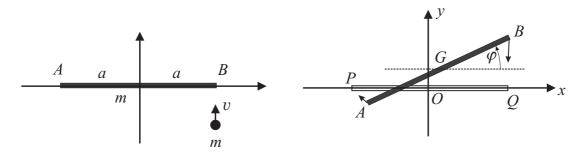
Rigid Body Dynamics, SG2150 Exam, 2010 10 21, kl 09.00-13.00

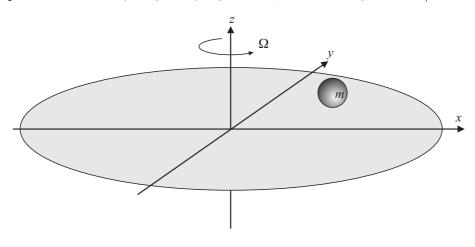
Calculational problems

Problem 1: A slender rod AB of mass m and length 2a, rests on a smooth horizontal plane. A small ball of the same mass m impacts with the rod at its endpoint B and sticks there. Just before impact the ball has a velocity v in the horizontal plane perpendicular to the rod. Find the angular velocity of the body (rod plus ball) and the velocity of the point A, just after impact.



Problem 2: A slender rod AB of mass m and length 2a, can move in a smooth horizontal plane. The endpoints of the rod are attached with elastic strings in such a way that at equilibrium the rod goes between the points P and Q a distance 2a apart and the forces on the rod are then zero. When the rod is displaced in the plane the force on the endpoints A and B pull them back towards P and Q respectively. The strength of these forces are proportional to the distances ($|\mathbf{F}_A| = k|AP|$, $|\mathbf{F}_B| = k|BQ|$). Find the kinetic energy, the potential energy and the equations of motion of the rod. Also find the angular frequencies for small amplitude motions. Use center of mass coordinates x, y and angle φ as generalized coordinates. Hint: the potential energy of the force \mathbf{F}_A is $V_A = (k/2)(\mathbf{r}_A - \mathbf{r}_P)^2$.

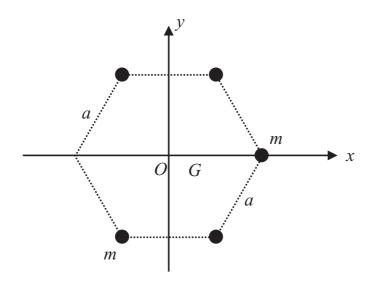
Problem 3: A rough horizontal table rotates with constant angular velocity Ω about a fixed vertical axis. Find the equations of motion for the center of mass of a ball, of mass m and radius R, that rolls on the table. Solve them. Hints: Use a fixed Cartesian coordinate system. Find the conditions for rolling without slipping by expressing the velocity of a point of the table and equating it to the velocity of the lowest point on the ball. Use the vector equations of motion, $m\ddot{\mathbf{r}}_G = \mathbf{F}$, $\dot{\mathbf{L}}_G = -R\mathbf{e}_z \times \mathbf{F}$. Use $J_G = 2mR^2/5$.



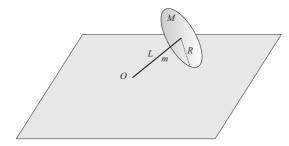
Turn page

Idea problems:

Problem 4: Five particles, each of mass m, are placed at the corners of a regular hexagon of side length a. Find the position of the center of mass G in the coordinate system of the figure. Find the inertia matrix \mathbf{J}_G , with respect to the same axes, but with origin at the center of mass.



Problem 5: A rigid body is made from a thin circular disc of radius R and mass M with a slender rod of length L and mass m attached at the center on one side of the disc. The rod is perpendicular to the plane of the disc. This body is placed on a rough horizontal plane so that the free end of the rod and a point on the periphery of the disc is in contact with the table. It is then set in rolling motion with absolute value of angular velocity given by ω . Find its kinetic energy.



Problem 6: Derive Lagrange's equations of motion for one particle, either from a variational principle, or by projecting Newton's second law on the tangent vectors of the allowed motions.

Each problem gives maximum 3 points, so that the total maximum is 18. Grading: 1-3 F; 4-5 FX; 6 E; 7-9 D; 10-12 C; 13-15 B; 16-18 A.

Allowed equipment: Handbooks of mathematics and physics. One A4 size page with your own compilation of formulas.