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Note on Resonant and Non-resonant Peaks in Electron-Atom Total Scattering Cross

Sections
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Abstract Certain broad low-energy peaks caused by a single partial wave in total cross sections are explained in
terms of phase shifts. Such peaks have been associated with the real part of a Regge pole trajectory, having a maximum
near an integer value of the angular momentum quantum number. At the peak energies, the pertinent partial-wave phase
shift was shown to have a local maximum near a value π/2 modulo π. This implies no time delay in the semiclassical
context. The phenomenon is a quantum effect, lacking a semiclassical interpretation.
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1 Introduction
In an earlier publication[1] the authors showed that

certain broad peaks in the total cross section could not
be explained as resonance phenomena in the sense of
long-lived quasi-bound states. One could see a corre-
lation with complex-angular momentum pole positions
(Regge poles) behaviors as functions of the energy (Regge
trajectories).[1−2] The pole trajectories were seen to turn
in the complex angular momentum l-plane, with Re l hav-
ing a maximum close to an integer value as function of
energy. Regge trajectories turning in the complex angular
momentum l-plane were studied in Ref. [2].

Resonances in single-channel scattering are difficult to
detect and identify experimentally for collision systems
with large masses; see e.g. Toennies et al. in Ref. [3].
Scattering experiments with atomic particles are most sen-
sitive to the broader resonances in a total cross section,
with energies near the top of the centrifugal barrier. Such
resonances may be mixed with non-resonance states of the
type mentioned in Ref. [1]. Sharp resonances due to tun-
neling through the barrier and back again give negligible
contribution to the cross sections but play a dominant role
in predissociation spectroscopy; see e.g. Kolos and Peek,
Bernstein.[3] In ion-atom systems the number of partial
waves increases in comparison with atom-atom scattering;
see Konrad and Linder in Ref. [3].

Recent experiments on electron-atom resonances,
forming negative ions (anions), focus on electron affinities;
see Walter et al. (2011) in Ref. [4]. Laser spectroscopy
techniques seem to be the primary tools (Calbrese et al.
(2005) in Ref. [4]). Electron transfer via (somewhat more
complex) anions is among the most fundamental of chem-
ical reactions and features prominently in all branches of
chemistry; see Bull et al. (2015) in Ref. [4].

In the present note a potential model relevant for
electron-atom scattering is used. The relevant “reso-
nance” peaks in total scattering cross section are explained
in terms of scattering phase shifts. The partial-wave anal-
ysis of scattering cross sections associate the scattering
dynamics with phase shifts, one for each partial wave. The
phase shift can be obtained from the regular solutions of
the Schrödinger equation. Resonance phenomena are ex-
plained in terms of phase shift behaviors in many text
books.[5−8] In the low-energy limit resonant phase shifts,
due to attractive potentials, typically approach positive
values nπ (Levinson’s theorem), where n is the maximal
number of bound states existing in that potential. Typ-
ical resonances in a partial wave (integer orbital angular
momentum l) are related to relatively rapid changes, or
jumps, in the phase shifts, δl(E), as function of energy.
In potential scattering with a single potential the phase
shift defines the so-called scattering matrix expressed as
Sl = exp(2iδl), and also the transition matrix element de-
fined here as Tl = Sl−1. Note that each |Tl|2 is multiplied
by a factor 2(2l+1)π/E, where E is the scattering energy,
in order to compute the total cross section from signifi-
cant l-contributions. Therefore the contribution from a
single partial-wave can be large at low scattering energies,
where only the few first values of l are expected to be
important.[7]

The rational function Thomas-Fermi potential (RTF)
used for illustration of phase-shift behaviors has two ad-
justable parameters which can be adjusted to confirm
a couple of experimentally measurable resonances in a
reasonable way. It has been applied with some suc-
cess in various calculations of electron-atom total cross
sections.[1−2] Several anion states, identified by laser spec-
troscopy techniques,[4] have been interpreted as scattering
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resonances.[2] However, relevant scattering cross section
measurements showing clearly resolved sharp resonances
are hard to find in the literature.

The main purpose of this note is to make clear that cer-
tain broad peaks in the total cross section as function of
scattering energy may not be proper resonances. There is
a similarity between such broad peaks and so-called zero-
momentum (quasi-) resonances appearing in connection
with Levinson’s theorem,[6−8] saying that for particular
potentials the zero-energy phase shift approaches an odd
(rather than an even) multiple of π/2. This note confirms
the existence of certain peaks in the total cross-section
that differ from sharp and broad resonances by having
no time delays. The notion of time delay relies here on
its definition 2~dδl(E)/dE.[5−6] It turns out that these
particular peaks occur at maxima of the phase shifts as
functions of energy, and these maxima are close to an odd
integral multiple of π/2.

Section 2 briefly describes a scattering wave function
satisfying the radial Schrödinger equation. Computations
and illustrations are in Sec. 3 and conclusions in Sec. 4.

2 Radial Schrödinger Equation

By introducing a dimensionless radial variable r/a0 →
r with a0 being the Bohr radius, one obtains the radial
Schrödinger equation

d2Ψl

dr2
+
(
2[E − V (r)]− l(l + 1)

r2

)
Ψl = 0 , (1)

with a dimensionless energy and a potential function de-
fined as

ma20E/~2 → E , (2)

ma20V (r)/~2 → V (r) . (3)

“~” is Planck’s constant divided by 2π and m the reduced
mass of the collision system.

The regular solution Ψl satisfies the scattering bound-
ary conditions that define the scattering matrix elements
Sl,

[8] i.e.

Ψl(r) ∼ e−i(kr−lπ/2) − Sl e
i(kr−lπ/2), r → +∞ , (4)

where k is the scattering wave number

k =
√
2E . (5)

The transition matrix elements Tl are given by

Tl = Sl − 1 = 2i e iδl sin δl . (6)

The phase shifts δl are real and the maxima of |Tl| are
given by the condition δl = (n+ 1/2)π, n = 0, 1, 2, . . . for
which Tl = −2.

3 Computations and Illustrations

The rational function Thomas-Fermi (RTF) poten-
tial[1−2] used for illustrating an electron-atom interaction
has a Coulomb attraction near the origin but adopts an
attractive polarization interaction at long range. The di-
mensionless form of the RTF potential used here is given

by[2]:

V (r) =
−Z

r (1 + aZ1/3r) (1 + bZ2/3r2)
, (7)

with the long-range behavior

V (r) ≈ − 1

abr4
, as r → +∞ . (8)

Three sets of potential parameters are used. All of them
correspond to the nuclear core charge Z = 63 and all
with the same long-range polarization property defined by
ab = 0.015. These potentials are used to illustrate both
non-resonant and resonant behaviors of phase shifts and
squared moduli of the transition matrix elements (|Tl|2).

Fig. 1 A typical phase shift behavior for a wide range
of k-values. The RTF potential is defined by a = 0.19,
with Z = 63 and l = 1.

Fig. 2 Particular low-energy phase shifts as functions
of k. The RTF potentials are defined by a = 0.15, 0.19,
and 0.30, with Z = 63 and l = 1.

A phase shift behavior in the range 0 < k < 1000 is
illustrated for l = 1 and the RTF-potential with a = 19
(and b = 0.015/a) and is shown in Fig. 1. The effec-
tive potential is seen to support six bound states accord-
ing to Levinson’s theorem, since the phase shift tends to
6π in the low-energy limit. Since the potential is neither
strongly singular nor repulsive at the origin (in contrast
to a Lennard-Jones potential) any partial-wave phase shift
tends to zero in the (non-relativistic) high-energy limit.

On a more detailed level, for scattering wave numbers
in the range 0 < k < 1 and l = 1 one sees a local maxi-
mum of the phase shift. In the left subplot of Fig. 2 this
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maximum exists for the three potentials corresponding to
a = 0.15, 0.19, and 0.30. All three maxima are in the
neighborhood of an odd integral multiple of π/2, although
for a = 0.19 it is closest. The effect on |T1(k)|2 is shown
in the right subplot of Fig. 2. All three curves describe
peaks although the energy derivatives of the correspond-
ing phase shifts are zero at the peak positions. Obviously,
the concept of “time delay” cannot be applied in this case.

Fig. 3 Comparison of the phase shifts corresponding to
l = 1 (as in Fig. 2) and l = 2 and l = 3 as functions of k.
The RTF potential is defined by a = 0.19, with Z = 63.
For l = 3 the phase shift passes through an odd integral
multiple of π/2 in value, while for l = 1, 2 it does not.

By fixing the value a = 0.19 for the RTF potential and
comparing the phase shifts for l = 1, 2, and 3, one obtains
Fig. 3. The corresponding behaviors of |Tl(k)|2 are seen
in Fig. 4. Firstly, one observes that the effective potential
for l = 2 supports five bound states and that for l = 3
supports three bound states. The phase shift curve δ2(k)
does not pass through an odd integral multiple of π/2 in
this energy range. It has a similar smooth behavior to
δ1(k), but is not as close to an odd integral multiple of
π/2 as δ1(k).

The phase shift δ3(k) shows a typical resonance be-
havior. It jumps across an odd integral multiple of π/2

and adds to its value one unit of π. In this case the slope

dδ3(k)/dE is comparatively large so that the semiclas-

sical notion of time delay applies (or may apply). The

energy is low (k2 ≪ 1) and the partial cross section from

l = 3 may be significantly large. The effect on |T3(k)|2 in

Fig. 4 indicates a narrow peak and elsewhere small con-

tributions.

Fig. 4 |Tl|2 as function of k. The RTF potential is
defined by a = 0.19, with Z = 63 and l = 1, 2, and 3.

4 Conclusions

Significant, low-energy peaks in the total cross sec-

tion may be observed that are not resonances. This is

explained in terms of particular phase shift behaviors,

not generally seen for arbitrary potential parameters. The

responsible phase shift stays close to an odd integral mul-

tiple value of π/2 for a range of scattering energies. At

low energies contributions from l = 1 or l = 2 in the cross

sections may be significant. In contrast, a typical reso-

nance phase shift passes through an odd integral multiple

value of π/2 completely, like that for l = 3 in Fig. 3, and

in a relatively small energy region.
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