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Exercise 11: Vorticity, Bernoulli and Stream Function

Example 1: Solid-Body Rotation

Consider the flow in an uniformly rotating bucket with velocity

u = (ωr, 0, 0)

a) Use Bernoulli equation to determine the free surface: What is wrong?

Bernoulli:
p

ρ
+

1

2
|u|2 + gz = C along streamlines

This gives the surface of constant pressure

z =
C − p0

ρg
− ω2r2

2g

The free surface is highest in the center of the bucket, something is wrong. Bernoulli theorem is valid
along a streamline in a steady ideal fluid. If the flow had been irrotational, it would have been valid
everywhere. But now ∇× ū = (0, 0, 2ω).

b) Use Euler equation to determine the free surface:

Du

Dt
= −1

ρ
∇p+ g

this gives

er : −u
2
θ

r
= −1

ρ

∂p

∂r
⇒ ∂p

∂r
= ρω2r ⇒ p =

1

2
ρω2r2 + f(z)

eθ : 0 = − 1

ρr

∂p

∂θ
⇒ ∂p

∂θ
= 0

ez : 0 = −1

ρ

∂p

∂z
− g ⇒ ∂f

∂z
= −ρg ⇒ f = ρgz + p0

Thus

p(r, z) =
1

2
ρω2r2 − ρgz + p0

This gives the free surface where p = p0

z =
ω2r2

2g

Example 2: Flow over a Hill

A hill with the height h has the shape of a half circular cylinder as shown in Figure 1. Far from the hill the
wind U∞ is blowing parallel to the ground in the x-direction and the atmospheric pressure at the ground is
p0.

a) Assume potential flow and show that the stream function in cylindrical coordinates is of the form

ψ = f(r) sin θ,

where f(r) is an arbitrary function. Calculate the velocity field above the hill.
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Figure 1: Streamlines above a hill with h = 100m and U∞ = 5m/s. A paraglider pilot with a sink of 1m/s
will find lift in the area within the dotted line, while soaring along the hill.

The stream function satisfies continuity:

ur =
1

r

∂ψ

∂θ
, uθ = −∂ψ

∂r

The flow is irrotational:

ω = ∇× ū = 0 ⇒ ∂ψ

∂r
+ r

∂2ψ

∂r2
+

1

r

∂2ψ

∂θ2
= 0 (1)

Introduce the ansatz ψ = f(r) sin θ into equation (1):

f ′ sin θ + rf ′′ sin θ − 1

r
f sin θ = 0 ⇒

f ′ + rf ′′ − 1

r
f = 0

Make the ansatz f = rn:

nrn−1 + rn(n− 1)rn−2 − 1

r
rn = 0 ⇒

n+ n2 − n− 1 = 0 ⇒ n = ±1

So we have

ψ =

(
Ar +

B

r

)
sin θ

We need two boundary conditions.
1. Free stream:

Ar sin θ = U∞r sin θ ⇒ A = U∞

2. Streamline on the hill surface:

U∞h+
B

h
= 0 ⇒ B = −U∞h2

So we have:

ψ = U∞

(
r − h2

r

)
sin θ

Now we can calculate the velocity field above the hill:

ur =
1

r

∂ψ

∂θ
= U∞

(
1− h2

r2

)
cos θ

uθ = −∂ψ
∂r

= −U∞
(

1 +
h2

r2

)
sin θ
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b) Derive an equation for the curve with constant vertical wind velocity V .

Constant vertical wind velocity is described by:

V = ur sin θ+uθ cos θ = U∞

(
1− h2

r2

)
cos θ sin θ−U∞

(
1 +

h2

r2

)
sin θ cos θ = −2U∞

h2

r2
sin θ cos θ ⇒

r = h

√
−2

U∞
V

sin θ cos θ

c) Assume that the density ρ and the gravitational acceleration g is constant. Calculate the atmospheric
pressure at the top of the hill.

Use the Bernoulli equation (valid everywhere) with free stream pressure p0 at the ground:

po +
1

2
ρU2
∞ = p+

1

2
ρ(2U∞)2 + ρgh ⇒ p = po −

3

2
ρU2
∞ − ρgh

Stokes stream function

Consider a 2D incompressible flow

∇ · ū = 0 or
∂u

∂x
+
∂v

∂y
= 0.

Define the stream function Ψ such that:

u =
∂Ψ

∂y
v = −∂Ψ

∂x

This means
∂u

∂x
+
∂v

∂y
=

∂2Ψ

∂x∂y
− ∂2Ψ

∂y∂x
= 0,

so continuity is always fulfilled. Now we can write

ū = ∇×Ψēz =

∣∣∣∣∣∣
ēx ēy ēz
∂
∂x

∂
∂y

∂
∂z

0 0 Ψ

∣∣∣∣∣∣ =

(
∂Ψ

∂y
,−∂Ψ

∂x
, 0

)
And

ω̄ = ∇× ū =

∣∣∣∣∣∣
ēx ēy ēz
∂
∂x

∂
∂y

∂
∂z

∂Ψ
∂y −∂Ψ

∂x 0

∣∣∣∣∣∣ =

(
0, 0,− ∂Ψ

∂x2
− ∂2Ψ

∂y2

)
= −∇2Ψēz

For irrotational flow
∆Ψ = ∇2Ψ = 0

In spherical coordinates for axisymmetrical flow, define Ψ

ur =
1

r2 sin θ

∂Ψ

∂θ
uθ = − 1

r sin θ

∂Ψ

∂r

Incompressibility is still valid
∇ · ū = 0

Velocity

ū = ∇× Ψ

r sin θ
ēθ

Vorticity

ω̄ = − 1

r sin θ

[
∂2Ψ

∂r2
+

sin θ

r2

∂

∂θ

(
1

sin θ

∂Ψ

∂θ

)]
Irrotational

∂2Ψ

∂r2
+

sin θ

r2

∂

∂θ

(
1

sin θ

∂Ψ

∂θ

)
= 0
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Example 3: Flow around a Sphere

Consider a sphere with Ψ = 0 at r = a, compute the irrotational velocity distribution when the velocity of
the freestream at infinity is U :

r →∞ Ψ→ 1

2
Ur2 sin2 θ

⇒ ur → U cos θ uθ → −U sin θ .

Make the ansatz:
Ψ = f(r) sin2 θ

For an irrotational flow we get

f ′′ − 2

r2
f = 0 ⇒ f = Ar2 +

B

r

From the boundary conditions at infinity we get

A =
1

2
U

On the surface of the sphere (r = a)

1

2
Ua2 +

B

a
= 0 ⇒ B = −1

2
Ua3

This gives

Ψ =
1

2
U

(
r2 − a3

r

)
sin2 θ

The slip velocity on the sphere is

uθ = −3

2
U sin θ

The radial velocity is of course ur = 0 on the surface.
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