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Exercise 10: Axisymmetric flow with vorticity and Rankine vortex

The Rankine vortex

A simple model for a vortex is given by the combination of a rigid-body rotation within a core, and a decay
of angular velocity outside. This can be described by

uθ =

ωr, r < a,
ωa2

r
, r > a,

ur = uz = 0

and is called a Rankine vortex.
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Figure 1: Velocity and vorticity in a Rankine vortex with ω = a = 1.

Example 1: Rankine vortex

Consider the Rankine vortex described above.

a) Find the pressure inside and outside of a Rankine vortex

We use the Euler equations for incompressible flow, i.e. neglecting viscous effects.

Euler equations


Dū

Dt
= −1

ρ
∇p+ ḡ

∇ · ū = 0

Dū

Dt
=

∂ū

∂t︸︷︷︸
=0

+(ū · ∇)ū

We are working preferably in cylindrical coordinates, use the formulas given in the lecture notes:

ū · ∇ = ur
∂

∂r
+
uθ
r

∂

∂θ
+ uz

∂

∂z

(ū · ∇)ū =
uθ
r

∂

∂θ
(uθ ēθ) =

uθ
r

∂uθ
∂θ

ēθ +
uθ
r

∂ēθ
∂θ︸︷︷︸

=−ēr

uθ =
uθ
r

∂uθ
∂θ

ēθ −
u2
θ

r
ēr
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∇p =
∂p

∂r
ēr +

1

r

∂p

∂θ
ēθ +

∂p

∂z
ēz

Insert this into the Euler equations:

uθ
r

∂uθ
∂θ︸︷︷︸
=0

ēθ −
u2
θ

r
ēr = −1

ρ

(
∂p

∂r
ēr +

1

r

∂p

∂θ
ēθ +

∂p

∂z
ēz

)
− gēz

Look at the different components:

ēr : −u
2
θ

r
= −1

ρ

∂p

∂r

ēθ : 0 = −1

ρ

1

r

∂p

∂θ
⇒ p = p(r, z) only.

ēz : 0 = −1

ρ

∂p

∂z
− g

Solve for the pressure when r < a:

ēr : −ω2r = −1

ρ

∂p

∂r
⇒ p = ρω2 r

2

2
+ f(z)

ēz :
∂p

∂z
= −ρg ⇒ f(z) = −ρgz + C1

So we obtain for the pressure:

p(r, z) = ρω2 r
2

2
− ρgz + C1 for r < a

Solve for the pressure when r > a:

ēr : −ω
2a4

r3
= −1

ρ

∂p

∂r
⇒ p = −ρω

2a4

2 r2
+ f(z)

ēz :
∂p

∂z
= −ρg ⇒ f(z) = −ρgz + C2

So we obtain for the pressure:

p(r, z) = −ρω
2a4

2 r2
− ρgz + C2 for r > a

Now determine the difference between the constants C1 and C2 by evaluation at r = a:

ρω2a2

2
− ρgz + C1 = −ρω

2a2

2
− ρgz + C2 ⇒ C2 − C1 = ρω2a2

b) Determine the pressure difference ∆p between r = 0 and r →∞

∆p = p∞ − p0 = −ρgz + C2 − (−ρgz + C1) = C2 − C1 = ρω2a2
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c) Calculate the shape of a free surface at atmospheric pressure p0.

Find the difference in z between r = 0 and r →∞{
r = 0 : p0 = −ρgz0 + C1

r →∞ : p0 = −ρgz∞ + C2

⇒ z∞ − z0 =
C2 − C1

ρg
=
ω2a2

g

Determine the shape of the free surface:{
p0 = ρω2r2

2 − ρgz + C1 r < a z ∼ r2 ⇒ z = ω2r2

2g + C1−p0
ρg

p0 = −ρω
2a4

2r2 − ρgz + C2 r > a z ∼ 1
r2 ⇒ z = −ω

2a4

2gr2 + C2−p0
ρg

Set z = 0 at r = 0. Then C1 = p0 and we further get

z =
ω2r2

2g
r < a

and

z = −ω
2a4

2gr2
+
C2 − C1

ρg
= −ω

2a4

2gr2
+
ω2a2

g
=
ω2a2

g

(
1− a2

2r2

)
r > a

So we have

z(r) =


ω2r2

2g r < a

ω2a2

g

(
1− a2

2r2

)
r > a .
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Figure 2: The free surface of a Rankine vortex with ω = a = 1 and g = 9.82.

Example 2

Show that the inviscid vorticity equation
Dω̄

Dt
= (ω̄ · ∇)ū

reduces to the equation
D

Dt

(
ω

r

)
= 0

in the case of axisymmetric flow
ū = ur(r, z, t)ēr + uz(r, z, t)ēz .
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The vorticity in an axisymmetric flow

ω̄ = ∇× ū =

(
∂ur
∂z
− ∂uz

∂r

)
︸ ︷︷ ︸

ω

ēθ = ωēθ

Study the right hand side of the inviscid vorticity equation

(ω̄ · ∇) =
ω

r

∂

∂θ
⇒ (ω̄ · ∇)ū =

ω

r

∂

∂θ

(
ur(r, z, t)ēr + uz(r, z, t)ēz

)
=

ω

r

∂ur
∂θ︸︷︷︸
=0

ēr +
ω

r
ur

∂ēr
∂θ︸︷︷︸
=ēθ

+
ω

r

∂uz
∂θ︸︷︷︸
=0

ēz +
ω

r
uz

∂ēz
∂θ︸︷︷︸
=0

=
ω

r
urēθ

The left hand side of the inviscid vorticity equation gives

Dω̄

Dt
=
∂ω̄

∂t
+ (ū · ∇)ω̄ = {ω̄ = ωēθ} =

(
∂ω

∂t
+

(
ur

∂

∂r
+ uz

∂

∂z

)
ω

)
ēθ

This gives that the inviscid vorticity equation now is

∂ω

∂t
+

(
ur

∂

∂r
+ uz

∂

∂z

)
ω =

ω

r
ur

Multiply by
1

r
∂

∂t

(
ω

r

)
+

1

r

(
ur

∂

∂r
+ uz

∂

∂z

)
ω − ω

r2
ur = 0

Notice that

− ω
r2
ur = ωur

∂

∂r

1

r
and that ωuz

∂

∂z

1

r
= 0

This means we can write

∂

∂t

(
ω

r

)
+

1

r

(
ur

∂

∂r
+ uz

∂

∂z

)
ω + ω

(
ur

∂

∂r
+ uz

∂

∂z

)
1

r
= 0

And thus we have
∂

∂t

(
ω

r

)
+

1

r

(
ur

∂

∂r
+ uz

∂

∂z

)
ω

r
=

D

Dt

(
ω

r

)
= 0

Example 3: Inviscid and Irrotational Vortices

Consider a circular flow with ū = uθ(r)ēθ. Which vortices are inviscid and which vortices are irrotational?

The Navier–Stokes equation for uθ

∂uθ
∂t

= − 1

ρ r

∂p

∂r
+ ν

(
1

r

∂

∂r

(
r
∂uθ
∂r

)
− uθ
r2

)
For inviscid flow we require,

1

r

∂

∂r

(
r
∂uθ
∂r

)
− uθ
r2

= 0

Make the ansatz uθ = rn,

0 =
1

r

∂

∂r
(rnrn−1)− rn−2 =

1

r
n2rn−1 − rn−2 → n2 − 1 = 0 ⇒ n = ±1
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We get the inviscid flow,

uθ(r) = Ar︸︷︷︸
solid body rotation

+
B

r︸︷︷︸
irrotational

The vorticity is,

ω̄ = ∇× ū = {A.32} =
1

r

∂

∂r
(ruθ) ēz

ω̄ = 0 ⇒ ∂

∂r
(ruθ) = 0 ⇒ uθ =

C

r

Conclusion:

Irrotational ⇒ inviscid
Inviscid ; irrotational
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