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1 Introduction

This compendium is the result of a merger in 2006 of two sihdexts by me.

Input form Arne Nordmark 2013 has resulted in a minor revisidhe first part

derives and discusses Lagrange’s method for a single lgaf8ections 2 — 11).
After that the general theory for systems of particles (irtipalar rigid bodies)

is presented. These two parts have simply been concatesatdebre is some
redundancy.

Joseph Louis Lagrange (1763-1813) discovered a methodnidieds it possi-
ble to simply derive the equations of motion for systems wihstraintsi.e. sys-
tems of particles and rigid bodies that are connected irouanvays. One obtains
the equations of motion using Lagrange’s method by diffeaéng energy ex-
pressions. One of its main advantages is that one can usegylmoordinates as
long as they fully describe the configuration of the systamthis way one easily
handles constraints that can be expressed by demandingetftain coordinates
do not vary,i.e. have fixed values. Such constraints are calletbnomic La-
grange’s method then gives equations of motion for the reimgiunconstrained
coordinates.

Normally Lagrange’s method is not needed for problems wisimgle parti-
cle. For such problems its strength lies mainly on a funddaadésvel. Practically
the method is best suited for problems involvimgchanismdinked systems of
rigid bodies. However, when deriving Lagrange’s methodsioarbitrary system
of particles, it is easy to loose orientation among all treensingly, uncount-
able summations and differentiations, that are done. Towereve will derive the
method here for firsa single particle Later we show that arv-particle system
can be viewed mathematically as a single particle in a spabe3w dimensions.
Most of the single particle definitions and derivations chent be reused with
small adjustments.

2 Generalized coordinates and constraints

The position of a particle in three dimensional space carmpbeiied by means of
the values of three coordinates,

41,42, 43, (1)

that are suitably defined. Examples are Cartesian, or rgglamn coordinates
(x,y, 2), cylindrical coordinatesy ¢, z) and spherical coordinates, (v, §). The
position vectory, of the particle can then be viewed as a function of these-coor
dinates,

T =71(q1, G2, q3)- (2)

2



Such arbitrary coordinates are callgeheralized coordinates

Three coordinates are not always needed to determine tlteopasf the par-
ticle. For a simple pendulum, for example, all you need isiglsiangle ¢), for a
particle in a horizontal plane you need two coordinateg), etc. One then says
that there arbolonomic constrainteeducing the mobility of the particle. The po-
sition vector can the be written a$q; ), or asr(qi, ¢2), depending on whether one
or two coordinates are needed. The numbenf coordinates required is called
the number of oflegrees-of-freedonor a single particle then this number can
be zero, one, two, or three & 0, 1, 2, or, 3). We will thus write

rZr(levqn) ZT(Q) (3)

for the position vector; by just we mean collectively alh generalized coordi-
nates of the problem.
If sisthenumber of constrainta/e have that,

n=3-—s. (4)

l.e.the number of degrees-of-freedonis three minus the number of constraints
s. Here three is the dimension of space and a constraint i diyean equation
that limits the mobility of the particle. I&.g.the particle must stay at the distance
R from the origin one has,

7| =R. (5)

This equation is a constraint and if it is obeyed there rentam degrees-of-
freedom — the particle can move on the surface of a spherelofs&. In general
the constraintsare given bys expressions, or equations,

fk(’l"):O, ]{7:1,...,8, (6)

that the position vectar of the particle must obey.

3 Curves, surfaces and tangent vectors

It is intuitively important to understand that the expressi(q;) can be under-
stood as the parametric equation afiave (with ¢; as parameter). This curve is
a one-dimensional "manifold” on which the particle can moxele obeying the
constraints, when = 2. Note that aangent vectoof this curve can be obtained
through differentiation,

or

= 90 7)
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Similarly the expressiom(q;, ¢2) gives parametric equations forsarface The
surface is the two dimensional manifold that the particle oove on, in ac-
cordance with the constraint (= 1). A surface has two (linearly independent)

tangent vectors,
or or

= 37 To= -,

Iq Iq2
see Figure 1. If there are no constraints one can i@y = 7(q1,¢2,q3) as a
parametrization of three dimensional space., and the woreling three tangent
vectors,

(8)

T1

Ti(q) = g;, i=1,2,3, ©)

represent the three different directions in which one mavieen one increases
the coordinate;, while keeping the two others constant.

Figure 1:A particle, m, moves on a fixed surface= r(q, ¢2). The two vectors|, 7o
are tangent vectors to the surface at the pgint, ¢2). The trajectory of the particle, the
curver(t) = r(qi(t), q2(t)), is is also indicated. The velocity vectoris tangent to this
curve, and for time independent constraints. {ixed surfaces; = 0) the velocity vector
lies in the plane spanned by, 72. According to (12) we here hawe= ¢171 + ¢o72.



4 Generalized velocities

One gets the velocity vector of a particle by time differatitig the position vector

r = r(q,t). The position vector will change in time because the gerredl
coordinates;; = ¢;(t) change their values as the particle alters its position. The
position vector may, however, also depend explicitly oretimit will do so if the
constraints are time dependent. The curves or surfacesddiinthe constraint
equations will then move in space independently of the garthotion. We can
thus write the velocity vector in the form,

_dr_ "8_1“% or

v=— = —.
dt = 0g; dt ' Ot

(10)
Here the last term is the contribution due to time dependamstcaints. The time
derivatives of the generalized coordinatgs,= dg;/dt, are calledgeneralized
velocities If we introduce the notation,

or
Tt(q7 t) = Eu

and use the definition of tangent vectors in the equations (%), we can write,

(11)

V=Y ¢T;+ T (12)

j=1
Note that tangent vectors in general depend,and, in the time dependent con-
straint case, also on timeso that,

T, = Ti(q,1). (13)

We can thus write our velocity vector,
v(Qvat) = ZQjTj((Lt) +Tt(Q7t)‘ (14)
j=1

It is important to notice that its dependence ondkeeralized velocitieis linear.
This linearity implies that the derivative,

ov

=Ti(q,t), 15
is independent of the generalized velocitiesNote that the two results (9) and
(15), withv = 7, together give,

or  or -

dq; N d4i -
I.e.two ways of expressing the tangent vectors. Formally theesgion says that
it is allowed to "cancel the dots”.

(16)



5 The equations of motion

The equations of motion for one patrticle are given by
p=F, (17)

where,p = mw. This vector equation has normally three components alaitg s
able basis vectors. But if we have constraints we only resld one equation of
motion per generalized coordinate The number of equations of motion needed
is thus equal to the number of degrees-of-freedom

Once the choice of suitable generalized coordingtéas been made the best
basis vectors are in general the tangent vectors$f one then projects the vector
equation (17) on the tangent vectors one getsequations of motion that are
adapted to thex generalized coordinates. These projected equations adbmot
can be written,

p-1T,i=F- -1, 1=1,...,n, (18)

by means of the scalar product.

Notice that this is analogous to using the components of@aten along, so
called, "moving” basis vectors. kg.cylindrical coordinates these a#g(), e, ()
and the procedure gives the components of the equationstodmadong the ra-
dial and the transverse (or azimuthal) directions. Here sgeime the constraint
z = 0. Note however, that the tangent vectetsas defined above, not necessarily
are unit vectors; this is clearly irrelevant for our purpmse

6 Lagrange’s method

To get explicit equations of motion using Eqg. (18) can be cliffi Lagrange
discovered an elegant short cut to these projected egsatiomotion. One can
the left hand sides by differentiating the kinetic energg ispecific way. We will

now show that,
) d [oT oT

whereT is the kinetic energy. We do this by studying the two termshefright
hand side one at the time.
The kinetic energy can be written in the form,

T = %mfvn) (20)
and therefore we get,
aT—lmﬁv-v—lm 8rv-vjtv-a/u —mv-av— ST (21)
9, 204 2" \og ag.) ~ " g P



where we have usegh = mwv and Eq. (15) in the last step. If we now take the
time derivative of this we get,

4 (T —im'v T{_md_'v T; + mv dr. _, T; + dri (22)
dt \9g; )  dt o de a PRy

but,

dTi:iﬁrzad_r:&v (23)
since one can interchange the order of the two differeptiati Summarizing, we
have obtained,

. 24
at \ 94, 94 24
If we can now get rid of the last term we have something thdtesprojection of
ponT,.

In order to arrive at Eq. (19) we now calculate the second temnthe right
hand side. We get,

d <8T> ) ov
—_— :p~7’l+p.

or 1 0 1 <8'v 8'0) e ov ov (25)

8Qi:§m3%v~v:§m an'JU—i_v‘@(Ji 8Qi:p~8—%‘7

and we immediately see that if this is subtracted from (24pe#p - ;. This is
what we wanted to show.

7 Generalized forces

We have now shown that the equations of motion, accordingi8pdnd (19), can

be written,
d (0T oT

If we now define thaeyeneralized forces

Qi=F-T, (27)

we get the following expression for teequations of motion:

d (or oT .
AR -

This is the mosgeneral formof Lagrange’s equations.




How are we to understand the generalized forces? Recallvthate assuming
that the position of the particle can be written= r(q,t). A small displacement
of the position is then given by:

dr =) a—rdqj + 8—:dt =Y 7;dg; + Tdt. (29)

j=1 94 j=1

The work done by the force on the particle is thus,
dW =F -dr =F - (Z T;dg; + ‘rtdt) . (30)
j=1
By means of (27), and the notation,
Qt =F- T, (31)

we now find that,

j=1
We thus find that thgeneralized forcé); has the property that,

dW; = Q;dg; (33)

is theworkthat is done on the particledf is increased bylg; while the remaining
¢:S, and time, are held constant.

8 Conservative forces
If the work 17/, at least locally, is a function af and¢, and this function is,

W =W(g.t), (34)
then, by definition, thelifferentialof 1V is,

oW oW
aw =3 2lag; + St 35
2 g, Y+ (39)

If we compare this expression with (32) and gt = dIV/, then we can imme-
diately identify the coefficients in front of coordinatefdifentials and get that,

oW
B oq;

Qi (36)
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Note carefully that this igot truein the general case. The infinitesimal watR’
is normally not a differential of a function @fandt. Instead it may also depend,
for example, on the velocities.

If the force on the particle isonservativehe work on the particle has the
property that it is the negative of the potential energy fiam;

V(g t) = —/r(q’t) F-dr. 37)

To
Note that the (line or curve)integral here must be independtthe path of in-
tegration between an arbitrary start poigtand the end poink(q, t) in order to
define a function of the end point coordinates only. Whenighise case one finds
that the work is given by
W(g,t) =—=V(g.1). (38)

If we now compare with Eq. (36) we find that tgeneralized force

B oV
dq; '

Qi = (39)

For conservativdorces therefore we find that the generalized faifgds minus
the partial derivative of the potential energy with respect;.

9 The Lagrange function

In the conservative case we now have that the equations adbm#8) can be

written,

d [oT oT ov

LI (E) -
If we form the new function,

L=L(g,q) =T(q,9) — V() (41)
the, so calledLagrange functionor the Lagrangian, these equations take the
form,

d (0L oL ,
E(@q'i)_(@qi)_o i=1,...,n. (42)

This elegant form of the equations of motion, often refertedas theEuler-
Lagrange equationscan thus be used when we are dealing with conservative
forces.



The Euler-Lagrange equations can also be obtained in a rfoeaizlly differ-
ent way. They turn out to be the equations that determinedhgisn ¢(t) that
minimizes theaction,

Sla(t)] = [ Lig.q) (43)

a functional of the path(t) (i.e.a mapping from a path to a real number). Among
all possible pathg(t), the one that the system actually follows is the one that
minimizes the action functional. This is called thenciple of least action The
variation of the action at the correct path must be z&fo= 0. This is presented

in more detail in Sec. 18.1.

10 Velocity dependent forces

In the previous section we showed that it is possible to thioe a Lagrange func-
tion L(q, ¢) when the forces are conservative with potential enéfgy). Should
the forces be velocity dependent this simple recipe wilmatk. Known cases of
velocity dependent forces are therentz forceon a charged particle in a magnetic
field, B,

F, = vxB, (44)
C

(Gaussian units; is the speed of light) and the fictitio@oriolis force
Fo=2mv X w, (45)

that acts on a particle according to an observer using angte¢ference frame,
rotating with angular velocity vectav. We now show how such forces can be
included in the Lagrangian formalism.

When the generalized fora@; is the negative partial derivative of a scalar
function (a potential energy) then we can introduce a Laggdanction (41) and
get the equations of motion on the form (42). But the asswmg, = —0V/dg;
is clearly not the most general possible. If we start fromlthgrange equations
in the general form (28) we see that, generalized forces@fotim,

d [oU ou
0 () (). “
allow equations of motion on the form (42) using a Lagrangefion defined by
L(g,4) = T(q,9) — U(g, 9). (47)

The functionU(q, ¢) is then called thevork function One notes that the conser-
vative case, with a potential energy functibh is obtained for the special case
thatU does not depend on the generalized velocities. Let us nosiderthe two
main cases of interest for this formalism: a charged partichn electromagnetic
field, and a particle moving in an accelerated referencedram
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10.1 Particle in electromagnetic field

A patrticle with electric charge that moves under the influence of external electric
and magnetic fields, can be characterized by the Lagrangé&duan

L(r,7,t) = %mi“Q —e (<I>(r, t) — %1« : A(r,t)) : (48)

Here,®, is the electric potential and4, the so called vector potential. These are
defined so that the electri#&;, and magneticB, fields are obtained by differenti-
ations,

E = Vo - (49)
B = VxA. (50)

Here,V = a%ex + a%ey + %ez, is the "nabla” or del-operator. The work function
of the Lagrangianl, = T' — U, is in this case is given by,

Ulr,it) = e <<I>(r,t) _ %7’4 - A(r,t)) | (51)
After some calculation one gets for the x-component of theaggns of motion,
dt \ oz ox dt \ 0z or
the result,
mi = eBy + - (yB. — :B,). (53)
C

Adding this, and the corresponding analogguand z-components, vectorially,
gives the vector equation of motion,

mit = eE + S x B. (54)
C

This is the equation of motion for a charged particle movimgn electromagnetic
field.

10.2 Particle in accelerated reference system

Assume that we chose to study the motion of a particle in aelected reference
frame. We select a coordinate system at rest in this framis. Shistem may then
have a translational acceleratiaprelative to an inertial frame. It may also rotate
relative to the inertial frame with an angular velocity (i@ w. We select our
origin in the accelerated coordinate system so that thenoisgon the rotation
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axis. In elementary mechanics one then derives the eqgatiomotion, valid in
this accelerated system, by means of Coriolis’ theorem.
One then finds that the translational acceleration givedaois: fictitious force,

Fa = —may, (55)

which is of the same character as the acceleration due taygrahis force thus
has potential energy,

Vo(r) =mag - 7. (56)
The rotation requires three fictitious forces
F, = —mwx (wxr)=mwr,, (57)
F, = mrxw, (58)
Fo = 2muv x w. (59)

The first of these, theentrifugal force is directed radially outwards from the
rotation axis. The centrifugal force has a potential energy

x4@):-énmuxrf::—%mw%i (60)

The second of these forces only appear if the angular vglmaitot constant. The
third is the, non-workingCoriolis force a fictitious force that is perpendicular to
the relative velocity.

The equations of motion for a particle in such an acceleraystem can be
obtained from the Lagrange function,

L(r,7,t) = %mfr2 —U(r,7,t), (61)
where the work functiod/ is given by,
Ur,r,t) =V(rt) + Va(r,t) + Vi(r,t) —mi - (w x 1), (62)

or, more explicitly,
1
Ulr,r,t) =V(r,t) +may(t) - r — im[w(t) x r> —mr - [w(t) xr]. (63)
HereV (r,t) is the potential energy of the real (non-fictitious) forceattact on
the particle even when viewed from an inertial referencené&a
The equations of motion corresponding to this Lagrangian ar

mr=—-VV +F,+F,+F,+ F¢. (64)

Here it is assumed that the positienthe velocityv = 7, and the acceleration
7, are all measured relative (by an observer fixed in) the acatdd system. It
is also assumed that the origin of the relative positionafectis on the rotation
axis.

12



11 Generalized quantities

The following generalized quantities are introduced inltagrange formalism:
e Generalized coordinatesy;

e Generalized velocities: ¢; = ‘ffg

o Generalized forces: Q= -5 ,0r Qi=§ (gqU) _ (8U_)

oL

e Generalized momenta: p; = o

The expressions for the generalized forces assume tha #inerno dissipative
forces acting. For more general cases one mustyse F' - r;.

Only the generalized momentan the list above, have not been introduced
before. Using them Lagrange’s equations, in the non-casisgpcase (42), can be

written,
oL

dq;’
It may happen that a certain generalized coordipaties not appear in the La-
grange function, although the corresponding generalizality ¢; does appear.
In that case the partial derivativel./0q; = 0, and from Eq. (65) there then fol-
lows that the corresponding generalized momentum is consia= const. The
coordinatey; is then said to beyclic, andp; is aconstant of the motian
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12 Introduction — Lagrange’s method for systems

Except for of certain advanced variational principles &ame no deeper principles
in mechanics than those given by Newton’s laws. Lagranggistons, that we
are going, to present here, are therefore best seen as naitedmnonsequences
of these laws. Some textbooks emphasize that Lagrangesieqs arise when
Newton’s laws are transformed to arbitrary curvilinear rctioates and this is at
least part of the truth.

The intellectually most economic point of view is that Lagga’s equations
arise by projection of Newton’s equations,(= Fy, k = 1,..., K) from some
original unconstrained configuration spaéddtdimensional forK particles) to
a lower dimensional configuration space consistent with(bHaonomic) con-
straints. This space can be seen as a surface embedded rigthalspace.

Here we start with a discussion about constraints and degre&eedom.
We then introduce a notation for treating systems of pagioh a compact way.
Normally texts on analytical mechanics are full of sums oygrand z as well as
sums over the particles of a system. With suitable vectaatrast most of these
can be avoided.

13 Degrees of Freedom, Constraints and Rigidity
The number oflegrees of freedomf a
system of particles= {{my, rc}; k =1,2,..., K}. (66)

is the number of coordinates needed to completely spedifgasition in space.
An arrangement which forces particles to behave in someapgay, and thus
reduces the degrees of freedom is callecbastraint These concepts are best
illustrated by some examples.

A particle which can move freely in space hhseedegrees of freedom since
its position is completely specified by, for example, itst€sian coordinates =
(x,y,z). A particle that is restricted to move on a two dimensionafasie has
two degrees of freedom. There is themeconstraint, namely the equation for the
surfacef(r) = 0. Possible coordinates;, ¢», are then the two parameters in a
parameter expression

r=7(q,q) = (2(q, @), y(q, %), 2(q1, ¢2)) (67)

for the surface. A particle restricted to move oouave

r=r(q) = (z(q),y(qa) z(q1)), (68)
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hasonedegree of freedom. There are th&ro constraints since any curve can be
seen as the line of intersection between two surfge@s = 0, f(r) = 0.

A system of two particles that can move freely Issdegrees of freedom.
Should they both be restricted to move on some surface themsysill have only
four degrees of freedom, two for each patrticle. If the two paticdre connected
by a stiff rod of negligible mass one has the constraint

|ry — 19| = 119 = const. (69)

which fixes the distance between the particles. One can atsthss as restricting
the second particle to move on a spherical surface of radiuaround patrticle
one. This system hde degrees of freedom (six for two particles minus one for
the constraint). As coordinates one might choose the theg§ian coordinates
of particle one, plus two angles giving the direction to jgdettwo from particle
one.

Consider a stiff, light straight rod witly particles fixed along it so that they all
are restricted to lie along a straight line with fixed dises\cThis system also has
fivedegrees of freedom since it is still enough to know the pasitif one particle
(3 coordinates) plus the direction of the rod (2 angles) teoto completely fix
the positions of all particles. This is clearly independsrihe number of particles
so we conclude that any matter distribution where the ma#terbe thought of as
being fixed along atraight linehasfive degrees of freedom.

Consider again the two particles connected by a stiff rod. usenow add a
third particle by connecting it to the two first with two morgHt stiff rods so that
the system of three patrticles is restricted to make up agiesof fixed shape. How
many degrees of freedom does this system have? The first tiolgsneed the
five coordinates found above, so what we need to know is howyrhather are
required to fix the position of the third particle. The geonuesituation is such
that the third particle is restricted to move on a circle acban axis defined by
the first two. All we need to know isneangle to fix its position along this circle.
This gives us a total ofix degrees of freedom. We can arrive at this number as
follows: Three particles would hawe3 = 9 degrees of freedom if they where free
to move. The three rods that connect them, however, givéaigeee constraints

T12 = C1, 113 = C2, T23 = C3, (70)

fixing the inter-particle distances to be constants. Theareimg degrees of free-
dom are now — 3 = 6.

Imagine now that we add a fourth particle to the rigid triangle built above
in such a way that this fourth particle has fixed distancebéahree particles in
the triangle. In this way we get a four particle system withipkes at the corners
of arigid tetrahedron. Since this means that we get three wanstraints

T14 = C4, T24 = C5, T34 = Cg, (71)

15



all the three new degrees of freedom of the new particle ane;gbe system still
hassix degrees of freedom. If the position of the first three are fikedposition
of the fourth will also be so.

If we continue to add patrticles to the system above in suchyatheat each
new particle has three distances, to already present leartfcxed we thus do not
add to the degrees of freedom. One realizes that the resudtyistem in which all
inter-particle distances are constant

|r; —r;| =r;; =constants (i,j =1,...,N). (72)

Such a system is said to bigid. In general a rigid system (or body) of more
than two particles hasix degrees of freedom, the exception is one of linear shape
which has five as we saw above.

The conclusion that a rigid system has six degrees of freadandependent
of the number of particles as is seen by the following count:

particle number: 1 coordinates: 3 constraints: 0
particle number: 2 coordinates: 3 constraints: 1
particle number: 3 coordinates: 3 constraints: 2
particle number: 4 coordinates: 3 constraints: 3
particle number: 5 coordinates: 3 constraints: 3 (73)
particle number: N coordinates: 3 constraints: 3

In total: coordinates: 3N constraints: 3N-6

Independently of the value 6f we thus get
[3N coordinate$ — [(3NV — 6) constrainty = 6 degrees of freedom. (74)

This is still valid in the limitN' — oo so a continuunp(r) can also be thought of
as rigid.

Should the motion of a rigid body be constrained to a planectiwedinates
needed to specify its position are two coordinates fixingespoint of the body in
the plane plus one angle fixing the direction of a line in thdybaith respect to
some reference direction in the plane. The planar (or tweedsional) motion of
the rigid body thus hathreedegrees of freedom. The results of the findings about
degrees of freedom in this section are summarized in table 1.

In general systems treated in analytical mechanics candreasesystems of
particles and rigid bodies. This means that they can be \des& -particle sys-
tems with some numbeN,, of constraintsf; (ry, 72, ..., 7x) =0, fo(r1, 79, ..., TK) =
0,...,fn.(r1,72,...,7x) = 0. These constraints together define a surface in the
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System Dimension| Translational +| Rotational =| Degrees of freedom
Particle 3
N Particles
N Particles
N Particles
Rigid body
Rigid body
Rigid body
Rigid line

Rigid line 2

o

W RFRIN W RN W

I\)OOI—‘I\JOOZEJOZOOO

RN o|lk|lwololo
wmpwnggw

Table 1:Summary of results about the number of degrees of freedorarifus systems.
Translational degrees of freedom are those that can beildeddry Cartesian coordinates
while rotational are described by angles and relate to tiines rather than position.

3K -dimensional configuration space of the system on which yis¢em is al-
lowed to move. This surface has dimensioa- 3K — N, the number of degrees
of freedom of the system. We will assume that we can paramettre surface
by introducingn generalized coordinates,, ¢s, . . . , ¢, SO that it is given by

(ri,ro, .o ri) = (ri(@n, - @) 2(@1s -5 Gn)s - TR(G1s -, Gn)) - (75)

This is thus an expression for ardimensional surface embedded is/a-dimensional
space.

14 Notation and Background

We shall assume that the mechanical system of interest cabtamed by adding
constraints to an underlying unconstraing€eparticle system. Let the masses of
these particles beu, their position vectors in some coordinate sysigmand the
(total) forces on then¥,, wherek = 1,..., K. To simplify the expressions in
the rest of this article we introduce the following notation

T U1 miv; Dy F,

o R I B T B I T
i Vi MKV K Pr Fy
(76)
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Then, cIearIy,V :ﬁ, and with

mi1 0 0
R 0 mol .- 0
M = _ _ . , (77)
0 0 - mgl

wherel denotes thé x 3 unit matrix andO the3 x 3 zero matrix, we can write

P=MV. (78)
Using this notation Newton’s equations of motion for thetegscan be written
P=F. (79)

Following Lesser (1992) we introduce a scalar product on3tiedimensional
unconstrained configuration space as the sum ofih@dinary scalar products.
We will denote this scalar product Byso that

K
AeB=Y ay by (80)
k=1

The kinetic energy can, for example, be written in the corhfam

1o o 1= =
T=_MVeV=C_FPeV (81)

N | —

when this scalar product is used.

We now assume that the holonomic constraints of the systentaken into
account by giving a parametrizatigh= ¢y, ..., ¢, of ann-dimensional surface
embedded in the unconstrained configuration space as wasdex above equa-
tion (75). With the present notation that equation can béevri

rl(Q? t)
R=R(gt)= : . (82)

rK(Qv t)

For time-dependent constraints one gets one such surfagadh value of the
timet. If the constraints are time-independent (scleronomitesysthe time will
not appear in the parametrization. This surface is thegiriaheous) configuration
space of the system. Since a single parametrization caimngeneral, cover the
entire configuration space, the theory given here is local.

18



15 Projection onto Coordinate Tangent Vectors

A constraint represents knowledge about the motion of tis¢esy that one has
prior to solving the equations of motion. Since one alreadgvwks that the mo-
tion will take place on the embedded surface (82) impliedhgyttolonomic con-
straints, there is no need to solve@&l’ equations of motion (79). It is enough to
solve the equations that are the components of the vectatiequ79) along the
tangent vectors of the surface (82).

One obtains: linearly independent tangent vectors of the (instantageoan-
figuration space (surface) by taking the partial derivatioéthe position vector
(82) with respect to the generalized coordinates

Ta(q, ):qua, a=1,...,n. (83)

The projected equations of motion that will be of interestthius

P(4,q,t) o Tul(q,t) = F(d, q,t) o Talg,t)  a=1,....n (84)

since these describe the motion along directions allowetthé&yonstraints. The

ideas involved here are not really more advanced than treestwhen Newton’s

equations are projected onto so called moving basis veats@ciated with polar

coordinates. Yet these equations are, in fact, the (Eulagyange equations as
we will show below. One notes that, even if there are no camds, the procedure
is useful just for changing coordinates.

16 Lagrange’s Equations

We denote the partial time derivative of the position vebipr

Ala.t) = 08 5)

The total time derivativel/d¢, sometimes denoted simply by an over-dot, should
be thought of as the operator

d (. 0 ) )
E: <Qa8qa+Qaa ) 8t (86)

a=1
when it acts on a function of the independent varialgles andt. Hereq, =
dg./dt are the so calledieneralized velocities The 3K -dimensional velocity
vector,V = dR/dt, is now given by

Vg, q,t an To(g, t) + Tilg, t). (87)
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The generalized velocities, which are regarded as indepgndriables in the
Lagrange formalism, can thus be seen as coordinates inityetpace; when they
vary the vectort/ sweeps over an-dimensional hyperplane. For the case of a
scleronomic system the vectgris a null vector €, = 0) and this hyperplane can
be identified with the tangent plane of the configurationawef(82).

In terms of the independent variablgsj, andt we can now write the kinetic
energy,l’ = LMV ¢ V/, as follows

n n 1

T(q,q,t Z > 59a0(a:t) dadis + Z aa(g,t) ga + b(g, t) (88)

a=1b=1 a=1

where we have introduced
gab(Qat) = Mﬁl.ﬁh (89)
a,(q,t) = M7, o7, (90)
1 -

b(g,t) = §Mﬁoﬁ. (91)

In the scleronomic case only the first term appears and tledi€ienergy is purely
quadratic in the generalized velocities. One notes thatiéfi@ition (89) implies
Symmetry:ga, = gpa-
We now proceed to differentiate the kinetic energy to findraage’s equa-

tions. We first note that . .

oV OR

=7 = 2

9da " Dqa (92)
according to (87) and (83). This is sometimes referred tdvasdancelation of
the dots’. Using this one finds that

oT Ol - - OV = .
"MV e Pe =Pe—=PeT, = p,. 93
e 0Ga 2 V= 4a * 0qa °T P (93)

The quantitieg, are thegeneralized momentnd the above equation shows that
these are projections of tBé(-dimensional momentum vectéronto the tangent
vectorT,. If we now take the total time derivative of this we get

dor d,5 _\ dP _ - d7,
Ea—%—&(P.Ta)—E.Ta—FP‘E. (94)
If we differentiatel” with respect tgy, we find
or 9 1. .9V
"MV eV =Pe—. 95
940 94,2 * * O (93)



We now form the difference

dor or 4P, o (d?a @)

—— — = —eo7,+Pe

dt 9¢, 0q, dt (96)

and note that the vector

(dfa W) :<£i_ 0 i)ﬁza (97)

at 04, dt 0q, 0Oq,dt

is the null vector since the differential operators comn{gee equation (86)). If
one now makes the natural definition that the projection ef3th-dimensional
force vectorF’ onto the tangent vectot,,

%.a:ﬁ.az@a, (98)
is thegeneralized forcé), one finally ends up with
dor or
- = =1,...
dt 8qa 8qa Qa7 a 9 7n (99)

I.e. the(Euler-) Lagrange equationis one of their traditional forms. These are
thus simply the projected Newton equations (84).

17 Generalized Forces and the Conservative Case

It should be clear that the definition of generalized fa@cein Eq. (98),

K

=3 &rk
Qa:F.?a:ZFk' )
k=1 9a

(100)

in practice means that a number of forcgs vanish from the problem. They
vanish either becausg is perpendicular to the tangent vectors, or because the
forces in the sum implied by the scalar products occur pagwvithe opposite
sign but equabr,/dq,. The former case is related to normal forces, the latter
to Newton'’s third law of action and reaction. We now discus®e properties of
generalized forces that do not vanish.

The infinitesimal workd#/, done when d-particle system is displaced by
dR = (dry,dry, ..., drg)T (the superscripf” here means matrix transposition
so thatd K denotes a column matrix as usual) can be written

K
AW = FedR=Y_Fy-dry. (101)

k=1
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There is then gotential energyV, for the system if the (negative) work done

when going from some poitit, = (r1(0), 72(0), ..., rx(0))” to some final point
R,ie. )
—. R — —
VIR =— [. FedR (102)
Ry

is independent of the path frof, to . One can show that this will, in general,
be true if the individual forces on th& particles are conservative. One then has
that the force on particlg is given by

ov oV oV
F,=-V,V=—|—,—,— . 103
k k <axk7 ayka 8Zk> ( )
The3K dimensional force is thus given by
F=-VV=(=ViV,-VyV,...,=VgV)T (104)
and the infinitesimal work can be written
AW = —VV edR = —dV, (105)
i.e. as (minus) the total differential of the scalar funotioon the3 K-dimensional
space.
Now assume that theﬁe are constraints so that the systencanlynove on
then-dimensional surfac® = R(qi, . . ., ¢,) in the3K-dimensional space. Also

assume that these constraints are such that the corresgaradistraint forces do
not perform work for time independent constraints. If thestoaints are time
dependentﬁ = ﬁ(ql, ..., qn, t), then they should not do work for displacements
dq, at a fixed time = const. (so called, virtual displacements). One then speaks
aboutsmootlconstraints. Thisis only true if the sliding friction focan the joints
and bearings of the system can be neglected. Under thesensitances the work
done on the system for some displacement is given by the sgonession (102)
as above. The only difference is that now the start and endtgpas well as the
path between them, must lie on thalimensional surface} = ﬁ(ql, ey Gn), SO
that they are consistent with the constraints. There isshilis potential energy
which we can write

VIR = V[R(q1, ., q.)] = V(a1 4n)- (106)
According to the chain rule we now have

av K 8rk K —
4a = Vi a " 94, 7 (107)
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Comparing with equation (98) we thus see that

V. (108)

9qa
simply is the generalized forag,, in this, conservative, case.

In general the work done during a small displacement is reotdtal differen-
tial of some function. One sometimes stresses this fact bysiag the ordinary
differential sign (d). Instead one might write
SW=FedR=Fe Z = Z(FOTa dg, = ZQadqa (109)

a=1

This expression tells us that, whether the forces are coatbez or not, the gen-
eralized forces can be obtained by writing down the infirites work, 61/, done

for small changeslq,, of the generalized coordinates. The generalized fa@pge,
is then simply the coefficient in front elfy, in the expression fafl’. Should the
working forces all be conservativél’ = dIW = —dV'.

18 The Lagrange Function and Conservative Sys-
tems

If we assume that the system is conservative we can now vinie_agrange’s

equations (99) in the form

dar or _ ov
dtd¢, 9q.  0qa’

a=1,...,n (110)

We now move— ‘9;/ to the left hand side of the equation. If we then define the
Lagrange function

L= L(q,q) = T(q,4) — V(q), (111)
and note that since” does not depend aofy, we can rewrite the equations (110)
as
d oL 0L
— - = =1,...,n. 112
dt 8% aqa ) a ) ,TL ( )

This is the form that Lagrange’s equations take when theesyst conservative.
The case of velocity dependent forces that was presenteéddame particle case
in Sec. 10 may also be of interest for systems of particlesakgns of motion on

the form (112) are then also valid with(q) replaced by/(q, ¢).

Example 1: Consider a physical pendulum of mass Let J be the moment
of inertia about the horizontal axis and denotélifie distance from the axis to the
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center of mass. If we chose the angtebetween the vertical downward direction
and the line from the axis to the center of mass, as genedatiaerdinate, the
kinetic energy isl’ = %J@Z and the potential energy I8 = mgh(1 — cos ).

X v

Figure 2: A physical pendulum constructed from a wedge shaped bodis Hinged
so that it can rotate about a smooth horizontal axis fHaxis). Thex-axis is in the
vertical downward direction. The center of mas&isand its distance from the origi
on the rotation axis i%. The external forces acting are the weighy and the reaction
(constraint) forceR at the rotation axis.

From thisone findsthat =7 — V = %J@Z — mgh(1 — cos ¢) and thus that
oL _ . oL
o, 2T dtog
Thus equation (112) in this case becomes

oL
=Jyp, and — = —mghsinyp
O

Jo +mghsinp =0,

which is the well known equation of motion for the physicahgalum. End of
example 1

18.1 The Variational Principle and Euler-Lagrange’s equatons

This form of the equations can be obtained directly from aat@mmnal principle:
the principle of least action. Thectionis defined as the time integral af

Slatt)] = [ Lla(e) d(o) (13

t1
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for some pathy(t) between two fixed end-pointg = ¢(t;) andgz = q(t2).
Demanding that the change @6 = S[q(t) + dq(t)] — Sq(t)] = 0, for a small
change of the real patly(t), to some nearby path(t) + dq(t), with dq(t;) =
dq(t2) = 0, see Figure 3, leads directly to the equations (112).

A

q

q(t)+oq(t)

v

Figure 3: This figure shows a (one-dimensional) trajectqfy) and an example of a
variation of itq(t) + dq(t) that obeysig(t;) = dq(t2) = 0.

To prove this we consider

t2 . . t2 . tz (OL oL _.
6.51q(?)] :/t L(q+5q,q+5q)dt—/t L(q,q)dtZ/t <8—q5q+a—q.5q dt
(114)
Sincedq = ddif we get, by integrating by parts,
2 (L ddL oL . 1"
3S[q(t)] = /t (a_q _ &f?q) Sqdt + [8—4@ ) (115)

If we now use thatq(t;) = 0q(t2) = 0 the integrated part vanishes. Sinegt)
otherwise is arbitrary the remaining integral is identicakero, and thugS = 0,
only if the quantity within the parentheses is zero. Thiegi{112). Note that the
calculation was done as if there was only @gnaut it is easily generalized to the
case of several degrees of freedom.
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19 Energy and the Hamiltonian formalism

Here we investigate conservation laws and in particulasepration of energy
as these concepts appear in the Lagrange formalism. We thedly Ipresent the
Hamiltonian formalism.

19.1 Energy in the Lagrange formalism

If we have a conservative system we know that the eneflgy: 7'+ V, is a
conserved quantity. Assume that we have a Lagranbiang) = 7(q, ¢) — V(q)
for a system that moves according to Lagrange’s equations

4oL oL _
dt 0, Oqa
How can we find a constant of the motion that corresponds t@mnleegy, if we

pretend that we do not know it already?
Consider the time derivative df,

" (0L dg, , OL dd,
=2 (8% at  og dt ) (117)

a=1,...,n. (116)

According to (116) we have that
OL d oL
0q,  dtOq,’

when the functiong, (¢) actually obey the equations of motion. If we put this into
(117) we get

a=1,...,n, (118)

A (dOL.  OLdg)  d (0L,
S @ ap ) cas (Ge) @

so the terms of the sum are time derivatives of the prodittgdq,)q.. If we
movedL/dt to the right hand side, we now find that

d (& 0L
0= — — G, — L], 120
§ (S5 (120)
as long as the functiong,(¢) actually obey the equations of motion. Since this
time derivative then is zero the quantity inside must be ataot of the motion,
i.e. independent of time. When we integrate (120) with resfetime the result
is
" 0L

—L=E, 121

2 5 (121)

a=1
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where is the constant of integration. We have thus found that thetfan

Eqlt),a(t)) = 3 2L29)

4o — L(q.4), 122
2 i (4,4) (122)

Is a constant of the motion. We now show that this is, in fdetenergy
Assuming there are no time dependent constraints the kiapgrgy is given

by

1 ..
5 2 9re(@) doe- (123)
be
Here _ is shorthand notation for the double sm > ". In this case we can thus
be b=1c=1
write the conservative Lagrangidnas follows
L(q,q) =T(q,q) Zgbc ) oge — V (q). (124)
Now calculate oL 5
T )
8q-a = aqa 8qa < Zgbc QbQC> . (125)
Since 9
a N (jb - 6ab7 (126)
Ga

l.e., itis zero ifa # b and one ifa = b, we find

) ) 1 ) )
= = Z gbc (lch + Qb(sac> = 5 (Z gbc(Q) 5(1ch + Z gbc(Q) Qb5a0>
be

8qa 2 be be
(127)
In the first sum we perform thiesummation. Only one term survives; the term
with b = a. In the second we perform thesummation and here only the term
with ¢ = a will be non-zero. We thus have

oL

a—q.a = % (; gac<q> QC + ; gba<q> Qb> . (128)

The mass matrix, defined in Eq. (89), is symmetig(q) = gu(q), SO we can
change the dummy index in the first sumbtimstead ofc, and get

oL 1

Ddn = 5 (21): Gab(q) @ + zb:gab(Q) %) = ;gab(Q) G- (129)

If we now calculate

Xn: 8—{/@‘1 = Xn: <2n: gab ) (ja = Zgab(Q) Qb(jaa (130)
b=1 ab

a=1 aqa a=1
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we find that, according to equation (123),

" 0L .

3 9, la = 2T. (131)

a=1 a
Finally then,

" QL
8:Zg—q,aqa—L:2T—L:2T—(T—V):T+V, (132)

=1

so that the constant of motio&, we found above, is in fact the energy. This is
what we wanted to show.

19.2 The Hamiltonian formalism

A conservative system with a Lagrangian functibfy, ¢) that doesnot depend
on some generalized coordinajgis said to possess @clic coordinate The
equation of motion (116) for this coordinate then becomes

d 0L
— 7 _ 133
dt Oq, ( )
If we note that oL
e = Do (134)
b

is thegeneralized momentyreee formula (93), correspondingdpwe find that
the solution of equation (133) is simppy =constant. Thus cyclic coordinates
correspond to generalized momenta thatamestants of the motion

We know that a conservative system has another constane ahttion, the
energy,Ef = T + V. How does one find this in the Lagrange formalism? One
way of doing this is to change the independent coordinates { ¢ to ¢, p. This
means that one changes from generalized velogjtaesindependent coordinates
to generalized momengaas independent coordinates. One then forms the func-
tion

H(va) = ZpaQa —L (135)

where we assume that equation (134) has been used to ejpregs, p) so that
everything on the left hand side are functiong@ndp. If we now form the total
differential of H we find, first by definition,

(136)

a

OH OH
dH(q,p) = Z (@d% + %dpa>
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On the other hand using (135) we get

dH(q,p) = =)

a

—an +

OL 4 4 OL
0qa 04a

dea - paan - qadpa> . (137)

But according to Lagrange’s equations (116) we have- 0L/0q, (this is equa-
tion (133) for the general case when the coordingtes not cyclic). Using this,
and (134) turns our last differential into

dH(va) = - Z (paan + paan - paan - Qadpa) = Z (Qadpa - paan) .

’ ’ (138)
Comparing with (136) we can now identify the coefficientsnont of the differ-

entials and get
0OH . OH

T0 T op.

These arédamilton’s equations$or the system. Dividing equation (138) Ay we
find

Pa = (139)

dH .. .
d—t = Z (Qapa - paQa) = 0. (140)

ThusH (g, p) is aconstant of the motionThis constant can be identified witie
energy

20 Small Oscillations about an Equilibrium Position

Many systems are to a first approximation in a stable statidibgum configura-
tion. These include man made structures of all kinds as weathalecules. When
slightly perturbed these systems execute small oscillat{or vibrations) about
the equilibrium position. The nature of these vibrationt be studied here.

We assume that we have a Lagrangian of the form

Lad) =TV =3 S gala)iuis ~ V(). (141)
a,b=1

In order for there to be an equilibrium position we must fertassume that there
is at least one solutiop, = ¢° to the equations
ov
— =0, a=1,...,n (142)
a

this means that the forces all are zero at that position. Sdtigion will be a stable
position provided that it corresponds to a a local minimurpatential energy/.
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It is only then thatl/(¢°) < V/(q), for all ¢ sufficiently close to;° so that the
forces tend to carry the system back;fovhen the deviation from this position is
sufficiently small.
If we now make a Taylor expansion ®f(¢) arounds® we get
1 & 0*V
_ 0y 4 =
Vo =Ve)+5 3 (g

a,b=1

) G =)+ (143)

The linear terms are zero becaugeis a solution of (142). Since we will be
considering small oscillations about we assume that cubic and higher order
terms are negligible. If we now define

0*V

( ) = N, Ug = {a — QS (144)
04,0 q=q°

and discard the irrelevant constantq®) we see that we can assume the potential

energy to be of the form

1

2 Z Kabuaub, (145)

a,b=1

Vi(u) =

with constant coefficient&’,;.

Example 2: Consider the potential energy
V(z,y) = 42% + 2xy +y* + 120 +9 (146)

We first calculate the minimum valuesofandy using equations (142). We find

a—V:8x+2y—|—12:O (147)
ox
a—‘/:2x—i-2y20 (148)
dy

Solving this system we find the solutiep = —2, yo = 2. Atthis point the forces
are zero on a particle with this potential energy. Since thtential is quadratic
with positive coefficients the point should be a minimum. Vgsvrcalculate the
expansion (143). This gives

Vi(z,y) =V(zo,yo) +
<887Z> (x —20)* +2 <68xgy> (x —20)(y — vo) + (%) (y — vo)?

Z0,Y0 0,90 Z0,Y0

= —3+%[8(x+2)2+2'2($+2)(y—2)+2(?/_2)2]-

(149)
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This expression is the same as (146) since the Taylor exgranéa second order
polynomial to second order is exact; there are no negleeteast The constants
are such that’ (x¢, y9) = V(—2,2) = —3, so this is the irrelevant consta¥it ¢°)
in (143).

We now skip the constant term3 and introduces; = = + 2, uy, = y — 2
according to equation (144). This finally gives us
% bzl Kpuup = %(8u§+4u1uz+2u§) = %(8u%+2u1uz+2u2u1+2u§),

’ (150)
for the expression in equation (145). The mathy, is then seen to have the
elementss; =8, Ky =2, K15 = Ky = 2. End of example 2

Vi(u) =

Example 3: Consider a coplanar double pendulum, see Figure 4, camgisti
of a particle of massn; suspended in a string of length Fromm, a second
string of lengthl, is suspended with a particle of mass at the other end. If we
denote the angle between the first string and the vertical,bgnd that between
the second and the vertical by we find that the potential energy can be written

V(e1,02) = migli(1 — cos 1) + mag[l1(1 — cos 1) + l2(1 — cos po)]. (151)

Clearly the valuesp;y = 0, @9 = 0 correspond to the minimum. Here the
constants are chosen so th&f0, 0) = 0 so that the irrelevant constakit(¢®) in
(143) is zero from the beginning. We now make Taylor exparsaf the cosines
(cosz =1—2%/2+...)and get

V= %mlgllapf + %ng[llgpijngpg] +...= %g[(ml +mo) 1?2 +malygd] +. ...

(152)
We also see that the minimum already corresponds to thes/alue ¢, = 0 so
these can be taken as the coordinaigsa = 1,2 in equation (144). The matrix
Ky has the elementﬁ’ll = g(m1 +m2)l1, Ko = gmglg, Ky =Ky =0. End
of example 3

Let us return to the Lagrangian (141). We now assume that) ($4& good
approximation for the potential energy. This is true whewiat&ons from the
equilibrium positions are small. But small deviations wilrmally mean small
forces and thus small velocities. In what follows we alsaassthat the velocities
can be assumed small. Note that= u,. If we now make a Taylor expansion of

gar(q) nearg’,

n o o
gab(Q) = gab<q0> + < ag b) <QC - qs> + ... y (153)
—1 e ] g—go
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2 v
Figure 4:This figure shows the double pendulum treated in Examplesaddis.
we see that the linear terms in the expansiop.gwill contribute terms of type
U gy .. cubic terms in positions and velocities, to the kinetiergyT'. Higher
order terms in the expansion contribute terms of even highdar. The assump-

tion of small displacements and velocities thus makes gaeable to keep only
the constant terms in the expansiorygf. If we now introduce the notation

9ar(q°) = Map, (154)

we can write the Lagrangian for a system with small oscolagiabout an equilib-
rium on the form

1 & 1 &
L(u,u) = T(u) — V(u) = 5 Z Mabﬂaﬂb — 5 Z Kabuaub. (155)

a,b=1 a,b=1
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Here the coefficientd/,, and K ,, are constants.

Example 4: Consider again the coplanar double pendulum of Exampled 2 an
3 above, see Figure 4. A particle of mass suspended in a string of length
Fromm, a second string of length is suspended with a particle of mass at
the other end. Denote the angle between the first string aettical by, and
that between the second and the verticaldyand find the kinetic energy of the
system!

Introduce Cartesian axes with the x-axis vertically dovne, y-axis horizon-
tal in the plane of the pendulum and the origin at the pointusipgnsion. The
Cartesian coordinates of the two particles are given by

Ir = ll COS @1, (156)
Y1 = ly sin gy, (157)
Lo = 1 cos 1 + lo cOS g, (158)
Yo = Iy sin 1 + Iy sin o. (159)
The velocities are then,
Ty = —liprsingy, (160)
Y1 = l1p1 cos g, (161)
Ty = —lip1sin gy — lapa sin gy, (162)
yg = ll@l COS Y1 + l2§b2 COS ©Ya. (163)

The kinetic energy is, by definition, given by

1 o g 1
T=T+T,= 5ml(:cf +97) + §m2(x§ +93). (164)

Inserting the above expressions into the definition givess gltient calculations:
1 . 1 . , ..
I'=T+1T= §m15f¢§ +goma [FT + 155 + 20115 cos(p1 — pa)14p2] (165)

) 1 ) L
= T = §(m1 —+ 77’?@)[%@0% -+ 57712[%30% + m2l1l2 COS(QOl — ()02)()01@2. (166)
The elements of the matrix,(¢) = gu (01, v2) Of equation (141) are thug, =
(m1+m2)l%, goo = mglg, g12 = go1 = malyly COS((pl—cpg). Since the equilibrium
position isy; = @y = 0 we see that the mass matri¥,, has the elements
My = (m1 —+ mg)l%, Moy = m2l§, My = Moy = mulylsy. End of example 4

For a single degree of freedom & 1) we getL = (1/2)(M;u? — Ky;u?) and
the equation of motion i8/,,i; = —Kj,u,. This is the equation of motion for
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a mass\Vy; kept atu; = 0 by a spring with stiffness (spring constari),. This
explains the notation. (Shoutd be an angle then mass is replaced by moment
of inertia and stiffness by torsional stiffness.) Colleety one speaks of th&/,,
as the mass matrix and th€,, as the stiffness matrix. The definitions of these
matrices imply that they are both symmetrid,, = M,, because of (154) and
(89), andK,, = K, because of the definition as the mixed partial derivatives of
the potential in Eq. (144).

We now introduce matrix notation. We put

Uy M11 M12 Mln Kll K12 Kln
u My My ... My, Koy Koo ... Ky,
u= .2 ’ M= .21 .22 .2 ,KE .21 .22 .2
Up Mnl MnZ s Mnn Knl Kn2 s Knn
(167)

We denote the transpose witiasuperscript so that” = (u; uy ... u,). M is
then symmetric if and only iM = M7, With this notation the Lagrangian (155)
can be written

L(u, ) = % (a"Mu - u"Ku). (168)

The equations of motion(d/dt)(0L/0%,) — (OL/0u,) = 0, corresponding to
(155) are

n

Z (Mab'&b + Kabub) =0, a=1,...,n. (169)
b=1

Using the matrix notation we can write them as a column matriequations
Mii+ Ku = 0, (170)

if 0 denotes a column of zeroes.
We now discuss how to solve these equations. We do this byrisguhat a
solution can be written on the form

u(t) = acos(wt + ¢) (171)

wherea’ = (a;...a,) is a matrix of constants. We here take for granted that
the solutions must be oscillating. Without knowledge ofnlaéure of the stiffness
matrix K an ansatz withaexp(At) could be used. Imaginary would then cor-
respond to oscillations, but real to unstable motion. Rgt{i71) into (170) we
find

(-Mw?+K)a=0. (172)
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This homogeneous system of linear equations will have neiait solutionsa
only if the determinant of the coefficient matrix is zero:

]\411002 — Ky M12w2 - Ky ... Mlnw2 — K,
det (_sz n K) _ M21W2._ Ky M22w2._ Koy ... M2nw2l_ Ky, _
Mn1w2 — Knl Mn2w2 — Kng e M,mw2 — Knn
(173)
This equation, which sometimes is called #ezular equationfor historical rea-
sons, will in general have rootsw?, (i =1,...,n).

Example 5: The double pendulum of examples 3 and 4 gave us

K — ( g(m1 +m2)l1 0 ) M — ( (m1 +m2)lf mglllg )

0 gm2l2 m2l1l2 mglg
S0 equation (173) becomes

(my + ma)l3w? — g(my + ma)ly Maly low?
m2lll2w2 m2l§w2 — gmglg

If we putl, =1, I, = al, m; = m, andmy = Sm, we find the roots
> _g(1l+a)l+5) B 4o
Y27 20 b=yl (14 a)2(1 +B)

and the square roots of these values are thus the two angedprehcies of the
double pendulumEnd of example 5

Each rootw? can then be inserted back into equation (172) which then be-
comes
(-Mw? + K)a; = 0. (174)

The determinant is now zero so there are solutions and, iftlaee different, one
can show that the componentsafcan be taken as minors (cofactors) of any
row of the determinandet(—Mw? + K). If a solutiona; has been found it is
easily seen that alsh;a; are solutions for arbitrary non-zero constants This
arbitrariness can be removed for example by arbitrarilyosihtg some value for
one of the non-zero componentsaf The result of the ansatz (171) is thus
different solutions

u;(t) = a;cos(wit + @), i=1,...,n. (175)
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Thegeneral solutiorio the linear problem (170) is then an arbitrary linear combi
nation of these: .
u(t) =Y ca; cos(wit + ¢;). (176)
i=1
The2n constantg; and¢; must be determined by the initial conditions.

20.1 Normal Modes

M is a real symmetric matrix It can therefore be diagonalized by an orthonormal
matrix (transformation)J (obeyingU~! = U, i.e. the inverse is equal to the
transpose). This means tHaf = UDU whereD is a diagonal matrix. If we
defineD'/? to be the diagonal matrix with the square roots of the elemefid
along the diagonal we have tHBt= D'/?D'/? and thus we get

M = UD'?DY?U = UDY?1D/2U = UDY?2UUDY?U = M*2M"/2,
(177)
Here we have used th&fU = 1 is the unit matrix. We have thus defined the
symmetric matrixM!/2 = UD'/2U. SinceM is positive definite, so i81'/2 and
the inverseMi—'/2 therefore exists.
Consider the matrix equation (170). If we multiply it to tedtlby M ~/2 and
insert the unit matrix. = M~/2M'/2 to the right ofM andK we get

M~Y2MM~Y2MY 25 + MY2KM~Y2MY2u = M—1/20. (178)

If we now definew = M'/?uandH = M~ /2KM~/2 we get
W+ Hw = 0. (179)
HereH is a real symmetric (constant) matrix. The equation hasaimedl solution
w(t) = exp(iHY?t)w(0), (180)

where the exponential of the matrix is defined through thegz@aries expansion.
SinceH is a real symmetric matrix it can (just B above) be diagonalized by
an orthonormal transformatidw such that2??> = NHN is a diagonal matrix. We
now multiply (179) to the left byN and insert the unit matrit = NN between
H andw. We get
Nw + NHNNw = NO. (181)

LIn this Section one must assume that the mass and stiffnégs@saare such that all elements
have the same physical dimension. This is not always the basé is always possible to chose
to work with dimensionless quantities.
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If we now putQ = Nw we find the simple form
Q+0’Q=0 (182)

for the equations of motion. Note thg = NM'/?u.
Since Q? is diagonal this last matrix equation of motion is simply & e&
equations for the components); of Q,

Qi +w?Q; =0, i=1,...,n. (183)

The coordinate®); are callechormal coordinatesThe motion of the system when
only one normal coordinaté); say, has time dependence is calleddhenormal
mode Finally it is easy to see that equations of motion of the f¢if®3) must
arise from a Lagrangian

n

L(Q.Q) = 5(Q"Q - QTo*Q) = Y

i=1

(QF — wiQ?). (184)

N —

Note that first a rescaling has made the mass matrix a uniixnatrd then the
resulting stiffness matrix has been diagonalized.

21 Impact Problems

A force is said to be impulsive if it large but acts for a verypsghime interval

7 (betweent; andt; = t; + 7) in such a way that the change in position, of the
system, during this interval is negligible,(t;) ~ q¢.(ty) = ¢.(t; + 7), but the
accelerations are so large that the velocities have chasigadicantly,(t;) #
du(ts). The approximation that,(t;) = ¢.(tf), or, equivalentlyr — 0, is called
theimpactapproximation.

21.1 Impact Problems with Vector Methods

Assume that the impulsive forcé%} act on a rigid body at points; relative to its
center of masg;. Let p be the momentum of the body & mwvs). Then

p=F+Y F (185)
J

whereF is the total ordinary (non-impulsive) external force. If imegrate this
with respect to time betweenandt; = ¢, + 7, we find

plty) —p(t) = | UL / U Fi) . (186)
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The first integral gives
ti+7
Fe(t)dt =~ F°(t;)T (187)

t;
and thus goes to zero when— 0, since one can assume that the ordinary forces
vary slowly with time. The impact forces on the other handlarge during the
impact interval and give finite integrals

L+
Fi(t)dt=1,. (188)

t;

In the limit 7 — 0 we must assume thdfij(ti + 17) — oo so that the integral

remains non-zero. The vectofs are theimpulsesof the impact forcesFij. In
summary we find that

p(ty) — p(t;) = mvg(ty) —val(t ZIJ, (189)

and the total impulsd, = >°; I;, divided by the total mass;,
valty) — ve(t) = I/m, (190)

gives the change in center of mass velocity.
Now consider the law of angular momentum

L=M°+Y r;xF} (191)
J

where the center of mass of the body is base point. Time iatiegrof this gives

L(ty) — Zr, x I, (192)

since, again we can assume thdt (¢) varies slowly with time, and that the posi-
tions,r;, change negligibly during impact. We call the vectors,

H;=r;x I, (193)
theangular impulsesindH = 3~ H; the total angular impulse, so that
L(t;) — L(t;) = H, (194)
SinceL = Jw, wherel] is the inertia tensor, we find that
w(ty) —w(t;) = J'H, (195)

gives the change of angular velocity, caused by the impact.
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21.2 Impact Problems with Lagrange’s Method

Recall the definition of generalized forcE,e 7, = Q, of equation (98). If the
forces ofF can be divided into ordinar§’® and impulsive, so thatF’ = Fe+ F,
we find that so can the generalized forces

Qu = Q5 + Q.. (196)

If the Lagrange equations (99) are now integrated with retSjoetime one gets

1 G e (@) [ s [T oo

Using the definition (134) of generalized momentui,the first integral on the
left hand side gives

/titi-i—T <d£:u> dt = pa(ts) — pa(ti)- (198)

The integrands of the second and third integrals of (197jialte during impact
so in the limitr — 0 they give zero. The generalized impact forces, on the other
hand, must be assumed to become infinite during impact asdyilae finite non-

zero results, -
S Qidt=1, (199)

t;
which we callgeneralized impulse$Ve thus find that

Palty) —pa(ti) =1s, a=1,....n (200)

is the impact version of the Lagrange equations.
How does one find the generalized impulses? Assume as atat(external)
impulsive forcesF”; act on the system at points. We then get that

Q= ZFI agﬂq 9 (201)

Time integration of this over the duratlon of the impact give

/ (ZF‘ or;la )) dt. (202)

If we now use the fact that the positiong, and their derivatives with respect to
da,» do not change during impact, the definition (188) gives us

I_ZI 07“] )

for the generalized impulses,, in terms of the impulse vectors;.

(203)
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22 Passing to the Continuum

Consider a collection ofV particles that can move along a line and which are
connected with identical springs of stiffness (force cangtk. Let u;, be the
displacement of théth particle from its equilibrium position. If the particleave
massm the Lagrangian will be

N
Z miy — k(uppr — up)?]. (204)

l\:>|}—l

Let a be the separation between equilibrium positions. We cam\hée

N 2 N
= Za% [%g — ka (w) ] =S"al,  (205)
b=1 a a b=1
Here L, is the linear Lagrangian density, i.e. the Lagrangian pérlength.
To pass to a continuous mechanical system with an infinityegfees of free-
dom we consider the limit whea goes to zero. We thus make the following
replacements

a — dz, % — A = linear mass density, (206)
Hota — B a—u, ka — Y = Young's modulus (207)
a ox

This gives us

L= / Ldz, (208)
where
c= Loy (2 2 (209)
2 ox )

We note that the generalized coordinatg$have become a function (or field) of
the continuous parametersandt. In the continuum Lagrangian formalism we
still treatu(z, t) as a generalized ‘coordinate’.
We now consider the variational principle for this Lagragias we did for

the discrete case in subsection 18.1. We thus consider

b2 t2 ou

5[ Cdt=3 dt/dxc<u,u,—>. (210)

t t ozr
The variationyu of u(zx, t) is assumed to vanish gtandt, and also at the bound-
aries of the x-integration. We now do the variation and ugestiime trick as in
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subsection 18.1. This gives
t2 t2 oL oL ou oL ou
5 | " cat = /t t [ da {%5% 55u/5) 5<%> + 5w 5(5) ](211)

» oL o ( oc o ( oc
=) e fa {% U o (0(0u/8x)> 5 <a(au/at)> 5“}212)

and the integrations by part in the second expression atiigdsy the fact that
the variations vanish at the limits of the integration imgds. If this variation is to
vanish for arbitraryyu we must have

o[ or o( ocC oc
oz (0(0u/8x)> T (8(8u/0t)) "o 0 (213)

This is the Euler-Lagrange equation for the case of afiéld¢), i.e. a continuum
of degrees of freedom. For the case of our Lagrange den$i8) @juation (213)
becomes
0%u Aﬁzu
ox? ot?
This should be recognized as the wave equation for the patioagof a distur-

bance with velocity/Y/\.

= 0. (214)
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