KTH Mechanics 2011 10 22

Rigid Body Dynamics, SG2150
Solutions to Exam, 2011 10 22

Calculational problems

Problem 1: A slender homogeneous rod of mass m and length a can rotate in a vertical
plane about a fixed smooth horizontal axis through one endpoint. Find the equation of
motion 1) using L = M and cylindrical coordinates and 2) using Lagrange method. 3)
Find the angular frequency for small amplitude motion.
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Solution 1: 1) We have L = Jo¢ e, where Jo = ma?/3. The moment of force comes from
gravity alone since the reaction force in the rotation axis is at O. Thus

M = OG x mge, = (a/2)e,(p) X mge, = —(a/2)mgsinpe,.

The equation of motion L = M thus gives,

2

ma= .. .
—ge, =— sin g e,.
3
The z-component of this vector equation is (Answer 1):
. 39 .
p = ———sine.
2a

2) The kinetic energy is T' = %JogbZ and the potential energy is V' = —mg(a/2) cos p. The
Lagrange function is therefore,
lma2 5 Mmga

273 YT

L=T~-V = Cos

The Lagrange equation of motion, %% — % = 0, becomes (Answer 2:)

3
gb—i-—gsingo:O,
2a

i.e. the same as in 1).
3) For small amplitude motion we have, sin ¢ ~ ¢, so that the equation of motion is

. _ 39
LRSS
This means that the angular frequency squared is w? = ;’—Z. Thus (Answer 3:)

39

2a°



Problem 2: A straight circular cylinder of mass m and radius R is at rest on a rough
horizontal conveyor belt. The axis of the cylinder is perpendicular to the direction of motion
of the belt. The conveyor belt is then given a constant acceleration a. Find the Lagrangian
that determines the motion of the center of mass of the cylinder. Find its translational
acceleration from the Lagrange equation of motion.
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Solution 2: The velocity of the conveyor belt surface is v = at, to the right in the figure.
The lowest point on the cylinder must have this velocity, since the surface is rough. The
connection formula for velocities in a rigid body then gives

T+ Rp = at.

We now find that the Lagrangian is given by,

so we find that (Answer:)

3 1
L = “mi? — Zmati + ~ma

2,2
.
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The equation of motion is given by %% — % = 0 and this gives us,

d(3 L t>0
dt me 2ma = U.

From this one immediately finds the Answer: & = a/3.



Problem 3: Four slender homogeneous rods OA, BC, BD, and C'E, constitute a planar
mechanism. OA has length a and is light. It is fixed to BC' at a right angle so that A is at
the midpoint of BC. BD and C'E each have mass m and length a while BC' has mass 2m
and length 2a. There are smooth joints at B and C' connecting the rods. Due to a smooth
joint at O, O A can rotate about a fixed horizontal axis. The mechanism moves in a vertical
plane.

Find the Lagrangian of the system. Find the approximation for small amplitude motion
about the equilibrium and determine the M and the K-matrix. Find at least one angular

eigen frequency of the system.
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Solution 3: The kinetic energy is given by:

1., 1 1.,
T = SJogi + 5m(v, +vE,) + 576 (05 + ¢5).

Here Jo is the moment of inertia of the body OBAC with respect to a z-axis through O.
Since the mass of OA is negligible, and the mass of BC is 2m, we find Jo = J4 + 2ma®

from Steiner’s theorem. This gives Jo = 5(2m)(2a)* + 2ma? = $ma®. We also have

that Jg, = Jg, = "}‘52 The position vectors of the centers of mass of BD and CE are,
respectively,

ra, = V2ae,(p1 — m/4) + (a/2)ey(2), Ty = V2ae,(p1+ /1) + (a/2)ey(03).
The velocities are then,
VG, = V2ag1 ep(p1 —7/4) +(a/2)¢2 €p(92), Vay = V2a¢1 ep(p1+7/4) + (a/2) @3 € (3).

When squaring these velocity vectors we use the scalar product e, (w1 — 7/4) - e,(p2) =
cos(pa — w1 + m/4), and similarly for the other one. Algebra then gives (Answer:),

10 | 1. . . .., L
T = ma® {3<P% + 6(903 + @) + 7 [p1p2 cos(p2 — 1+ 7/4) + ¢1p3 cos(ps — 1 — 7r/4)]} :
The potential energy is,
V = —2mga cos p1 — mga(cos p1 + sin 1 + 3 cos ) — mga(cos p1 — sin g1 + & cos p3)

That is, V = —mga(4 cos 1 + %cos w9 + %cos ¢3), and the Lagrangian is L =T — V.
Assuming small amplitude motion we keep the quadratic terms in the Lagrangian and
get (Answer:),

ma® [20 5 1, .5 o . . .
=5 §¢1+§(@2+S@3)+S@1S@2+S@1¢3

mga

5 {4% . (w3 + @3)}

2



Below we skip the common factor ma of L. From this we can read off the M- and K-matrices:

20 1 1
3 7 2 4 0 0
M=a P % 0|, K=g]| 0 % 0
1 1
3 0 3 00 3
Putting w? = = we now find the secular equation,
—a%x + g4 —a%x —a%x
det(—Mz + K) = —aix —atz + g3 0 =0,
—a%:n 0 —a%x + g%

which gives,

(o) (rogrrog) = (ope) (rogrvog)~(cege) (ogoeag) =0
e +g azz+95 age azz+95 agx azz+g5)=0.
It is obvious that one root is (Answer:)

w2 =T = 3—9
2a

Note that this is the same as in Problem 1 and corresponds to the two rods BD and CE
oscillating in opposite directions, while OBAC is at rest.
The other two roots are

6 g9
= —(7Tx 2)=
x2.3 31(7 3\/>)a,

i.e. approximately, z2 = 2.176 £, and 23 = 0.534 .



Idea problems:

Problem 4: Six identical slender homogeneous rods, each of mass m and length a are
welded together at the endpoints so that they constitute the edges of a regular tetrahedron.
Find the moment of inertia of this body with respect to an axis through the midpoint.

a2 a/’2

Solution 4:
The figure above shows the tetrahedron as seen from above at rest on a horizontal surface.
Now imagine the lines projected to the plane of the base (horizontal) triangle. We see that
the height of the base triangle is h = b+ ¢ so Pythagoras’ gives that h? + (a/2)? = a?. This
gives h = (v/3/2)a. Since the center of mass of the triangle is (1/3)h above the base we
find that ¢ = h/3 = a/(2V/3) and that b = 2h/3 = a//3.

The moment of inertia with respect to a vertical axis through the midpoint is now,

(et en) oo
J—3<m12a +mc )+ 3 mgb .

Here the first parenthesis gives the contribution from one of the edge bars in the base
triangle. The second parenthesis is due to a bar that goes from the top of the tetrahedron
to a corner in the base triangle. The contribution from such a bar is the same as for a bar
perpendicular to the vertical axis but of length b. Algebra now gives the Answer:

5

J = Zma®.

6
Since the tetrahedron is symmetric all moments of inertia for axes through the midpoint
are the same.



Problem 5: Use the equation L = M to find a simple approximation for the precession
angular velocity (€ = 1) of the heavy fast symmetric top. Hint: use & = €2 x e and assume
L parallel to the axis of the top.

Solution 5:
See Section 5.2.3, pages 82-83, in Dynamics of Bodies. Equations (5.62) to (5.65) constitute
a derivation.

Here is a slightly simplified derivation. From L = M one finds
O

z

L~hel x(—mge?)=mghe? x eb.

But for the fast top we have L ~ Jw el where w = ¢ ~constant. This means that
L ~ Jwel. Combining we get,

B

Jweb zmghezo X e,

which means that

- B mgh o B
er = (M 0 e,

We see that the result is, Answer:

This is thus the angular velocity of precession of the fast heavy symmetric top. (Here h is
the distance from the point in contact with the table to the center of mass, m is the mass,
J is the moment of inertia with respect to the symmetry axis.)

Problem 6: Find the motion of the free symmetric top in terms of suitable Euler angles.
Discuss the difference between prolate and oblate bodies.

Solution 6:

This is done in Section 5.2.1, pages 78-79, in Dynamics of Bodies.

Each problem gives mazimum 3 points, so that the total mazximum is 18. Grading: 1-3, F;
4-5, FX; 6, E; 7-9, D; 10-12, C; 13-15, B; 16-18; A.

Allowed equipment: Handbooks of mathematics and physics. One A4 size page with your
own compilation of formulas.
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