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1 Introduction to the gas simulation methods

The Navier-Stokes equations commonly encountered in fluid mechanics applications
builds on the continuum approximation. When the ratio of the mean free pathλ to
the macroscopic length scaleL, formalised by the non-dimensional Knudsen number
Kn = λ/L, becomes large this approximation breaks down. The macroscopic length
scale should be based on the local field (i.e. velocity, pressure, density) to gradient
ratio, thereby removing the question on how to defining this length scale for complex
flows. For small Knudsen numbersKn < 0.1 the continuum approximation is valid.
However for larger Knudsen numbers one has to resort to some sort of methodology
which considers interaction between particles. The Boltzmann equation is the accepted
mathematical model of a gas flow at the molecular level. Numerically this equation can
be solved using conventional CFD techniques, with the velocity distribution function
being the obtained solution on a computational grid. Since this is a six-dimensional
partial differential equation it quickly becomes computationally heavy. Further the
collision terms represented by the right hand side integralis a challenging task to eval-
uate. An alternative to solving the Boltzmann equation is toemploy direct simulation
methods, where a large number of simulated molecules are traced in space and time,
and their velocities and internal states are modified through collisions and boundary in-
teractions. The most fundamental approach within this class is that of the deterministic
Molecular Dynamics (MD) in which actual collisions between particles are calculated
based on Newton’s law or quantum mechanics. Note however that this quickly becomes
computationally intractable since as soon as a geometry andthe gas characteristics are
set there are no tunable parameters, making MD methods applicable only to dense
gases. In the next section we will describe briefly the probabilistic approach to direct
simulation.

2 The Direct Simulation Monte Carlo (DSMC)

The Direct Simulation Monte Carlo (DSMC) (Bird, 1995) method is suitable for sim-
ulating dilute gases by means of a probabilistic approach. The term dilute gas means
that a typical molecular spacingδ is much larger than a typical molecule diameterd,
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formally stated asδ/d ≫ 1. In terms of Knutsen number this would approximately
mean thatO(0.1) ≤ Kn ≤ O(10). The fundamental idea of DSMC is to track a large
number of statistically representative particles where each of the particles contains a
cluster of molecules. The particles motion and interactions are used to modify their
positions and velocities.

The DSMC procedure consist of four main stages; move the particles, keep track of the
position, perform collisions using probabilistic methodsand to sample the flow field.
Below these different stages will be described.

Setting physical constants: This is done in subroutines starting withDATA, for in-
stance in our zero dimensional test program it isDATA0S. Here you can set number
density, temperature, molecular mass, diameter and all thetime stepping parameters.
More information on this is given in section 3.1.

Initialisation: This is performed before the time loop in routines starting with INIT.
The routine callsDATA, seeds the particles in different cells and sub cells also as-
signing them random velocities by callingRVELC. Note that the velocity is always
three-dimensional.

Moving particles: At every time step the particles are moved to their new position
according to~r(t + ∆t) = ~r(t) + ~v′(t)∆t, assuming that no interactions have occurred
during this time interval. At this stage boundary conditions are enforced. All of this is
performed in the routines starting withMOVE.

Indexing: After having moved all the particles according to their velocities a re-
indexing is performed in the routines starting withINDEX. This implies that in all
sub-cells the number of particles are counted, and each molecule are given a specific
address.

Collisions: In the DSMC procedure only particles within a cell are pairedup in order
to perform collisions. Since we are dealing with dilute gases, there is an overwhelming
probability that the collisions will be binary, i.e. involving only two particles. Consider
a time interval of∆t in a DSMC cell of volumeVc containingN simulated particles
each representingFN number of molecules. The number of collisions that might occur
is easily recognised to beN(N − 1)/2. This yields that the probability for each of the
collisions becomesP = FNσT cr∆t/Vc whereσT is the total collision cross section
andcr is the relative velocity of the pair of particles considered. A straight forward
method is now to find collision pairs by considering allN(N−1)/2 potential collisions
using a random pick together with the probability P. Howeverdue to the large number
of particlesN and the low probabilityP this procedure is computationally challenging,
requiring a computational time proportional toN2. In order to make the computational
time linear withN , the DSMC uses the so called NTC (No Time Counter) method in
which a normalised probability is introduced

Pmax =
FN (σT cr)max∆t

Vc

,

where(σT cr)max is a precomputed maximum collision cross section of the cell. Based
on this a number of representative collisions is computed

1/2NN̄FN (σT cr)max∆t/Vc.

Here N̄ is a time ensembled average of particles contained in the cell. For each of
these possible collisions the procedure now picks a random particle and finds its cor-
responding sub-cell. Within this sub-cell it picks anotherrandom particle so that these



two form a collision pair. The collision is now computed withthe probability

σT cr

(σT cr)max
.

This essentially means that a random number is compared to the above fraction, and if
it is bigger we have a collision, otherwise not. The collisions themselves are modelled
as different variants of a hard sphere collision. In the hardsphere approximation, elastic
collisions are assumed, yielding a conserved magnitude of the relative velocities of the
two particles. It hence becomes necessary only to compute the direction of the particles
after the collision, also known as the angle of deflectionχ. The angles are computed
with random picks for the hard sphere case, but alternative implementations are those
of variable hard sphere (VHS) and variable soft-sphere (VSS). The latter two gives
better approximations regarding the transfer of momentum and kinetic energy. For a
full discussion on the choice of collition model we refer to chapter two in Bird (1995).
The collition procedure is implemented in routines starting with COLL.

Sampling: After a number of time step the cell information is sampled inthe routines
SAMPLE. This is basically a time ensembled average in each cell of quantities such as
the number density, the velocities and the temperature.

3 Obtaining the program, operation and all of that

The DSMC package can be download from

http://www.gab.com.au/CORRIG.HTM

where also a corrigendum for the different files are included. At the bottom of the
page there is a file calledDSMCP.EXE. This is a self-extracting zip file containing the
source codes. Note that this is awindows application. The individual files can be
compiled with any standard Fortran compiler, for instance on thelinux machines
at the departmentpgf90 is a common choice. The compiling can be performed by
typing

bash> pgf90 DSMC0S.FOR

producing an executablea.out. You should first add the modulepgi by typing

bash> module add pgi

Important: Check the corrigendum for the program you are running.

Note: For those who do not havewindows accessible a zip file can be download from
http://www2.mech.kth.se/~espena/gasdyn/

3.1 Setting the computational variables

Setting the cell and sub-cell width: Although particles are allowed to cross the bor-
ders of the cells, individual collisions occurs with neighbours in the same cell. More
specifically, the DSMC uses the sub-cell approach, where local collision rates are based
on the individual cells, but the possible collision pairs are restricted to sub cells. A rule



of thumb is that the cell width should be∆x ≈ λ/3, where againλ is the mean free
path. This quantity can be estimated from that of the hard sphere

λ =
c̄′/c̄r

nπd2

c̄′≈c̄r

⇒ λ ≈

1

nπd2
, (1)

wheren is the number density,d the molecular diameter and̄c′ =
√

2T0k/m is the
mean thermodynamic velocity magnitude, withT0 being the reference temperature (i.e.
T0 = 273), k the Boltzmann constant andm the molecular mass. Also note thatc̄r is
the average relative velocity magnitude. The sub-cell width should be taken to be small
in comparison toλ. Typically this would mean∆xs ≈ 0.1∆x.

Setting the time step: In the DSMC there is no stability limit connected to the choice
of the time step∆t. There is however from a physical point of view a limitation given
by the mean collision time, essentially saying that the timestep should be sufficiently
small in order to uncouple the molecular motions and collisions. An estimate to this
can be given for a hard sphere as∆t = λπ/(2c̄′).

Setting the number of simulated ’particles’: Instead of simulating the action of every
molecule, the DSMC clusters a large set of molecules, subsequently tracing the each
of these clusters as individual ’particles’ in time and space. The number of molecules
contained in each particle is free for choice but should be chosen in such a manner
that statistical fluctuations do not become too large. A reasonable amount of molecules
contained in each particle is1014 < FN < 1018, yielding it necessary to compute the
evolution of between102 and106 particles for a number density ofn = 1020.

4 Testing the code in ’zero-dimensional’ gas

We tested the DSMC procedure in a homogeneous, or ’zero-dimensional’ gas. In the
language of Bird (1995) a ’zero-dimensional’ gas is a gas with no macroscopic gra-
dients. Likewise a ’one-dimensional’ gas is a gas with macroscopic gradients in only
one direction. Our homogeneous gas simulation code is namedDSMC0S. Allthough
the gas is homogeneous a one-dimensional computational domainx ∈ [0, 1] is consid-
ered. The boundary conditions are specular reflections at both boundaries. Two test
cases have been simulated in order to illuminate different aspects of the behaviour of
the procedure. The first case has an initial equillibrium where the velocity distribu-
tion is given by the Maxwell-Boltzmann distribution. The second case has an initial
non-equillibrium state where we have set that all particlesshould have the velocity
(u, v, w) = (407, 0, 0). The material properties of the gas are the following; the molec-
ular mass ism = 5×10−26, the molecular diameter isd = 3.5×10−10 and the number
density isn = 1020. The number cells isMc = 50 and each cell has8 sub-cells. The
timestep is taken to be2.5 × 10−5.

The computational cost of the procedure is mainly determined by the ratio of the num-
ber densityn to the number of moleculesFN simulated by each particle since the
number of simulated particles areN = n/FN . If FN is too large the simulation is
subject to statistical fluctiations and conversely ifFN is too small the computational
effort will be very high. The left panel in figure 1 shows the density as a function of
x (cell values) after500 samples starting with initial equillibrium. Statistically in each
cell the number density should be1020. From the dashed line in this plot it can be seen
when choosingFN = 1019, implying that only10 particles are simulated, the statisti-
cal fluctuation is large. With decreasingFN the fluctuations decrease, and a reasonable
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Figure 1: Left panel shows the sampled number density for different number of simu-
lated molecules per particleFN . Dashed line showsFN = 1019, solid-circles shows
FN = 1018, thick dash-dotted line showsFN = 1017 and the thin solid shows
FN = 1016. The right panel shows the corresponding standard deviation as a func-
tion of N = n/FN .
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Figure 2: u velocity as a function ofx for different sampling intervals starting with
initial equillibrium. The dashed line showsu after one sampling, the solid thin line
shows after50 samplings, dash-dotted after150 samplings and thick solid after500
samplings. There is four time steps between each sample.

value isFN = 1017, as depicted by the thick dash-dotted line. The right panel shows
the standard deviation as a function ofN .

Even though starting with initial equillibrium for the caseof FN = 1017, the gas is at
each instance of time not in equillibrium, and in fact an ensemble average in time at
each cell is necessary in order talk about equillibrium. Figure 2 shows the velocityu
in x-direction for different sampling times. Note that there isfour time steps between
each sampling. After one sample the velocity is varying fromcell to cell, as shown
by the dashed line. However after more samples the average velocity in each cell tend
towards zero.

As a second test case we initiated the gas with a non-equillibrium state(u, v, w) =
(407, 0, 0). Figure 3 shows the distribution of velocities among the simulated particles
for different samplings. After one sampling almost all particles have the same veloc-
ity, but with increasing time the velocity distribution aligns itself with the Maxwell-
Boltzmann distribution.
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Figure 3: Velocity distribution starting with non-equillibrium for different samples.
After one sample almost all particles have the same velocity, but as time goes by the
gas aligns itself towards the Maxwell-Boltzmann distribution.

5 List of programs in package

Here follows the list of available codes with a sort discripition of what each vesion does:

DSMC0 Tests the NTC collision sampling procedures in a homogeneous gas
mixture of monatomic molecules.

DSMC0S A version of program DSMC0 for a simple gas.
DSMC0R Tests the Larsen Borgnakke procedures for the rotational degrees of

freedom of diatomic and polyatomic molecules.
DSMC0V Implements the quantum version of the Larsen-Borgnakke procedures

for vibrational excitation.
DSMC0D Dissociation and recombination of a single species.
DSMC0F A version of DSMC0 with additional sampling to investigate the prop-

erties of the statistical fluctuations.
DSMC1 A general program for flows with a single spatial variable. The geome-

try may be plane, cylindrical or spherical.
DSMC1S A version of DSMC1 for the study of normal shock waves.
DSMC1T This program models a stagnation streamline flow as a constant area

flow with molecule removal at the sides.
DSMC2 A general program for two-dimensional flows that is restricted to a rect-

angular flow field and flat surfaces.
DSMC2A A version of DSMC2 for axially symmetric flows.
DSMC3 An extension of DSMC2 to three dimensional flows.

References

BIRD, G. A. 1995Molecular Gas Dynamics and the Direct Simulation of Gas Flows.
Oxford Science Publications.



Plane Compressible Couette Flow

Shervin Bagheri & Johan Ohlsson

May 31, 2007

A Direct Simulation Monte Carlo method (DSMC) was used to simulate
the velocity profiles and distribution functions for a gas with various Knudsen
numbers. Also the effect of compressibility was examined. The simulation code
used was DSMC1. For more information about the code we refer to Bird and
Antonios et al.

1 Flow Case and Set-Up

The Couette flow case can schematically be depicted as

� � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � �

x

y
L

U

The computational domain for the studied flow case is

−∞ < y < ∞ (1)

0 < x < 1 (2)

ẏ(0) = 0 (3)

ẏ(1) = v0 (4)

Since the interesting parameters in this case were the Knudsen number and
the Mach number, the only physical properties changed in subroutine DATA1
were number density n and number of simulated molecules FN . The boundary
condition v0 was changed to increase the Mach number. The default values
of mass, temperature and molecular diameter were not changed yielding the
monatomic gas Argon.

2 Explanation of Results

In Fig. 1 (a) the velocity profile can be seen for various Knudsen numbers
and a low Mach number. It can be noticed that for small Knudsen numbers,
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which according to the definition of the Knudsen number means a small mean
free path compared to the macroscopic length scale, the profile is close to the
Navier-Stokes solution of the Couette flow. As the Knudsen number increases
the mean free path becomes larger, which means that a molecule will travel
longer before a collision occurs. The continuum description of the flow thus
breakes down and one has to consider individual particles, which is also done in
the DSMC method (even though one ’particle’ means many ’real’ particles). It
can be seen that the profile approaches the half of the wall velocity v0. This can
physically be explained by considering a molecule moving from the lower wall
towards the upper wall. The x-component of the velocity is conidered to be zero.
When the molecule reflects the upper wall diffusivly it will gain an x-component
of velocity which is equal to the wall velocity. As the molecule bounces towards
the lower wall it will leave all of its x-momentum and once again move upwards
in the y-direction without any x-component. In this manner, statistically half
the amount of the molecules will have a zero x-component of the velocity and
half of them will have the wall velocity as x-component of the velocity thus
yielding a macroscopic travelling of v0/2 in the x-direction. This can be seen
in Fig. 1 as a ’slip’ at the walls. This slip occurs in the Knudsen layers, which
are of the order of one mean free path in thickness and in which the molecular
effects dominates. The Knudsen layers approach zero for the continuum flow
since the mean free path becomes negligible compared to the macroscopic length
scale.

In Fig. 1 (b) the same plot is made for a higher Mach number. Three things
can be seen: The first is that the curves are much more smooth than in the case
of a low Mach number. This is due to the fact that the thermal (fluctuating)
velocity is much smaller compared to the bulk velocity. Secondly, for a rarefied
gas, there is slip at the walls, which could also be seen in the previous case.
The third significant property is that the curves are nonlinear, especially near
the walls, which is due to the fact that in order for the energy principle to hold,
the viscous dissipation generates an energy input which raises the temperature
of the gas. But since the temperature is constant at the walls, this means that
the temperature will raise in the middle of the channel. And since the viscosity
has a temperature dependence, the viscosity will be less in the vicinity of the
walls. Now, it can be shown that the shear stress is constant across the flow.
In order for this to hold the velocity gradient has to be larger in the vicinity of
the walls, which can be seen in Fig. 1 (b).

The figures 2-3 are all simulated at high Mach numbers (which means con-
siderable viscous dissipation in the gas). The (a)-part of Fig. 2 and Fig. 3 both
show the distribution of the thermal (fluctuating part) of the velocity for the
case of a low Knudsen number. The distribution shows a Maxwellian distribu-
tion centered around c’x = 0 and c’x = 0. In the (b)-part of Fig. 2 and Fig. 3 it
is interesting to note that when increasing the Knudsen number (thus reducing
the number of collisions) we see no more than two Maxwellian distributions,
each one reflecting the characteristics of the boundaries - that is, a particle
travelling away from the upper plate most probably has a positive streamwise
velocity and vice versa.
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Figure 1: (a) Velocity profiles for different Knudsen numbers and a low Mach
number. (b) Velocity profiles for different Knudsen numbers and a high Mach
number
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Figure 2: Distribution functions at a high Mach number for (a) low Knudsen
number and (b) high Knudsen number.
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DSMC simulation of heat exchange between two plates

Tobias Strömgren and Yuan Lin

2007-05-17

1 Theories and methods

The problem is to study the heat exchange between two parallel plates by using the DSMC (Direct Sim-
ulation of Monte Carlo) method. Continuum approach is also discussed and compared with the result of
DSMC. The free code, DSMC1.FOR of Bird [1] is used for the calculations. The molecules has the same
properties as air, but with lower particle density than normal air. It corresponds to air at an elevation of 100
km, i.e. really low pressure.

The heat exchange using the Navier-Stokes approximation is[2] ∆φNS = −
5
8

k
ω

√

πk
m

√

T1+
√

T1
2

T1−T2
L . In

this problem the temperature profile between the plates willbe linear.
The free molecular model is used to calculate the motion of molecules numerically. The simulations was

performed using the free software DSMC1.FOR written by G. A.Bird[1]. The formula of heat exchange

with the free molecular model is,∆φfree,mol = αnk k
2πm

γ+1
γ−1

√

T2T1
√

T1+
√

T2
(T2−T1).

The ratio of hydrodynamic and free molecular heat transfer rate is the following,
∆φNS

∆φfree,mol
= 5

8
π
α

γ+1
γ−1

(
√

T1+
√

T2)2
√

T1T2

λ
L which shows that in high Kn number region (λ > L), improper use of

hydrodynamic formulas in free molecular situation might lead to gross overestimations of the heat transfer
rate.

2 Results

By changing the distance between the two plates, we get temperature profiles for different Kn numbers
as figure1. The temperature boundary conditions are,T1 = 273K, andT2 = 373K. Fig 1(a) shows that
whenKn = 0.01, the free molecular method give almost the same solution as the ’Navier-Stokes’ approach.
When Kn increases, the rate (dT/dx) of heat exchange decreases. Fig1(b) shows that when Kn decreases,
the density of particles increases at the plate with lowest temperature, which agrees with the relation that
under equilibrium conditions the pressure is constant, that is n1T1 = n2T2.
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(a) Temperature profiles, (K)
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(b) Density profiles

Figure 1: Temperature and density when temperature difference is 100K
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Figure2 shows the velocity distribution of molecules when temperature difference is 1000K. Fig2(a),
Kn=0.01, shows that the velocity distribution is isotropicin both x-, and y-directions. Where the x-direction
is normal and the y-direction is parallell to the plates. Fig2(b) shows that when Kn=10, the y-component
of the velocity distribution is symmetric, but the x-component of the velocity distribution is not symmetric.
In figure3 where the velocity in the x-direction is shown in a histogram, it is even more clear that for large
Knudsen numbers more particles are moving in the direction from the warm plate to the colder plate. For
Kn=0.01 there is a Maxwellian distribution centred around cx = 0 but this is no the case for Kn=10.

Our calculations have shown that the ’Navier-Stokes’- and the free molecular approach overlap for
Kn<0.01, as Kn increases the difference between the free molecular model and the ’Navier-stokes’ approach
increases. As stated earlier Navier-Stokes works fine for Kn<0.01. One can also say that rate of heat-transfer
decreases with increasing Kn.
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Figure 2: Velocity distribution when temperature difference is 1000K, (m/s)
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Figure 3: X-component velocity distribution when temperature difference is 1000K, (m/s)
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The Hypersonic Flat-Plate Boundary-Layer Flow - Project
Report, Course 5C5105, part III

Lars-Uve Schrader and David Tempelmann

Linné Flow Centre, KTH Mechanics, 100 44 Stockholm, Sweden schrader@mech.kth.se,
david@mech.kth.se

1 Introduction

This report deals with results obtained from Monte-Carlo Direct Simulations (DSMC) of the hy-
personic flow over a flat plate. In the first section general features of hypersonic boundary-layer
flows, the limits of the continuous-fluid assumption and some aspects of molecular kinetics will be
discussed. The second part will be about the set-up of the simulations and the study cases. In the
third part the most interesting results will be compiled.

2 Hypersonic boundary-layer flow

Within hypersonic boundary layers the large amount of kinetic energy is transformed into internal
energy due to viscous effects (viscous dissipation). Thus, the temperature increases significantly,
meaning that the viscosity in turn will increase and the density will decrease. Both effects make
the hypersonic boundary layer grow faster than at lower speeds. A relation can be given as δ/x ∝
M2
∞/
√

Rex [1].
The thick boundary layer causes a particularly large displacement of the streamlines - especially

of those close to its edge. Hence, the boundary layer may be seen as an obstacle, forcing the outer
streamlines to change direction. In super- or hypersonic flows no information about this obstacle
can, however, travel upstream of the leading edge of the plate unless there is a shock wave.

The outer inviscid flow is greatly affected by the thick boundary layer, e.g. through the shock.
These changes feed back and influence the growth of the boundary layer as well. This phenomenon
is called viscous interaction.

At low Reynolds numbers the shock and the boundary layer can merge. Then the latter can no
longer be described by conventional theory.

Especially close to the leading edge the local Knudsen number based on the chordwise coordi-
nate becomes very large; towards the leading edge it tends to infinity (”leading-edge problem”).
Low-density effects become therefore important in particular in the leading-edge vicinity. For low-
density flows the Knudsen layer at the wall might no longer be negligible. In this layer only
molecule-wall collisions occur but no inter-molecular collisions, which results in wall velocity slip.
At even larger Knudsen numbers the assumption of a continuous fluid may lose its validity.

3 Numerical set-up and simulation cases

The hypersonic flat-plate boundary-layer flow is treated as a two-dimensional problem. The bulk
velocity vectors are confined to the x, y-plane; however, for the thermal velocity a spanwise com-
ponent is allowed as well.

The computational domain consists of 100 cells of 1 cm width in streamwise direction and
60 cells of 1cm height in wall-normal direction. These cells are sub-divided into 2x2 sub-cells.
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The flat plate coincides with the lower boundary y = 0 and is located in the streamwise interval
x = [0.1, 1.0]m, see Figure 1.

x

y

M  8

M < M

0.6 m

0.1 m 1.0 m

8

Fig. 1. The hypersonic flat-plate boundary-layer flow: A sketch of the computational domain

40000 particles representing of the order of 1015 molecules are distributed among the sub-cells.
At the inflow boundary x = 0 the particles have a uniform bulk velocity parallel to the plate
and initially random thermal velocities. At the outflow plane a stream condition is specified. The
boundary condition along the line y = 0 is twofold: Upstream of the leading edge a symmetric
boundary condition is specified, being equivalent to a specular reflection of the particles at their
mirrored images. Along the plate surface a diffusive-reflection condition is set in order to meet the
reflection behaviour at a realistic rough wall.

Four different cases are studied in the following: The ”standard case” with Mach number
M = 4.0 and Knudsen number Kn = 0.02, two low-number density cases for which the Knudsen
number is changed to Kn = 0.04 and Kn = 0.2, respectively, and a high-Mach number case with
M = 6.0 and Kn = 0.02. The most interesting results are compiled in the next section.

4 Results

M = 4, Kn = 0.02 (λ = 1.8cm).
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Fig. 2. Distribution of the number density (left) and the dimensionless mean free path (right) in the flow
field. Across the shock the number density increases strongly, whereas it decreases within the boundary
layer due to its high temperature and due to downstream expansion.
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Fig. 3. Left: Distribution of the Mach number; right: The dimensionless temperature (based on the free-
stream temperature T∞ = 300K) in the flow field. Clearly, the temperature is highest within the boundary
layer, especially close to the wall. Also a temperature slip can be identified here.
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plane is due to the outflow boundary condition that turned out to be appropriate only for an outflow Mach
number of Mout > 2 [2]. In the boundary layer the Mach number at the outflow boundary is, however,
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Fig. 5. The distribution of the thermal velocity. Left: Velocity-distribution function in the streamwise-
normal velocity plane. Right: The distribution of the streamwise component of the thermal velocity. Top:
Within the interval y = [0.4, 0.6]m (”upper stripe”); bottom: Within the interval y = [0, 0.2]m (”lower
stripe”). The lower stripe contains the boundary layer and parts of the shock. Thus, the deviation of the
velocity distribution from the Maxwell-Boltzmann distribution is larger here than in the upper stripe.
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M = 4, Kn = 0.2 (λ = 18cm).
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Fig. 6. The distribution of the thermal velocity for the low-density case, M = 4, Kn = 0.2. Left: Velocity-
distribution function in the streamwise-normal velocity plane. Right: The distribution of the streamwise
component of the thermal velocity. Top: Within the interval y = [0.4, 0.6]m (”upper stripe”); bottom:
Within the interval y = [0, 0.2]m (”lower stripe”). In comparison to the standard case the all-over dis-
tribution (left) and the distribution of the streamwise thermal-velocity component is less symmetric and
deviates more from the Maxwell-Boltzmann distribution.

Comparison between the four cases.
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Fig. 7. Comparison of the wall-normal profiles of the streamwise velocity for the standard case (M = 4,
Kn = 0.02), the two low-density cases (M = 4, Kn = 0.04/0.2) and the high-Mach number case (M = 6,
Kn = 0.02). The relative velocity slip based on the free-stream velocity is largest in the lowest-density
case, when the Knudsen layer on the wall is particularly thick. The boundary-layer thickness is smaller in
the M = 6 case, which is in contrast to the relation δ/x ∝ M2

∞/
√

Rex. However, this equation does not
include viscous interaction between the boundary layer and the outer flow, whereas this effect is included
in the DSMC method.
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Flow towards an inclined flat plate

- student project report

Ola Lögdberg & Bengt Fallenius

1 Introduction

In this report the supersonic flow around an inclined flat plate is calculated
using the direct simulation Monte Carlo (DSMC) method. This method
can be used when the Navier-Stokes equations no longer is applicable, i.e.
when the Knudsen is in the region of 0.1 and higher. In this project the
two-dimensional DSMC2 code, developed by G.A. Bird, was used.

2 Parameters

The DSMC2 code had a number of parameters to specify the domain, the
number of cells and subcells, the medium and the plate.

2.1 Domain

The computational domain length (x) and height (y) was set to 1 m and 0.6
m, respectively, and divided into 100 cells in the x-direction and 60 cells in
the y-direction. Each cell was further divided into 2x2 subcells. The domain
was specified to have free in- and outflow through all boundaries.

2.2 Flow

The medium was set to Argon and the Mach number was M = 4 for all
angles. The temperature of the flow was set to 300 K, the Knudsen number
Kn = 0.09 and the number of particles and number density was 40 000
and 1 × 1020, respectively. This gives a mean free path λ = 1.8 cm, which
corresponds to an altitude of 100 km.

1



Figure 1: Contours of constant Mach number at 30◦ angle of attack.

2.3 Plate

The plate was defined by two surfaces and their normals. In the current
setup the surfaces were located between cell number 40 and 60 in the x-
direction and along the lower boundary of row number 31 and the upper
boundary of row number 30 in the y-direction with the normals pointing
upwards and downwards, respectively. The angle of the plate was specified
by adjusting the x- and y-components of the flow velocity vector. Three
different angles were examined: α = 15, 30 and 45 degrees. The temperature
on the surface was set to ambient on the downstream side while the upstream
side was set to have the stagnation temperature of the flow.

3 Results

Only results from an angle of attack of 30 and 45◦ are shown.
In figure 1 the shock waves under the leading edge and over the trailing

edge can clearly be seen. The two accompanying Prandtl-Meyer expansions
are also captured reasonably well, when compared to the text book illustra-
tion in figure 2.

When the angle of attack is increased to 45◦ the leading edge shock wave
detaches from the surface as seen in figure 3. This agrees well with classical
theory that states that the detachment deflection angle at M = 4 is 39◦.
Since the shock wave is attached at 30◦, the detachment angle predicted by
the simulation is between 30 and 45◦. In figure 4 an experimental realisation

2



Figure 2: Shock waves and expansions around an inclined surface in a su-
personic free stream.

Figure 3: Contours of constant Mach number at 45◦ angle of attack.
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Figure 4: A detached shock wave on a 45◦ wedge at M = 2.5. (Milton van
Dyke, ”An album of fluid motion”)

of a similar case is shown.
In figure 5 the velocity component parallel to the lower surface is plotted.

The width of the shock wave depends on how it is defined, but it seems to
be approximately 3 mean free paths.

The difference between the components of the translational temperature
provide a measure of the departure from local equilibrium at a position in
the flow. In figure 6 this is shown along the same row of cells as in figure 5.
Upstream of the shock wave the temperature components are of the same
magnitude. In the shock Ty, which is the temperature component most
normal to the shock wave, increases abruptly. The two other components
increases more gradually. In the expansion Ty is still the component that is
affected first.

4 Conclusions

DSMC2 manages to capture the main flow phenomena of the three presented
cases. Note especially the good agreement with classical theory when the
leading edge shock wave is detached at 45 degrees. The translational tem-
perature equilibrium is lost in the shock wave.
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Direct Simulation Monte Carlo of gas flow in a cylinder

F. Hellström and A. Svärd

May 29, 2007

1 Introduction

When the ratio of the mean free path, λ of the gas to the characteristic length of the flow L, the Knudsen number
(1) exceeds values of approximately 0.1 the flow can no longer be described using a continuum approach, and
the well known Navier-Stokes equations are not valid.

Kn =
λ

L
(1)

Instead, the behaviour of the flow is described by the Boltzmann equation, which in this study has been
solved by the Direct Simulation Monte Carlo (DSMC) method. The flow case is a Poiseuille flow driven by a
gravitational volume force in a cylindrical pipe. The results have been compared with an analytical solution
and the agreement was found to be good for low Knudsen numbers and moderate driving force.

2 Analytic solution

For fully developed flow with constant pressure, Ur = 0, Uθ = 0, Uz = Uz(r) and gravitation in z-direction the
velocity profile for pipe flow can be discribed by an analytic solution (2)

Uz =
R2 − r2

4µ
ρg (2)

where r is the radial coordinate, R is the pipe radie, µ is the viscosity, ρ the density and g the gravitation.
This equation can be modified to account for slip flow at the walls (3),

Uz =
(1 + 4

3 · Kn) · R2 − r2

4µ
ρg (3)

As can be seen in equation (3), the velocity will increase with increasing Knudsen-number if the driving
force ρ · g is constant.

3 Computations

In this study of the gas flow in a pipe the Direct Simulation Monte Carlo approach is used to numerically solve
the Boltzmann equation. The used code is the DSMC1 developed by Bird [1] with the assumptions mentioned
above. Since the DSMC1 only can handle flow gradients in the r-direction, it had to be modified to be able to
handle a gravitational force in the z-direction.
6 different cases have been computed, 3 with different Mach numbers and 3 with different Knudsen numbers.
The Mach numbers were varied by varying the gravitation. A gravitation of 2.5 · 104m/s2 gave a Mach number
of 0.23, while a gravitation of 2.5 · 105m/s2 and 2.5 · 106m/s2 gave Mach number of 1.45 and 2.3, respectively.
For these cases, the number density was kept constant, and hence the Knudsen number.
For the cases with different Knudsen number, the Knudsen number where varied by varying the number density
while keeping the driving force, in these cases ρ · g constant. The number density for the three different cases
were n = 9.5 · 1022,n = 9.5 · 1020, and n = 9.5 · 1019 which resulted in a Knudsen number of Kn = 0.001,
Kn = 0.1, and Kn = 1, respectively.

The gas was treated as a mono-atomic gas. The pipe radius was 0.01 meter and at the pipe wall, a solid
wall boundary condition was applied.
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4 Results

In figure 1 the Mach number distribution over the pipe radius is shown for a low Knudsen number, Kn = 0.001,
and varying driving force. As expected, the overall Mach number is lower in the case of a lower driving force.
In the case with the lowest driving force the centerline Mach number is only slightly above 0.2. The flow can
be considered incompressible and the agreement with the analytic solution is good. The other two cases show
centerline Mach numbers well above 1. This implies that the flow is far from incompressible and the agreement
with the analytical solution is growing poorer. The simulated density and temperature results are essentially
constant in the low Mach number case but show gradients in the radial direction for the higher Mach numbers.
The product between density and temperature is however constant for all three cases.

Figure 1: The Mach number distribution over the pipe radius for Kn=0.001. The leftmost figure represents a
case with low driving force, ρg and the driving force increase to the right.

Figure 2 show the Mach number distribution over pipe radius for three cases with the same driving force at
different Knudsen numbers. It is clear that the Mach number increases with increasing Knudsen number. This
is partly due to slip but mostly owing to the fact that fewer collisions take place at high Knudsen numbers so
the available kinetic energy is concentrated in the axial direction. The low Knudsen number case show good
agreement with the analytical solution whereas the higher Knudsen numbers show increasingly poorer agreement
as assumptions made in the analytical solution begin to fail. There is also a significant slip at Kn=0.1 and
Kn=1 that can not be detected at Kn=0.001.

Figure 2: The Mach number distribution over the pipe radius for constant ρg. Left Kn=0.001, middle Kn=0.1,
right Kn=1.
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1 Problem Setup

The program used for simulation the shock with a Direct Simulation Monte
Carlo (DSMC) method was DSMC1S.FOR. The setup for this programs was
that Argon was the gas simulated. The initial temperature before the shock is
293 K, which also gives a speed of sound at 318.65 m/s. The number density is
1020 and before the shock the density ρ is 6.6 10−6 kg/m3. The computational
domain is 0.6 m divided into 300 cells with 6 subcells. This is a large domain
for a shock, but since the number density is so small the mean free path is large,
λ1 = 0.019 m, the shock is wider. That these values are large does not really
matter since the results are all normalized to be able to compare the analytical
with the DSMC solution. In the program the x-axis is in the direction across
shock. The reference frame is moving alongside the shock, so that the shock
will always be in the middle.

2 Analytical solution

To objective was to compare DSMC with an analytical solution to the shock
profile. The analytical solution is derived from the equations for conservation
of mass, momentum and energy. These must be satisfied throughout the shock.
The equations can be simplified under the assumption that the shock is weak,
weak means that: M2

1
− 1 ≪ 1. Where M1 is the Mach number in front of

the shock. With this assumption the conservation equations can be linearized.
Solving for the velocity u gives the result:

u − u2

u1 − u2

=
1

1 + e
G

u1−u2

C1

x

λ1

Where u1 and u2 are the velocities before and after the shock, G is a constant
depending on Pr and γ, C1 is the speed of sound before the shock and λ1 is
the mean free path before the shock. For a monoatomic gas, like Argon that
we are using, the constant G = 8

7
. The velocities before and after the shock is

taken from the result of the DSMC simulation. Another property that we are
interested in is the density across the shock. This could easily be calculated
from the conservation of mass, when the velocity has been computed. The
conservation of mass looks like:

ρu = ρ1u1

The last property that we looked at with the analytical solution is the entropy.
For an monoatomic gas at room temperature the dimensionless entropy S can
be expressed as:

S =
s − s1

Cv

= ln

(

(

u

u1

)
2

3

(

1 +
M2

1

3

(

1 −

(

u

u1

)2
)))

This was used for calculating S for the analytical solutions.
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Figure 1: Mach number and density for two low Mach number cases.
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Figure 2: Entropy change for a high and a low Mach number case.

3 Results

A number of different Mach numbers were simulated and compared with ana-
lytical Navier-Stokes solutions. The smallest Ma tested was 1.2 and the largest
8. Below a Ma of 1.2 accurate results could not be obtained. To go above Ma=8
was not considered necessary as a clear trend could be observed already in the
tested range which was believed to be correct. In figure 1 velocity and density
plots for the two low speed cases can be seen, these show how the DSMC and
N-S results start to diverge. The shock width was found to be monotonically
decreasing for N-S while for DSMC a clear minimum width was observed at a
Ma 3, see figure 4. The same trend could be observed in the temperature
and entropy change over the shock. A clear overshoot could be observed in the
entropy change for both N-S and DSMC, see figure 2. The entropy can decrease
locally in a non-closed system as in the shock , however, globally the entropy
increases making it non-isentropic. The translational temperature is related to
the kinetic energy of the molecules and if they are out of phase the gas is in a
non-equilibrium state. At all tested Mach numbers the component parallel to
the flow is out of phase with the other components as they are delayed in the
shock but in phase before and after, see figure 3.
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Figure 3: Translational temperature components for a high and a low Mach
number case.
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4 Conclusions

For strong shocks there are are discrepancies between N-S and DSMC regarding
the flow in the shock. Due to high local Knudsen numbers the N-S equation
break down and will not be able to resolve the macroscopic gas properties cor-
rectly i the shock. Unfortunaly no anlytical Navier-Stokes solution valid at high
Mach number is available for comparison with the DSMC results. It is however
believed that Navier-Stokes will not, as DSMC, have a minimum at about Mach
3, whereafter it will grow again. For DSMC the translational temperature com-
ponents were found to be in non-equilibrium in the shock as the components
not parallel to the flow are delayed compared to the one in the flow direction.
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Flow in front of a moving piston
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The gas flow in front of a moving piston is simulated with a Monte Carlo algorithm.
Results are obtained for various velocities of the piston and are compared with theory
from ordinary gas dynamics.

Problem formulation

A piston is located at x = 0 in a tube, see figure 1. On the right side of the piston, i.e
x > 0, the tube is filled with the monatomic gas Argon. The initial temperature and
number density of the gas is T0 = 273 K and n = 1 · 1020, respectively. At time t = 0 the
piston is given an instantaneous constant velocity cp in the x-direction. When the piston
moves a shock wave is generated in front of the piston. The shock propagates with the
velocity csw > cp.

Theoretical preliminaries

Figure 1: Schematic figure of flow situation.

In order to use normal shock relations the reference frame of the problem is changed to
a frame where the normal shock is standing still. The streamwise postion of the tube is
now x′, where x′ = 0 at the location of the shock. Properties upstream, i.e x′ > 0, and
downstream of the shock are denoted by index 1 and 2, respectively. In this frame

u1

u2
=

(
γ + 1

)
M2

1

2 +
(
γ − 1

)
M2

1

(1)

where M1 = c1/a0 = csw/a0 and the specific heat ratio γ = 5/3, see for instance Andersson
(2003). The speed of sound a0 is evaluated at t = 0. With u1 = csw and u2 = csw − cp
there are 3 solutions, when solving for csw. One solution is csw = 0 and is disregarded.
Only one of the remaining two solutions is positive and is given by

csw =
cp
(
γ + 1

)
4

+

√[
cp(γ + 1)

4

]2
+ a2

0 (2)
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Case cp (m/s) Mp

1 150 0.5
2 308 1.0
3 550 1.8
4 1000 3.3
5 1500 5.0
6 2300 7.5

Table 1: List of cases investigated
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Figure 2: Speed of shock wave and disturbances

According to equation (2) there is a shock also for small cp. In the limit cp → 0 the velocity
of the shock csw → a0. In the other limit cp →∞ the velocity csw → cp(γ+ 1)/2 = 4cp/3.

Numerical simulations

A total of 6 cases were simulated varying the speed of the piston. The cases are listed in
table 1.

As the piston is given a velocity a disturbance is generated, propagating in front of the
piston. Between the piston and the disturbance there is a region where the fluid has a
higher density and pressure than the undisturbed fluid in front of the disturbance. In
figure 2 the speed of the initial disturbance is denoted by stars. The solid line is given by
equation 2 and the open circles are the speed of the location where the local mach number
M = 1. In order to get M = 1 the piston has to move with Mp > 1. This is due to the
fact that as soon as the piston starts to move the temperature at the piston rises and thus
so does the speed of sound. This is the reason why the open circles are only reported for
the cases with larger cp. For large cp the open circles coincide well with the analytical
prediction and the slope approaches an asymptotic value of csw/cp = 1.33, consistent with
theory. However, for smaller cp the data starts to deviate. This deviation could possibly
be due to some numerical issues or perhaps the simulation just needs to be run for longer
times.

Figure 3 shows the parameters of temperature, density and M along the pipe at two
different time steps for 2 different speeds. For the slower speed we see that the disturbance
grows ahead of the piston and that this disturbance region increases with time. This
disturbance is traveling at the speed of sound which in this case is faster than the piston.
For the higher speed we see that the disturbance reaches a level higher than M = 1,
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Figure 3: Velocity contours, temperature, density and Mach number along the pipe at
Mp = 0.5 (upper figures) and Mp = 3.3 (lower figures) at two different times

indicated by the dashed line. However the disturbance region still increases with time at
a speed that is predicted by normal shock relations.
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1 Introduction

As we know that a diatomic molecule has several modes of energy: transla-
tional energy, rotational energy, vibrational energy and electronic energy. In
this project, we are looking at the energy associated with vibrational mode.
For a diatomic molecule, vibration is modelled by a spring connecting the
two atoms, as illustrated in Figure 1.
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Figure 1: The spring model of the vibrational energy mode.

In this project we examined the relaxation in a gas with vibrational
excitation through numerical simulation. Vibrational energy relaxation, or
vibrational population relaxation, is a process in which the population dis-
tribution of molecules in vibrationally quantum states of high energy level
returns to the Boltzmann distribution due to collisions.

The Larsen-Borgnakk model, see Bird (1994) for more detail, is adopted
to the vibrational modes through either a classical procedure that assigns a
continuously distributed vibrational energy to each molecule, or through a
quantum approach that assigns a discrete vibrational level to each molecule.

2 DSMC

The simulation code we choose is DSMC0V.FOR which is concerned with
the modelling of vibrational excitation. Some parameters are summarised
in Table 1.

number of cell and sub-cells per cell 1
number of “particles” 1.E5

number density 1.E20
simulated region 0–1 m

translational temperature 5000 K
characteristic vibrational temperature 2000 K

Table 1: Parameters for the direct numerical simulation.
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3 Results

We first ran cases with the initial rotational and vibrational temperatures
being chosen to the same value as the translational temperature. The time-
averaged values for the overall, translational, rotational and vibrational tem-
peratures are essentially the same. Also the sampled vibrational distribution
function at T = 5000K shown in Figure 2 is in excellent agreement with the
Boltzmann distribution.
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Figure 2: The distribution function of the vibrational states in a gas with
Θv = 2000K at a temperature of 5000K.

The effective number of degrees of freedom of vibration in the test are
also shown in Figure 3 compared with the theoretical values. The agreement
is in expected statistical scatter.
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Figure 3: The distribution of the effective number of degrees of freedom of
vibration in a gas with Θv = 2000K.

Another two cases with the initial rotational and vibrational tempera-
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tures set to zero while the translational temperature is 5000K were run to
examine the effect of the vibrational relaxation collision numbers.

From the results, we found that both the average temperatures of the
separate modes and the vibrational distribution function were indistinguish-
able from those for corresponding case with a constant vibrational relaxation
collision number.
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Figure 4: Vibrational relaxation with temperature dependent rate.

The result from the temperature dependent collision number test case
is shown in Figure 4. As seen from the plot, the rotational mode quickly
comes to equilibrium as well as the translational mode, while the vibrational
relaxation grows slowly. The time-averaged Tall is 2392K, while Ttr, Trot

and Tvib are 2389K, 2390K, and 2401K, respectively. More importantly,
the distribution function for the vibrational energy is again in excellent
agreement with the Boltzmann distribution.
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1 Introduction

Bulk viscosity is usually neglected in the continuum derivation of the Navier
Stokes equation. In fact, it is zero in a monoatomic gas since bulk viscosity
requires at least two degrees of rotational freedom. In the continuum limit the
bulk viscosity appears as an isotropic contribution to the viscous stress

σij = 2µSdev
ij +

∂uk

∂xk

κδij (1)

where Sdev
ij is the traceless part of the strain rate tensor, and κ is the bulk

viscosity coefficient. From eq (1) we see that bulk viscosity can only appear
in compressible (∇ · u 6= 0) flows. Significant bulk viscosity requires a highly
compressible flow, such as a shock wave of a diatomic gas.

It is the non-equilibrium of the rotational temperature that gives rise to bulk
viscosity. A large time scale of the rotational temperature will increase κ. Vi-
centi and Kruger (1965) claims that κ is proportional to the rotational thermal
energy per unit volume, ρecvrot

/cv , and the mean relaxation time, τr ,for the
rotational energy.

κ ∼

(

ρe
cvrot

cv

)

τr

2 Results

The effect of rotational relaxation on shock wave structure was investigated
by simulations with the Direct Simulation Monte Carlo-method using the code
of Bird (1994). The rotational relaxation time τr was varied by changing the
rotational collision number Zr, i.e. the average number of collisions needed for
a certain molecule to “reach equilibrium” 1. The connection between τ and Zr

can thus be written simply as:
τr = τZr (2)

1In fact, Zr is the number of collisions needed for the rotational velocities to advance

towards their equilibrium distribution by 1/e, and τr is the corresponding time.
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where τ is the mean time between collisions.
Simulations were performed with the parameter values of nitrogen2 (N2) in

room temperature (Bird, 1994). Nitrogen is a diatomic molecule with a collision
number of 5.5 in room temperature. In the present study, however, the collision
number Zr was artificially varied between 0 and 10.
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Figure 1: Translational(Ttr, blue) and rotational (Trot,red) temperatures as
functions of the streamwise coordinate x for rotational collision number Zr = 10.

If Zr is larger than the number of collisions required to reach the translational
equilibrium, Ztr, there is initially too much energy in the translational mode.
In fig. 1 it can be seen that after the arrival of the shock the translational tem-
perature rises quicker than the rotational, and overshoots its equilibrium value,
whereafter the extra energy is released to the rotational modes by collisions.
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Figure 2: Normalised density distribution as a function the streamwise coordi-
nate x two different rotational collision numbers: Zr = 0 (blue) and Zr = 10
(red).

This dilatational effect can even be seen the structure of shock velocity and

2This means molecular parameters such as molecular diameter and variable soft sphere

scattering parameter
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density profiles. The effect is similar to that of an increased viscosity - the pro-
files become smoother and more “smeared out” due to rotational effects. For the
same velocity jump, shock thickness based on velocity is inversely proportional
to viscosity (Kundu and Cohen, 2004).
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Figure 3: Definition of the normalised shock thickness δ = 1
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Figure 4: Shock thickness δ (for definition see fig. 3) as a function of rotational
collision number Zr.

Here shock thickness based on the maximum slope of the density profile
is studied (for illustration see fig. 3) and shock thickness is found to increase
almost linearly with the collision number (fig. 4). This is logical, since bulk
viscosity is linearly proportional to the relaxation time.
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1 Introduction

The thermal creep flow and the related one-way flow in a pipe with ditches for Knudsen
numbers around unity were computed by means of the Direct Simulation Monte Carlo
Method. The effect of the geometry of the ditches and the Knudsen number were investi-
gated in order to optimise the pumping ability of the system.

2 Theory

In the continuum approach, where the Navier-Stokes equations are applicable, the no-slip
boundary condition is generally applied to a solid surface. Such a condition does not allow
the establishment of any non-zero stationary velocity, in the absence of external forces or
a pressure gradient. In the case of a rarified gas, however, there can be an appreciable slip
velocity at the wall, so that the boundary condition becomes

u|wall = uwall + uslip . (1)

When a temperature gradient in the tangential direction (t) is present in the gas the slip
velocity is given by

uslip = µT (∇T )t , (2)

where µT ∼ cs
λ
T

denotes the thermal creep velocity coefficient. Hereby λ, cs and T are
the mean free path, the speed of sound and the temperature, respectively. Hence, a flow
in the direction of the temperature gradient, in a region of order λ near the boundary, is
established. When the mean free path is comparable with the dimensions of the charac-
teristic length scale, (i. e. Kn = O(1)) the slip velocity can be large and exploited for
practical applications. The interested reader can find a more detailed explanation of this
phenomena in [1,2] and in the lecture notes.

3 Geometry and Numerical parameters

The aim of the present project was to investigate the flow induced by thermal creep in a
pipe with ditches with periodically applied temperature gradients at the walls, as depicted
in figure 1. The pipe length was L = 2m and the diameter was set to D = 1m, whereas
the ditch depth, d, and width, b, where the variables to be optimised. The effect of the
temperature ratio and the Knudsen number were also investigated.

For the DSMC simulation a PC program (DS2G) was used instead of the Fortran code,
because the temperature gradient at the wall could not be easily implemented.
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Figure 1: Pipe configuration and temperature distribution at the pipe wall. The red block
shows the computational domain.

The DSMC simulation was carried out with the following parameters:

• Gas: Argon

• Timestep: 0.02ms

• # simulated molecules: 120000

• diffuse reflection

• T0 = 300K

• # sub-cells per region: 20x15

4 Results

The temperature and velocity field for d/D = b/L = 0.5, T1/T0 = 3 and Kn = 0.1 is
shown in figure 2. A flow in the direction of the temperature gradient is induced in the
ditches, but it is blocked by the side walls. Consequently a net flow establishes in the
pipe. The computed mass flow rate at this condition was around 0.4g/s.
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Figure 2: Temperature distribution and velocity vectors after a steady state condition has
been reached. Red curves visualise the streamwise velocity profile.
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Different configurations in terms of geometry, temperature ratios and Knudsen num-
bers were tested, and the results are shown in figure 3.
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Figure 3: The mass flow rate is plotted as a function of the ditch depth and width ratio,
the temperature ratio and the Knudsen number in the leftmost, centred and rightmost
figures, respectively. The maximum mass flow rate was found to be at d/D = b/L = 0.5
and Kn = 0.1, and it increased with increasing temperature ratio.
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