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Base Flow

• 2D steady Incompressible Flow

• Flow driven by a constant 

pressure gradient 

• Fully developed flow

• Normalized Velocity Profile

• No Slip boundary conditions

Governing Equations:

1.
𝜕𝑢𝑖

𝜕𝑥𝑖
= 0

2.
𝜕𝑢𝑖

𝜕𝑡
+ 𝑢𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗
= −

1

𝜌

𝜕𝑝

𝜕𝑥𝑖
+ 𝜈𝛻2𝑢𝑖

With:

•
𝜕

𝜕𝑥
=

𝜕

𝜕𝑡
= 0

•
𝜕𝑝

𝜕𝑥
= 𝑐𝑜𝑛𝑠𝑡 < 0

• 𝑣 −1 = 𝑣 1 = 𝑢 −1 = 𝑢 1 = 0



Disturbance Equations

• Reynolds decomposition of the Flow Field:

𝑈 + 𝑢 ; 𝑃 + 𝑝

• Subtratct to the Navier Stokes equations the mean flow and

neglect h.o.t. than linear:
𝜕𝑢𝑖
𝜕𝑡

+ 𝑈𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

+ 𝑢𝑗
𝜕𝑈𝑖
𝜕𝑥𝑗

= −
𝜕𝑝

𝜕𝑥𝑗
+

1

𝑅𝑒
𝛻2𝑢𝑗

𝜕𝑢

𝜕𝑡
+ 𝑈

𝜕𝑢

𝜕𝑥
+ 𝑣𝑈′ = −

𝜕𝑝

𝜕𝑥
+

1

𝑅𝑒
𝛻2𝑢

𝜕𝑣

𝜕𝑡
+ 𝑈

𝜕𝑣

𝜕𝑥
+ = −

𝜕𝑝

𝜕𝑦
+

1

𝑅𝑒
𝛻2𝑣

𝜕𝑤

𝜕𝑡
+ 𝑈

𝜕𝑤

𝜕𝑥
+ = −

𝜕𝑝

𝜕𝑧
+

1

𝑅𝑒
𝛻2𝑤

𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
+
𝜕𝑤

𝜕𝑧
= 0



Disturbance Equations, continuation

• Taking the divergence of the momentum equations, it yelds:

𝛻2𝑝 = −2𝑈′
𝜕𝑣

𝜕𝑥

Eliminating the pressure in the v-equation:

𝜕

𝜕𝑡
+ 𝑈

𝜕

𝜕𝑥
𝛻2 − 𝑈′′

𝜕

𝜕𝑥
+

1

𝑅𝑒
𝛻4 𝑣 = 0

• Afterwards the equation of the normal vorticity is considered to

describe completely a 3D flow-field:

𝜂 =
𝜕𝑢

𝜕𝑧
−
𝜕𝑤

𝜕𝑥

Where 𝜂 satisfies

𝜕

𝜕𝑡
+ 𝑈

𝜕

𝜕𝑥
−

1

𝑅𝑒
𝛻2 𝜂 = −𝑈′

𝜕𝑣

𝜕𝑧

Orr-Sommerfeld 

equation

Squire 

equation



Disturbance Equations, continuation

• The new system has to be completed with appropriate boundary

conditions:

ቚ𝜂
𝑤𝑎𝑙𝑙𝑠

= ቚ𝑣
𝑤𝑎𝑙𝑙𝑠

= ቤ
𝜕𝑣

𝜕𝑦
𝑤𝑎𝑙𝑙𝑠

= 0

• And initial conditions:

𝑢 𝑥, 𝑦, 𝑧, 0 = 𝑢0 𝑥, 𝑦, 𝑧
𝑣 𝑥, 𝑦, 𝑧, 0 = 𝑣0(𝑥, 𝑦, 𝑧)
𝑤 𝑥, 𝑦, 𝑧, 0 = 𝑤0 𝑥, 𝑦, 𝑧

𝑣 𝑥, 𝑦, 𝑧, 0 = 𝑣0 𝑥, 𝑦, 𝑥
𝜂 𝑥, 𝑦, 𝑧, 0 = 𝜂0 𝑥, 𝑦, 𝑧



Orr-Sommerfeld and Squire Equations

Assuming a wave like solution of the form 𝑞(𝑥, 𝑦, 𝑧, 𝑡) = ෤𝑞𝑒𝑖(𝛼𝑥+𝛽𝑧−𝜔𝑡), the

derived set of equation reads:

−𝑖𝜔 + 𝑖𝛼𝑈 𝐷2 − 𝑘2 − 𝑖𝛼𝑈′′ −
1

𝑅𝑒
𝐷2 − 𝑘2 2 ෤𝑣 = 0

−𝑖𝜔 + 𝑖𝛼𝑈 −
1

𝑅𝑒
𝐷2 − 𝑘2 ෤𝜂 = −𝑖𝛽𝑈′ ෤𝑣

and can be solved for the Orr.Sommerfeld modes and Squire modes

independently.



Squire’s Theorem

Thanks to Squire’s theorem it is possible to conclude that parallel shear

flow first become unstable for 2D wavelike perturbations at a value of

Re number that is smaller than any value for which unstable 3D

perturbation exists.

𝑅𝑒𝑐 ≜ min
𝛼,𝛽

𝑅𝑒𝐿 𝛼, 𝛽 = min
𝛼

𝑅𝑒𝐿(𝛼, 0)

A proof of the theorem can be derived using Squire’s transformation in

the perturbed equations of motion  𝜔 = 𝛼𝑐 , and comparing with the

case of 𝛽 = 0. Comparing the eqution they have the same solution if

the following equalities hold:

𝛼2𝐷 = 𝑘 = 𝛼2 + 𝛽2

𝛼2𝐷𝑅𝑒2𝐷 = 𝛼𝑅𝑒

𝑅𝑒2𝐷 = 𝑅𝑒
𝛼

𝑘
< 𝑅𝑒



Matrix Formulation of the EIGV Problem

𝜕

𝜕𝑡
−𝐷2 + 𝑘2 0

0 1

෤𝑣
෤𝜂

=
ℒ𝑂𝑆 0

−𝑖𝛽𝑈′ ℒ𝑆𝑄

෤𝑣
෤𝜂

ℒ𝑂𝑆 = −𝑖𝛼𝑈 𝑘2 − 𝐷2 − 𝑖𝛼𝑈′′ −
1

𝑅𝑒
𝑘2 − 𝐷2 2

ℒ𝑆𝑄 = −𝑖𝛼𝑈 −
1

𝑅𝑒
𝑘2 − 𝐷2

𝜕

𝜕𝑡
𝑴𝒒 = 𝑳𝒒

𝜕

𝜕𝑡
𝒒 = 𝑴−𝟏𝑳𝒒 = 𝑳𝟏𝒒

NOTE: the different OS

and SQ eigenmodes can

be found independently

due to the triangular form

of 𝐿1



Neutral Curve and Spectrum

Neutral curve ci = 0 Spectrum

UNSTABLE

STABLE

𝛼 = 1.02
𝛽 = 0

𝑅𝑒 ≅ 5600

A
P

S



Stability Analysis and Energy Growth

Traditional Lyapunov stability analysis based on infinite time horizon might not be

interesting for our study due to the lack of representation of the «transient growth»

that can occur for non modal system. We will look at stability as the amplification of

initial energy perturbation over a period of time. The amplifiction depends on initial

conditions and this dependence can be eliminated by optimizing over all

permissible initial conditions, and accepting the maximum as the optimal energy

amplification.

𝐺 𝑡 = max
𝒒𝟎

𝐪 t 𝐸
2

𝐪𝟎 𝐸
2 = exp 𝑳𝑡 𝐸

2

The energy norm of the matrix exponential is thus the largest amplification of

energy any initial perturbation can experience over a given time interval.

It is important to realize that the energy amplification G(t) is optimal over all possible

initial conditions, but that for each chosen time span t a different initial condition

may yield the optimal gain G(t). The curve G(t) versus t may thus be thought of as

an envelope over optimal initial conditions.



Contours of Constant Growth Rate 
log10Gmax

𝑅𝑒 ∈ [3000 ; 11000]

𝛼 ∈ 0.1 ; 2

𝛽 = 0

𝑇 ∈ 0. ; 15 𝑠



Contours of Constant Growth Rate 
log10Gmax

𝛼 ∈ [0 ; 3]

𝛽 ∈ 0 ; 3

𝑅𝑒 = 4000

𝑇 ∈ 0; 500 𝑠



Transient Growth

𝛼 = 1.02; 𝛽 = 0 𝛼 = 0; 𝛽 = 2



Numerical abscissa and Numerical Range

The numerical abscissa is useful to analyze the short time dynamics of a system

without computing the whole exponential matrix:

ቤ
𝑑𝐺

𝑑𝑡
0+

=
𝒒𝟎, 𝑳 + 𝑳𝑯 𝒒𝟎

𝒒𝟎, 𝒒𝟎
= 𝜆𝑚𝑎𝑥 𝑳 + 𝑳𝑯 ,

That is the initial slope of the gain curve.

The numerical abscissa can be generalized to the concept of numerical range.

Considering the energy growth rate we have:

1

𝐸

𝑑𝐸

𝑑𝑡
= 2 𝑅𝑒𝑎𝑙

𝑳𝒒, 𝒒 𝑬

𝒒, 𝒒 𝑬
.

The last expression establishes a link between the energy growth rate G(t) and

the set of all Rayleigh quotients.



Numerical Range

• Transient growth is expected

due to the protusion of the

numerical range in the

positive region for 𝜔𝑖 .
• The numerical range contains

the spectrum of L.

• It is convex.

• The system is non-normal

(the numerical range is not

the convex hull of the

spectrum)



Optimal Initial Condition 

Sometimes it is interesting to calculate the optimal initial conditions that realizes

the maximum amplification of G. Recalling the definition of the matrix exponential

norm, it is given by an optimization over all initial conditions; the resulting curve

G(t) is thus an envelope over many individual realizations. For the initial condition

that yields to the maximum energy amplification we can write:

exp 𝑳𝑡∗ 𝒒𝟎 = exp(𝑳𝑡∗) 𝒒

Through the singular value decomposition is then possible to extract the principal

components and to recover the optimal initial condition.



Optimal Initial Condition
(𝜶 = 𝟎,𝜷 = 𝟐,𝑹𝒆 = 𝟏𝟎𝟎𝟎) 



Optimal Initial Condition
(𝜶 = 𝟎,𝜷 = 𝟐,𝑹𝒆 = 𝟏𝟎𝟎𝟎) 



Optimal Initial Condition
(𝜶 = 𝟎,𝜷 = 𝟐,𝑹𝒆 = 𝟏𝟎𝟎𝟎) 



Optimal Initial Condition
(𝜶 = 𝟏,𝜷 = 𝟎,𝑹𝒆 = 𝟏𝟎𝟎𝟎) 



Optimal Initial Condition
(𝜶 = 𝟏,𝜷 = 𝟎,𝑹𝒆 = 𝟏𝟎𝟎𝟎) 



Receptivity

Receptivity analysis which is concerned with the general response of a fluid system

to external disturbances.

Let us the discretized dynamic system:
𝑑𝒒

𝑑𝑡
= 𝑳𝒒 + 𝒇.

Receptivity is described via a resonance argument, given by the closeness of the

external frequencies to any of the eigenvalues of the driven system. However for

non-modal system this argument finds out to be inadequate.

The form of the forcing in this analysis will be harmonic and due to linearity of the

system the output will respond with the same frequency (we will also consider the

case where 𝒒𝟎 = 𝟎).

Analogously to the stability analysis we can obtain the final expression of the

resolvent norm as

𝑅 𝜔 = max
𝒇

𝒒𝒐𝒖𝒕 𝐸
2

𝒇 𝐸
2 = 𝑖𝜔𝑰 − 𝑳 −1

𝐸
2 .

It is the maximum response due to harmonic forcing, optimized over all forcing.



Receptivity

Applying the eigenvalue decomposition one can rewrite R as:

𝑅 𝜔 = 𝑽−𝟏 𝑖𝜔𝑰 − 𝚲 −1𝑽
𝐸

2
.

Where the inner part containing the diagonal eigenvalues matrix measures the

inverse distance of the external forcing frequency with the eigenvalues of our linear

system. This is the classical definition of resonance. But it discards any other

information regarding the structure of the eigenvectors, which can be non-normal.

The resolvant norm for non-normal system can therfore by very high even though

we are not in proximity of an eigenvector.



Receptivity

As an exemple the resolvent contour for Plane Poiseuille Flow is showed below

The resolvent norm has the 

same magnitude in this 

regon as if it was close to 

the eigenvalue indicated by 

the red dot.

This is the region where 

the eigenvectors are highly 

non orthogonal.



Optimal Forcing

Analogous to the optimal initial condition problem the optimal forcing identifies the 

shape of the forcing which produces the largest response in the flow.

Exploiting again the singular value decomposition, the computation of the optimal 

forcing is straight forward. The computation of the optimal forcing thus amounts to 

a SVD of the resolvent matrix for a given forcing frequency.

𝛼 = 1
𝛽 = 0

𝑅𝑒 = 2000
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