. One might call this ‘deep’ truncation.
Only two new polyhedra arise in this manner. These are the, so called,
quasi-regular polyhedra, the cuboctahedron and the icosidodecahedron.

A less severe truncation that leaves part of the old edges intact, leads to
new polyhedra with the old polygonal faces replaced by new ones that have
twice the number of corners. This gives rise to five new polyhedra which sim-
ply are called the truncated tetrahedron, cube, octahedron, dodecahedron,
and icosahedron respectively. They are called semi-regular. Quasi-regular
is a special case of semi-regular, characterized by the fact that all dihedral
angles between polygonal faces are the same in them. Evclid generates
these, seven, truncated polyhedra by running through the edges of the regu-
lar ones, inserting vertices at the appropriate places. See table 4.1 for a list;
there are six more Archimedean, semi-regular polyhedra (Williams, 1979,
Holden, 1991) that are not available in Evclid.

Type Name of Polyhedron Faces, with no of edges: Ed- Ver-
3 4 5 6 8 10 ges tices

Platonic
Tetrahedron 4 6 4
Cube 6 12 8

Regular Octahedron 8 12 6
Dodecahedron 12 30 20
Icosahedron 20 30 12

Archimedean
Quasi- Cuboctahedron 8 6 24 12
regular Icosidodecahedron 20 12 60 30

Truncated tetrahedron 4 4 18 12
Semi- Truncated cube 8 6 36 24

Truncated octahedron 6 8 36 24
regular Truncated dodecahedron 20 12 90 60

Truncated icosahedron 12 20 90 60

Table 4.1: In Evclid atoms can be specified as the vertices of the above
polyhedra.
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