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1 Introduction

This compendium is the result of a merger in 2006 of two shorter texts by me.
Input form Arne Nordmark 2013 has resulted in a minor revision. The first part
derives and discusses Lagrange’s method for a single particle (Sections 2 – 11).
After that the general theory for systems of particles (in particular rigid bodies)
is presented. These two parts have simply been concatenatedso there is some
redundancy.

Joseph Louis Lagrange (1763-1813) discovered a method thatmakes it possi-
ble to simply derive the equations of motion for systems withconstraints,i.e.sys-
tems of particles and rigid bodies that are connected in various ways. One obtains
the equations of motion using Lagrange’s method by differentiating energy ex-
pressions. One of its main advantages is that one can use arbitrary coordinates as
long as they fully describe the configuration of the system. In this way one easily
handles constraints that can be expressed by demanding thatcertain coordinates
do not vary,i.e. have fixed values. Such constraints are calledholonomic. La-
grange’s method then gives equations of motion for the remaining unconstrained
coordinates.

Normally Lagrange’s method is not needed for problems with asingle parti-
cle. For such problems its strength lies mainly on a fundamental level. Practically
the method is best suited for problems involvingmechanisms, linked systems of
rigid bodies. However, when deriving Lagrange’s method foran arbitrary system
of particles, it is easy to loose orientation among all the, seemingly, uncount-
able summations and differentiations, that are done. Therefore we will derive the
method here for firsta single particle. Later we show that anN-particle system
can be viewed mathematically as a single particle in a space with 3N dimensions.
Most of the single particle definitions and derivations can then be reused with
small adjustments.

2 Generalized coordinates and constraints

The position of a particle in three dimensional space can be specified by means of
the values of three coordinates,

q1, q2, q3, (1)

that are suitably defined. Examples are Cartesian, or rectangular, coordinates
(x, y, z), cylindrical coordinates (ρ, ϕ, z) and spherical coordinates (r, ϕ, θ). The
position vector,r, of the particle can then be viewed as a function of these coor-
dinates,

r = r(q1, q2, q3). (2)
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Such arbitrary coordinates are calledgeneralized coordinates.
Three coordinates are not always needed to determine the position of the par-

ticle. For a simple pendulum, for example, all you need is a single angle (ϕ), for a
particle in a horizontal plane you need two coordinates (x, y), etc. One then says
that there areholonomic constraintsreducing the mobility of the particle. The po-
sition vector can the be written asr(q1), or asr(q1, q2), depending on whether one
or two coordinates are needed. The number,n, of coordinates required is called
the number of ofdegrees-of-freedom. For a single particle then this number can
be zero, one, two, or three (n = 0, 1, 2, or,3). We will thus write

r = r(q1, . . . , qn) = r(q) (3)

for the position vector; by justq we mean collectively alln generalized coordi-
nates of the problem.

If s is thenumber of constraintswe have that,

n = 3− s. (4)

I.e. the number of degrees-of-freedomn is three minus the number of constraints
s. Here three is the dimension of space and a constraint is given by an equation
that limits the mobility of the particle. Ife.g.the particle must stay at the distance
R from the origin one has,

|r| = R. (5)

This equation is a constraint and if it is obeyed there remaintwo degrees-of-
freedom – the particle can move on the surface of a sphere of radiusR. In general
theconstraintsare given bys expressions, or equations,

fk(r) = 0, k = 1, . . . , s, (6)

that the position vectorr of the particle must obey.

3 Curves, surfaces and tangent vectors

It is intuitively important to understand that the expression r(q1) can be under-
stood as the parametric equation of acurve(with q1 as parameter). This curve is
a one-dimensional ”manifold” on which the particle can movewhile obeying the
constraints, whens = 2. Note that atangent vectorof this curve can be obtained
through differentiation,

τ 1 =
∂r

∂q1
. (7)
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Similarly the expressionr(q1, q2) gives parametric equations for asurface. The
surface is the two dimensional manifold that the particle can move on, in ac-
cordance with the constraint (s = 1). A surface has two (linearly independent)
tangent vectors,

τ 1 =
∂r

∂q1
, τ 2 =

∂r

∂q2
, (8)

see Figure 1. If there are no constraints one can viewr(q) = r(q1, q2, q3) as a
parametrization of three dimensional space., and the corresponding three tangent
vectors,

τ i(q) =
∂r

∂qi
, i = 1, 2, 3, (9)

represent the three different directions in which one moveswhen one increases
the coordinateqi, while keeping the two others constant.
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Figure 1:A particle,m, moves on a fixed surfacer = r(q1, q2). The two vectorsτ 1, τ 2

are tangent vectors to the surface at the pointr(q1, q2). The trajectory of the particle, the
curver(t) = r(q1(t), q2(t)), is is also indicated. The velocity vectorv is tangent to this
curve, and for time independent constraints (i.e.fixed surface,τ t = 0) the velocity vector
lies in the plane spanned byτ 1, τ 2. According to (12) we here havev = q̇1τ 1 + q̇2τ 2.
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4 Generalized velocities

One gets the velocity vector of a particle by time differentiating the position vector
r = r(q, t). The position vector will change in time because the generalized
coordinatesqi = qi(t) change their values as the particle alters its position. The
position vector may, however, also depend explicitly on time t. It will do so if the
constraints are time dependent. The curves or surfaces defined by the constraint
equations will then move in space independently of the particle motion. We can
thus write the velocity vector in the form,

v =
dr

dt
=

n
∑

j=1

∂r

∂qj

dqj
dt

+
∂r

∂t
. (10)

Here the last term is the contribution due to time dependent constraints. The time
derivatives of the generalized coordinates,q̇i = dqi/dt, are calledgeneralized
velocities. If we introduce the notation,

τ t(q, t) =
∂r

∂t
, (11)

and use the definition of tangent vectors in the equations (7)– (9), we can write,

v =
n
∑

j=1

q̇jτ j + τ t. (12)

Note that tangent vectors in general depend onq, and, in the time dependent con-
straint case, also on timet, so that,

τ i = τ i(q, t). (13)

We can thus write our velocity vector,

v(q, q̇, t) =
n
∑

j=1

q̇jτ j(q, t) + τ t(q, t). (14)

It is important to notice that its dependence on thegeneralized velocitiesis linear.
This linearity implies that the derivative,

∂v

∂q̇i
= τ i(q, t), (15)

is independent of the generalized velocitiesq̇. Note that the two results (9) and
(15), withv = ṙ, together give,

∂r

∂qi
=

∂ṙ

∂q̇i
= τ i, (16)

i.e. two ways of expressing the tangent vectors. Formally the expression says that
it is allowed to ”cancel the dots”.
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5 The equations of motion

The equations of motion for one particle are given by

ṗ = F , (17)

where,p = mv. This vector equation has normally three components along suit-
able basis vectors. But if we have constraints we only reallyneed one equation of
motion per generalized coordinateqi. The number of equations of motion needed
is thus equal to the number of degrees-of-freedomn.

Once the choice of suitable generalized coordinatesqi has been made the best
basis vectors are in general the tangent vectorsτ i. If one then projects the vector
equation (17) on then tangent vectors one getsn equations of motion that are
adapted to then generalized coordinates. These projected equations of motion
can be written,

ṗ · τ i = F · τ i, i = 1, . . . , n, (18)

by means of the scalar product.
Notice that this is analogous to using the components of acceleration along, so

called, ”moving” basis vectors. Ine.g.cylindrical coordinates these areeρ(ϕ), eϕ(ϕ)
and the procedure gives the components of the equations of motion along the ra-
dial and the transverse (or azimuthal) directions. Here we assume the constraint
z = 0. Note however, that the tangent vectorsτ i, as defined above, not necessarily
are unit vectors; this is clearly irrelevant for our purposes.

6 Lagrange’s method

To get explicit equations of motion using Eq. (18) can be difficult. Lagrange
discovered an elegant short cut to these projected equations of motion. One can
the left hand sides by differentiating the kinetic energy ina specific way. We will
now show that,

ṗ · τ i =
d

dt

(

∂T

∂q̇i

)

−

(

∂T

∂qi

)

, (19)

whereT is the kinetic energy. We do this by studying the two terms of the right
hand side one at the time.

The kinetic energy can be written in the form,

T =
1

2
mv · v (20)

and therefore we get,

∂T

∂q̇i
=

1

2
m

∂

∂q̇i
v · v =

1

2
m

(

∂v

∂q̇i
· v + v ·

∂v

∂q̇i

)

= mv ·
∂v

∂q̇i
= p · τ i, (21)
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where we have used,p = mv and Eq. (15) in the last step. If we now take the
time derivative of this we get,

d

dt

(

∂T

∂q̇i

)

=
d

dt
mv · τ i = m

dv

dt
· τ i +mv ·

dτ i

dt
= ṗ · τ i + p ·

dτ i

dt
, (22)

but,
dτ i

dt
=

d

dt

∂r

∂qi
=

∂

∂qi

dr

dt
=

∂v

∂qi
(23)

since one can interchange the order of the two differentiations. Summarizing, we
have obtained,

d

dt

(

∂T

∂q̇i

)

= ṗ · τ i + p ·
∂v

∂qi
. (24)

If we can now get rid of the last term we have something that is the projection of
ṗ onτ i.

In order to arrive at Eq. (19) we now calculate the second termon the right
hand side. We get,

∂T

∂qi
=

1

2
m

∂

∂qi
v · v =

1

2
m

(

∂v

∂qi
· v + v ·

∂v

∂qi

)

= mv ·
∂v

∂qi
= p ·

∂v

∂qi
, (25)

and we immediately see that if this is subtracted from (24) weget ṗ · τ i. This is
what we wanted to show.

7 Generalized forces

We have now shown that the equations of motion, according to (18) and (19), can
be written,

d

dt

(

∂T

∂q̇i

)

−

(

∂T

∂qi

)

= F · τ i. (26)

If we now define thegeneralized forces,

Qi = F · τ i, (27)

we get the following expression for then equations of motion:

d

dt

(

∂T

∂q̇i

)

−

(

∂T

∂qi

)

= Qi i = 1, . . . , n. (28)

This is the mostgeneral formof Lagrange’s equations.
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How are we to understand the generalized forces? Recall thatwe are assuming
that the position of the particle can be writtenr = r(q, t). A small displacement
of the position is then given by:

dr =
n
∑

j=1

∂r

∂qj
dqj +

∂r

∂t
dt =

n
∑

j=1

τ jdqj + τ tdt. (29)

The work done by the force on the particle is thus,

dW = F · dr = F ·





n
∑

j=1

τ jdqj + τ tdt



 . (30)

By means of (27), and the notation,

Qt = F · τ t, (31)

we now find that,

dW =
n
∑

j=1

Qjdqj +Qtdt. (32)

We thus find that thegeneralized forceQi has the property that,

dWi = Qidqi (33)

is thework that is done on the particle ifqi is increased bydqi while the remaining
q:s, and time, are held constant.

8 Conservative forces

If the workW , at least locally, is a function ofq andt, and this function is,

W = W (q, t), (34)

then, by definition, thedifferentialof W is,

dW =
n
∑

j=1

∂W

∂qj
dqj +

∂W

∂t
dt. (35)

If we compare this expression with (32) and putdW = dW , then we can imme-
diately identify the coefficients in front of coordinate differentials and get that,

Qi =
∂W

∂qi
. (36)
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Note carefully that this isnot truein the general case. The infinitesimal workdW
is normally not a differential of a function ofq andt. Instead it may also depend,
for example, on the velocities.

If the force on the particle isconservativethe work on the particle has the
property that it is the negative of the potential energy function,

V (q, t) = −
∫ r(q, t)

r0

F · dr. (37)

Note that the (line or curve)integral here must be independent of the path of in-
tegration between an arbitrary start pointr0 and the end pointr(q, t) in order to
define a function of the end point coordinates only. When thisis the case one finds
that the work is given by

W (q, t) = −V (q, t). (38)

If we now compare with Eq. (36) we find that thegeneralized force,

Qi = −
∂V

∂qi
. (39)

For conservativeforces therefore we find that the generalized forceQi is minus
the partial derivative of the potential energy with respectto qi.

9 The Lagrange function

In the conservative case we now have that the equations of motion (28) can be
written,

d

dt

(

∂T

∂q̇i

)

−

(

∂T

∂qi

)

= −
∂V

∂qi
i = 1, . . . , n. (40)

If we form the new function,

L = L(q, q̇) = T (q, q̇)− V (q), (41)

the, so called,Lagrange function, or the Lagrangian, these equations take the
form,

d

dt

(

∂L

∂q̇i

)

−

(

∂L

∂qi

)

= 0 i = 1, . . . , n. (42)

This elegant form of the equations of motion, often referredto as theEuler-
Lagrange equations, can thus be used when we are dealing with conservative
forces.
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The Euler-Lagrange equations can also be obtained in a fundamentally differ-
ent way. They turn out to be the equations that determine the solution q(t) that
minimizes theaction,

S[q(t)] =
∫

L(q, q̇) dt, (43)

a functional of the pathq(t) (i.e.a mapping from a path to a real number). Among
all possible pathsq(t), the one that the system actually follows is the one that
minimizes the action functional. This is called theprinciple of least action. The
variation of the action at the correct path must be zero,δS = 0. This is presented
in more detail in Sec. 18.1.

10 Velocity dependent forces

In the previous section we showed that it is possible to introduce a Lagrange func-
tion L(q, q̇) when the forces are conservative with potential energyV (q). Should
the forces be velocity dependent this simple recipe will notwork. Known cases of
velocity dependent forces are theLorentz forceon a charged particle in a magnetic
field,B,

F L =
e

c
v ×B, (44)

(Gaussian units,c is the speed of light) and the fictitiousCoriolis force,

F C = 2mv × ω, (45)

that acts on a particle according to an observer using a rotating reference frame,
rotating with angular velocity vectorω. We now show how such forces can be
included in the Lagrangian formalism.

When the generalized forceQi is the negative partial derivative of a scalar
function (a potential energy) then we can introduce a Lagrange function (41) and
get the equations of motion on the form (42). But the assumptionQi = −∂V/∂qi
is clearly not the most general possible. If we start from theLagrange equations
in the general form (28) we see that, generalized forces on the form,

Qi =
d

dt

(

∂U

∂q̇i

)

−

(

∂U

∂qi

)

, (46)

allow equations of motion on the form (42) using a Lagrange function defined by

L(q, q̇) = T (q, q̇)− U(q, q̇). (47)

The functionU(q, q̇) is then called thework function. One notes that the conser-
vative case, with a potential energy functionV , is obtained for the special case
thatU does not depend on the generalized velocities. Let us now consider the two
main cases of interest for this formalism: a charged particle in an electromagnetic
field, and a particle moving in an accelerated reference frame.
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10.1 Particle in electromagnetic field

A particle with electric chargee that moves under the influence of external electric
and magnetic fields, can be characterized by the Lagrange function,

L(r, ṙ, t) =
1

2
mṙ2 − e

(

Φ(r, t)−
1

c
ṙ ·A(r, t)

)

. (48)

Here,Φ, is the electric potential and,A, the so called vector potential. These are
defined so that the electric,E, and magnetic,B, fields are obtained by differenti-
ations,

E = −∇Φ−
1

c

∂A

∂t
, (49)

B = ∇×A. (50)

Here,∇ = ∂
∂x
ex+

∂
∂y
ey+

∂
∂z
ez, is the ”nabla” or del-operator. The work function

of the Lagrangian,L = T − U , is in this case is given by,

U(r, ṙ, t) = e
(

Φ(r, t)−
1

c
ṙ ·A(r, t)

)

. (51)

After some calculation one gets for the x-component of the equations of motion,

d

dt

(

∂T

∂ẋ

)

−

(

∂T

∂x

)

=
d

dt

(

∂U

∂ẋ

)

−

(

∂U

∂x

)

, (52)

the result,
mẍ = eEx +

e

c
(ẏBz − żBy). (53)

Adding this, and the corresponding analogousy andz-components, vectorially,
gives the vector equation of motion,

mr̈ = eE +
e

c
ṙ ×B. (54)

This is the equation of motion for a charged particle moving in an electromagnetic
field.

10.2 Particle in accelerated reference system

Assume that we chose to study the motion of a particle in an accelerated reference
frame. We select a coordinate system at rest in this frame. This system may then
have a translational accelerationa0 relative to an inertial frame. It may also rotate
relative to the inertial frame with an angular velocity (vector) ω. We select our
origin in the accelerated coordinate system so that the origin is on the rotation
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axis. In elementary mechanics one then derives the equations of motion, valid in
this accelerated system, by means of Coriolis’ theorem.

One then finds that the translational acceleration gives rise to a fictitious force,

F a = −ma0, (55)

which is of the same character as the acceleration due to gravity. This force thus
has potential energy,

Va(r) = ma0 · r. (56)

The rotation requires three fictitious forces

F r = −mω × (ω × r) = mω2r⊥, (57)

F t = m r × ω̇, (58)

F C = 2mv × ω. (59)

The first of these, thecentrifugal force, is directed radially outwards from the
rotation axis. The centrifugal force has a potential energy,

Vr(r) = −
1

2
m(ω × r)2 = −

1

2
mω2r2

⊥
. (60)

The second of these forces only appear if the angular velocity is not constant. The
third is the, non-working,Coriolis force, a fictitious force that is perpendicular to
the relative velocityv.

The equations of motion for a particle in such an acceleratedsystem can be
obtained from the Lagrange function,

L(r, ṙ, t) =
1

2
mṙ2 − U(r, ṙ, t), (61)

where the work functionU is given by,

U(r, ṙ, t) = V (r, t) + Va(r, t) + Vr(r, t)−mṙ · (ω × r), (62)

or, more explicitly,

U(r, ṙ, t) = V (r, t) +ma0(t) · r −
1

2
m[ω(t)× r]2 −mṙ · [ω(t)× r]. (63)

HereV (r, t) is the potential energy of the real (non-fictitious) forces that act on
the particle even when viewed from an inertial reference frame.

The equations of motion corresponding to this Lagrangian are,

mr̈ = −∇V + F a + F r + F t + F C . (64)

Here it is assumed that the positionr, the velocityv = ṙ, and the acceleration
r̈, are all measured relative (by an observer fixed in) the accelerated system. It
is also assumed that the origin of the relative position vector r is on the rotation
axis.
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11 Generalized quantities

The following generalized quantities are introduced in theLagrange formalism:

• Generalized coordinates:qi

• Generalized velocities: q̇i =
dqi
dt

• Generalized forces: Qi = −∂V
∂qi

, or Qi =
d

dt

(

∂U
∂q̇i

)

−
(

∂U
∂qi

)

• Generalized momenta:pi = ∂L
∂q̇i

The expressions for the generalized forces assume that there are no dissipative
forces acting. For more general cases one must useQi = F · τ i.

Only thegeneralized momenta, in the list above, have not been introduced
before. Using them Lagrange’s equations, in the non-dissipative case (42), can be
written,

ṗi =
∂L

∂qi
, i = 1, . . . , n. (65)

It may happen that a certain generalized coordinateqi does not appear in the La-
grange function, although the corresponding generalized velocity q̇i does appear.
In that case the partial derivative,∂L/∂qi = 0, and from Eq. (65) there then fol-
lows that the corresponding generalized momentum is constant: pi = const. The
coordinateqi is then said to becyclic, andpi is aconstant of the motion.
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12 Introduction – Lagrange’s method for systems

Except for of certain advanced variational principles there are no deeper principles
in mechanics than those given by Newton’s laws. Lagrange’s equations, that we
are going, to present here, are therefore best seen as mathematical consequences
of these laws. Some textbooks emphasize that Lagrange’s equations arise when
Newton’s laws are transformed to arbitrary curvilinear coordinates and this is at
least part of the truth.

The intellectually most economic point of view is that Lagrange’s equations
arise by projection of Newton’s equations (ṗk = F k, k = 1, . . . , K) from some
original unconstrained configuration space (3K-dimensional forK particles) to
a lower dimensional configuration space consistent with the(holonomic) con-
straints. This space can be seen as a surface embedded in the original space.

Here we start with a discussion about constraints and degrees of freedom.
We then introduce a notation for treating systems of particles in a compact way.
Normally texts on analytical mechanics are full of sums overx,y, and z as well as
sums over the particles of a system. With suitable vector notation most of these
can be avoided.

13 Degrees of Freedom, Constraints and Rigidity

The number ofdegrees of freedomof a

system of particles= {{mk, rk}; k = 1, 2, . . . , K}. (66)

is the number of coordinates needed to completely specify its position in space.
An arrangement which forces particles to behave in some special way, and thus
reduces the degrees of freedom is called aconstraint. These concepts are best
illustrated by some examples.

A particle which can move freely in space hasthreedegrees of freedom since
its position is completely specified by, for example, its Cartesian coordinatesr =
(x, y, z). A particle that is restricted to move on a two dimensional surface has
two degrees of freedom. There is thenoneconstraint, namely the equation for the
surfacef(r) = 0. Possible coordinates,q1, q2, are then the two parameters in a
parameter expression

r = r(q1, q2) = (x(q1, q2), y(q1, q2), z(q1, q2)) (67)

for the surface. A particle restricted to move on acurve,

r = r(q1) = (x(q1), y(q1), z(q1)) , (68)
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hasonedegree of freedom. There are thentwo constraints since any curve can be
seen as the line of intersection between two surfacesf1(r) = 0, f2(r) = 0.

A system of two particles that can move freely hassix degrees of freedom.
Should they both be restricted to move on some surface the system will have only
four degrees of freedom, two for each particle. If the two particles are connected
by a stiff rod of negligible mass one has the constraint

|r1 − r2| = r12 = const. (69)

which fixes the distance between the particles. One can also see this as restricting
the second particle to move on a spherical surface of radiusr12 around particle
one. This system hasfivedegrees of freedom (six for two particles minus one for
the constraint). As coordinates one might choose the three Cartesian coordinates
of particle one, plus two angles giving the direction to particle two from particle
one.

Consider a stiff, light straight rod withN particles fixed along it so that they all
are restricted to lie along a straight line with fixed distances. This system also has
fivedegrees of freedom since it is still enough to know the position of one particle
(3 coordinates) plus the direction of the rod (2 angles) in order to completely fix
the positions of all particles. This is clearly independentof the number of particles
so we conclude that any matter distribution where the mattercan be thought of as
being fixed along astraight linehasfivedegrees of freedom.

Consider again the two particles connected by a stiff rod. Let us now add a
third particle by connecting it to the two first with two more light stiff rods so that
the system of three particles is restricted to make up a triangle of fixed shape. How
many degrees of freedom does this system have? The first two particles need the
five coordinates found above, so what we need to know is how many further are
required to fix the position of the third particle. The geometric situation is such
that the third particle is restricted to move on a circle around an axis defined by
the first two. All we need to know isoneangle to fix its position along this circle.
This gives us a total ofsix degrees of freedom. We can arrive at this number as
follows: Three particles would have3·3 = 9 degrees of freedom if they where free
to move. The three rods that connect them, however, give riseto three constraints

r12 = c1, r13 = c2, r23 = c3, (70)

fixing the inter-particle distances to be constants. The remaining degrees of free-
dom are now9− 3 = 6.

Imagine now that we add a fourth particle to the rigid triangle we built above
in such a way that this fourth particle has fixed distances to the three particles in
the triangle. In this way we get a four particle system with particles at the corners
of a rigid tetrahedron. Since this means that we get three more constraints

r14 = c4, r24 = c5, r34 = c6, (71)
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all the three new degrees of freedom of the new particle are gone; the system still
hassix degrees of freedom. If the position of the first three are fixedthe position
of the fourth will also be so.

If we continue to add particles to the system above in such a way that each
new particle has three distances, to already present particles, fixed we thus do not
add to the degrees of freedom. One realizes that the result isa system in which all
inter-particle distances are constant

|ri − rj| = rij = constants, (i, j = 1, . . . , N). (72)

Such a system is said to berigid. In general a rigid system (or body) of more
than two particles hassixdegrees of freedom, the exception is one of linear shape
which has five as we saw above.

The conclusion that a rigid system has six degrees of freedomis independent
of the number of particles as is seen by the following count:

particle number: 1 coordinates: 3 constraints: 0
particle number: 2 coordinates: 3 constraints: 1
particle number: 3 coordinates: 3 constraints: 2
particle number: 4 coordinates: 3 constraints: 3
particle number: 5 coordinates: 3 constraints: 3
. . . . . . . . . . . . . . . . . .
particle number: N coordinates: 3 constraints: 3

In total: coordinates: 3N constraints: 3N-6

(73)

Independently of the value ofN we thus get

[3N coordinates] − [(3N − 6) constraints] = 6 degrees of freedom. (74)

This is still valid in the limitN → ∞ so a continuum̺ (r) can also be thought of
as rigid.

Should the motion of a rigid body be constrained to a plane thecoordinates
needed to specify its position are two coordinates fixing some point of the body in
the plane plus one angle fixing the direction of a line in the body with respect to
some reference direction in the plane. The planar (or two-dimensional) motion of
the rigid body thus hasthreedegrees of freedom. The results of the findings about
degrees of freedom in this section are summarized in table 1.

In general systems treated in analytical mechanics can be seen as systems of
particles and rigid bodies. This means that they can be viewed asK-particle sys-
tems with some number,Nc, of constraintsf1(r1, r2, . . . , rK) = 0, f2(r1, r2, . . . , rK) =
0, . . . , fNc

(r1, r2, . . . , rK) = 0. These constraints together define a surface in the
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System Dimension Translational + Rotational = Degrees of freedom
Particle 3 3 0 3
N Particles 3 3N 0 3N
N Particles 2 2N 0 2N
N Particles 1 N 0 N
Rigid body 3 3 3 6
Rigid body 2 2 1 3
Rigid body 1 1 0 1
Rigid line 3 3 2 5
Rigid line 2 2 1 3

Table 1:Summary of results about the number of degrees of freedom of various systems.
Translational degrees of freedom are those that can be described by Cartesian coordinates
while rotational are described by angles and relate to directions rather than position.

3K-dimensional configuration space of the system on which the system is al-
lowed to move. This surface has dimensionn = 3K −Nc, the number of degrees
of freedom of the system. We will assume that we can parameterize the surface
by introducingn generalized coordinates, q1, q2, . . . , qn so that it is given by

(r1, r2, . . . , rK) = (r1(q1, . . . , qn), r2(q1, . . . , qn), . . . , rK(q1, . . . , qn)) . (75)

This is thus an expression for ann-dimensional surface embedded in a3K-dimensional
space.

14 Notation and Background

We shall assume that the mechanical system of interest can beobtained by adding
constraints to an underlying unconstrainedK-particle system. Let the masses of
these particles bemk, their position vectors in some coordinate systemrk, and the
(total) forces on themF k, wherek = 1, . . . , K. To simplify the expressions in
the rest of this article we introduce the following notation:

~R ≡













r1

r2

...
rK













, ~V ≡













v1

v2

...
vK













, ~P ≡













m1v1

m2v2

...
mKvK













=













p1

p2

...
pK













, ~F ≡













F 1

F 2

...
FK













.

(76)
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Then, clearly,~V = ~̇R, and with

M̂ =













m11 0 · · · 0

0 m21 · · · 0
...

...
...

0 0 · · · mK1













, (77)

where1 denotes the3× 3 unit matrix and0 the3× 3 zero matrix, we can write

~P = M̂~V . (78)

Using this notation Newton’s equations of motion for the system can be written

~̇P = ~F . (79)

Following Lesser (1992) we introduce a scalar product on the3K-dimensional
unconstrained configuration space as the sum of theK ordinary scalar products.
We will denote this scalar product by• so that

~A • ~B ≡
K
∑

k=1

ak · bk. (80)

The kinetic energy can, for example, be written in the compact form

T =
1

2
M̂~V • ~V =

1

2
~P • ~V (81)

when this scalar product is used.
We now assume that the holonomic constraints of the system are taken into

account by giving a parametrizationq = q1, . . . , qn of ann-dimensional surface
embedded in the unconstrained configuration space as was discussed above equa-
tion (75). With the present notation that equation can be written

~R = ~R(q, t) ≡









r1(q, t)
...

rK(q, t)









. (82)

For time-dependent constraints one gets one such surface for each value of the
timet. If the constraints are time-independent (scleronomic system) the timetwill
not appear in the parametrization. This surface is the (instantaneous) configuration
space of the system. Since a single parametrization cannot,in general, cover the
entire configuration space, the theory given here is local.
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15 Projection onto Coordinate Tangent Vectors

A constraint represents knowledge about the motion of the system that one has
prior to solving the equations of motion. Since one already knows that the mo-
tion will take place on the embedded surface (82) implied by the holonomic con-
straints, there is no need to solve all3K equations of motion (79). It is enough to
solve the equations that are the components of the vector equation (79) along the
tangent vectors of the surface (82).

One obtainsn linearly independent tangent vectors of the (instantaneous) con-
figuration space (surface) by taking the partial derivatives of the position vector
(82) with respect to the generalized coordinates

~τa(q, t) ≡
∂ ~R

∂qa
, a = 1, . . . , n. (83)

The projected equations of motion that will be of interest are thus

~̇P (q̇, q, t) • ~τa(q, t) = ~F (q̇, q, t) • ~τa(q, t) a = 1, . . . , n (84)

since these describe the motion along directions allowed bythe constraints. The
ideas involved here are not really more advanced than those used when Newton’s
equations are projected onto so called moving basis vectorsassociated with polar
coordinates. Yet these equations are, in fact, the (Euler-)Lagrange equations as
we will show below. One notes that, even if there are no constraints, the procedure
is useful just for changing coordinates.

16 Lagrange’s Equations

We denote the partial time derivative of the position vectorby

~τt(q, t) ≡
∂ ~R

∂t
. (85)

The total time derivatived/dt, sometimes denoted simply by an over-dot, should
be thought of as the operator

d

dt
≡

n
∑

a=1

(

q̈ a
∂

∂q̇a
+ q̇a

∂

∂qa

)

+
∂

∂t
, (86)

when it acts on a function of the independent variablesq̇, q, andt. Here q̇a ≡
dqa/dt are the so calledgeneralized velocities. The 3K-dimensional velocity
vector,~V = d~R/dt, is now given by

~V (q, q̇, t) =
n
∑

a=1

q̇a ~τa(q, t) + ~τt(q, t). (87)
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The generalized velocities, which are regarded as independent variables in the
Lagrange formalism, can thus be seen as coordinates in velocity space; when they
vary the vector~V sweeps over ann-dimensional hyperplane. For the case of a
scleronomic system the vector~τt is a null vector (~τt = ~0) and this hyperplane can
be identified with the tangent plane of the configuration surface (82).

In terms of the independent variablesq, q̇, andt we can now write the kinetic
energy,T = 1

2
M̂~V • ~V , as follows

T (q, q̇, t) =
n
∑

a=1

n
∑

b=1

1

2
gab(q, t) q̇aq̇b +

n
∑

a=1

aa(q, t) q̇a + b(q, t) (88)

where we have introduced

gab(q, t) ≡ M̂~τa • ~τb, (89)

aa(q, t) ≡ M̂~τa • ~τt, (90)

b(q, t) ≡
1

2
M̂~τt • ~τt. (91)

In the scleronomic case only the first term appears and the kinetic energy is purely
quadratic in the generalized velocities. One notes that thedefinition (89) implies
symmetry:gab = gba.

We now proceed to differentiate the kinetic energy to find Lagrange’s equa-
tions. We first note that

∂~V

∂q̇a
= ~τa =

∂ ~R

∂qa
(92)

according to (87) and (83). This is sometimes referred to as the ‘cancelation of
the dots’. Using this one finds that

∂T

∂q̇a
=

∂

∂q̇a

1

2
M̂~V • ~V = ~P •

∂~V

∂q̇a
= ~P •

∂ ~R

∂qa
= ~P • ~τa ≡ pa. (93)

The quantitiespa are thegeneralized momentaand the above equation shows that
these are projections of the3K-dimensional momentum vector~P onto the tangent
vector~τa. If we now take the total time derivative of this we get

d

dt

∂T

∂q̇a
=

d

dt

(

~P • ~τa
)

=
d~P

dt
• ~τa + ~P •

d~τa
dt

. (94)

If we differentiateT with respect toqa we find

∂T

∂qa
=

∂

∂qa

1

2
M̂~V • ~V = ~P •

∂~V

∂qa
. (95)
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We now form the difference

d

dt

∂T

∂q̇a
−

∂T

∂qa
=

d~P

dt
• ~τa + ~P •





d~τa
dt

−
∂~V

∂qa



 (96)

and note that the vector




d~τa
dt

−
∂~V

∂qa



 =

(

d

dt

∂

∂qa
−

∂

∂qa

d

dt

)

~R = ~0 (97)

is the null vector since the differential operators commute(see equation (86)). If
one now makes the natural definition that the projection of the 3K-dimensional
force vector~F onto the tangent vector~τa,

d~P

dt
• ~τa = ~F • ~τa ≡ Qa, (98)

is thegeneralized forceQa one finally ends up with

d

dt

∂T

∂q̇a
−

∂T

∂qa
= Qa, a = 1, . . . , n (99)

i.e. the(Euler-) Lagrange equationsin one of their traditional forms. These are
thus simply the projected Newton equations (84).

17 Generalized Forces and the Conservative Case

It should be clear that the definition of generalized forceQa in Eq. (98),

Qa = ~F • ~τa =
K
∑

k=1

F k ·
∂rk

∂qa
, (100)

in practice means that a number of forcesF k vanish from the problem. They
vanish either because~F is perpendicular to the tangent vectors, or because the
forces in the sum implied by the scalar products occur pairwise withe opposite
sign but equal∂rk/∂qa. The former case is related to normal forces, the latter
to Newton’s third law of action and reaction. We now discuss some properties of
generalized forces that do not vanish.

The infinitesimal work,dW , done when aK-particle system is displaced by
d~R ≡ (dr1, dr2, . . . , drK)

T (the superscriptT here means matrix transposition
so thatd~R denotes a column matrix as usual) can be written

dW = ~F • d~R ≡
K
∑

k=1

Fk · drk. (101)
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There is then apotential energy, V , for the system if the (negative) work done
when going from some point~R0 = (r1(0), r2(0), . . . , rK(0))

T to some final point
~R, i.e.

V [~R] = −
∫ ~R

~R0

~F • d~R (102)

is independent of the path from~R0 to ~R. One can show that this will, in general,
be true if the individual forces on theK particles are conservative. One then has
that the force on particlek is given by

F k = −∇kV ≡ −

(

∂V

∂xk
,
∂V

∂yk
,
∂V

∂zk

)

. (103)

The3K dimensional force is thus given by

~F = −~∇V ≡ (−∇1V,−∇2V, . . . ,−∇KV )T (104)

and the infinitesimal work can be written

dW = −~∇V • d~R = −dV, (105)

i.e. as (minus) the total differential of the scalar functionV on the3K-dimensional
space.

Now assume that there are constraints so that the system onlycan move on
then-dimensional surface~R = ~R(q1, . . . , qn) in the3K-dimensional space. Also
assume that these constraints are such that the corresponding constraint forces do
not perform work for time independent constraints. If the constraints are time
dependent,~R = ~R(q1, . . . , qn, t), then they should not do work for displacements
dqa at a fixed timet = const. (so called, virtual displacements). One then speaks
aboutsmoothconstraints. This is only true if the sliding friction forces in the joints
and bearings of the system can be neglected. Under these circumstances the work
done on the system for some displacement is given by the same expression (102)
as above. The only difference is that now the start and end points, as well as the
path between them, must lie on then-dimensional surface,~R = ~R(q1, . . . , qn), so
that they are consistent with the constraints. There is thusstill a potential energy
which we can write

V [~R] = V [~R(q1, . . . , qn)] ≡ V (q1, . . . , qn). (106)

According to the chain rule we now have

−
∂V

∂qa
= −

K
∑

k=1

∇kV ·
∂rk

∂qa
=

K
∑

k=1

Fk ·
∂rk

∂qa
= ~F • ~τa. (107)
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Comparing with equation (98) we thus see that

−
∂V

∂qa
= Qa (108)

simply is the generalized forceQa, in this, conservative, case.
In general the work done during a small displacement is not the total differen-

tial of some function. One sometimes stresses this fact by not using the ordinary
differential sign (d). Instead one might write

δW = ~F • d~R = ~F •
n
∑

a=1

∂ ~R

∂qa
dqa =

n
∑

a=1

(~F • ~τa)dqa =
n
∑

a=1

Qadqa. (109)

This expression tells us that, whether the forces are conservative or not, the gen-
eralized forces can be obtained by writing down the infinitesimal work,δW , done
for small changes,dqa, of the generalized coordinates. The generalized force,Qa,
is then simply the coefficient in front ofdqa in the expression forδW . Should the
working forces all be conservativeδW = dW = −dV .

18 The Lagrange Function and Conservative Sys-
tems

If we assume that the system is conservative we can now write the Lagrange’s
equations (99) in the form

d

dt

∂T

∂q̇a
−

∂T

∂qa
= −

∂V

∂qa
, a = 1, . . . , n (110)

We now move− ∂V
∂qa

to the left hand side of the equation. If we then define the
Lagrange function

L = L(q, q̇) ≡ T (q, q̇)− V (q), (111)

and note that sinceV does not depend oṅqa, we can rewrite the equations (110)
as

d

dt

∂L

∂q̇a
−

∂L

∂qa
= 0, a = 1, . . . , n. (112)

This is the form that Lagrange’s equations take when the system is conservative.
The case of velocity dependent forces that was presented forthe one particle case
in Sec. 10 may also be of interest for systems of particles. Equations of motion on
the form (112) are then also valid withV (q) replaced byU(q, q̇).

Example 1: Consider a physical pendulum of massm. Let J be the moment
of inertia about the horizontal axis and denote byh the distance from the axis to the
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center of mass. If we chose the angle,ϕ, between the vertical downward direction
and the line from the axis to the center of mass, as generalized coordinate, the
kinetic energy isT = 1

2
Jϕ̇2 and the potential energy isV = mgh(1 − cosϕ).

O

G

y

x

h

j

R

mg

Figure 2: A physical pendulum constructed from a wedge shaped body. Itis hinged
so that it can rotate about a smooth horizontal axis (thez-axis). Thex-axis is in the
vertical downward direction. The center of mass isG and its distance from the originO
on the rotation axis ish. The external forces acting are the weightmg and the reaction
(constraint) forceR at the rotation axis.

From this one finds thatL = T − V = 1

2
Jϕ̇2 −mgh(1− cosϕ) and thus that

∂L

∂ϕ̇
= Jϕ̇,

d

dt

∂L

∂ϕ̇
= Jϕ̈, and

∂L

∂ϕ
= −mgh sinϕ

Thus equation (112) in this case becomes

Jϕ̈+mgh sinϕ = 0,

which is the well known equation of motion for the physical pendulum. End of
example 1

18.1 The Variational Principle and Euler-Lagrange’s equations

This form of the equations can be obtained directly from a variational principle:
the principle of least action. Theaction is defined as the time integral ofL:

S[q(t)] =
∫ t2

t1
L(q(t), q̇(t))dt (113)
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for some pathq(t) between two fixed end-pointsq1 = q(t1) and q2 = q(t2).
Demanding that the change ofδS = S[q(t) + δq(t)] − S[q(t)] = 0, for a small
change of the real path,q(t), to some nearby pathq(t) + δq(t), with δq(t1) =
δq(t2) = 0, see Figure 3, leads directly to the equations (112).

q

q(t)

q(t)

q(t)+ q(t)d

q(t)+ q(t)d

dq

t t t1 2

Figure 3: This figure shows a (one-dimensional) trajectoryq(t) and an example of a
variation of itq(t) + δq(t) that obeysδq(t1) = δq(t2) = 0.

To prove this we consider

δS[q(t)] =
∫ t2

t1
L(q + δq, q̇ + δq̇)dt−

∫ t2

t1
L(q, q̇)dt =

∫ t2

t1

(

∂L

∂q
δq +

∂L

∂q̇
δq̇

)

dt.

(114)

Sinceδq̇ = dδq
dt we get, by integrating by parts,

δS[q(t)] =
∫ t2

t1

(

∂L

∂q
−

d

dt

∂L

∂q̇

)

δqdt+

[

∂L

∂q̇
δq

]t2

t1

. (115)

If we now use thatδq(t1) = δq(t2) = 0 the integrated part vanishes. Sinceδq(t)
otherwise is arbitrary the remaining integral is identically zero, and thusδS = 0,
only if the quantity within the parentheses is zero. This gives (112). Note that the
calculation was done as if there was only oneq but it is easily generalized to the
case of several degrees of freedom.
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19 Energy and the Hamiltonian formalism

Here we investigate conservation laws and in particular conservation of energy
as these concepts appear in the Lagrange formalism. We then briefly present the
Hamiltonian formalism.

19.1 Energy in the Lagrange formalism

If we have a conservative system we know that the energy,E = T + V , is a
conserved quantity. Assume that we have a LagrangianL(q, q̇) = T (q, q̇)− V (q)
for a system that moves according to Lagrange’s equations

d

dt

∂L

∂q̇a
−

∂L

∂qa
= 0, a = 1, . . . , n. (116)

How can we find a constant of the motion that corresponds to theenergy, if we
pretend that we do not know it already?

Consider the time derivative ofL,

dL

dt
=

n
∑

a=1

(

∂L

∂qa

dqa
dt

+
∂L

∂q̇a

dq̇a
dt

)

. (117)

According to (116) we have that

∂L

∂qa
=

d

dt

∂L

∂q̇a
, a = 1, . . . , n, (118)

when the functionsqa(t) actually obey the equations of motion. If we put this into
(117) we get

dL

dt
=

n
∑

a=1

(

d

dt

∂L

∂q̇a
q̇a +

∂L

∂q̇a

dq̇a
dt

)

=
d

dt

n
∑

a=1

(

∂L

∂q̇a
q̇a

)

, (119)

so the terms of the sum are time derivatives of the products(∂L/∂q̇a)q̇a. If we
movedL/dt to the right hand side, we now find that

0 =
d

dt

(

n
∑

a=1

∂L

∂q̇a
q̇a − L

)

, (120)

as long as the functionsqa(t) actually obey the equations of motion. Since this
time derivative then is zero the quantity inside must be a constant of the motion,
i.e. independent of time. When we integrate (120) with respect to time the result
is

n
∑

a=1

∂L

∂q̇a
q̇a − L = E , (121)
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whereE is the constant of integration. We have thus found that the function

E(q(t), q̇(t)) ≡
n
∑

a=1

∂L(q, q̇)

∂q̇a
q̇a − L(q, q̇), (122)

is a constant of the motion. We now show that this is, in fact, theenergy.
Assuming there are no time dependent constraints the kinetic energy is given

by

T (q, q̇) =
1

2

∑

bc

gbc(q) q̇bq̇c. (123)

Here
∑

bc

is shorthand notation for the double sum
n
∑

b=1

n
∑

c=1

. In this case we can thus

write the conservative LagrangianL as follows

L(q, q̇) = T (q, q̇)− V (q) =
1

2

∑

bc

gbc(q) q̇bq̇c − V (q). (124)

Now calculate
∂L

∂q̇a
=

∂T

∂q̇a
=

∂

∂q̇a

(

1

2

∑

bc

gbc(q) q̇bq̇c

)

. (125)

Since
∂

∂q̇a
q̇b = δab, (126)

i.e., it is zero ifa 6= b and one ifa = b, we find

∂L

∂q̇a
=

1

2

∑

bc

gbc(q) (δabq̇c + q̇bδac) =
1

2

(

∑

bc

gbc(q) δabq̇c +
∑

bc

gbc(q) q̇bδac

)

.

(127)
In the first sum we perform theb-summation. Only one term survives; the term
with b = a. In the second we perform thec-summation and here only the term
with c = a will be non-zero. We thus have

∂L

∂q̇a
=

1

2

(

∑

c

gac(q) q̇c +
∑

b

gba(q) q̇b

)

. (128)

The mass matrix, defined in Eq. (89), is symmetric,gba(q) = gab(q), so we can
change the dummy index in the first sum tob instead ofc, and get

∂L

∂q̇a
=

1

2

(

∑

b

gab(q) q̇b +
∑

b

gab(q) q̇b

)

=
∑

b

gab(q) q̇b. (129)

If we now calculate
n
∑

a=1

∂L

∂q̇a
q̇a =

n
∑

a=1

(

n
∑

b=1

gab(q) q̇b

)

q̇a =
∑

ab

gab(q) q̇bq̇a, (130)
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we find that, according to equation (123),

n
∑

a=1

∂L

∂q̇a
q̇a = 2T. (131)

Finally then,

E =
n
∑

a=1

∂L

∂q̇a
q̇a − L = 2T − L = 2T − (T − V ) = T + V, (132)

so that the constant of motion,E , we found above, is in fact the energy. This is
what we wanted to show.

19.2 The Hamiltonian formalism

A conservative system with a Lagrangian functionL(q, q̇) that doesnot depend
on some generalized coordinateqb is said to possess acyclic coordinate. The
equation of motion (116) for this coordinate then becomes

d

dt

∂L

∂q̇b
= 0. (133)

If we note that
∂L

∂q̇b
≡ pb (134)

is thegeneralized momentum, see formula (93), corresponding toqb we find that
the solution of equation (133) is simplypb =constant. Thus cyclic coordinates
correspond to generalized momenta that areconstants of the motion.

We know that a conservative system has another constant of the motion, the
energy,E = T + V . How does one find this in the Lagrange formalism? One
way of doing this is to change the independent coordinates from q, q̇ to q, p. This
means that one changes from generalized velocitiesq̇ as independent coordinates
to generalized momentap as independent coordinates. One then forms the func-
tion

H(q, p) =
∑

a

paq̇a − L (135)

where we assume that equation (134) has been used to expressq̇ = q̇(q, p) so that
everything on the left hand side are functions ofq andp. If we now form the total
differential ofH we find, first by definition,

dH(q, p) =
∑

a

(

∂H

∂qa
dqa +

∂H

∂pa
dpa

)

. (136)
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On the other hand using (135) we get

dH(q, p) = −
∑

a

(

∂L

∂qa
dqa +

∂L

∂q̇a
dq̇a − padq̇a − q̇adpa

)

. (137)

But according to Lagrange’s equations (116) we haveṗa = ∂L/∂qa (this is equa-
tion (133) for the general case when the coordinateqa is not cyclic). Using this,
and (134) turns our last differential into

dH(q, p) = −
∑

a

(ṗadqa + padq̇a − padq̇a − q̇adpa) =
∑

a

(q̇adpa − ṗadqa) .

(138)
Comparing with (136) we can now identify the coefficients in front of the differ-
entials and get

ṗa = −
∂H

∂qa
, q̇a =

∂H

∂pa
. (139)

These areHamilton’s equationsfor the system. Dividing equation (138) bydt we
find

dH

dt
=
∑

a

(q̇aṗa − ṗaq̇a) = 0. (140)

ThusH(q, p) is aconstant of the motion. This constant can be identified withthe
energy.

20 Small Oscillations about an Equilibrium Position

Many systems are to a first approximation in a stable static equilibrium configura-
tion. These include man made structures of all kinds as well as molecules. When
slightly perturbed these systems execute small oscillations (or vibrations) about
the equilibrium position. The nature of these vibrations will be studied here.

We assume that we have a Lagrangian of the form

L(q, q̇) = T − V =
1

2

n
∑

a,b=1

gab(q)q̇aq̇b − V (q). (141)

In order for there to be an equilibrium position we must further assume that there
is at least one solutionqa = q0a to the equations

∂V

∂qa
= 0, a = 1, . . . , n; (142)

this means that the forces all are zero at that position. Thissolution will be a stable
position provided that it corresponds to a a local minimum ofpotential energyV .
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It is only then thatV (q0) ≤ V (q), for all q sufficiently close toq0 so that the
forces tend to carry the system back toq0 when the deviation from this position is
sufficiently small.

If we now make a Taylor expansion ofV (q) aroundq0 we get

V (q) = V (q0) +
1

2

n
∑

a,b=1

(

∂2V

∂qa∂qb

)

q=q0

(qa − q0a)(qb − q0b ) + . . . . (143)

The linear terms are zero becauseq0 is a solution of (142). Since we will be
considering small oscillations aboutq0 we assume that cubic and higher order
terms are negligible. If we now define

(

∂2V

∂qa∂qb

)

q=q0

≡ Kab, ua ≡ qa − q0a (144)

and discard the irrelevant constantV (q0) we see that we can assume the potential
energy to be of the form

V (u) =
1

2

n
∑

a,b=1

Kabuaub, (145)

with constant coefficientsKab.

Example 2: Consider the potential energy

V (x, y) = 4x2 + 2xy + y2 + 12x+ 9 (146)

We first calculate the minimum values ofx andy using equations (142). We find

∂V

∂x
= 8x+ 2y + 12 = 0 (147)

∂V

∂y
= 2x+ 2y = 0 (148)

Solving this system we find the solutionx0 = −2, y0 = 2. At this point the forces
are zero on a particle with this potential energy. Since the potential is quadratic
with positive coefficients the point should be a minimum. We now calculate the
expansion (143). This gives

V (x, y) = V (x0, y0) +

1

2





(

∂2V

∂x2

)

x0,y0

(x− x0)
2 + 2

(

∂2V

∂x∂y

)

x0,y0

(x− x0)(y − y0) +

(

∂2V

∂y2

)

x0,y0

(y − y0)
2



(149)

= −3 +
1

2
[8(x+ 2)2 + 2 · 2(x+ 2)(y − 2) + 2(y − 2)2].
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This expression is the same as (146) since the Taylor expansion of a second order
polynomial to second order is exact; there are no neglected terms. The constants
are such thatV (x0, y0) = V (−2, 2) = −3, so this is the irrelevant constantV (q0)
in (143).

We now skip the constant term−3 and introduceu1 = x + 2, u2 = y − 2
according to equation (144). This finally gives us

V (u) =
1

2

n
∑

a,b=1

Kabuaub =
1

2
(8u2

1+4u1u2+2u2
2) =

1

2
(8u2

1+2u1u2+2u2u1+2u2
2),

(150)
for the expression in equation (145). The matrixKab is then seen to have the
elementsK11 = 8, K22 = 2, K12 = K21 = 2. End of example 2

Example 3: Consider a coplanar double pendulum, see Figure 4, consisting
of a particle of massm1 suspended in a string of lengthl1. Fromm1 a second
string of lengthl2 is suspended with a particle of massm2 at the other end. If we
denote the angle between the first string and the vertical byϕ1 and that between
the second and the vertical byϕ2 we find that the potential energy can be written

V (ϕ1, ϕ2) = m1gl1(1− cosϕ1) +m2g[l1(1− cosϕ1) + l2(1− cosϕ2)]. (151)

Clearly the valuesϕ10 = 0, ϕ20 = 0 correspond to the minimum. Here the
constants are chosen so thatV (0, 0) = 0 so that the irrelevant constantV (q0) in
(143) is zero from the beginning. We now make Taylor expansions of the cosines
(cos x = 1− x2/2 + . . .) and get

V =
1

2
m1gl1ϕ

2
1+

1

2
m2g[l1ϕ

2
1+ l2ϕ

2
2]+ . . . =

1

2
g[(m1+m2)l1ϕ

2
1+m2l2ϕ

2
2]+ . . . .

(152)
We also see that the minimum already corresponds to the valuesϕ1 = ϕ2 = 0 so
these can be taken as the coordinatesua, a = 1, 2 in equation (144). The matrix
Kab has the elementsK11 = g(m1 +m2)l1, K22 = gm2l2, K12 = K21 = 0. End
of example 3

Let us return to the Lagrangian (141). We now assume that (145) is a good
approximation for the potential energy. This is true when deviations from the
equilibrium positions are small. But small deviations willnormally mean small
forces and thus small velocities. In what follows we also assume that the velocities
can be assumed small. Note thatq̇a = u̇a. If we now make a Taylor expansion of
gab(q) nearq0,

gab(q) = gab(q
0) +

n
∑

c=1

(

∂gab
∂qc

)

q=q0

(qc − q0c ) + . . . , (153)
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Figure 4:This figure shows the double pendulum treated in Examples 3, 4, and 5.

we see that the linear terms in the expansion ofgab will contribute terms of type
ucu̇au̇b i.e. cubic terms in positions and velocities, to the kineticenergyT . Higher
order terms in the expansion contribute terms of even higherorder. The assump-
tion of small displacements and velocities thus makes it reasonable to keep only
the constant terms in the expansion ofgab. If we now introduce the notation

gab(q
0) ≡ Mab, (154)

we can write the Lagrangian for a system with small oscillations about an equilib-
rium on the form

L(u, u̇) = T (u̇)− V (u) =
1

2

n
∑

a,b=1

Mabu̇au̇b −
1

2

n
∑

a,b=1

Kabuaub. (155)
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Here the coefficientsMab andKab are constants.

Example 4: Consider again the coplanar double pendulum of Examples 2 and
3 above, see Figure 4. A particle of massm1 suspended in a string of lengthl1.
Fromm1 a second string of lengthl2 is suspended with a particle of massm2 at
the other end. Denote the angle between the first string and the vertical byϕ1 and
that between the second and the vertical byϕ2 and find the kinetic energy of the
system!

Introduce Cartesian axes with the x-axis vertically down, the y-axis horizon-
tal in the plane of the pendulum and the origin at the point of suspension. The
Cartesian coordinates of the two particles are given by

x1 = l1 cosϕ1, (156)

y1 = l1 sinϕ1, (157)

x2 = l1 cosϕ1 + l2 cosϕ2, (158)

y2 = l1 sinϕ1 + l2 sinϕ2. (159)

The velocities are then,

ẋ1 = −l1ϕ̇1 sinϕ1, (160)

ẏ1 = l1ϕ̇1 cosϕ1, (161)

ẋ2 = −l1ϕ̇1 sinϕ1 − l2ϕ̇2 sinϕ2, (162)

ẏ2 = l1ϕ̇1 cosϕ1 + l2ϕ̇2 cosϕ2. (163)

The kinetic energy is, by definition, given by

T = T1 + T2 =
1

2
m1(ẋ

2
1 + ẏ21) +

1

2
m2(ẋ

2
2 + ẏ22). (164)

Inserting the above expressions into the definition gives after patient calculations:

T = T1 + T2 =
1

2
m1l

2
1ϕ̇

2
1 +

1

2
m2[l

2
1ϕ̇

2
1 + l22ϕ̇

2
2 + 2l1l2 cos(ϕ1 − ϕ2)ϕ̇1ϕ̇2] (165)

⇒ T =
1

2
(m1 +m2)l

2
1ϕ̇

2
1 +

1

2
m2l

2
2ϕ̇

2
2 +m2l1l2 cos(ϕ1 − ϕ2)ϕ̇1ϕ̇2. (166)

The elements of the matrixgab(q) = gab(ϕ1, ϕ2) of equation (141) are thusg11 =
(m1+m2)l

2
1, g22 = m2l

2
2, g12 = g21 = m2l1l2 cos(ϕ1−ϕ2). Since the equilibrium

position isϕ1 = ϕ2 = 0 we see that the mass matrixMab has the elements
M11 = (m1 +m2)l

2
1, M22 = m2l

2
2, M12 = M21 = m2l1l2. End of example 4

For a single degree of freedom (n = 1) we getL = (1/2)(M11u̇
2
1−K11u

2
1) and

the equation of motion isM11ü1 = −K11u1. This is the equation of motion for
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a massM11 kept atu1 = 0 by a spring with stiffness (spring constant)K11. This
explains the notation. (Shouldu1 be an angle then mass is replaced by moment
of inertia and stiffness by torsional stiffness.) Collectively one speaks of theMab

as the mass matrix and theKab as the stiffness matrix. The definitions of these
matrices imply that they are both symmetric,Mab = Mba because of (154) and
(89), andKab = Kba because of the definition as the mixed partial derivatives of
the potential in Eq. (144).

We now introduce matrix notation. We put

u≡













u1

u2

...
un













,M≡













M11 M12 . . . M1n

M21 M22 . . . M2n
...

...
...

Mn1 Mn2 . . . Mnn













,K≡













K11 K12 . . . K1n

K21 K22 . . . K2n
...

...
...

Kn1 Kn2 . . . Knn













.

(167)
We denote the transpose with aT -superscript so thatuT ≡ (u1 u2 . . . un). M is
then symmetric if and only ifM = MT . With this notation the Lagrangian (155)
can be written

L(u, u̇) =
1

2

(

u̇TMu̇− uTKu
)

. (168)

The equations of motion,(d/dt)(∂L/∂u̇a) − (∂L/∂ua) = 0, corresponding to
(155) are

n
∑

b=1

(Mabüb +Kabub) = 0, a = 1, . . . , n. (169)

Using the matrix notation we can write them as a column matrixof equations

Mü+Ku = 0, (170)

if 0 denotes a column ofn zeroes.
We now discuss how to solve these equations. We do this by assuming that a

solution can be written on the form

u(t) = a cos(ωt+ φ) (171)

whereaT = (a1 . . . an) is a matrix of constants. We here take for granted that
the solutions must be oscillating. Without knowledge of thenature of the stiffness
matrix K an ansatz witha exp(λt) could be used. Imaginaryλ would then cor-
respond to oscillations, but real to unstable motion. Putting (171) into (170) we
find

(

−Mω2 +K
)

a = 0. (172)
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This homogeneous system of linear equations will have non-trivial solutionsa
only if the determinant of the coefficient matrix is zero:

det
(

−Mω2 +K
)

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

M11ω
2 −K11 M12ω

2 −K12 . . . M1nω
2 −K1n

M21ω
2 −K21 M22ω

2 −K22 . . . M2nω
2 −K2n

...
...

...
Mn1ω

2 −Kn1 Mn2ω
2 −Kn2 . . . Mnnω

2 −Knn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0.

(173)
This equation, which sometimes is called thesecular equation, for historical rea-
sons, will in general haven rootsω2

i , (i = 1, . . . , n).

Example 5: The double pendulum of examples 3 and 4 gave us

K =

(

g(m1 +m2)l1 0
0 gm2l2

)

, M =

(

(m1 +m2)l
2
1 m2l1l2

m2l1l2 m2l
2
2

)

so equation (173) becomes
∣

∣

∣

∣

∣

(m1 +m2)l
2
1ω

2 − g(m1 +m2)l1 m2l1l2ω
2

m2l1l2ω
2 m2l

2
2ω

2 − gm2l2

∣

∣

∣

∣

∣

= 0,

If we put l1 = l, l2 = αl, m1 = m, andm2 = βm, we find the roots

ω2
1,2 =

g

l

(1 + α)(1 + β)

2α

(

1±

√

1−
4α

(1 + α)2(1 + β)

)

and the square roots of these values are thus the two angular frequencies of the
double pendulum.End of example 5

Each rootω2
i can then be inserted back into equation (172) which then be-

comes
(

−Mω2
i +K

)

ai = 0. (174)

The determinant is now zero so there are solutions and, if theωi are different, one
can show that the components ofai can be taken asn minors (cofactors) of any
row of the determinantdet(−Mω2

i + K). If a solutionai has been found it is
easily seen that alsoλiai are solutions for arbitrary non-zero constantsλi. This
arbitrariness can be removed for example by arbitrarily choosing some value for
one of the non-zero components ofai. The result of the ansatz (171) is thusn
different solutions

ui(t) = ai cos(ωit+ φi), i = 1, . . . , n. (175)
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Thegeneral solutionto the linear problem (170) is then an arbitrary linear combi-
nation of these:

u(t) =
n
∑

i=1

ciai cos(ωit + φi). (176)

The2n constantsci andφi must be determined by the initial conditions.

20.1 Normal Modes

M is a real symmetric matrix1. It can therefore be diagonalized by an orthonormal
matrix (transformation)U (obeyingU−1 = Ũ, i.e. the inverse is equal to the
transpose). This means thatM = UDŨ whereD is a diagonal matrix. If we
defineD1/2 to be the diagonal matrix with the square roots of the elements of D
along the diagonal we have thatD = D1/2D1/2 and thus we get

M = UD1/2D1/2Ũ = UD1/21D1/2Ũ = UD1/2ŨUD1/2Ũ ≡ M1/2M1/2.
(177)

Here we have used that̃UU = 1 is the unit matrix. We have thus defined the
symmetric matrixM1/2 ≡ UD1/2Ũ. SinceM is positive definite, so isM1/2 and
the inverseM−1/2 therefore exists.

Consider the matrix equation (170). If we multiply it to the left byM−1/2 and
insert the unit matrix1 = M−1/2M1/2 to the right ofM andK we get

M−1/2MM−1/2M1/2ü+M−1/2KM−1/2M1/2u = M−1/20. (178)

If we now definew ≡ M1/2u andH ≡ M−1/2KM−1/2 we get

ẅ +Hw = 0. (179)

HereH is a real symmetric (constant) matrix. The equation has the formal solution

w(t) = exp(iH1/2t)w(0), (180)

where the exponential of the matrix is defined through the power series expansion.
SinceH is a real symmetric matrix it can (just asM above) be diagonalized by

an orthonormal transformationN such thatΩ2 ≡ NHÑ is a diagonal matrix. We
now multiply (179) to the left byN and insert the unit matrix1 = ÑN between
H andw. We get

Nẅ +NHÑNw = N0. (181)

1In this Section one must assume that the mass and stiffness matrices are such that all elements
have the same physical dimension. This is not always the case, but it is always possible to chose
to work with dimensionless quantities.
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If we now putQ ≡ Nw we find the simple form

Q̈ +Ω2Q = 0 (182)

for the equations of motion. Note thatQ = NM1/2u.
SinceΩ2 is diagonal this last matrix equation of motion is simply a set of

equations for then componentsQi of Q,

Q̈i + ω2
iQi = 0, i = 1, . . . , n. (183)

The coordinatesQi are callednormal coordinates. The motion of the system when
only one normal coordinate,Qi say, has time dependence is called theith normal
mode. Finally it is easy to see that equations of motion of the form(183) must
arise from a Lagrangian

L(Q, Q̇) =
1

2
(Q̇T Q̇−QTΩ2Q) =

n
∑

i=1

1

2
(Q̇2

i − ω2
iQ

2
i ). (184)

Note that first a rescaling has made the mass matrix a unit matrix, and then the
resulting stiffness matrix has been diagonalized.

21 Impact Problems

A force is said to be impulsive if it large but acts for a very short time interval
τ (betweenti andtf = ti + τ ) in such a way that the change in position, of the
system, during this interval is negligible,qa(ti) ≈ qa(tf) = qa(ti + τ), but the
accelerations are so large that the velocities have changedsignificantly q̇a(ti) 6=
q̇a(tf ). The approximation thatqa(ti) = qa(tf), or, equivalentlyτ → 0, is called
the impactapproximation.

21.1 Impact Problems with Vector Methods

Assume that the impulsive forcesF i

j act on a rigid body at pointsrj relative to its
center of mass,G. Letp be the momentum of the body (p = mvG). Then

ṗ = F e +
∑

j

F i

j, (185)

whereF e is the total ordinary (non-impulsive) external force. If weintegrate this
with respect to time betweenti andtf = ti + τ , we find

p(tf )− p(ti) =
∫ tf

ti
F e(t) dt+

∑

j

∫ tf

ti
F i

j(t) dt. (186)
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The first integral gives
∫ ti+τ

ti
F e(t) dt ≈ F e(ti)τ (187)

and thus goes to zero whenτ → 0, since one can assume that the ordinary forces
vary slowly with time. The impact forces on the other hand arelarge during the
impact interval and give finite integrals

∫ ti+τ

ti
F i

j(t) dt ≡ Ij . (188)

In the limit τ → 0 we must assume thatF i

j(ti +
1

2
τ) → ∞ so that the integral

remains non-zero. The vectorsIj are theimpulsesof the impact forcesF i
j. In

summary we find that

p(tf )− p(ti) = m[vG(tf )− vG(ti)] =
∑

j

Ij, (189)

and the total impulse,I =
∑

j Ij , divided by the total mass,m,

vG(tf )− vG(ti) = I/m, (190)

gives the change in center of mass velocity.
Now consider the law of angular momentum

L̇ = M e +
∑

j

rj × F i
j (191)

where the center of mass of the body is base point. Time integration of this gives

L(tf )− L(ti) =
∑

j

rj × Ij, (192)

since, again we can assume thatM e(t) varies slowly with time, and that the posi-
tions,rj, change negligibly during impact. We call the vectors,

Hj ≡ rj × Ij , (193)

theangular impulsesandH =
∑

j Hj the total angular impulse, so that

L(tf)− L(ti) = H, (194)

SinceL = Ĵω, whereĴ is the inertia tensor, we find that

ω(tf )− ω(ti) = Ĵ−1H, (195)

gives the change of angular velocity,ω, caused by the impact.
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21.2 Impact Problems with Lagrange’s Method

Recall the definition of generalized force,~F • ~τa ≡ Qa of equation (98). If the
forces of~F can be divided into ordinary~F e and impulsive~F i, so that~F = ~F e+ ~F i,
we find that so can the generalized forces

Qa = Qe
a +Qi

a. (196)

If the Lagrange equations (99) are now integrated with respect to time one gets
∫ ti+τ

ti

(

d

dt

∂T

∂q̇a

)

dt−
∫ ti+τ

ti

(

∂T

∂qa

)

dt =
∫ ti+τ

ti
Qe

a dt +
∫ ti+τ

ti
Qi

a dt. (197)

Using the definition (134) of generalized momentum,pa, the first integral on the
left hand side gives

∫ ti+τ

ti

(

dpa
dt

)

dt = pa(tf )− pa(ti). (198)

The integrands of the second and third integrals of (197) arefinite during impact
so in the limitτ → 0 they give zero. The generalized impact forces, on the other
hand, must be assumed to become infinite during impact and thus give finite non-
zero results,

∫ ti+τ

ti
Qi

a dt ≡ Ia (199)

which we callgeneralized impulses. We thus find that

pa(tf)− pa(ti) = Ia, a = 1, . . . , n (200)

is the impact version of the Lagrange equations.
How does one find the generalized impulses? Assume as above that (external)

impulsive forcesF i
j act on the system at pointsrj. We then get that

Qi
a =

~F i • ~τa =
∑

j

F i

j ·
∂rj(q)

∂qa
. (201)

Time integration of this over the duration of the impact gives

Ia =
∫ tf

ti





∑

j

F i
j ·

∂rj(q)

∂qa



 dt. (202)

If we now use the fact that the positionsrj , and their derivatives with respect to
qa, do not change during impact, the definition (188) gives us

Ia =
∑

j

Ij ·
∂rj(q)

∂qa
, (203)

for the generalized impulses,Ia, in terms of the impulse vectors,Ij .
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22 Passing to the Continuum

Consider a collection ofN particles that can move along a line and which are
connected with identical springs of stiffness (force constant) k. Let ub be the
displacement of thebth particle from its equilibrium position. If the particleshave
massm the Lagrangian will be

L(u, u̇) =
1

2

N
∑

b=1

[mu̇2
b − k(ub+1 − ub)

2]. (204)

Let a be the separation between equilibrium positions. We can then write

L(u, u̇) =
N
∑

b=1

a
1

2

[

m

a
u̇2
b − ka

(

ub+1 − ub

a

)2
]

≡
N
∑

b=1

aLb. (205)

HereLb is the linear Lagrangian density, i.e. the Lagrangian per unit length.
To pass to a continuous mechanical system with an infinity of degrees of free-

dom we consider the limit whena goes to zero. We thus make the following
replacements

a → dx,
m

a
→ λ = linear mass density, (206)

ub+1 − ub

a
→

∂u

∂x
, ka → Y = Young’s modulus. (207)

This gives us

L =
∫

L dx, (208)

where

L =
1

2



λu̇2 − Y

(

∂u

∂x

)2


 . (209)

We note that the generalized coordinatesub have become a function (or field) of
the continuous parametersx andt. In the continuum Lagrangian formalism we
still treatu(x, t) as a generalized ‘coordinate’.

We now consider the variational principle for this Lagrangian, as we did for
the discrete case in subsection 18.1. We thus consider

δ
∫ t2

t1
L dt = δ

∫ t2

t1
dt
∫

dxL

(

u, u̇,
∂u

∂x

)

. (210)

The variationδu of u(x, t) is assumed to vanish att1 andt2 and also at the bound-
aries of the x-integration. We now do the variation and use the same trick as in
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subsection 18.1. This gives

δ
∫ t2

t1
Ldt =

∫ t2

t1
dt
∫

dx

{

∂L

∂u
δu+

∂L

∂(∂u/∂x)
δ

(

∂u

∂x

)

+
∂L

∂(∂u/∂t)
δ

(

∂u

∂t

)}

(211)

=
∫ t2

t1
dt
∫

dx

{

∂L

∂u
δu−

∂

∂x

(

∂L

∂(∂u/∂x)

)

δu−
∂

∂t

(

∂L

∂(∂u/∂t)

)

δu

}

(212)

and the integrations by part in the second expression are justified by the fact that
the variations vanish at the limits of the integration intervals. If this variation is to
vanish for arbitraryδu we must have

∂

∂x

(

∂L

∂(∂u/∂x)

)

+
∂

∂t

(

∂L

∂(∂u/∂t)

)

−
∂L

∂u
= 0. (213)

This is the Euler-Lagrange equation for the case of a fieldu(x, t), i.e. a continuum
of degrees of freedom. For the case of our Lagrange density (209) equation (213)
becomes

Y
∂2u

∂x2
− λ

∂2u

∂t2
= 0. (214)

This should be recognized as the wave equation for the propagation of a distur-
bance with velocity

√

Y/λ.
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