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Rigid Body Dynamics, SG2150
Solutions to Exam, 2011 10 22

Calculational problems

Problem 1: A slender homogeneous rod of mass m and length a can rotate in a vertical
plane about a fixed smooth horizontal axis through one endpoint. Find the equation of
motion 1) using L̇ = M and cylindrical coordinates and 2) using Lagrange method. 3)
Find the angular frequency for small amplitude motion.
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Solution 1: 1) We have L = JOϕ̇ ez where JO = ma2/3. The moment of force comes from
gravity alone since the reaction force in the rotation axis is at O. Thus

M = OG×mg ex = (a/2)eρ(ϕ)×mg ex = −(a/2)mg sinϕ ez.

The equation of motion L̇ = M thus gives,

ma2

3
ϕ̈ ez = −mga

2
sinϕ ez.

The z-component of this vector equation is (Answer 1):

ϕ̈ = −3g

2a
sinϕ.

2) The kinetic energy is T = 1
2JOϕ̇2 and the potential energy is V = −mg(a/2) cosϕ. The

Lagrange function is therefore,

L = T − V = 1
2

ma2

3
ϕ̇2 +

mga

2
cosϕ

The Lagrange equation of motion, d
dt

∂L
∂ϕ̇ − ∂L

∂ϕ = 0, becomes (Answer 2:)

ϕ̈ +
3g

2a
sinϕ = 0,

i.e. the same as in 1).
3) For small amplitude motion we have, sinϕ ≈ ϕ, so that the equation of motion is

ϕ̈ = −3g

2a
ϕ.

This means that the angular frequency squared is ω2 = 3g
2a . Thus (Answer 3:)

ω =
√

3g

2a
.



Problem 2: A straight circular cylinder of mass m and radius R is at rest on a rough
horizontal conveyor belt. The axis of the cylinder is perpendicular to the direction of motion
of the belt. The conveyor belt is then given a constant acceleration a. Find the Lagrangian
that determines the motion of the center of mass of the cylinder. Find its translational
acceleration from the Lagrange equation of motion.
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Solution 2: The velocity of the conveyor belt surface is v = at, to the right in the figure.
The lowest point on the cylinder must have this velocity, since the surface is rough. The
connection formula for velocities in a rigid body then gives

ẋ + Rϕ̇ = at.

We now find that the Lagrangian is given by,

L = T − V = T =
1
2
mẋ2 +

1
2
JGϕ̇2 =

1
2
mẋ2 +

1
2

mR2

2
(at− ẋ)2

R2
,

so we find that (Answer:)

L =
3
4
mẋ2 − 1

2
matẋ +

1
4
ma2t2.

The equation of motion is given by d
dt

∂L
∂ẋ − ∂L

∂x = 0 and this gives us,

d
dt

(
3
2
mẋ− 1

2
mat

)
= 0.

From this one immediately finds the Answer: ẍ = a/3.



Problem 3: Four slender homogeneous rods OA, BC, BD, and CE, constitute a planar
mechanism. OA has length a and is light. It is fixed to BC at a right angle so that A is at
the midpoint of BC. BD and CE each have mass m and length a while BC has mass 2m
and length 2a. There are smooth joints at B and C connecting the rods. Due to a smooth
joint at O, OA can rotate about a fixed horizontal axis. The mechanism moves in a vertical
plane.

Find the Lagrangian of the system. Find the approximation for small amplitude motion
about the equilibrium and determine the M and the K-matrix. Find at least one angular
eigen frequency of the system.
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Solution 3: The kinetic energy is given by:

T =
1
2
JOϕ̇2

1 +
1
2
m(v2

G2
+ v2

G3
) +

1
2
JG2(ϕ̇

2
2 + ϕ̇2

3).

Here JO is the moment of inertia of the body OBAC with respect to a z-axis through O.
Since the mass of OA is negligible, and the mass of BC is 2m, we find JO = JA + 2ma2

from Steiner’s theorem. This gives JO = 1
12(2m)(2a)2 + 2ma2 = 8

3ma2. We also have
that JG2 = JG3 = ma2

12 . The position vectors of the centers of mass of BD and CE are,
respectively,

rG2 =
√

2a eρ(ϕ1 − π/4) + (a/2)eρ(ϕ2), rG3 =
√

2a eρ(ϕ1 + π/4) + (a/2)eρ(ϕ3).

The velocities are then,

vG2 =
√

2aϕ̇1 eϕ(ϕ1−π/4)+(a/2)ϕ̇2 eϕ(ϕ2), vG3 =
√

2aϕ̇1 eϕ(ϕ1 +π/4)+(a/2)ϕ̇3 eϕ(ϕ3).

When squaring these velocity vectors we use the scalar product eϕ(ϕ1 − π/4) · eϕ(ϕ2) =
cos(ϕ2 − ϕ1 + π/4), and similarly for the other one. Algebra then gives (Answer:),

T = ma2
{

10
3

ϕ̇2
1 +

1
6
(ϕ̇2

2 + ϕ̇2
3) +

1√
2

[ϕ̇1ϕ̇2 cos(ϕ2 − ϕ1 + π/4) + ϕ̇1ϕ̇3 cos(ϕ3 − ϕ1 − π/4)]
}

.

The potential energy is,

V = −2mga cosϕ1 −mga(cosϕ1 + sin ϕ1 + 1
2 cosϕ2)−mga(cos ϕ1 − sinϕ1 + 1

2 cosϕ3)

That is, V = −mga(4 cosϕ1 + 1
2 cosϕ2 + 1

2 cosϕ3), and the Lagrangian is L = T − V .
Assuming small amplitude motion we keep the quadratic terms in the Lagrangian and

get (Answer:),

L =
ma2

2

[
20
3

ϕ̇2
1 +

1
3
(ϕ̇2

2 + ϕ̇2
3) + ϕ̇1ϕ̇2 + ϕ̇1ϕ̇3

]
− mga

2

[
4ϕ2

1 +
1
2

(
ϕ2

2 + ϕ2
3

)]



Below we skip the common factor ma of L. From this we can read off the M- and K-matrices:

M = a




20
3

1
2

1
2

1
2

1
3 0

1
2 0 1

3


 , K = g




4 0 0
0 1

2 0
0 0 1

2


 .

Putting ω2 = x we now find the secular equation,

det(−Mx + K) =

∣∣∣∣∣∣∣

−a20
3 x + g4 −a1

2x −a1
2x

−a1
2x −a1

3x + g 1
2 0

−a1
2x 0 −a1

3x + g 1
2

∣∣∣∣∣∣∣
= 0,

which gives,
(
−a

20
3

x + g4
) (

−a
1
3
x + g

1
2

)2

−
(
−a

1
2
x

)2 (
−a

1
3
x + g

1
2

)
−

(
−a

1
2
x

)2 (
−a

1
3
x + g

1
2

)
= 0.

It is obvious that one root is (Answer:)

ω2 = x1 =
3g

2a
.

Note that this is the same as in Problem 1 and corresponds to the two rods BD and CE
oscillating in opposite directions, while OBAC is at rest.

The other two roots are
x2,3 =

6
31

(7± 3
√

2)
g

a
,

i.e. approximately, x2 = 2.176 g
a , and x3 = 0.534 g

a .



Idea problems:

Problem 4: Six identical slender homogeneous rods, each of mass m and length a are
welded together at the endpoints so that they constitute the edges of a regular tetrahedron.
Find the moment of inertia of this body with respect to an axis through the midpoint.
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Solution 4:
The figure above shows the tetrahedron as seen from above at rest on a horizontal surface.
Now imagine the lines projected to the plane of the base (horizontal) triangle. We see that
the height of the base triangle is h = b+ c so Pythagoras’ gives that h2 +(a/2)2 = a2. This
gives h = (

√
3/2)a. Since the center of mass of the triangle is (1/3)h above the base we

find that c = h/3 = a/(2
√

3) and that b = 2h/3 = a/
√

3.
The moment of inertia with respect to a vertical axis through the midpoint is now,

J = 3
(

m
1
12

a2 + mc2
)

+ 3
(

m
1
3
b2

)
.

Here the first parenthesis gives the contribution from one of the edge bars in the base
triangle. The second parenthesis is due to a bar that goes from the top of the tetrahedron
to a corner in the base triangle. The contribution from such a bar is the same as for a bar
perpendicular to the vertical axis but of length b. Algebra now gives the Answer:

J =
5
6
ma2.

Since the tetrahedron is symmetric all moments of inertia for axes through the midpoint
are the same.



Problem 5: Use the equation L̇ = M to find a simple approximation for the precession
angular velocity (Ω = ψ̇) of the heavy fast symmetric top. Hint: use ė = Ω×e and assume
L parallel to the axis of the top.

Solution 5:
See Section 5.2.3, pages 82-83, in Dynamics of Bodies. Equations (5.62) to (5.65) constitute
a derivation.

Here is a slightly simplified derivation. From L̇ = M one finds

L̇ ≈ h eB
z × (−mg eO

z ) = mgh eO
z × eB

z .

But for the fast top we have L ≈ Jω eB
z where ω = ϕ̇ ≈constant. This means that

L̇ ≈ Jω ėB
z . Combining we get,

Jω ėB
z ≈ mgh eO

z × eB
z ,

which means that
ėB

z =
(

mgh

Jω
eO

z

)
× eB

z .

We see that the result is, Answer:

Ω = Ω eO
z =

mgh

Jω
eO

z .

This is thus the angular velocity of precession of the fast heavy symmetric top. (Here h is
the distance from the point in contact with the table to the center of mass, m is the mass,
J is the moment of inertia with respect to the symmetry axis.)

Problem 6: Find the motion of the free symmetric top in terms of suitable Euler angles.
Discuss the difference between prolate and oblate bodies.
Solution 6:
This is done in Section 5.2.1, pages 78-79, in Dynamics of Bodies.

Each problem gives maximum 3 points, so that the total maximum is 18. Grading: 1-3, F;
4-5, FX; 6, E; 7-9, D; 10-12, C; 13-15, B; 16-18; A.
Allowed equipment: Handbooks of mathematics and physics. One A4 size page with your
own compilation of formulas.
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