Kepler problem energy and Kepler’s third law
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Using cylindrical (polar) coordinates (p = /% 4 y2, ¢) the ellipse can
be expressed in the form p = p/(1 + ecosp). Using the fact that v =
pe, + ppe, and that ¢ = L/mp?, the energy can be written
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At the minimum (p = p4, ¢ = 0) and the maximum (p = p_, ¢ = m)
distance, p = 0, so there we have
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This gives
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Subtraction of the second from the first gives
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Since p2 — pi = (p— + p1)(p— — p4) we find
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but, p— + p+ = 2a, so finally we get,
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Figure 1: An elliptic orbit with semi major axis ¢ and semi minor axis b.
It is indicated that when the distance p from the focus O is equal to a
the distance of the body from the middle of the ellipse is . The angular
momentum is seen to be given by L = mbuj.

for the energy. It is seen to depend only on the semi major axis a.

We now derive Kepler’s third law. In Figure 1 we show that the (con-
stant) angular momentum is L = mbv|. The speed v is seen to be the speed
at p = a. Using K = Gmm, we find from,
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that v(p) = \/Gmc(2/p — 1/a) and thus v = v(a) = \/Gm./a. Thus we
find
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for the angular momentum. From the expression for the sectorial velocity
one finds dA = %dt. Integration gives A = %T where A = mwab is the area
of the ellipse and T is the period. Inserting our value for L then gives
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Both m and b thus cancel and we find that the period is given by,
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where m, is the mass of the central body. This is Kepler’s third law.



