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Abstract

Magnetism due to the translational, possibly oscillatory, motion of
charge, as opposed to the ordering of dipoles, is not well understood,
but is well described by the Darwin Lagrangian. The Coulomb inter-
action is used universally in atomic, molecular and solid state physics,
but its natural extension when going to higher accuracy, the magnetic
Darwin-Breit interaction, is not. This interaction is a velocity depen-
dent long range interaction and as such unfamiliar to the majority of
theoreticians. The (v/c)2 dependence makes it at most a perturbation
in few-body systems, but does not stop it from becoming potentially
important as the number of particles increase. For systems where par-
ticle velocities are correlated (or coherent) over larger distances this
interaction is shown to have major consequences. Based on these find-
ings I suggest that this interaction should be investigated as possibly
responsible for superconductivity and, on an interstellar scale, for the
missing dark matter. Some numerical estimates and intuitive argu-
ments are presented in support but no proofs. Instead it is my hope
that the ideas presented will deserve further serious study.
Key words: Darwin Lagrangian, Magnetic interaction energy, Plasma
oscillations, long range correlation, coherence length, emergent prop-
erties, Wigner crystal, superconductivity, effective mass, inductive in-
ertia, dark matter
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A man hear what he wants to hear and disregards the rest.
Paul Simon in The Boxer

1 Introduction

We first introduce the Darwin Lagrangian which describes the magnetic in-
teraction energy between moving charged particles. This is a velocity de-
pendent long range interaction which is very small for few-body systems but
which can become dominating in macroscopic systems. In particular the La-
grangian predicts that the effective mass, or equivalently inductive inertia,
can grow with the square of the number of particles.

The Darwin Lagrangian makes simple predictions for particles that are
assumed to have the same velocity. Here we use this constraint to study the
effect of the magnetic interaction energy for collectively moving charges. The
crucial fact that emerges from these studies is that the effective mass of many
collectively moving particles far exceeds the sum of their rest masses. In the
case of superconductivity this means that the zero-point energy of coherent
oscillators decreases with the number of oscillators, and this presumably
leads to the superconducting phase transition. In the case of cosmic plasma
filaments it leads to the conclusion that their gravitational mass can far
exceed the rest mass content of the participating particles. Could this be
the missing dark matter? Some numerical estimates indicate that this is a
possibility.

2 The Darwin Lagrangian

The Darwin Lagrangian [1] describes the majority of electromagnetic phe-
nomena correctly. The exception is radiation, which is neglected. The theory
behind this Lagrangian is presented in a few textbooks such as Landau and
Lifshitz [2, §65] and Jackson [3, Sec. 12.6]. More extensive discussions can
be found in Page and Adams [4, Sec. 96], Podolsky and Kunz [5, Sec. 27],
Szasz [6, Appendix], Schwinger et al. [7, Eq. (33.23)], or Stefanovich [8].
Basic articles of interest are Breitenberger [9], Kennedy [10], Essén [11–13].
Various applications of the Darwin Lagrangian illustrating its usefulness can
be found in Kaufman [14], Stettner [15], Boyer [16, 17], Krause et al. [18],
Essén et al. [19–25].

Vector potentials are not always mentioned in connection with the Darwin
Lagrangian, but it can be derived by approximating the Liénard-Wiechert
potentials. Landau and Lifshitz [2, §65] make a gauge transformation to the
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Coulomb gauge after truncating series expansions of these. Jackson [3, Sec.
12.6] solves the vector Poisson equation obtained by neglecting the time
derivative in the wave equation. Page and Adams derive it by approximating
the forces [4, Sec. 96]. It can also be motivated as the best approximately
relativistic action-at-a-distance Lagrangian [10, 26] and it can be shown to
take retardation into account to order (v/c)2.

The Darwin Lagrangian for N charged particles, of mass ma and charge
ea, can be written

LD =
N∑
a=1

[
ma

2
v2
a −

ea
2
ϕa(ra) +

ea
2c

va ·Aa(ra)
]
, (1)

where,

ϕa(ra) =
N∑

b( ̸=a)

eb
|ra − rb|

, (2)

and,

Aa(ra) =
N∑

b(̸=a)

eb
2c

[vb + (vb · êab)êab]

|ra − rb|
. (3)

Here êab = (ra−rb)/|ra−rb|, and relativistic corrections to the kinetic energy
are neglected. In many circumstances one can neglect the magnetic inter-
action energies since the Coulomb electric interaction dominates strongly,
especially in few-body systems. As will be seen below, however, when there
are macroscopic numbers of correlated charged particles this is no longer per-
missible. It is noteworthy that macroscopic numbers of correlated charged
particles is the rule rather than an exception in plasmas, conductors, and
superconductors.

3 Plasma oscillations

One can use (1) to calculate how a charge density of electrons oscillates
relative to a fixed background of positive charge. For collective motion of N
electrons with velocity v = ẋêx the kinetic energy is simply T = Nmeẋ

2/2.
If one further assumes that the particles have fixed distributions in space
apart form the relative translational motion one can get (nearly) analytical
results for the remaining two terms, for simple geometries in the continuum
limit. If we denote the displacement of the negative charges by x the total
Coulomb potential energy is well approximated by,

Φ(x) =
Ntot∑
a=1

ea
2
ϕa(ra) = Φ(0) +

1

2

(
d2Φ

dx2

)
x=0

x2, (4)
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in the limit of small x. Here Φ(0) is a large negative constant that does
not contribute to the dynamics; the positive background only provides the
restoring force in the oscillation. The assumption that the electrons (ma =
me, ea = −e) move collectively along the x-direction simplifies the magnetic
contribution, the third term in (1). One finds

UD =
N∑
a=1

e

2c
va ·Aa(ra) =

 e2

2c2

N−1∑
a=1

N∑
b=a+1

1 + cos2 θab
|ra − rb|

 ẋ2, (5)

where cos θab = êx · êab. For a charge density of electrons with fixed geometry
this is simply a constant times ẋ2. We thus find that the Darwin Lagrangian
for the system becomes

LD = N
(
1

2
meff ẋ

2 − 1

2
κx2

)
. (6)

Here meff is me plus a contribution from (5).
Calculations of the constants meff and κ can be done by elementary meth-

ods. The result will be a formula for the square of the oscillation frequency
ω2 = κ/meff . This was done for a sphere of radius R in [19] with the result

ω2 =
Ne2

R3

me

(
1 + 4

5
reN
R

) . (7)

Here re = e2/(mec
2) ia the classical electron radius. ω(R) is plotted in Fig.

1. In the limit of few particles, or negligible Nre/R, this gives the plasma
oscillation frequency as normally given in the literature,

ω2
p =

4π

3

e2n0

me

(8)

where n0 = N/V is the number density inside the sphere. In the opposite
limit of macroscopic numbers of electrons N one obtains

ω2
∞ =

5c2

4R2
. (9)

This seems to be the frequency of a longitudinal electromagnetic wave in the
sphere. A similar calculation for a (two-dimensional) square of side length L
gives a similar result,

ω2 =
2e2N
L3 Ks

me

(
1 + 3

4
Nre
L
Cs

) , (10)

where Cs = (4/3)[1−
√
2− 3 ln(

√
2− 1)] and Ks = 16(2−

√
2) 1.

1H. Essén and A. B. Nordmark (2019), unpublished.
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Figure 1: The frequency ω of Eq. (7) as a function of radius R. Atomic units are
used (e = me = h̄ = 1, c = 137) and the density is assumed to be one electron

per sphere of one Bohr radius a0. The formula plotted is ω(R) =
√

4π

3

(
1+ 16π

15(137)2
R2

)
and R is in atomic units (Bohr radii). The frequency is reduced by one order of
magnitude at R = 750 a0.
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4 Superconductivity

In the early history of superconductivity it was conjectured that a transition
of the electrons at the Fermi surface to a Wigner crystal [27] was responsible
for the phase transition. Since no new interaction comes into play this did
not seem correct, even if the Wigner crystal idea is still investigated [28,29].
When one takes the magnetic interaction energy into account, however, the
zero point energy E0 = h̄ω/2 and oscillation frequency of the (pairs of)
electrons go down considerably if they oscillate coherently with coherence
length R, as indicated in Fig. 1. It is interesting to note that Vasiliev [30,31]
finds that superconductivity is caused by ordering of the zero point oscilla-
tions. Frenkel [32] advanced the theory that the increased inductive inertia of
correlated conduction electrons explains superconductivity, and the present
author presented estimates indicating that the Darwin energy is important
in superconductors [33]. In Fig. 1 it is seen that the zero point energy goes
down by one order of magnitude in 750 Bohr-radii, assuming one electron per
cubic Bohr-radius. In general coherence lengths in superconductors is one
or two orders of magnitude larger [34], so the numbers are quite reasonable.
The isotope effect agrees well with the assumption that lattice oscillations
destroy the coherence.

5 Dark matter

The decay time of currents is τ ∼ L/R where L is inductance and R resis-
tance. As emphasized by Kulsrud [35] these times are enormous in astro-
physical plasmas. The currents producing astrophysical magnetic fields will
only decay on a time scale comparable to the age of the universe. These
plasmas are thus effectively superconducting. The effective mass meff of Eq.
(6) is a measure of the inductance, or inductive inertia. Simple estimates
show that this mass is in general much larger than the rest mass. That this
is the case for conduction electrons in a metal was noted already in 1936 by
Darwin [36] and several times later [23,37].

It is tempting to speculate that dark matter is in fact due to magnetic
energy in interstellar plasmas. Here we make some simple estimates. The
Darwin magnetic energy, the first term of Eq. (6), UD = Nmeff ẋ

2/2, will
contribute MD = UD/c

2 to gravitational mass in the universe. Consider a
cube of side length L. If we assume that the number of protons in this cube
is N and that L also is a typical distance between them we find from Eq. (5)
that

UD

c2
= MD ∼ 1

4

e2

c2
N2

L
β2 (11)
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where β = |ẋ|/c. This magnetic mass should be compared to the total proton
mass Mp = Nmp. The ratio is

MD

Mp

∼ (e2/c2)(N/L)

4mp

β2. (12)

Putting in the numerical values gives

MD

Mp

∼ (3.83 · 10−19m)(N/L)β2. (13)

The number of protons is N = npL
3 where np is the proton number density.

This gives
MD

Mp

∼ (3.83 · 10−19m)npL
2β2. (14)

To get some numbers we assume that np = 4.0m−3 and that the ratioMD/Mp

is 10 (magnetic mass is 10 times proton mass). This gives

10 ∼ (3.83 · 10−19) 4.0(L2/m2)β2. (15)

The side length of the cube over which velocity must be correlated is then

L ∼ 2.5 · 109β−1m. (16)

assuming that the speed is c/100, so that β = 10−2, we find that L ∼ 2.5·1011
m. This is somewhat more that one astronomical unit (AU≈ 1.5 · 1011 m), a
tiny distance in the interstellar perspective. So, with a density of 4 protons
per cubic meter and a correlated speed of 1% of the speed of light over a
distance of order of magnitude one AU one finds that the gravitational mass
MD of the magnetic energy is ten times the total proton rest mass. This
suggests to the me that dark matter may, in fact, reside in magnetic energy
and the effective mass of the cosmic magnetic fields.

6 Conclusions

Since Darwin’s 1936 paper [36] it should have been clear that investigations
of conduction electrons in metals that do not take into account the magnetic
interaction energy are meaningless. No amount of mathematical wizardry
will make this interaction go away. It is also a natural candidate for emergent
properties in larger systems, such as superconductivity, while remaining a
perturbation in few body systems.
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The insight that large plasmas with coherent velocities have energies that
are many orders of magnitude larger than that corresponding to the rest mass
of the constituent particles should be investigated as a possible candidate for
dark matter. Recently Nicastro et al. [38] found that missing baryons are be-
lieved to reside in large-scale filaments in the warm-hot intergalactic medium.
Perhaps the rest of the missing dark matter is also there in the form of mag-
netic energy?
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