Fluid Mechanics, SG2214, HT2013
September 4, 2013

Exercise 1: Tensors and Invariants

Tensor/Index Notation

Scalar (Oth order tensor), usually we consider scalar fields function of space and time

p=np(z,y,2,1t)

Vector (1st order tensor), defined by direction and magnitude

U
(u);=u;, Ifu=|v| thenug=v
w

Matrix (2nd order tensor)
ai; a2 013
(A)Z] = Aij If A= [a21 age ao3| then Azs = ass
azy asz2 ass
Kronecker delta (2nd order tensor)

1 ifi=j
5”:(1)”:{ 0 ifi#j

To indicate operation among tensor we will use Einstein summation convention (summation over repeated
indices)

3
WUy = E WU i is called dummy index (as opposed to free index) and can be renamed
1=1

Example: Kinetic energy per unit volume

solul® = 3p(u® + v +w?) = Spusu;

Matrix/Tensor operations

(@-b) = a1by + azbs + azbs = a;b; = §;ja;b; = a;jb;  (scalar, inner product)
(ab);j = (@®b);; = a;b; (diadic, tensor product)

(Ab); = A;;b;  (matrix-vector multiplication, inner product)

(AB);; = (A -B);; = A;;By; (matrix multiplication, inner product)
(AB);jii = (A ®B);jr = A;jBry  (diadic, tensor product)
(A:B)=A;;B;; (double contraction)

tI‘(A) = A1+ Aoy + A3z = Ay (trace)

(A)ij = Aij <= (AT)y; = Aj; (transpose)



Permutation symbol

1 if ijk in cyclic order. ijk = 123, 231 or 312
Eijk = 0 if any two indices are equal
—1 if 45k in anticyclic order. ijk = 321, 213 or 132

Vector (Cross) product

- €1 €y e3
axb=|a ay az |= él(agbg — a3b2) — ég(a1b3 — a3b1) + é3(a1b2 — agbl) = aijkéiajbk
by by by

(@ x b); = €;j1a;by,
€ijkEilm = 0j10km — 0jmOkt
€ijk€ijm = {1 = J} = 30km — 0jmOkj = 30km — Omk = 20km
Eijk€ije ={m =4k} =2-3=6
Example: Rewrite without the cross product:

(d X B) . (E X CZ) = (@ X B)l(é X J)Z = €ijkA; breiimeidy, = €ijkEilm @j bpcd, =

(5jl5km - 6jm5kl) a; brcd,, = ajcjbkdk - ajdjbkck = (C_L . 5)(5 . J) - ((_1 . d_) (1_7 . 5)

Tensor Invariants

bij, b3 = birbrj # (bij)*, b} = birbribiy # (bij)?
Any scalar obtained from a tensor (e.g. bi;, b3, ...) is invariant, i.e. independent of the coordinate system.

The principal invariants are defined by ()\; are the eigenvalues of B)

Il :b” :tr(B) :)\1+>\2+)\5

Iy =5 [(bi)* = 03] = 3 {[tr(B)]2 - tr(BQ)} = AA2 + AaA3 + A3
I3 = %(b”)3 — %biib?j =+ %b?z = det(B) = A1 A2)3

Decomposition of Tensors

T;; = T[j» + TZ‘;‘ symmetric and anti-symmetric parts

T{? ~1 <T” + Tji) = Tﬁ symmetric

Ti‘? = %(Tw — Tj-) = —Tf} anti-symmetric

The symmetric part of the tensor can be divided further into a trace-less and an isotropic part:

Tg =T;; + Ty

ij
7 S _ 1
Ti; Tijngkkéij trace-less

Tij = %Tkk&-j isotropic

This gives:



Ty =T+ Ty = Ty + Ty + T}

. . Ou; , . :
In the Navier-Stokes equations we have the tensor 871 (deformation-rate tensor). The anti-symmetric part
Lj
describes rotation, the isotropic part describes the volume change and the trace-less part describes the defor-

mation of a fluid element.

Operators

(Vp)i =

5P (gradient, increase of tensor order)
X

2

A = . = 2 =
P v vp v p 8LE7;(9$7;

p (Laplace operator)
V-4 =—u; (divergence, decrease of tensor order)

(V-A); = %Aij (divergence of a tensor)

(Va);; = (Veu); = u;  (gradient of a vector)

9
(9l‘i

0
(V X ﬂ)z = gijk%thk (curl)

Gauss theorem (general)

Gauss theorem (divergence theorem):

%F'ﬁdS:/V'FdV
s 14

or with index notation,

fFinidS:/ OF: v/
S vafi

In general we can write,

0
TijrmdS = | —TydV
fg g o /Vaml i

Example: Put T3 1y = T5 ug ny

0
T;: ds = —(uy T;;) dV
fs ULy /Vaxz(ul i)

or,
%T(aﬂ)dsz/ (V-a)T + (u-V)T)dV
S |4

Identities

e Derive the identity

[V x (FxG)=(G:V)F+(V-G)F— (V- F)G—(F-V)G|

= 0 0 0
(V x (F x G))i = Ez‘jkaTSjEklmFI Gp = qujké‘kZmaTJsz Gm = Ekiﬁklm%jﬂ Gm =



(016 m — 5im5ﬂ)a?chl G = a(?chi G; — a?ngj G; = gf; G+ gGa F,— gFj Gi+ gi =
ngf;#?jjm ‘;xﬂ Gi - F; ‘;f] (G-V)E+(V-G)F —(V-F)G~(F-V)G],
e Show that
|V (VxF)=0]
V. (VxF)= (,fiisijk(ﬁij E”kaa (;;F

Remember that ¢;;, =

0 0
koA Fr =
€Jk8$ia$j k

e Similarly, show that

2

x (Vf) =

—Ejik and that

Y
* 0z 0z,

8F 0

0
—F, = ——F}. and thus all terms will cancel.
(9%1' 6xj 658] (9337

Vx(Vf)=0

f = 0 according to the same argument as above.




