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Semi-Relativistic Two-Body States of Spinless Particles with a Scalar-Type Interaction
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Abstract A semi-relativistic quantum approximation for mutual scalar interaction potentials is outlined and discussed.
Equations are consistent with two-body Dirac equations for bound states of zero total angular momentum. Two-body
effects near the non-relativistic limit for a linear scalar potential is studied in some detail.
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1 Introduction
Relativistic two-body effects may be studied using

quantum field equations,[1] two-body Dirac equations,[2−6]

and/or by equations resulting from direct quantum-
operator substitutions of r̂ and p̂.[7−10] The latter ap-
proach explored in this study ignores spins other than
orbital angular momenta. Many relevant references can
be found in those cited.

Semay et al.[2] and Ferreira[3] showed explicit results
from a 16-components Dirac approach for scalar potentials
of the confining type and bound states with vanishing to-
tal spin. The main interest of these authors is related
to quark spectra. The relevant second-order differential
equations obtained are simple and provide some under-
standing of important two-body effects.

Duviryak (2008),[4] also applying a Dirac-type method,
presented solvable two-body models in connection with
light mesons and Regge trajectories. No explicit results
for scalar potentials are given. However, the general re-
sults seem to be relevant in the present context.

Moshinsky and Requer (2003)[6] studied two equal
fermionic masses in the context of positronium formations.
It seems close to other procedures related to sub-atomic
interactions. No explicit results for scalar potentials are
given.

In the present study the semi-relativistic approa-
ch[8−10] is applied with scalar (mass-type) potentials. In
addition a “local-momentum” approximation is suggested
to find the Dirac-type equations of Refs. [2–4] for two-body
spectra with vanishing total spin.

The basic equations for calculating bound state ener-
gies are presented in Sec. 2. Section 3 is devoted to a linear
quark-type potential model. Two-body effects on selected
bound state energies near the non-relativistic limit are il-
lustrated. Conclusions are in Sec. 4.

2 Semi-relativistic Local-Momentum Equa-
tions

In this section the “local-momentum” approximation
used to simplify the semi-relativistic equation is outlined.

This approach appears to be closely related to the one

of Krolikowski.[7] The semi-relativistic quantum (SRQ)

approximation of two interacting spinless particles starts
from a Hamiltonian of classical special relativity. For an

instantaneous scalar potential S(r) in the center-of-mass

frame of two massive particles, the stationary SRQ quan-
tal wave function ψ satisfies the equation

(√
m̃2

1c
4 + p̂2c2 +

√
m̃2

2c
4 + p̂2c2

)
ψ = Eψ . (1)

Here, E the relativistic energy, c is the speed of light and

±p̂ the two momentum operators. The mutual scalar po-
tential S(r) and masses are combined:

m̃1,2 = m1,2 + S(r)/c2, (2)

with m1,2 being the rest masses.

The momentum operator p̂2 is the same for both par-
ticles in a centre-of-mass frame (although moving in op-

posite directions). The momentum operator is given by

the cartesian and the radial expressions as

p̂2 = −!2
( ∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
, (3)

p̂2 = p̂2r +
L̂2

r2
=

(
− !2 1

r

d2

dr2
r +

L̂2

r2

)
, (4)

where L̂ is the orbital angular momentum operator and !
the reduced Planck’s constant.

The equations of the local-momentum approximation
can be derived by imagining two particles entering from

free space towards a finite interaction region. In free space

a plane wave e ikz, with a given wave number k, is repre-
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sented by the partial wave series[11]

e ikz = e ikr cos θ =
∞∑

l=0

(2l + 1)iljl(kr)Pl(cos θ) , (5)

where l = 0, 1, . . . are the orbital angular momentum
quantum numbers. The Legendre polynomials Pl(cos θ)
are expressed in terms of the angle θ between the initial
z-direction and the relative position vector.

By expanding the square roots in the basic SRQ equa-
tion (1), and using the cartesian representation (3) of p̂2,
this equation (1) provides the exact asymptotic wave num-
ber k for freely propagating plane waves e±ikz:

k =
1

2!c

√
(E2 −m2c4)(E2 −m2

−c
4)

E2
, (6)

where

m = m1 +m2, m− = m1 −m2 . (7)

The radial component jl(kr) of the plane wave is the
spherical Bessel functions behaving as

jl(kr) ∼
1

kr
sin(kr − πl/2), r → +∞ . (8)

The constant k-eigenvalue of the partial wave components
jl(kr) is related to the equation:

p̂2jl(kr) =
(
− !2 1

r

d2

dr2
r +

!2l(l + 1)

r2

)
jl(kr)

= !2k2jl(kr), l = 0, 1, . . . (9)

A formal expansion of the operator in terms of p̂2 in the
l-term of Eq. (1), i.e. in
[√

m2
1c

4 + p̂2c2 +
√
m2

2c
4 + p̂2c2

]
jl(kr) = Ejl(kr) , (10)

leads after some algebra to Eq. (6).
Hence, the plane wave satisfies Eq. (1) and its partial-

wave component satisfies (9) as well as (10).
A generalization of the above semi-relativistic obser-

vations for plane waves leads to the local-momentum ap-
proximation. To this end, let a general wave be expanded
as

ψ =
∞∑

l=0

ψlPl(cos θ) . (11)

Assume ψl satisfies the second-order partial wave equation

p̂2ψl =
(
− !2 1

r

d2

dr2
r +

!2l(l + 1)

r2

)
ψl

= !2K̃2
LM(r)ψl, l = 0, 1, . . . , (12)

where K̃2
LM(r) in Eq. (12) is an unspecified scalar function

of r. If K̃2
LM(r) is not constant, higher powers of p̂2 are

now assumed to satisfy the “approximate” relations

p̂2nψl ≈ !2nK̃2n
LM(r)ψl, n = 2, 3, . . . , (13)

being accurate for sufficiently slowly varying functions
K̃2

LM(r). It follows that the wave function ψl in Eq. (12)
solves Eq. (1) approximately. The left hand member in
Eq. (1) is approximated, yielding

(√
m̃2

1(r)c
4 + !2c2K̃2

LM(r) +
√
m̃2

2(r)c
4 + !2c2K̃2

LM(r)
)
ψl = Eψl . (14)

The scalar functions on both sides of this equation have to be equal. Algebraic manipulations determine the local-
momentum coefficient, yielding

K̃2
LM(r) =

1

4!2c2 (E
2 −m2

−c
4)(1− m̃2(r)c4/E2) , (15)

where m̃(r) = m̃1(r)+ m̃2(r) and m− = m1−m2. This coefficient is consistent with the 16-component two-body Dirac
approach;[2−3] see also Ref. [7].

An alternative mass notation is given in terms of the reduced mass µ and the total mass m

µ =
m1m2

m
, m = m1 +m2 , (16)

leading to the explicit expression

K̃2
LM(r) =

1

4!2c2 (E
2 −m(m− 4µ)c4)(1− (mc2 + 2S(r))2/E2) . (17)

Hence, the leading-order local-momentum approximation is based on the second-order differential equation

d2

dr2
(rψl) +

(
K̃2

LM (r)− l(l + 1)

r2

)
(rψl) = 0, l = 0, 1, . . . (18)

Once Eq. (18) is derived it may be applied to both scattering and bound states.
Equation (18) for mutual scalar interaction potentials is identical to that of Semay et al.[2] and Ferreira.[3] These

authors used a two-body Dirac approach for J = 0 with l = 0 and l = 1 particle-antiparticle bound states. The present
approach treats l = 0, 1, 2, 3, . . . as a “good” quantum number.

2.1 Non-relativistic limit

By letting the relevant non-relativistic energy ε be defined by

ε = E −mc2, m = m1 +m2 , (19)
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the coefficient K̃2
LM(r) is expanded in powers of c−2, yielding

K̃2
LM(r) =

2µ

!2 (ε− 2S(r))
{
1 +

1

2µc2

([
1− 3

µ

m

]
ε+

µ

m
(2S)

)
+O(c−4)

}
. (20)

For equal masses m = 4µ and for extreme light-heavy mass systems µ/m → 0, which can be considered also the
single-mass limit in an external scalar potential 2S.

In the single-mass limit the coefficient in Eq. (20) simplifies to

K̃2
LM(r) =

2µ

!2 (ε− 2S(r))
{
1 +

1

2µc2
ε+O(c−4)

}
, m → +∞ . (21)

Table 1 Local-momentum energy levels for the linear potential in Eq. (28)
with selected values of α2/4 and µ/m.

l, n µ/m W (α2/4 = 0) W (α2/4 = 1/8) W (α2/4 = 1/4)

0, 0 0 2.338 107 41 2.159 115 25 2.038 207 71

0, 1 0 4.087 949 44 3.610 634 50 3.339 201 16

0, 2 0 5.520 559 83 4.728 796 92 4.324 057 22

0, 0 1/4 2.338 107 41 2.265 472 95 2.204 232 08

0, 1 1/4 4.087 949 44 3.879 881 78 3.721 580 36

0, 2 1/4 5.520 559 83 5.158 860 36 4.902 267 20

1, 0 0 3.361 254 52 3.020 832 18 2.814 360 32

1, 1 0 4.884 451 84 4.239 003 78 3.894 057 81

1, 2 0 6.207 623 29 5.247 054 50 4.777 075 20

1, 0 1/4 3.361 254 52 3.206 989 76 3.086 488 46

1, 1 1/4 4.884 451 84 4.588 068 12 4.372 802 18

1, 2 1/4 6.207 623 29 5.754 298 07 5.443 479 99

This agrees with an exact spin symmetry model of the

light-heavy quark-mass system in Ref. [12], provided the

light mass component is represented by µ. Also, 2S(r) in

Eq. (21) represents the sum of the equal “external” scalar

and (time-component) vector potentials in Ref. [12]. As

realized from Eq. (20), two-body effects (relative to non-

relativistic results) relate to the total mass m being finite

rather than infinite.

3 Linear Scalar Potential

Equation (18) is transformed into non-dimensional

form for a linear scalar potential defined by

2S(r) = qr, q > 0 . (22)

A unit length scale is chosen as in Ref. [12]:

r∗ =
( !2
2µq

)1/3
, (23)

and a dimensionless length x is introduced by

x = r/r∗ . (24)

The parameter responsible for relativistic effects in general

is

α =
!

µcr∗
, (25)

so that energy eigenvalues are scaled and represented by

W =
2µr2∗
!2 ε =

µ2c2r2∗
!2

2ε

µc2
=

2ε

α2µc2
, (26)

where r∗ and α2µc2 are independent of the speed of light.

The potential S(r) is likewise reduced to

Σ(x) =
2S(r∗x)

α2µc2
=

qr∗
α2µc2

x =
mq

!2 r3∗x = x . (27)

The reduced differential equation becomes

d2Fl

dx2
+

(
κ2LM(x)− l(l + 1)

x2

)
Fl = 0, l = 0, 1, . . . , (28)

with

κ2LM(x) = (W − x)
{
1 +

α2

4

([
1− 3

µ

m

]
W +

µ

m
x
)}

. (29)

In Eq. (29) µ/m represents the two-body parameter be-

ing magnified by the relativistic parameter α2 as this be-

comes large. The two extreme cases are µ/m = 0 and

µ/m = 1/4. A semiclassical analysis of the coefficient

κ2LM(x) indicates that turning points are not affected by

the relativistic terms. Also κ2LM(x) ≥ κ2LM (x,α = 0) in

the oscillating region of the effective potential, implying

that energy levels are expected to appear shifted to lower

values as α increases.
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Fig. 1 (Color online) Energy levels (W ) as function of
relativity (α2/4) and the two-body parameter µ/m. The
quantum numbers are l (orbital angular momentum) and
n (radial nodes). From top: Purple lines: l = 2, n = 0.
Solid line corresponds to equal masses, dashed line to
the single mass limit. Green lines: l = 0, n = 1. Solid
line corresponds to equal masses, dashed line to the sin-
gle mass limit. Red, black respectively blue lines: l = 1,
n = 0: µ/m = 0.25 (equal masses), = 0.125 (in between),
respectively = 0 (single mass). Red, black respectively
blue lines: l = 0, n = 0: µ/m = 0.25 (equal masses),
= 0.125 (in between), respectively = 0 (single mass).

Numerical computations based on Eq. (28) are per-
formed using an amplitude-phase method.[13] Figure 1

shows how energy levels are shifted as function of α2/4

with different values of the two-body parameter µ/m.

The reduced mass µ is considered fixed and the quantum

numbers are l (orbital angular momentum) and n (radial

nodes). Levels corresponding to the single-mass limit are

the ones most sensitive to relativistic corrections. A pos-

sible explanation is that in this limit one of the masses

is as small as possible for a given reduced mass µ. Note

that all levels investigated are shifted to lower values as α

increases.

The level spacing with respect to n is wider than that

with respect to l (see Fig. 1), and only the lowest energy

levels are considered in Fig. 1.

4 Summary

An approximation of the semi-relativistic approach,

the “local-momentum approximation”, is outlined.

Bound-state conditions appear similar to those of two-

body approaches based on the Dirac theory for fermions.

The two-body effect found is that single-mass condi-

tions are more sensitive to relativistic corrections. In the

single-mass limit a spectrum corresponding to the spin

symmetry of the single-particle Dirac equation is obtained.
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