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Abstract
Theory and experiment on the London moment is reviewed. A simple
mathematical model is motivated and then used to study the responses of a
spherical superconductor to an external field and to rotation. It reveals a
connection between perfect diamagnetism (Meissner effect) and the London
moment. In the model neither of these are exact but the deviation from B = 0
internal field in the former and from B = (2mc/e)� in the latter case is
described by the same dimensionless parameter. Apart from its pedagogical
value the model might throw some light on the controversy surrounding the
correction to the London moment.

1. Introduction

When a superconductor is rotated with angular velocity Ω = (ω rad s−1)ez a magnetic field,

B = 2mc

e
Ω, (1)

with B = 1.137 × 10−11 ω T, arises inside it. Here −e is electron charge and m electron mass.
This is called the London moment since it was predicted by Fritz London [1] on the basis of
the London brothers’ phenomenological theory of superconductivity, but the formula was, in
fact, derived much earlier by Becker et al [2] using the non-viscous electronic liquid model.
Since then various ways of arriving at this formula have been proposed [3, 4]. The shortest
heuristic derivation postulates that effective forces in the rotating system must vanish; the field
(1) is then needed to cancel the Coriolis force (Rystephanick [5]).

Formula (1) is remarkable since it gives the electronic charge to mass ratio from
macroscopic measurement and its basic correctness has been experimentally verified by
Hildebrandt [6]. It has also been verified that it is independent of the type of superconductor
[7, 8] and of its initial rotational state [9]. Nowadays, it is used in basic physics experiments
[10]. This immediately leads to the question of how accurate it is.
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Since replacement of e and m by Ne and Nm leaves formula (1) invariant it may, in
fact, refer to the charge to mass ratio of Cooper pairs or of larger groups of electrons such
as the entire superconducting condensate. Based on various theoretical assumptions, one can
approach the question of corrections to (1) and this has been done by several authors [11–16].
The results do not agree, however; neither with each other nor with experiment [17]. In view
of this confusion, it may be worth pointing out that even a very basic classical model of the
phenomenon leads to a correction to London’s formula.

We will first motivate heuristically that our model should qualitatively describe the physics
of a superconducting sphere. After that the model system, and its kinematics, its basic
parameters and its dynamics, are presented. Only classical mechanics and electrodynamics
are used. Diamagnetism is then studied within the model and it turns out to be perfect only
in the limit of infinitely many electrons. We finally turn to the response of the model to
rotation and find that the London moment becomes exact in the same limit that achieved
perfect diamagnetism.

2. The giant atom idea

After Meissner’s [18] discovery in 1933 of the expulsion of a magnetic field from
the superconductor at its phase transition it was realized that understanding the perfect
diamagnetism might be one clue to a theory of superconductors. This led Welker [19] to
the study of superconductors as giant atoms. He was inspired by Langevin’s theory of
diamagnetism for systems of closed-shell atoms and ions. In this theory, the external field
induces a rotation of the atoms and these rotating atoms produce a field that opposes the
external field. For an illuminating discussion see Essén [20], see also van Vleck [21]. In
ordinary metals, the magnetic susceptibility is nearly zero because, as Welker explained, the
diamagnetic effect is exactly balanced by a paramagnetic effect, the ordering of the electron
spins along the external field. In this way Welker [19] realized that perfect diamagnetism
requires that there is a gap in the spectrum of the conduction electrons which is not present
in ordinary metals. With this energy gap the Langevin mechanism can be blown up and the
paramagnetism suppressed. In recent years, Hirsch [4, 22] has advocated the giant atom view
of superconductors, see also Essén [23].

Since the discovery of the Pauli principle it has been realized that the electrons that
participate in conduction of electricity are the electrons at the surface of the Fermi sea of
degenerate electrons. Electrons inside the surface are not able to change their state of motion.
The relevant electrons are thus those with the largest energies and velocities [24], essentially
the Fermi energy and Fermi velocity, vF. In a normal metal, such electrons are scattered and
have a short mean free path �. The time between collisions is then, on average, τ = �/vF. As
long as the metal is large compared to � the conduction electron gas will thus be homogeneous
throughout the metal.

In a superconductor, on the other hand, Cooper pairs will form, and at the critical
temperature these must be interpreted as having infinite mean free path, � → ∞. When
the mean free path becomes of the same order of magnitude as the container, the gas can no
longer be homogeneous. Instead its distribution must be strongly influenced by the shape
of the container. In a spherical metal ball of radius R one then gets an even better analogy
with a giant atom. The Cooper pairs can move freely in the spherical container. Since their
electrons still must have the largest energy and momenta among the electrons according to the
Pauli exclusion principle this means that they must spend most of their time near the metal
surface. The centrifugal potential for particles with the Fermi momentum will be of the order
of magnitude ∼R2p2

F

/
2mr2, and thus most pairs are pushed to the surface. We will not go
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deeper into this here; we just note that for a superconductor the Fermi surface and surface
of the metal are necessarily close. London [1] has already stated that superconductivity is a
surface phenomenon, but this, nowadays, sometimes seems to be forgotten. The fact that the
superconducting condensate is concentrated near the metal surface is the motivation for the
model presented in the next section.

3. The model system

Consider a heavy sphere of radius R with a positive surface charge Q and surface density
σ+ = Q/4πR2. An oppositely charged thin spherical shell, of mass M, and the same radius
R, covers the surface of the sphere but can rotate freely on it. The system is thus electrically
neutral but surface currents, corresponding to rigid rotation of the negative surface charge
density, σ− = −σ+, can flow without dissipation.

We now set up the Lagrangian of this system in an external magnetic field with vector
potential Ae. Since we safely can neglect radiation in our problem we can use the Darwin
Lagrangian (see Jackson [25], Essén [26, 27]), but we skip the relativistic correction to the
kinetic energy as discussed by Essén [27]. We have

L(rk,vk) = 1

2

N∑
k=1

mkv
2
k +

1

2

N∑
k=1

qk

c
vk · Ai(rk) +

N∑
k=1

qk

c
vk · Ae(rk), (2)

where Ai(rk) is the internal vector potential from the particles of the system. It is a sum over all
particles except particle number k and the second sum in L is thus a sum over pair interactions;
therefore the factor one-half in front. The important thing in the Darwin formalism is that
Ai is divergence free (Coulomb gauge). The last sum is the usual one representing the
interaction with the external vector potential Ae.

We will use spherical coordinates (r, θ, ϕ), so the velocity of a particle fixed on the
rotating shell is

v(θ, ϕ, ϕ̇) = ϕ̇ez × r = R sin θϕ̇eϕ(ϕ). (3)

For the kinetic energy we must integrate over the sphere r = R, and we find

T = 1

2

N∑
k=1

mkv
2
k = 1

2

∫
S

dm(θ, ϕ)v2(θ, ϕ, ϕ̇) = 1

3
MR2ϕ̇2, (4)

in agreement with the fact that the moment of inertia of a spherical shell is Iz = 2
3MR2.

To find the vector potential of the current from the rotating shell, with charge −Q, is an
elementary exercise [28]. Some useful formulae can be found in Essén [20]. At r = R the
result is

Ai(θ, ϕ, ϕ̇) = − ϕ̇

c

Q

3
sin θeϕ(ϕ). (5)

The self-interaction term in the Lagrangian is thus

Li = 1

2c

∫
S

dq(θ, ϕ)v(θ, ϕ, ϕ̇) · Ai(θ, ϕ, ϕ̇) = RQ2

9c2
ϕ̇2, (6)

and is seen to be similar to the kinetic energy term.
For definiteness, we here compute the last term for the case of a homogeneous external

field B = Beez. The vector potential is then

Ae(r, θ, ϕ) = 1
2Be(−yex + xey) = 1

2Ber sin θeϕ(ϕ) (7)
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and one thus finds

Le = 1

c

∫
S

dq(θ, ϕ)v(θ, ϕ, ϕ̇) · Ae(R, θ, ϕ) = −R2Q

3c
Beϕ̇, (8)

for the interaction Lagrangian of the rotating spherical shell with this field. This is the
interaction needed to study diamagnetism. To investigate the London moment below we have
to modify the external field.

Collecting terms we now get

L(ϕ̇) = T + Li + Le = R2

3

[
M

(
1 +

Q2

3RMc2

)
ϕ̇2 − Q

c
Beϕ̇

]
, (9)

for our Lagrangian. If we use Q = Ne,M = Nm, and the classical electron radius re = e2

mc2 ,
we can write

M

(
1 +

Q2

3RMc2

)
= Nm

(
1 +

Nre

3R

)
≡ Nm(1 + εN), (10)

and rewrite the Lagrangian in the simple form,

L(ϕ̇) = NmR2

3

[
(1 + εN)ϕ̇2 − e

mc
Beϕ̇

]
. (11)

We see that the generalized coordinate ϕ is absent (i.e., cyclic) and that the generalized
momentum is

pϕ = ∂L

∂ϕ̇
= 2NmR2

3

[
(1 + εN)ϕ̇ − e

2mc
Be

]
. (12)

The corresponding Hamiltonian is given by H = ϕ̇pϕ − L and

H(pϕ) = 3

4

N

m(1 + εN)

(
pϕ

NR
+

eR

3c
Be

)2

(13)

is the result of the calculation.

4. Diamagnetism and Meissner effect

The Meissner effect [18] refers to the fact that a superconductor expels a magnetic field when
cooled below the critical temperature. In this it is different thermodynamically from a so-called
perfect conductor which merely has zero resistance, see Jackson [25], Pippard [29]. Here we
will not discuss thermodynamics and phase transitions, but only the perfect diamagnetism of
superconductors. That is, we will explain why an external field which is switched on does not
enter the superconducting body.

Let us see what our model system predicts if we take the initial conditions to be ϕ̇(0) = 0
when the external field is zero Be(0) = 0. The equation of motion is ṗϕ = ∂L/∂ϕ = 0, so the
generalized momentum is conserved. The initial conditions give pϕ = 0 and then equation (12)
gives

(1 + εN)ϕ̇(t) = e

2mc
Be(t), (14)

at all times. The angular velocity of the shell is completely determined by the external field
at all times. Here this follows from our conservation law pϕ = constant. Becker et al [2]
explains this by stating that the electric field E = −(1/c)∂Ae/∂t causes acceleration of the
shell.
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The rotating shell will of course produce a magnetic field Bi of its own. Inside the shell
(r � R) it is homogeneous and can be read off by comparing equations (5) and (7). This gives

Bi(t) = −2

3

Q

R

ϕ̇(t)

c
= −N

2

3

e

R

ϕ̇(t)

c
, (15)

for the induced field inside the sphere (outside the shell one finds a pure dipole field [30]).
Using (14) this can be expressed in terms of Be. The total field inside the sphere is then

Bdia = Be + Bi = Be

(
1

1 + εN

)
. (16)

Here ε was defined in (10) and is

ε = re

3R
. (17)

We see that perfect diamagnetism (Bdia → 0) corresponds to N → ∞, so for finite N it cannot
be achieved, but it gets better the larger the system.

One notes that our model for diamagnetism here is almost entirely like the old Langevin
theory. The main difference is that we do not use Larmor’s theorem and thus we do not assume
that the external field is a weak perturbation, as is required for the use of Larmor’s formula
[23]. Instead everything is exact within the model. The smallness of ordinary diamagnetism,
when the spheres are atoms, is due to the fact that N ∼ 10 and ε ∼ re/3a0 ≈ 1.78 × 10−5,
where a0 is the Bohr radius. Clearly only a very small reduction of the external field is possible
in this case.

What about the macroscopic superconducting spheres? For R = 1 cm one finds that
ε ≈ 10−13. Does the quantity εN = Nre/3R grow sufficiently to produce nearly perfect
diamagnetism? One might assume that N ∝ R3 but this is not correct. The conduction
electrons and thus also the superconducting condensate consist of electrons from a thin layer
at the Fermi surface in momentum space. Since this is a two-dimensional object the number
of relevant electrons must obey N ∝ R2 (Essén [24]). Incidentally, this gives the physical
result that the surface charge density σ− = −Ne/4πR2, of our model, can remain constant
as R increases. The simplest possible minimum estimate assumes that each surface atom
contributes one Fermi surface electron and that only these participate in the condensate.
This gives N ≈ R2

/
a2

0 . We then find that εN ≈ (re/3R)
(
R2

/
a2

0

) = 3.3 × 105 m−1R. For
R = 1 cm this gives εN ≈ 3300, so macroscopic spheres should in fact be highly diamagnetic.

5. Rotation and the London moment

We now come to the main task of this work. What is the field of a rotating superconductor?
Since our model managed to predict strong diamagnetism it might also give decent results
in this case. The external field is no longer assumed to be a homogenous field. Instead we
now start rotating the heavy sphere with the positive surface charge density σ+ = Ne/4πR2.
When this sphere rotates with angular velocity � it will produce the field,

Be(t) = N
2

3

e

R

�(t)

c
, (18)

for r � R, in analogy with equation (15). (Outside the sphere it is a dipole field and goes to
zero at infinity, just as the field Bi above.)

Assuming initial conditions ϕ̇(0) = 0 when �(0) = 0, we again get equation (14) for the
induced angular velocity ϕ̇(t) of the freely rotating negatively charged shell. Equation (14)
now relates ϕ̇(t) and �(t) at all times. To find the internal (London) field in this case all we
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have to do is to use equation (16) and replace Be on the right-hand side with expression (18).
This produces the result

BLond = Be + Bi = 2mc

e
�

(
εN

1 + εN

)
, (19)

after some simple algebra. When N → ∞ this approaches the London moment(
BLond → 2mc

e
�

)
of equation (1). Just as was the case above with the perfect diamagnetism

we find that the London moment is exact only in the limit of infinitely many particles. If we
trace the origin of the terms we see that the extra 1 in the denominator of (19) is due to the
contribution to inertia from electron mass, while εN comes from the inductive inertia that
reflects the energy cost of building up a magnetic field. In electric circuit theory, one is used
to considering only the inductive inertia. Inertia due to electron mass is usually negligible in
such experiments. In high-precision measurements, however, the electron inertia may play a
role and thus the correction term to the London moment suggested by equation (19) may have
to be taken seriously.

As mentioned above there is disagreement on the correct theoretical approach to
corrections to the London moment [11–16]. The most accurate experiment was done using a
superconducting ring [17], not a sphere. Our calculations can be adapted to a ring, but for a
ring of negligible thickness the term Li of equation (6) becomes infinite, which presumably
means that our correction would go to zero. It also means that a finite thickness is needed for
accurate calculation, but then the algebra is considerably more complicated.

6. Discussion and conclusions

The beauty of our embarrassingly simple model is that it does not just give the London moment,
as many other oversimplified studies. Instead, it gives the London moment only as a limit
for N → ∞, and it shows how this limit is intimately connected with the limit of perfect
diamagnetism. This is no mean achievement for such a small investment and must be regarded
as physics pedagogics at its best.

While most textbooks seem to ignore the London moment there is still a fair amount of
active research in this and related areas [31–33]. It has been pointed out that the universality of
the London moment, and its sign in particular, mean that the superconducting charge carriers
are always electrons, not holes [34]. If nothing else, this paper would therefore, at least, like
to make the theoretical and experimental fact of the London moment better known. It is just as
remarkable as zero resistivity and perfect diamagnetism, not to mention the Josephson effect.
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