KTH Mechanics 2007 10 23

Rigid Body Dynamics, SG2150
Solutions to Exam, 2007 10 23, kl 09.00-13.00

Calculational problems

Problem 1: A spherical shell of mass 3m and radius R is rotating freely in space with
angular velocity w = %(eaj + e.). A thin ring of radius R and mass 2m, with its center
coinciding with that of the shell, is initially at rest in the xy-plane. The ring suddenly
becomes attached to the spherical shell. Find the angular velocity w’ of the resulting rigid

body immediately after the attachment.

Solution 1:
Since there are no external moments of force on the system of spherical shell plus ring, the
total angular momentum L is a conserved vector. Initially when only the shell is moving
(rotating) we have that,

L =Jw,
where,
2
2 (

Js = 3 3m)R? = 2mR?,

is the moment of inertia of the spherical shell with respect to any axis through its center.
When the ring becomes attached to the shell we have a new rigid body with inertia
tensor components given by,
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The new expression for the angular momentum is then,
L=J]uJ.

Combining the two expression for L we find for the Answer:,
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Problem 2: A particle of mass m can slide on a smooth horizontal plane (the x'y'- or,
equivalently, the zy-plane). A circular homogeneous horizontal disc of mass 4m and radius
R can rotate freely about a vertical axis through its center O, just above the smooth plane.
An elastic band, with stiffness k attaches the particle to the disc and is such that it has its
natural length when the particle is just below the point P on the periphery of the disc.

When the particle deviates from P in the smooth plane there is thus a linear force
pulling it back to P.

Find the Lagrangian in terms of generalized coordinates ¢, z, and y, where ¢ is the
angle of rotation of the disc with respect to the fixed z’-axis, and where x,y are Cartesian
coordinates of the particle with respect to xy-axes rotating with the disc and with origin
at P and find conserved quantities of the system.
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Solution 2: We have that,

T = %J(f + %mva,

where J = (4m)R? = 2mR? and where,

d . ) ) ..
v = a(Rep +ze, +ye,) = (& —yple, + (R + x¢p + 9)e,.

Since the potential energy is, V = %k(mz + 9?), we thus find the Answer:

L=T-V =
Im{ 2R + (R+2)? +7| ¢* + (a2 + 97) + 2[(R+ 2)y — yil ¢} — 3k (22 +9?)

for the Lagrangian.

One conserved quantity is the energy and the other is the generalized coordinate p, =
OL/0¢, since the coordinate ¢ does not appear in the Lagrangian.
Answer:

E=im{[2R* + (R+2)* + | &* + (&% +9%) + 2[R+ 2)y — yal o} + 3k (22 +47),

and,
pp=m {[2R2 +(R+2)?+y)p+ (R+2)y— yrc}

are constants of the motion.



Problem 3: Assume that the generalized coordinates x, y, and generalized velocities ¢, &, ¥,
of Problem 2, are all small. Find the normal mode frequencies of the system.

Solution 3: Putting ¢ = (z,y, ) = 0 in the g, (gq) of the Lagrangian found in Solution 2
we get the quadratic expression:

L~1im (3R2<,b2 +i? 4?2 + 2Ry¢) — 1 (372 + y2) .

This can be written as,

3mR?2 0 mR %) 0 0 O %)
Lr~i(p i g) 0 m 0 i |—3(@axzy| 0 Kk O x |,
mR 0 m i 0 0 k Y

making the mass and the stiffness matrices evident.
The secular equation for the normal mode frequencies w is then,

—3mR2z 0 —mRz
0 —-mz+k 0 =0,
—mRz 0 —mz+k

where z = w?. This gives,
—3mR%z(—mz + k)? — (—mR2)*(—mz + k) =0

After noting the trivial root z; = 0 we get a quadratic equation which gives the other two

roots, zo = %,23 = %

Thus we get the Answer:

[k | 3k
w1 =0, wy=1/—, wg=14/—.
m 2m

Here the first root corresponds to the approximately conserved quantity,
pe & mR(3Rp + 7)),

the second to the z-motion, and the third to an out phase motion of ¢ and y.



Idea problems:

Problem 4: Spherical coordinates (r, ¥, ¢) can be defined by the transformation formulas,
x=rsind cosy, y=rsind siny, z =rcosd,

to Cartesian coordinates. The appropriate moving basis vectors are given by,

e, = sinv cospe, +sind sinpey +cosde.,
ey = cosv cospe, + cosv sinpe, —sinde,,
e, = —sinpe; + cos pey.

Assume that the angles, 9, ¢, depend on time and that at a given moment the angular
velocities are 9, ¢. Find the components of the angular velocity vector w(¥, ¢, J, ¢) of the
moving basis e,, ey, e, with respect to the fixed Cartesian basis. The components of w
should be with respect to the moving basis (w = wre, + wyey + wye,).

Solution 4: Graphical solution is recommended. The result should be,
w="1 e, +ye..
One then has to express e, in terms of the moving basis vectors, which gives,
e, = costte, —sind ey.
Finally thus we get the Answer:
w=¢pcosve, — Y sindey —I—’L§6<p,

for the angular velocity vector.

Problem 5: Show that the kinetic energy of a system can be written,
& 1
Z:: bZ:: 5 9ab(@)dadp;

assuming that the constraints are holonomic and time independent.

Solution 5: See the textbook.

Problem 6: Assume that the Lagrangian of a system is given by,

We know that L itself is not a conserved quantity. By considering the time derivative of
L and the equations of motion one can find a conserved quantity that corresponds to the
energy. Do that!

Solution 6: See the textbook.

Each problem gives mazximum 8 points, so that the total maximum is 18. Grading: 1-3, F;
4-5, FX; 6, E; 7-9, D; 10-12, C; 13-15, B; 16-18; A.

Allowed equipment: Handbooks of mathematics and physics. One A4 size page with your
own compilation of formulas.
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