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Two-Body Local-Momentum Approximation of Spinless Particles Scattered by a

(1+1)-D Woods–Saxon Barrier Potential
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Abstract A local momentum (LM) approximation applicable to semi-relativistic two-body repulsive interactions is
presented. It assumes negligible variations in the (vector-type) potential. A Woods–Saxon barrier with a rectangular-
like shape is studied in some detail. The LM-approximation gives exact results within the semi-relativistic framework
for rectangular barrier interactions in (1+1) dimensions. Further approximations of the local momentum approach
leads to the two-body approximation of Ikhdair & Sever, known since the early 90’s as the spinless Salpeter equation
approximating the Bethe–Salpeter equation. LM- and GS-results indicate significant two-body effects. Results obtained
from the (single-mass) Dirac equation are similar for certain two-body mass combinations.
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1 Introduction

Recent research on relativistic two-body effects[1−5]

apply a semi-relativistic (SRQ) quantum approximation.

With a related approximate approach by Ikdair & Sever,[1]

two-body phenomena of bound and scattering states can

be estimated with methods of non-relativistic quantum

mechanics. Two-body effects appear as bound-state level

shifts as well as scattering resonance shifts. Such two-

body shifts are primarily due to special relativity. Shifts

due to particle spins are ignored in the present semi-

relativistic approach.

The approximation of the Bethe–Salpeter equation due

to Ikdair & Sever[1] is a continuation of earlier ideas by

Nickisch et al.,[6] leading to a Schrödinger-like equation.

It has been questioned by Lucha et al.[2] for non-rigorous

applications to bound-state calculations. Later research

explains that the basic semi-relativistic quantum equa-

tion has exact solutions for step-like barriers to compare

with, and that the approximation by Ikdair & Sever accu-

rately predicts transmission and reflection coefficients for

(1+1)-D dynamics.[5]

The idea by Ikdair & Sever is different from other ap-

proaches, like those in Refs. [7–9]. Ikdair & Sever directly

quantize the energy-momentum invariant of special rela-

tivity. Required methods with this approach are familiar

in non-relativistic quantum mechanics, as is obvious in re-

cent applications assuming that relativistic contributions

are small.[3−4] Most of these applications focus on bound

states in (1+1) dimensions (D) and in (1+3)-D. A cou-

ple of applications are related to scattering problems, see

Refs. [4–5] for (1+1)-D barrier-type interaction potentials.

However, early applications to bound and scattering states

do not discuss two-body effects, but rather analytic solu-

tion methods for specific potential shapes. The present lo-

cal momentum (LM) approximation of the SRQ approach,

also leading to a Schrödinger-like equation, is related to

the exact SRQ treatment in Ref. [5], where a rectangular

barrier was studied by matching linear plane-wave solu-

tions.

One can think of the LM-approximation as an “adi-

abatic” approximation of a quantum-mechanical theory

starting from a classical Hamiltonian from the special rel-

ativity. Such a semi-relativistic quantum theory presently

ignores particle spin. The basic SRQ equation is still diffi-

cult to approach by standard numerical methods based on

second-order ordinary differential equations (ODE). The

main mathematical obstacle is the presence of square-

root operators in the basic SRQ formulations. In sub-

sequent sections the basic SRQ equation is simplified by

further (adiabatic) approximations resulting in a second-

order ODE. Once the Schrödinger-like equations are ob-

tained, one can apply any standard numerical method of

quantum mechanics. Here, the Milne’s numerical method

is used, as explained elsewhere.[11−13]

Two potential models are considered: The rectangular

barrier, which allows exact numerical SRQ comparisons,

is given by

V (x) = V0, −a < x < a, and V (x) = 0, |x| ≥ a . (1)

Note that Alhaidari et al.[14] studied transmission prop-

erties for a single fermion mass with scalar/vector-type

rectangular barriers using Dirac theory.

The second model is an inverted Woods–Saxon poten-
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tial, a Woods–Saxon barrier, is given by

V (x) =
V0

1 + exp((|x| − a)/d)
,

V0 > 0, −∞ < x <∞ , (2)

where V0 represents the potential strength, d is a length

representing the “surface thickness” of nuclei, and a rep-

resents the effective size of nuclei. The parameters a and

d are varied in the present study. Note that Thomson[16]

also studied transmission properties for a single fermion

mass with scalar/vector-type Woods–Saxon barriers using

Dirac theory.

From an earlier study of the rectangular (1+1) D bar-

rier model,[5] it became clear that the approximation by

Ikhdair & Sever,[1] here called the generalized Schrödinger

(GS) approximation, is accurate with weak relativistic

conditions on potential parameters. A critical parame-

ter is the barrier strength V0, which causes extraordinary

transmission behaviors for V0 larger than m2c
2, where m2

is the smaller of the two masses. For such values it is not

obvious that the GS- and the LM approximations would

agree for rectangular barriers, and even less obvious for

smooth barriers like the Woods–Saxon barrier.

Section 2 describes the basic equations of the semi-

relativistic quantum approach. The amplitude-phase ap-

proach is presented in Sec. 3. The particular LM approach

is discussed in Sec. 4. Various approximations of the LM

approach is presented in the same section, in particular the

approximation of Ikhdair & Sever and the non-relativistic

(Schrödinger) limit. Numerical and graphical results are

shown in Sec. 5, and a conclusion is in Sec. 6.

2 Semi-Relativistic (SRQ) Two-Body Quan-
tum Equation

The SRQ differential equation in the center-of-mass

frame for relative motion of the masses m1 and m2 is lin-

ear, and given by[5]

LΨ = ϵΨ , (3)

where ϵ is the dynamical energy (total energy minus rest-

mass energies). The operator L, including a relativistic

(time-like) vector-type potential V , is given by

L =
√
m2

1c
4 + p̂2c2 −m1c

2

+
√
m2

2c
4 + p̂2c2 −m2c

2 + V . (4)

The operator L is linear, and far away from the interac-

tion the solutions are plane waves (ψ±k = e±ikx) with

an asymptotic wave number k. The plane waves satisfy

Eq. (3),(√
m2

1c
4 + k2~2c2 +

√
m2

2c
4 + k2~2c2

)
ψ±k

= (mc2 + ϵ)ψ±k , (5)

where m = m1+m2 is the total mass. An explicit relation

between the wave number k and the energy ϵ is

k =
1

2~c

√
ϵ(2mc2 + ϵ)(2m1c2 + ϵ)(2m2c2 + ϵ)

(mc2 + ϵ)2
, (6)

which reduces to the non-relativistic (NR) expression

kNR =

√
2µϵ

~2
, (7)

as c→ +∞. The symbol µ is the reduced mass

µ =
m1m2

m1 +m2
. (8)

In the presence of a potential that vanishes as |x| → ∞
the boundary conditions for the scattering wave function

Ψ can be written as

Ψ ∼ t exp(−ikx), x→ −∞ , (9)

Ψ ∼ exp(−ikx) + r exp(ikx), x→ +∞ , (10)

where t and r are the transmission and reflection ampli-

tudes, respectively. Expressions for the transmission and

reflection coefficients are:

T = |t|2, (11)

R = |r|2. (12)

These quantities are computed with the aid of Secs. 3 and

4 for the rectangular and the Woods–Saxon potentials by

the amplitude-phase method. Results are presented in

Sec. 5 and further discussed in Sec. 6.

3 Schrödinger-Like Equations and the
Amplitude-Phase Method

In this study the relevant approximations of the SRQ

equation (3) are defined by Schrödinger-like equations; see

the subsequent sections. Hence, the approximate solutions

are obtained from

d2

dx2
Ψ+K2(x)Ψ = 0 , (13)

with a variable coefficient function K2(x), and one can

apply standard numerical method of quantum mechan-

ics to solve the barrier problem. In the present study

the amplitude-phase method is applied.[11−12] It is based

on two amplitude-phase representations, left(L)- and

right(R) representations, of fundamental solutions satis-

fying Eq. (13). These are

Ψ
(±)
L,R(x) = AL,R(x) exp(±iϕL,R(x)) , (14)

d

dx
ϕL,R(x) = A−2

L,R(x) , (15)

where Eq. (15) is an auxiliary relation ensuring the Wron-

skian determinant of the two (±)-solutions (14) being con-

stant. This condition can be imposed since the num-

ber of symbols is doubled. Inserting Eq. (14) into the

Schrödinger-like equation (13), one obtains a nonlinear

Milne equation[12]

d2

dx2
AL,R +K2(x)AL,R = A−3

L,R. (16)
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From the two L,R-representations (14) and (15) one

defines fundamental matrix solutions

ΨL,R =

(
Ψ

(+)
L,R Ψ

(−)
L,R

Ψ
′(+)
L,R Ψ

′(−)
L,R

)
, (17)

where a prime, ′, indicates a derivative with respect to x.

The fundamental solutions are matched at the origin x = 0

as described in Ref. [11]. The resulting L,R-connection is

ΨL(x) = ΨR(x)M , (18)

where M is a complex-valued 2× 2 matrix, given by

M =
1

2

(
−iP +Q+Q−1 −iP +Q−Q−1

iP +Q−Q−1 iP +Q+Q−1

)
, (19)

with

P = A′
L(0)AR(0)−A′

R(0)AL(0) , (20)

Q =
AL(0)

AR(0)
. (21)

In the present case the barrier is symmetric with respect

to x = 0, and one can use amplitude solutions of Eq. (16)

satisfying

AL(−x) = AR(x), A′
L(−x) = −A′

R(x) . (22)

Hence, the matrix (19) can be written directly in terms of

amplitude values, i.e.

M =

(
iA′

R(0)AR(0) + 1 iA′
R(0)AR(0)

−iA′
R(0)AR(0) −iA′

R(0)AR(0) + 1

)
. (23)

The transmission- and reflection coefficients are ob-

tained as

T =
1

M22M∗
22

, (24)

R =
M12M

∗
12

M22M∗
22

, (25)

and by direct evaluations of the M -matrix elements the

resulting expressions become

T = {1 + [A′
R(0)AR(0)]

2}−1, and R = 1− T . (26)

The reflection symmetry of the present potential im-

plies that Eq. (26) can be used. Hence, only one of the

amplitude functions, say AR(x), is to be integrated. For

scattering solutions the Milne equation (16) is integrated

from initial conditions at any xinit ≫ a, where a is the

range parameter, with

AR(xinit) = K−1/2(+∞) ,

A′
R(xinit) = 0, xinit → +∞ . (27)

The constant K(+∞) > 0 is the relevant asymptotic wave

number. The integration terminates at x = 0 and the

values AR(0), A
′
R(0) are inserted into Eq. (26). Results

depend very little on position of xinit ≫ a if the tail of the

potential vanishes exponentially. For the Woods–Saxon

potential xinit ≈ 10a is used. The numerical tolerance of

the integrator is ≈ 10−7.

The initial (boundary) conditions (27) are taken from

an exact constant solution of the nonlinear equation (16)

as x→ +∞. The exact wave number in Eq. (6) is the rel-

evant one for the local-momentum (LM) approximation

presented in the subsequent section.

4 Local-Momentum (LM) Approximation

The aim of the LM-approximation is to obtain a

Schrödinger-type differential equation instead of Eq. (3),

and, thereby revealing a relation to the generalized

Schrödinger (GS) approximation of Ikhdair & Severe.[1]

The key observation motivating a “local-momentum”

approximation is this: the plane-wave solutions ψ±k =

e±ikx satisfy the original SRQ equation (3) as well as the

second-order ODE:

p̂2ψ±k = ~2k2ψ±k, (V = 0) , (28)

where k is defined in Eq. (6). Hence, for a vanishing po-

tential V , Eq. (3) can be replaced by Eq. (28), which ap-

pears as a “generating second-order differential equation”

for Eq. (3).

An algebraic manipulation with the same resulting

Eq. (28) is possible by assuming V being constant in

Eq. (3) and treating the operator p̂2 as a c-number or

a local function. The operator status of p̂2 is subsequently

retained after the completed algebra, and the solution is

exact.

The main approximation of such algebraic manipula-

tions is that the potential has no derivatives in connected

intervals of the x-axis. The solutions are linear and can

be rigorously fitted at each discontinuity of the x-axis.

To generalize this situation one can instead of a discon-

tinuity think of a smooth transition between two (almost)

constant values of V . The rectangular-shaped Woods–

Saxon barrier is the potential model chosen for this pur-

pose. Here it is proposed that a discontinuity can be re-

placed by a small (surface thickness) region with possibly

large derivatives of the potential.

By heuristically assuming the potential V being piece-

wise constant with sufficiently small transition regions,

one obtains an equation (13) with K2(x) replaced by

K2
LM(x) =

1

4~2c2
[ (ϵ− V )(2mc2 + ϵ− V )(2m1c

2 + ϵ− V )(2m2c
2 + ϵ− V )

(mc2 + ϵ− V )2

]
, (29)

or equivalently

K2
LM(x) =

2m

~2
[
(ϵ− V )

(m1

m
+
ϵ− V

2mc2

)(m2

m
+
ϵ− V

2mc2

) (1 + (ϵ− V )/2mc2)

(1 + (ϵ− V )/mc2)2

]
. (30)

Contributions from derivatives of the potential V are ignored in this study.

It is interesting to approximate the coefficient K2
LM(x) in different limiting directions. Five particular cases are:



622 Communications in Theoretical Physics Vol. 67

• The equal-mass situation:

K2
LMm1=m2

(x) =
m

2~2
[
(ϵ− V )

(
1 +

ϵ− V

2mc2

)]
, m = 2m1 = 2m2 = 4µ ; (31)

• The extreme light-heavy situation:

K2
LMm2=0(x) =

1

~2c2
[
(ϵ− V )2

(1 + (ϵ− V )/2mc2)2

(1 + (ϵ− V )/mc2)2

]
, m = m1 ; (32)

• The weak, relativistic situation:

K2
GS(x) = K2

LMc→∞(x) =
2µ

~2
(ϵ− V ) +

(m− 3µ

m

) 1

~2c2
(ϵ− V )2; (GS) (33)

• The non-relativistic situation:

K2
NR(x) = K2

LMc=∞(x) =
2m

~2
[
(ϵ− V )

m1m2

m2

]
=

2µ

~2
(ϵ− V ); (NR) (34)

• The weak potential situation:

K2
LMV→0(x) =

1

4~2c2
[B0 −B1V +B2V

2] , (35)

with expansion parameters

B0 =
ϵ(2mc2 + ϵ)(2m1c

2 + ϵ)(2m2c
2 + ϵ)

(mc2 + ϵ)2
,

B1 = 2
[
mc2 + ϵ− m2

1c
4 +m2

2c
4

mc2 + ϵ

][
1− m2

1c
4 −m2

2c
4

(mc2 + ϵ)2

]
,

B2 = 1 +
3m2c4(m1 −m2)

2c4

(mc2 + ϵ)4
.

Note that the second case (32) does not imply “a single

particle scattering in a potential V ”. Instead, one actu-

ally has a two-body scattering case here, where one of

the particles is massless like a photon. Note also that

the third case (33) is similar to the Schrödinger-type co-

efficient function of Ikhdair & Sever-approximation.[1] In

this approximation the two-body mass index satisfies

1

4
(equal masses) ≤

(m− 3µ

m

)
< 1 (light-heavy masses limit) . (36)

Two of the above coefficient approximations, Eqs. (33)

and (34), are applied numerically and included for com-

parisons with Eq. (30) in Tables 1–4.

5 Results for the (1+1) D Rectangular and
Woods–Saxon Barriers

The rectangular barrier case has analytic solutions

of the transmission and reflection coefficients and allows

exact semi-relativistic results.[5] The LM approximation

becomes exact and the GS approximation turns out to

be surprisingly accurate, although the GS-wave num-

bers are not particularly accurate in general.[5] The LM-

and GS approximations suite the amplitude-phase method

well.[11]

Both approximations result in differential equations of

the Schrödinger type. Numerical values of the transmis-

sion coefficient reveals possible oscillatory behaviors at

very low scattering energies and strongly repulsive bar-

riers (see below). These are spectacular two-body effects

that at the moment should be seen as hypothetical, but

inherent to the “semi-relativistic” approach. For such pa-

rameter values (strong, repulsive barriers) the fundaments

of the semi-relativistic approach are questionable.

Table 1 (Color online) Two-body transmission coef-
ficients T for the rectangular barrier with parameters
V0 = 2µ, a = 3, m1 = 100µ, d = 0, and varying scat-
tering energies ϵ. Symbols in the table of the calculated
transmission coefficient: T (exact analytic), TLM (numer-
ical LM-calculations), TGS (Ikhdair & Sever), and TNR

(non-relativistic).

ϵ/V0 Texact TLM TGS TNR

1.2 0.730 51 0.730 51 0.729 37 0.603 88

1.4 0.815 73 0.815 73 0.818 42 0.706 26

1.6 0.724 83 0.724 83 0.728 35 0.995 67

1.8 0.702 39 0.702 39 0.699 61 0.860 64

2.0 0.804 85 0.804 85 0.786 49 0.965 26

For rectangular barriers the predictive power of two-

body effects of the GS approximation can be rigor-

ously estimated; see Table 1. When the rectangu-

lar barrier becomes a smooth function of x, both LM-

and GS-approaches are approximate. For the Woods–

Saxon barrier one can still study how the LM- and GS-

approximations relate to each other as the surface thick-

ness d of the Woods–Saxon barrier increases. One can also

study the relation to Dirac theory for a single fermion in

a potential field.

5.1 Rectangular Barrier

In Ref. [5] it was shown that transmission properties

for the light-heavy mass systems differ the most compared

to non-relativistic calculations. Therefore the mass pa-

rameters in Table 1 (rectangular potential) are chosen

as m1 = 100µ and µ = 1. The potential strength is

V0 = 2µc2 in Table 1 (rectangular potential), which is

close to a critical value for which the waves become oscil-

latory in an extreme sub-barrier energy region (see Figs. 2

and 3). Furthermore, the barrier range is chosen as a = 3
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in Table 1.

Fig. 1 (Color online) Transmission coefficients for
sharp (upper subplot) and smooth (lower subplot)
Woods–Saxon barrier as function of ϵ/V0. Specific poten-
tial parameters are: V0 = 2µ, µ = 1, m1 = 100µ, a = 3,
with d = 0.01 (upper subplot) and d = 0.2 (lower sub-
plot). The LM- and GS-approximations are represented
by the same continuous curves and the non-relativistic
(NR) approximation by dashed-dotted curves.

Fig. 2 (Color online) Dirac (upper subplot) and LM
(lower subplot) computations of T for a Woods–Saxon
barrier as function of ϵ/V0 , where d = 0.01, V0 = 3µc2,
µ = 1, a = 1. Upper plot corresponds to results from
Dirac computations with the single-particle mass µ. The
lower subplot corresponds to three cases of two-body
SRQ computations. Black continuous curve represents
m1 = 3.7µ, while blue dashed-dotted curve corresponds
to m1 = 100µ and blue dashed curve corresponds to
m1 = 3µ.

Table 1 shows that the numerical local momentum ap-

proach agrees with the analytic exact results for the trans-

mission coefficient, as expected. In Ref. [5] the generalized

Schrödinger (GS) equation by Ikhdair & Sever[1] turned

out to be accurate for moderate potential strengths. This

accuracy is valid also in the present cases, in particular for

the sub-barrier energy regions (not shown). However, the

relative accuracy is gradually lost to between ≈ 0.2% and

≈ 2% in the super-barrier energy region (Table 1), where

the transmission coefficient is oscillatory; see also Fig. 1

for the Woods–Saxon potential. The non-relativistic ap-

proximation (TNR) is reasonably accurate only in the sub-

barrier energy region, and behaves similar to the dashed-

dotted lines in Fig. 1.

5.2 Woods–Saxon Barrier

Hence, the numerical results show that the GS approx-

imation is accurate even at the strong potential barrier

with V0 = 2µc2, where µ = 1. This is twice the bar-

rier height considered in Ref. [5]. The only remarkable

deviation between LM and GS results is at very low scat-

tering energies. This difference is indicated also in the

upper subplot (small d) of Fig. 1 for the Woods–Saxon

barrier. It corresponds to the strange two-body effect of

the SRQ equation mentioned earlier, but apparently ex-

ists for smooth (but sharp) barriers. An increase of the

potential strength to V0 > 2µc2 results in effects similar

to single-mass phenomena discussed recently within the

Dirac framework[14] (see Fig. 2).
Tables 2–4 show the transmission coefficient for the

same potential strength V0 and size a as in Table 1, but

with variable surface thickness d = 0.01, 0.2, and 1.

Table 2 Two-body transmission coefficients T for the
Wood–Saxon barrier with parameters V0 = 2µ, a = 3,
d = 0.01, m1 = 100µ, and varying scattering energies ϵ.
Symbols in the table of the calculated transmission co-
efficient: TLM (numerical LM-calculations), TGS (Ikhdair
& Sever), and TNR (non-relativistic).

ϵ/V0 TLM TGS TNR

1.2 0.738 72 0.737 84 0.604 75

1.4 0.822 79 0.825 75 0.707 24

1.6 0.730 98 0.734 84 0.995 69

1.8 0.706 38 0.703 98 0.861 46

2.0 0.805 70 0.787 78 0.965 52

For scattering energies near the barrier top energies,

e.g. 0.9V0 < ϵ < 1.1V0 in Fig. 1, there are striking

agreements between all approximations considered. For

the sharp case (d = 0.01) in the upper subplot in Fig. 1,

relativistic differences occur at very low (non-relativistic)

scattering energies and different masses. These are re-

lated to situations in the Dirac approach for single masses

discussed by Alhaidari et al.[14] However, this difference

disappears for d = 0.1. Differences with respect to non-

relativistic results occur more generally at energies sig-

nificantly above the barrier-top energies (see Tables 2–4).

However, the GS- and LM results are indistinguishable in

Fig. 1.
Table 2 studies the transmission coefficient of a

Woods–Saxon barrier with a sharp surface (d = 0.01).

The results are approximately the same as in Table 1 for

the rectangular barrier. In the upper subplot of Fig. 1

(d = 0.01), corresponding to Table 2, the continuous

curve represents LM- and GS computations. In contrast,

the non-relativistic (dashed-dotted) curve in Fig. 1 (upper

subplot) deviates more and more from the others with in-

creasing scattering energy.
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Table 3 Two-body transmission coefficients T for the
inverted Wood–Saxon barrier with parameters V0 = 2µ,
a = 3, d = 0.2, m1 = 100µ, and varying scattering ener-
gies ϵ. Symbols in the table of the calculated transmis-
sion coefficient: TLM, TGS (Ikhdair & Sever), and TNR

(non-relativistic).

ϵ/V0 TLM TGS TNR

1.2 0.920 55 0.921 37 0.805 29

1.4 0.967 25 0.968 19 0.922 19

1.6 0.976 85 0.977 46 0.996 46

1.8 0.990 78 0.990 71 0.983 35

2.0 0.998 69 0.998 47 0.994 83

Table 3 and the lower subplot of Fig. 1 show the trans-

mission coefficient of a Woods–Saxon barrier with a less

sharp surface (d = 0.2). The agreement between GS- and

LM results is even better. The oscillation amplitudes of

the transmission coefficient have become smaller. Table 4

shows results from a non-rectangular barrier with surface

thickness d = 1. The table shows a complete agreement

between GS- and LM results. Non-relativistic results are

also approximately the same. The approximations used

here tend to be more similar as the surface thickness in-

creases.

Table 4 Two-body transmission coefficients T for the
inverted Wood–Saxon barrier with parameters V0 = 2µ,
a = 3, d = 1, m1 = 100µ, and varying scattering energies
ϵ. Symbols in the table of the calculated transmission co-
efficient: TLM (numerical LM-calculations), TGS (Ikhdair
& Sever), and TNR (non-relativistic).

ϵ/V0 TLM TGS TNR

1.2 0.997 54 0.997 54 0.997 74

1.4 0.999 62 0.999 62 0.999 71

1.6 0.999 87 0.999 87 0.999 89

1.8 0.999 94 0.999 94 0.999 95

2.0 0.999 97 0.999 97 0.999 97

As a final study, the Woods–Saxon potential is used

to compare SRQ results with the results of the (single-

mass) Dirac theory as the surface thickness is d = 0.01

(see Refs. [14–15]). For such potentials there are specula-

tive investigations about zero-momentum resonances and

low-energy (ϵ ≈ 0) total transmissions for very large bar-

riers.

The upper (Dirac) and lower (LM) subplots in Fig. 2

show the transmission coefficient corresponding to the

same reduced masses and potential parameters, but the

methods are different. The Woods–Saxon parameters are

d = 0.01, V0 = 3µc2, µ = 1, a = 1. Note that the

potential strength is much stronger than that in Fig. 1.

The Dirac mass in the upper subplot is µ. The indi-

vidual masses in the lower subplot are defined by µ and

the large mass m1 = 3µ, 3.7µ, and m1 = 100µ. The

upper subplot is the result from the Dirac equation in

(1+1) relativistic dimensions.[14−16] In the LM approx-

imation m1 = 100µ (dashed-dotted curve), m1 = 3.7µ

(solid curve), and m1 = 3µ (dashed curve). The best low-

energy similarity of the transmission coefficients of the

upper and lower subplots in Fig. 2 is for m1 = 3.7µ (solid

curve) in this case. The other mass combinations show

completely different low-energy dependences. For equal

masses (m1 = 2µ, not shown) large transmissions have

not been found in the present investigation.

Fig. 3 GS (upper subplot) and LM (lower subplot)
computations of T as function of ϵ/V0 for three mass
combinations each, where d = 0.01, V0 = 3µc2, µ = 1,
a = 1. The continuous (black) curves are nice fits to
the Dirac results from Fig. 2. The “nice-fit” GS curve
corresponds to m1 = 11µ, and the “nice-fit” LM curve
corresponds to m1 = 3.7µ.

Figure 3 compares GS- and LM-calculations for the

Woods–Saxon parameters d = 0.01, V0 = 3µc2, µ = 1,

a = 1. Of three mass combinations each, nice fits to Dirac

results are obtained for m1 = 11µ (upper subplot, solid

curve) from the GS equation, and m1 = 3.7µ (lower sub-

plot, solid curve also in Fig. 2) from the LM equation.

For m1 = 100µ (dashed-dotted curves) both GS- and LM-

results show double peaks at low-energies. For m1 = 3µ

(dashed curves) the GS-method (upper subplot) predicts

no transmission peak at threshold energies, while the LM-

method predicts some enhanced transmission.

Note that the Dirac results agree approximately with

a light-heavy mass (almost single-mass) combination (GS

and LM) only at higher energies, above the potential top

energy.

6 Conclusion

The local momentum (LM) and the generalized

Schrödinger (GS) approximations are numerically com-

pared. Both approximations assume negligible variations

in the potential. A Woods–Saxon barrier with parameters

close to a rectangular shape is studied in some detail. The

LM-approximation provides exact results within the semi-

relativistic two-body framework for rectangular barrier in-

teractions in (1+1) dimensions, but the GS-approximation

provides almost the same results.
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This study suggests that GS/LM-approximations are

numerically similar for weak potential strengths and a

wide range of scattering energies. For very strong in-

teractions, the study shows similarities between LM/GS

and Dirac results at energies above the barrier maximum.

However, the Dirac-“best-fit” (LM/GS) mass combina-

tions are not the same.
The surface thickness parameter d seems to make LM,

GS and non-relativistic results numerically closer to each

other as d increases. This is observed in Table 4 for the

over-barrier energy region (ϵ > V0), where T ∼ 1 (with

very small oscillations).
For barrier widths comparable with the Compton

length (a ≈ 1) the Dirac results do not agree with re-

sults from SRQ “light-heavy” mass combinations. The

strongest difference between the Dirac and SRQ results is

for equal masses, in which case SRQ results do not indicate

any tunneling at low scattering energies, and therefore no

large low-energy transmissions.

“Super-strong” interactions for V0 − ϵ > 2µc2 seem

speculative and not fully understood. The more impor-

tant to compare these results with quantum field theory.

Single-particle Dirac results, pointed out by Alhaidari et

al.,[14] Thomson[15] and others, indicate total transmis-

sion at low (non-relativistic) scattering energies. For equal

masses the present study indicates non-existence of large

low-energy transmissions.
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and F. F. Schöberl, Phys. Rev. D 50 (1994) 5443.

[3] S. Hassanabadia, M. Ghominejada, S. Zarrinkamarb, and
H. Hassanabadi, Chin. Phys. B 22 (2013) 060303; S.
Hassanabadi and A. A. Rajabi, Mod. Phys. Lett. A 27
(2012) 1250057; S. Zarrinkamar, A. A. Rajabi, H. Has-
sanabadi, and H. Rahimov, Phys. Scr. 84 (2011) 065008;
S. Zarrinkamar, A. A. Rajabi, and H. Hassanabadi, Few-
Body Sys. 52 (2011) 165.

[4] S. Hassanabadia, M. Ghominejada, and K. E. Thylwe,
Commun. Theor. Phys. 63 (2015) 423.

[5] K. E. Thylwe, O. J. Oluwadare, and K. J. Oyewumi, Com-
mun. Theor. Phys. 66 (2016) 389.

[6] I. J. Nickisch, B. Durand, and L. Durand, Phys. Rev. D
25 (1982) 2312; I. J. Nickisch, B. Durand, and L. Durand,
Phys. Rev. D 30 (1984) 1904.

[7] S. J. Wallace, Phys. Rev. Lett. 87 (2001)180401.

[8] J. Bijtebier and J. Broekaert, Nuovo Cimento A 105
(1992) 351.

[9] R. Arshansky and L. P. Horwitz, J. Math. Phys. 30 (1989)
213.

[10] N. F. Mott and H. S. W. Massey, The Theory of Atomic
Collisions, Oxford University Press, Cambridge, Ch. 2
(1965).

[11] K. E. Thylwe, J. Phys. A: Math. Gen. 38 (2005) 235.

[12] W. E. Milne, Phys. Rev. 35 (1930) 863; H. A. Wilson,
Phys. Rev. 35 (1930) 948; H. A. Young, Phys. Rev. 38
(1931) 1612; H. A. Young, Phys. Rev. 39 (1932) 455; J.
A. Wheeler, Phys. Rev. 52 (1937) 1123.

[13] H. J. Korsch and H. Laurent J. Phys. B 14 (1981) 4213.

[14] A. D. Alhaidari, H. Bahlouli, Y. Benabderahmane, and
A. Jellal, Phys. Rev. A 86 (2012) 052113.

[15] M. J. Thomson and B. H. J. McKellar, Am. J. Phys. 59

(1991) 340.


