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Exercise 5: Exact Solutions to the Navier-Stokes Equations |

Example 1: Plane Couette Flow

Consider the flow of a viscous Newtonian fluid between two parallel plates located at y = 0 and y = h. The
upper plane is moving with velocity U. Calculate the flow field.

Assume the following:

Steady flow:
0]
— =0
ot
Parallel, fully-developed flow:
8ui
v = =
" Oz
Two-dimensional flow: 5
=0, —=0
v 0z
No pressure gradient:
dp
=0
8177;

The streamwise Navier-Stokes equation is

1
% +(a-V)u= —;Vp—i—uvzu ;

can be simplified using the above assumptions. We get

9%u ou
By 0 = By = u y+

we finally obtain

Example 2: Plane Poiseuille Flow (Channel Flow)

Consider the flow of a viscous Newtonian fluid between two solid boundaries at y = +h driven by a constant
pressure gradient Vp = [—P,0,0]. Show that

u:ﬂ(hQ—gf), v=w=0.
Navier-Stokes equations:

aa+(— V)i 'y +vV3a

—+ (- Viu=—= vV

ot P b

V.-u=0.

Boundary conditions:
a(y==xh)=0



Figure 1: Coordinate system for plane Poiseuille flow.

e We are considering stationary flow and thus 0.

ﬂ j—
ot
e The constant pressure gradient implies 4 = @(y). Changes of @ in x, z would require a changing pressure

gradient in z, 2.

9 _

dy

e The continuity equation V - @ reduces to
v=0.

0. The boundary condition v(y = +h) = 0 then implies

Consider the spanwise (z) component of the Navier-Stokes equations:

aﬂ 0w

v =V——7F
~ 0y oy?

= w=cCy-+c

The boundary conditions w(y = —h) = w(y = h) = 0 imply ¢; = ¢o = 0 and thus w = 0. We can conclude
that @ = [u(y), 0, 0].

Consider now the streamwise (z) component of the Navier-Stokes equations:

P 0%u ou P P
o Vo oy~ T =t muly) = oyt diy+d

The boundary conditions at y = +h give

P P
0=——h’+dih+dy, and 0= ——h?>—dih+d,
2p 2u

P
We can directly conclude that d; = 0 and this gives ds = 2—h2. The solution is thus
"

P
u:ﬂ(hQ—gf), v=w=0.

Energy Dissipation in Poiseuille Flow

a) Calculate the dissipation function for the plane Poiseuille flow computed above,

P
(h2_y2)7 UZUJ:O:

u = ﬂ
or in terms of the bulk velocity U
3U , o 9
uzm(h —y°), v=w=0.



The mass-flow rate through the channel is
h
Q= / udy = 2Uh .
—h

The dissipation function is defined as (dissipation to heat due to viscous stresses)

8ui

= Tiji.
ox;
J

P

For incompressible flows, it can be re-written as

Ou;
¢ = Tijaiwl_ = 2pe;5(eij + &ij) = 2peq5e4,
J

where we used the fact that e;;&;; = 0.

0 v 0
5 Ou

The deformation tensor for the Poiseuille flow becomes e;; = 1/2 g—Z 0 0| and therefore
0 0 0

o—op | (LO0Y L (Lou)| _  (2u)
e 2 dy 2 dy K oy )

Calculate the total dissipation for unit area

h h 2 2
3U 6uU
¢=/ <I>dy=/ u(—hzy) dy = Mh .
—h —h

Write the mechanical energy equation for this flow. Integrate over the channel width and relate the

total dissipation ¢ to the pressure gradient and the mass flux.

The mechanical energy equation is obtained by multiplying the Navier-Stokes equations by w; (the

energy is p(1/2)u;u;). One gets

D /1 Op 0T;;
Dt \ Wit | = Fiu; — Ur z'a”~
p t(2uu> pFiu; —u xi—i—u ;

Considering the Poiseuille flow and re-writing the last term as

87”- o aumj

YDz 0x ; ’
j j

the energy equation reduces to

0
0=uP+ ay (uTgy) — ©.

Integrating across the channel each term in the expression above, one obtains for the first term
h h
/ uPdy = P/ udy = QP,
—h —h

where Q) is the flow rate. This term represents the work rate by pressure forces.

The second term ,
0 h
— (UTyy) dy = [(uTey)]”, =0
| 5 )y = lam ),

due to the no-slip boundary conditions.



The third term is the total dissipation ¢ = ffh ® dy defined above. Summarising

h
O:QP—/ O dy.
—h

One can check the results, using the expression for ¢ obtained in b). Just recall that

h
Q= / udy = 2Uh,
—h

and the pressure gradient can be expressed in terms of U as P = 3,’f2U Therefore QP = 6uU?/h = ¢.

Example 3: Poiseuille Flow (Pipe Flow)

Consider the viscous flow of a fluid through a pipe with a circular cross-section given by r = a under the
. 0
constant pressure gradient P = f—p. Show that

uZ:@(2 3w, =ug = 0.

Figure 2: Coordinate system for Poiseuille flow.

Use the Navier-Stokes equations in cylindrical coordinates (see lecture notes)

ou, B u? 19p 9 Uy 2 Oug
= =LV - 2
Oug B urug 1 Op 9 2 Ou, ug
5 + (@ V)ug + = pr89+l/<v Ut 5 a2
8uz B _ lap 9
ot ( )uz——paz+ VZu,
10 10ug = Ou,
B UL T S
We know that @ =0 and @ =

0 3 0 and can directly see that u, = up = 0 satisfys the two first equations.
,
From the continuity equation we get

ou,,
5% =0 =

u, =uy(r,0) only.
Considering a steady flow we get from the axial component of the Navier-Stokes equations

ou,

(@-V)u, = u, 5%

Y ou,
* 0z

1
=P+ vV, .
P



ou - .
But we know that ——= = 0 from the continuity equation. We get

0z

190 6 OJu, P 0 , Ou, P
_ ): I,

2 10 __r v
v“Z_rar(T 87“) 1 = 8r(r or 1

Integrate once in r gives

r =—— =——r
or 21 or 2u + r’

and integrating again we get

P
U, = —4—7“2 + ¢ In(r) + ¢2  using the boundary conditions u,(r =0) < oo =¢; =0 .
W

2

We also have u, = 0 at r = a and this gives c; = and we finally get

P
u, = —(a® —r?) .
dp

Example 4: Asymptotic Suction Boundary Layer

Calculate the asymptotic suction boundary layer, where the boundary layer over a flat plate is kept parallel
by a steady suction V|, through the plate.

Assumptions:
Two-dimensional flow:

0
— =0 =0
0z v
Parallel, fully-developed flow:
0
Z -0
ox
Steady flow:
0
Z -0
ot

Momentum equations:

Normal momentum equation gives

Boundary conditions:
y=0: u=0, v=-V,

y—oo: u— Uy
Continuity gives
Oou  Ov
—+7—=0 = = -V
Jr + dy v 0

Streamwise momentum equation at y — o0

oU,  1dp U,

—Vo oy p8m+y 0y?




= —=0
Ox
Resulting streamwise momentum equation
ou 0%u 0%u Vy Ou
_‘/07 — 1/72 = ol _ v __
Jy oy dy v Oy

Characteristic equation
\% Vi
M=-2L\ = AN=0X=--"2
v v

u(y) = A+ Be™Vov/v

With the boundary conditions at y = 0 and y = co we get

u(y) = Uso (1 — e_VOy/”)

Example 5: Flow on an Inclined Plate

Two incompressible viscous fluids flow one on top of the other down an inclined plate at an angle « (see figure
3). They both have the same density p, but different viscosities 111 and ps. The lower fluid has depth h; and
the upper ho. Assuming that viscous forces from the surrounding air is negligible and that the pressure on
the free surface is constant, show that

o) = | + ey — 32| £,

V1

Figure 3: Coordinate system for flow down an inclined plate.

Make the ansatz @y = [u;(y),0,0] and @2 = [uz(y),0,0]. The continuity equation

0 0 0
LT gives & 0=wv=c andthe boundary condition at y = 0 give v = 0.
dr Oy oy
e Layer 1:
_ 1 0p1
N-S-e,:0= oy geos(a) = p1 = —pgcos(a)y+ fi(x)
]. ’ d2 ’
N-S-2 10 = —2fi(@) £ gy +osin(a) = ) =e
e Layer 2:
_ 1 0pa
N-S-e,:0= oy gcos(a) = pa2 = —pgcos(a)y+ fa(x)
NS, 0= L@+t s gsine) 5 i@
e :0= pr VQdy2 gsin(a 5(x) = c2



The pressure at the free surface y = hy + hg is pg:
po = —pgcos(a)(hy +ha) + fa(x) = fo=po+pglhs +ho)cos(a) = f,=0
The pressure is continuous at y = h1:
po + pghy cos(a) = —pghy cos(a) + fi(z) = fi =po+ pg(hy + ha)cos(a) = f,=0
This gives the pressure:
p1(y) = p2(y) = p(y) = —pg cos(a)y +po + pg cos(a)(hy + ha)

We now have two momentum equations in x:

d?u

0=v + gsin(a 1
VoA +asin(a) (1)
d*u

0=v + gsin(a 2
o +asin(a) ()

And four boundary conditions:

BC1: No slip on the plate:  u1(0) =0

BC2: No viscous forces on the free surface: o — =0
dy y=hi+ha
Ly - dU1 dU2
BC3: Force balance at the fluid interface:  p; — =y —
Y |y, Y |y,
BC4: Continous velocity at the interface: wi|y=p, = Ua|y=h,
d
1) = diyl = —V%ysin(a) 41 = up= —;;Vly sin(a) 4 ¢11y + 12
dus g . g o .
2)= —= =_—Zysin(a)+ec = Uz = ———y’sin(«a) + c1y + ¢
(2) a0 oY (a) + e 2= 5 Y (a) + ca1y + c22

BC1 = Clo = 0
BC2 = ,ug(—y%(hl + ho)sin(a) +¢21) =0 = 91 = V%(hl + hg) sin(a)

BC3 = ul(—iysin(a)—i—cu) = ug(—y%y sin(a)+co1) {p=vp} =cnn= &021 = V%(hl—i—hg) sin(a)

M1
BC4 = ——hl sin(«) + i(hl + ha)sin(a)hy = -7 2sin(a) + i(hl + ha)sin(a)hy + coo
2v V1 219 1)
: hi 11
= ¢9o = gsin(a) <21 — (h1 + hz)h1> <u2 - 1/1>

This gives us the velocities:

ul(y) = _%yQ Sin(a) + %(hl + hg) sin(a)y

) = 22 -+ hajy — 57]

V1
us(y) = 7981n(a)y2 + gsin(a) (h1 + h2)y + gsin(« ( — (hy + ho)hy > (1 _ 1)
21/2 12 Vs v
_ gsin(a) 1 h3 11
uz(y) = p (h1 + ha)y — Y ] + gsin(a) [ 5 — (h1 + ho)hy T

The velocity in layer 1 does depend on hs but not on the viscosity in layer 2. This is because the depth
is important for the tangential stress boundary condition at the interface, unlike the viscosity. There is no
acceleration of the upper layer and thus the tangential stress must be equal to the gravitational force on the
upper layer which depends on hy but not on vs.



