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Using cylindrical (polar) coordinates (ρ =
√

x2 + y2, ϕ) the ellipse can
be expressed in the form ρ = p/(1 + e cos ϕ). Using the fact that v =
ρ̇eρ + ρϕ̇eϕ and that ϕ̇ = L/mρ2, the energy can be written

E =
1

2
mρ̇2 +

L2

2mρ2
−

K

ρ
(1)

At the minimum (ρ = ρ+, ϕ = 0) and the maximum (ρ = ρ−, ϕ = π)
distance, ρ̇ = 0, so there we have

E =
L2

2mρ2
−

−

K

ρ−
(2)
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L2

2mρ2
+

−

K
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(3)

This gives

ρ2
−E =

L2

2m
− ρ−K, (4)

ρ2
+E =

L2

2m
− ρ+K. (5)

Subtraction of the second from the first gives

E(ρ2
− − ρ2

+) = −K(ρ− − ρ+) (6)

Since ρ2
− − ρ2

+ = (ρ− + ρ+)(ρ− − ρ+) we find

E = −

K

ρ− + ρ+

(7)

but, ρ− + ρ+ = 2a, so finally we get,

E = −

K

2a
, (8)
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Figure 1: An elliptic orbit with semi major axis a and semi minor axis b.
It is indicated that when the distance ρ from the focus O is equal to a
the distance of the body from the middle of the ellipse is b. The angular
momentum is seen to be given by L = mbv‖.

for the energy. It is seen to depend only on the semi major axis a.
We now derive Kepler’s third law. In Figure 1 we show that the (con-

stant) angular momentum is L = mbv‖. The speed v‖ is seen to be the speed
at ρ = a. Using K = Gmmc we find from,

E = −

K

2a
=

1

2
mv2

−

K

ρ
, (9)

that v(ρ) =
√

Gmc(2/ρ − 1/a) and thus v‖ = v(a) =
√

Gmc/a. Thus we
find

L = mb

√

Gmc

a
, (10)

for the angular momentum. From the expression for the sectorial velocity
one finds dA = L

2m
dt. Integration gives A = L

2m
T where A = πab is the area

of the ellipse and T is the period. Inserting our value for L then gives

πab =
1

2m
mb

√

Gmc

a
T. (11)

Both m and b thus cancel and we find that the period is given by,

T = 2π

√

1

Gmc

a
√

a, (12)

where mc is the mass of the central body. This is Kepler’s third law.
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