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Exercise 10: Axisymmetric flow with vorticity and Rankine vortex

The Rankine vortex

A simple model for a vortex is given by the combination of a rigid-body rotation within a core, and a decay
of angular velocity outside. This can be described by
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and is called a Rankine vortex.
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Figure 1. Velocity and vorticity in a Rankine vortex with w =a = 1.

Example 1: Rankine vortex

Consider the Rankine vortex described above.

a) Find the pressure inside and outside of a Rankine vortex

We use the Euler equations for incompressible flow, i.e. neglecting viscous effects.
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We are working preferably in cylindrical coordinates, use the formulas given in the lecture notes:
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Insert this into the Euler equations:
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Look at the different components:
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Solve for the pressure when r < a:
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So we obtain for the pressure:

p(r, z) = prT— —pgz+Cy forr<a
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Solve for the pressure when r > a:
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So we obtain for the pressure:
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p(r,z) = — —pgz+Cy forr>a

Now determine the difference between the constants C; and C5 by evaluation at r = a:
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b) Determine the pressure difference Ap between r =0 and r — oo

Ap = poo — po = —pgz + C2 — (—pgz + C1) = C3 — Cy = pw’a’



c) Calculate the shape of a free surface at atmospheric pressure py.

Find the difference in z between r = 0 and r — o
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Determine the shape of the free surface:

2 2
2 2t g pg

po= -2 —pgz+Cy r>a ZNT%:>,Z:—

2. 2 2.2 _
{pO:Pwr_pgz+C«l r<a zr~rio— y—wr +C1 Po
2gr? pg

Set 2 =0 at r = 0. Then C; = pg and we further get
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Figure 2: The free surface of a Rankine vortex with w =a =1 and g = 9.82.
Example 2
Show that the inviscid vorticity equation
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reduces to the equation
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in the case of axisymmetric flow
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The vorticity in an axisymmetric flow
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Study the right hand side of the inviscid vorticity equation
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The left hand side of the inviscid vorticity equation gives
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This gives that the inviscid vorticity equation now is
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This means we can write

And thus we have
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Example 3: Inviscid and Irrotational Vortices

Consider a circular flow with @ = ug(r)&g. Which vortices are inviscid and which vortices are irrotational?

The Navier-Stokes equation for ug
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For inviscid flow we require,

Make the ansatz ug = r",
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We get the inviscid flow,

The vorticity is,

Conclusion:

Irrotational = inviscid
Inviscid % irrotational



