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This paper presents matrix-free methods for the stability analysis and

control design of high-dimensional systems arising from the discretized lin-

earized Navier-Stokes equations. The methods are applied to the two-

dimensional spatially developing Blasius boundary-layer. A critical step

in the process of systematically investigating stability properties and de-

signing feedback controllers is solving very large eigenvalue problems by

storing only velocity fields at different times instead of large matrices. For

stability analysis, where the entire dynamics of perturbations in space and

time is of interest, iterative and adjoint-based optimization techniques are

employed to compute the global eigenmodes and the optimal initial con-

ditions. The latter are the initial conditions yielding the largest possible

energy growth over a finite time interval. The leading global eigenmodes

take the shape of Tollmien-Schlichting wavepackets located far downstream

in streamwise direction, whereas the leading optimal disturbances are tilted

structures located far upstream in the boundary layer. For control design

on the other hand, the input-output behavior of the system is of interest

and the snapshot-method is employed to compute balanced modes that cor-

rectly capture this behavior. The inputs are external disturbances and wall

actuation and the outputs are sensors that extract wall shear stress. A low-

dimensional model that capture the input-output behavior is constructed

by projection onto balanced modes. The reduced-order model is then used
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to design a feedback control strategy such that the growth of disturbances

are damped as they propagate downstream.

I. Introduction

Control of wall-bounded transitional and turbulent flows has been the subject of several

research efforts owing to the high potential benefits. In these fluid-mechanics systems, due

to the large flow sensitivity, dramatic effects on global flow parameters may be achieved

by minute local perturbations using devices sensing and acting on only small parts of the

flow with a small amount of energy. Such control devices can be used to obtain reduction

of the skin-friction drag, for example, implying relevant savings of the operational cost of

commercial aircrafts and cargo ships.

In this paper we perform stability analysis, model reduction and control design for the

Blasius flow. The work is motivated by the need to provide efficient numerical tools to

analyze complex flows and design efficient control strategies. Although we present results

for the Blasius flow the methodology is applicable to any complex flow described by the

direct and adjoint linearized Navier–Stokes equations. The techniques in this paper share a

common methodology: very large eigenvalue problems are solved based only on snapshots

of the velocity fields at different points in time. No large matrices are stored. Therefore the

main tool is a code that time integrates the forward and adjoint linearized Navier-Stokes

equations. This so called timestepper technique has become increasingly popular in both

stability analysis1,2 and for control design.3

It is now well understood that the wall-bounded flows are very sensitive to specific per-

turbations.4 In particular, boundary layer flows support convective instabilities and behave

as noise amplifiers.5 Convectively unstable shear flows are stable from a global point of

view;5,6 wave packets generated locally, grow in amplitude as they travel downstream and fi-

nally decay or leave the observation window. This behavior can be captured by a non-modal

analysis, see e.g. Ref. 7. It is therefore meaninful to analyze the spatial structure of the ini-

tial conditions and forcing yielding largest possible energy growth over a finite time interval.

This optimization problem can be solved efficiently for more complex flows by solving the

direct and adjoint Navier-Stokes equation for the linear evolution of perturbation about a

steady state, as shown here (see also Ref. 2 or Ref. 8). The approach followed here requires

only the use of a timestepper, a numerical code solving the Navier–Stokes equations, and

avoids the use of the large matrices.

Two aspects in flow control have been identified as crucial in order to apply feedback

control in more complex flows and to move towards an implementation in wind-tunnel tests.

They are i) model reduction to significantly decrease the cost of both constructing the con-
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troller and running it online, thus allow the fast computation of the control signal directly

from the sensor output; ii) the need to naturally consider localized sensors and actuators.

Both these aspects are adressed in Bagheri et al.3 In this paper, the results of Ref. 3 are

extended by introducing wall actuation and wall shear stress measurements instead of ideal-

ized volume forcing actuation and velocity measurements inside the flow. The incorporation

of actuators and sensors at the physical boundaries in our design, takes use one step closer

to using the controller in actual experiments.

Model reduction becomes essential in order to apply modern control theorical tools to

fluid flow systems. For modern linear control, the aim is to build a model of low dimension

that captures the input-output behavior of the Navier-Stokes system and use this model

for optimal feedback control design. With the help of the adjoint Navier–Stokes equations

two fundamental dynamical structures can be identified; the flow structures most easily

influenced by the actuators considered and the flow structures to which the outputs are

most sensitive. These so-called controllable and observable structures determine the input-

output behavior completely for linear systems. It is well-known that these two set of modes

can be balanced,10 and represented by one set of non-orthogonal modes, called the balanced

modes. These are used as a projection basis for model reduction. The approximated method

employed to compute the balanced modes is the snapshot-based balanced truncation.11,12

This method has been recently applied to the channel flow ,13 the flow around a pitching

airfoil14 and the Blasius flow.3

Recently, several groups have suggested and pursued the combination of computational

fluid dynamics and control theory, thus going past early attempts of flow control based on

physical intuition or on a trial-and-error basis (see the review in Ref. 15). The reader is also

referred to Bagheri et al.9 for a thourough review of the many tools used in flow control. In

early work from our group,16,17 a linear model-based feedback control approach, that min-

imizes an objective function which measures the perturbation energy, is formulated where

the Orr-Sommerfeld and Squire equations model the flow dynamics. The latter equations

describe the linear evolution of perturbations evolving in a parallel base flow. The control

problem is combined with a state estimator: The so called Kalman and extended Kalman

filter have been implemented in order to reconstruct the flow in an optimal manner by only

considering continuous wall measurements. These studies have also shown the importance of

physically relevant stochastic models for the estimation problem,18,19 where stochastic noise

needs to describe accurately enough the unmodeled dynamics, like uncertainties and nonlin-

earities. Based on these models the estimator is shown to work for both infinitesimal as well

as finite amplitude perturbations in direct numerical simulations of transitional flows.20,21

These studies however assumed a parallel base flow and distributed sensing and actuation

at the wall.
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Figure 1. The input/output configuration used for the control of perturbations in a two-dimensional flat-
plate geometry. The computational domain Ω = (0, Lx) × (0, Ly), shown by the gray region, extends from
x = 0 to x = 1000 with the fringe region starting at x = 800. The first input B1, located at (xw, yw) = (35, 1),
models the initial receptivity phase, where disturbances are induced by free-stream turbulence, acoustic waves
or wall roughness. The actuator, B2, provides a mechanism to manipulate the flow, in this case by a wall
blowing and suction centered at xu = 400. Two sensors C1 and C2, measuring the skin friction at the wall, are
located at xy = 300 and xz = 750 respectively. The upstream measurements are used to estimate the incoming
perturbations, while the downstream sensor quantifies the effect of the control.

The paper is organized as follows: The modal and nonmodal stability analysis is pre-

sented in section II. We start with describing the flow setup and formulating two eigenvalue

problems. We continue with showing how the eigenvalue problems can be solved iteratively

and finally present results for the Blasius flow. Section III deals with the control design. We

introduce inputs, outputs and write the system in the state-space formulation. A brief sum-

mary of the LQG framework is provided before model reduction based on balanced modes

is introduced. The snapshot metod used for model reduction is explained and results on the

performance of the reduced-order and controller are shown. Section IV provides concluding

remarks.

II. Stability Analysis

II.A. Flow Configuration and the Initial Value Problem

We consider the two-dimensional incompressible flow over a flat plate with constant free-

stream velocity U∞ as shown in Figure 1. Starting from the leading edge a viscous boundary

layer evolves downstream. The evolution of the streamwise velocity u, the wall-normal

velocity v and the pressure p in time t and space (x, y) is governed by the incompressible

non-linear Navier–Stokes equation.22 Our analysis deals with the evolution of infinitesimal

perturbations on this laminar boundary layer solution and is limited to the computational

domain shown by the gray area in the figure: The inflow boundary is set to the downstream

position corresponding to a Reynolds number Reδ∗
0

= U∞δ∗0/ν = 1000, where δ∗0 is the local

displacement thickness of the boundary layer and ν is the kinematic viscosity. Throughout

the paper all variables are non-dimensionalized by U∞ and δ∗0. The length and height of the

domain are Lx = 1000 and Ly = 30 in the streamwise direction x and wall-normal direction
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y, respectively.

The steady state, about which a linearization is performed, is obtained by marching

the nonlinear governing equations in time. The linearized Navier-Stokes equations with

boundary conditions can be cast (see e.g.3,23,24) as an initial-value problem in state-space

form

u̇ = Au (1)

u = u0 at t = 0. (2)

with u = (u, v)T . However, in general, it is not always possible to have an explicit form for

the operator A, and , if possible, once it is discretized it will have very large dimension, i.e.

the number of grid points times the number of velocity components n = 2NxNy. Our analysis

will therefore be entirely based on the solution of the linearized Navier–Stokes equations that

can be represented by an evolution operator

u(x, t) = T (t)u(x, 0) = eAtu0. (3)

The evaluation of the matrix exponential T (t) = eAt is the key to both stability analysis,

input-output analysis and control design, all of which will be discussed in the subsequent

sections. However, this operator also poses the greatest computational challenge due its

dimension. The dimension, n, of the linearized operator depends on the number of non-

homogeneous spatial directions of the base flow. Except for one-dimensional base flows the

exponential matrix must be approximated. The simplest methods require that all elements

of the matrix can be stored in memory,25 a requirement that cannot in general be met in

fluid systems. As an example, the storage of the one dimensional Orr-Sommerfeld matrix

for the evolution of disturbances in parallel flows requires approximately 1MB of memory,

the system matrix for the present spatially inhomogeneous flow with the numerical scheme

introduced above requires approximately 200GB, while the memory usage for a full three-

dimensional system would be of the order of 200TB. However, the action of T (t) on any

flow field simply represents integrating the Navier-Stokes equations in time and therefore the

exponential matrix can be approximated by numerical simulation of the governing equations,

also referred to as a time-stepper. In what follows the reader should equate T (t)u(s) with a

DNS simulation starting with an initial condition u(x, s) and providing u(x, t+ s) at a later

time. In this so called “timestepper approach”, system matrices are never stored and storage

demands in memory are of the same order as a small number of flow fields. Numerically,

the equations are solved with the pseudo-spectral Direct Numerical Simulation (DNS) code

described in Ref. 26, where the spatial operators are approximated by Fourier expansion in

the streamwise direction with Nx = 768 equally distributed points and Chebyshev expansion
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Figure 2. (a) Eigenvalues of A as computed by the shift and invert Arnoldi method (shown as black stars) and
eigenvalues computed by time-stepping using the evolution operator T (tf ) (shown as magenta circles). The
slightly damped eigenvalues, corresponding to Tollmien-Schlichting (TS) modes, and the freestream propagat-
ing modes are found by both methods. (b) Streamwise velocity component of the least stable TS eigenvectors,
marked k1 in (a). (c) Streamwise velocity component of a high frequency but more damped TS mode, marked
k2 in (a).

in the wall-normal direction on Ny = 101 Gauss-Lobatto collocation points. A fringe region

enforces periodicity in the streamwise direction.26

II.B. Modal Stability

The first step in the understanding of the fluid problem at hand is examining the hydrody-

namic stability of the flow, i.e. the behavior of infinitesimal disturbances to a base flow. In

particular, modal stability deals with the response behavior of the baseflow to disturbances

as time tends to infinity. This asymptotic response is governed by the eigenmodes of the

evolution operator

σjφj = T (tf )φj, |σ1| > |σ2| > . . . (4)

for a fixed time tf large enough. The stability of disturbances as tf → ∞ is determined

by the eigenvalue with the largest magnitude. If |σ1| > 1, the system is linearly globally

unstable. Note that the evolution operator T has the same eigenfunctions as A and the

eigenvalues λj of A can be related to those of T through λj = ln(σj)/tf .

II.C. Nonmodal stability

The amount of information obtained from (4) is limited to the asymptotic flow response and

does not reveal the short time behavior of disturbances inherent to many flow systems. Rele-

vant transient growth4 of perturbations is indeed observed for many fluid dynamical systems

due to the non-normality of the operator A (an operator which does not commute with its

adjoint) and nonmodal analysis is concerned with finding instabilities that are amplified in
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Figure 3. (a) Eigenvalues of T ∗T computed using the forward and adjoint timestepper with tm = 1800. (b)
Streamwise velocity component of the optimal disturbance corresponding the largest eigenvalue in (a). (c)
Streamwise velocity component of a suboptimal, corresponding to the third largest eigenvalue in (a).

a finite time interval. Furthermore, a competition between nonmodal and modal growth is

observed in many systems, for example for three-dimensional perturbations in the Blaisus

boundary layer.27 For such flows, different transition scenarios can be observed depending

on the external ambient noise. Therefore, in order to examine the largest possible distur-

bance growth due to all possible unit-norm initial conditions u0 we will consider the energy

associated to the disturbance at any time tm

‖u(tm)‖2 = (T (tm)u0, T (tm)u0) = (u0, T
∗(tm)T (tm)u0). (5)

In the expression above the perturbation kinetic energy is the relevant norm (E = (u,u)) and

the adjoint evolution operator T ∗(tm) is introduced. Applying this operator corresponds to

the integration of an adjoint state from time tm to time 0. One can show3 that an initial-value

problem for the adjoint linearized Navier-Stokes equations governed by A∗ but with negative

time derivative can be associated to the adjoint evolution operator T ∗. For a derivation of

the adjoint operators in general we refer to Ref. 28 and for this particular setup to Ref. 3.

Initial conditions experiencing the largest nonmodal growth correspond to the leading

eigenvalues of the operator T ∗(tm)T (tm), i.e.

σjφj = T ∗(tm)T (tm)φj, σ1 > σ2 > · · · > 0. (6)

In particular, the first unit-norm eigenvector φ1 is the optimal initial condition, resulting

in the largest energy growth at time tm. If its corresponding eigenvalue is larger than one,

σ1 > 1, the system can support nonmodal growth. The corresponding flow state at time tm

can be found by the evaluation of T (tm)φ1. In order to obtain a full map of the potential

for transient growth the computations are repeated for different times tm. Note that when
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the system is discretized, we are again faced with a very large eigenvalue problem.

II.D. Iterative Timestepping technique

The eigenvalue problems defined in (4) and (6) provide information about the modal and non-

modal flow behavior of the system, respectively. The dimension of the matrices obtained by

discretizing the operators appearing in (4) and (6) is too large to be solved by direct methods,

such as the standard QR method. Therefore one has to resort to iterative methods, such as

the Arnoldi,29 which is based on the projection of the large matrix onto a lower-dimensional

subspace. This results in a significantly smaller system that can be solved with direct

methods. In addition, as mentioned above, in many cases only instantenouos velocity fields

at different times are available. A particular subspace is the Krylov K spanned by snapshots

taken from flow fields separated by a constant time interval ∆t,

K = span{u0,F(∆t)u0,F(2∆t)u0, . . . ,F((m− 1)∆t)u0} (7)

with F(t) = T (t) (modal stability) or F(t) = T ∗(t)T (t) (nonmodal stability) and u0 is the

initial guess that should contain nonzero components of the eigenmodes. By orthonormal-

izing K with an m-step Arnoldi factorization we obtain a unitary basis V on the which F

can projected on; F(∆t) ≈ V HV T . This leads to small eigenvalue problem of the form

HS = ΣS which can easily be solved to recover the eigenmodes by Φ = V S. In the case

of global eigenmodes the eigenvalues of the system operator A are given by Λ = ln(Σ)/∆t.

II.E. Results

Results on modal and non-modal stability of the two-dimensional perturbations of the Bla-

sius boundary layer are presented in this section. As mentioned above, the flow under

investigation here is locally unstable but globally stable. Locally unstable perturbations, the

Tollmien-Schlichting waves, grow while travelling downstream eventually leaving our control

domain. From a global point of view the flow is then stable since disturbances have to be

continuously fed upstream to avoid that the flow returns to its undisturbed state at each

streamwise position. However, a significant transient growth of the disturbance energy in

the domain is associated to the propagation of the unstable wave-packet.30,31 This is also

referred to as streamwise non-normality.6,32

II.E.1. Modal stability

For two-dimensional perturbations of the Blasius boundary layer flow the memory require-

ments are still small enough to enable the storage of the system matrix A, the discretized
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Figure 4. (a) Energy growth when optimizing for different times. The maximum is achieved for time tm = 1800
for which the maximum energy is E = 2.35 · 104. (b) Thin black line repeats the energy evolution leading to
the maximum growth at tm = 1800, whereas thick magenta line shows the energy evolution obtained when
projecting the system onto a small number of eigenvectors related to the TS branch in Figure 2(a). The latter
clearly does not account for the initial gain due to the Orr mechanism, but by rescaling and shifting in time
the two curves collapse, showing that the long time evolution is governed by propagating TS waves.

operator A, in memory; the leading eigenmodes from the matrix eigenvalue problem λjφj =

Aφj can thus be obtained by means of the shift and invert Arnoldi procedure. Figure 2(a)

shows the eigenvalues obtained by the shift and invert matrix method as black stars. In

the spectrum, one can identify several branches which all can be related to corresponding

modes in the spectrum of a parallel Blasius boundary layer, as found by solving the Orr-

Sommerfeld equations, though modified by non-parallelism and boundary conditions.31 The

upper branch can be identified as pure Tollmien-Schlichting (TS) waves. These modes are

characterized by slightly damped eigenvalues with the corresponding eigenvectors obtaining

their maximum values inside the boundary layer while decaying exponentially in the free

stream. More stable modes can be associated to modes of the continuous spectrum, that is

modes oscillating in the free stream and decaying inside the boundary layer.

Figure 2(b) and figure 2(c) show two examples of TS eigenvectors associated with eigen-

values marked k1 and k2 in Figure 2(a). As a consequence of the convective nature of the

instabilities arising in the Blasius flow where disturbances grow in amplitude as they are con-

vected in the downstream direction, the global eigenmodes are located far downstream where

the flow energy is the largest. The streamwise wavelength of the eigenvectors increases as we

go towards lower frequencies. The wall normal structure of these modes are very similar to

those obtained by local temporal analysis in the framework of the Orr–Sommerfeld equation.

The amplitude of the waves is exponentially increasing downstream: this, together with the

temporal decay rate given by the eigenvalue, accounts for the spatial behavior of the mode.

The matrix-free method based on the timestepper introduced in section II.D successfully

locates the least damped eigenvalues by solving the eigenvalue problem (4). The eigenvalues

are shown as magenta circles in figure 2(a), and are in perfect agreement with the results
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obtained by the matrix method.

It is noteworthy that all the eigenvalues are damped, indicating that we will never observe

the evolution of single eigenmodes in the flow, but rather we should focus our attention on the

non-modal behavior, in other words the transient growth scenario. Note that it is possible to

project the system (5) on a set of eigenmodes obtained from (4), thereby approximating the

flow dynamics by a low-dimensional model living in the space spanned by a finite number of

eigendirections.4 For globally unstable flows, only one or few eigenmodes may be sufficient

to capture the physical mechanism of the instability, see e.g. the shallow rounded cavity

flow in Ref. 33, where an oscillating cycle could be captured by the sum of two unstable

eigenmodes. However for a boundary layer flow like that studied here, it is shown in Ref.

31 that O(1000) eigenmodes are needed to capture the full instability mechanism. With the

present discretization and boundary conditions, moreover, the sum of the 1500 eigenmodes

obtained from the Arnoldi method is not able to correctly describe the Orr mechanism4,31,34

as obtained by the optimization via the time-stepper defined in (6). This is most likely due to

the presence of eigenmodes related to the fringe region among the least damped eigenmodes.

This points to the limitations of using eigenvalues as a general tool to study stability of

complex systems characterized by strong non-normality.

II.E.2. Nonmodal stability

Figure 3 shows the spectrum and two eigenfunctions of the eigenvalue problem (6) computed

using the timestepper with tm = 1800. Since T ∗T is a self-adjoint positive- definite operator,

its eigenvalues are real and positive. Moreover, the eigenvalues shown in figure 3a come in

pairs. The corresponding velocity fields have the same wavepacket structure 90 degrees out

of phase, representing traveling structures. The most unstable mode, i.e. the optimal dis-

turbance and a suboptimal mode are shown in figure 3(b). They both have a spatial support

far upstream, where the sensitivity of the flow is the largest. The modes are tilted in the

upstream direction, “leaning” against the shear layer. As noticed by Ref. 35, the upstream

tilting of the optimal initial conditions can be attributed to the wall-normal non-normality

of the governing operator; perturbations extract energy from the mean shear by transporting

momentum down the the mean velocity gradient (the so-called Orr mechanism). It is also

noteworthy to remark on the separation of the spatial support of the optimal disturbance

modes shown in figure 3(b)(far upstream) and global eigenmodes shown in figure 4(far down-

stream). This separation is associated to streamwise non-normality of the system.6 Finally,

note that there is nearly one order of magnitude between the energy of first pair and second

pair of modes shown in figure 3(a). As a consequence, one can expect the inherent selection

of disturbances in a randomly forced flow that resembles the flow response obtained when

using the optimal disturbance as initial condition.
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Figure 5. Time evolution for streamwise velocity with the combined Orr and TS mechanism, when initiated
with the optimal initial condition from tm = 1800. Note that the maximum amplitude is growing from frame
to frame following the energy evolution given in Figure 4(b).

The energy evolution when solving for the largest eigenvalues of (6) at times t = {100, 200, . . . , 2000}

is reported in figure 4(a). When optimizing for short times the optimal initial condition con-

sists of upstream tilted structures that exploit the Orr mechanism only31 to extract energy

from the flow. Increasing the optimization time, the upstream-tilted structures move up-

stream, towards the start of our computational domain, weighting the possibility of growth

due to the local Orr mechanism with the energy gain associated to the amplification and

propagation of TS waves. The maximum energy growth in this box is obtained for final time

tm = 1800. The corresponding optimal initial condition is shown in the top frame in Figure

5. In figure 4(b) we compare the energy evolution due to this optimal initial condition with

the energy evolution obtained when projecting (6) onto the space spanned by a small number

of modes, all part of the TS branch in Figure 2. The evolution in the reduced system clearly

does not capture the initial energy gain due to the Orr mechanism; however by rescaling the

energy curve and shifting it in time to account for the initial gain due to the Orr mechanism,

the subsequent evolution (amplification and propagation of the TS waves) is almost perfectly

matching that of the full system. This results indicates that when computing optimal per-

turbations in the space spanned by some of the system eigenvalues care has to be taken in

checking the general validity of the results.

The detailed evolution of the streamwise velocity due to the optimal initial condition at

time t = 1800 is shown in Figure 5. At the initial time the structures are leaning backwards

against the shear. During the initial phase of the development the disturbance is raised
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up, gaining energy through the Orr mechanism4,34 and forming a wavepacket consisting of

TS-waves. The wavepacket then propagates downstream, grows in size and finally leaves the

computational domain; the energy evolution for this flow is reported in figure 4(b).

Modes EVP Snapshots Method

Global modes T φ = σφ T (j∆t)u0 Arnoldi

Optimal disturbances T ∗T φ = σφ T ∗(j∆t)T (j∆t)u0 Arnoldi

Balanced modes PQφ = σφ CT ∗(j∆t)T (j∆t)B Snapshot
Table 1. ss

III. Control Design

III.A. Introducing Inputs and Outputs

The next step after the analysis of the internal dynamics of our linear system is to manipulate

it or to control it. In particular, our objective is to minimize the perturbation energy resulting

from the growth of instabilities during the transition process in order to suppress or delay

turbulence. To this end, we introduce actuators and sensors, or the inputs B1w,uwϕ and

outputs C1, C2 into our system;

u̇ = Au + B1w,

u(x, 0, t) = uwϕ(t) = (0, vw(x))Tϕ(t),

z(t) = C1u

y(t) = C2u.

(8)

where the wall actuation is a blowing and suction with function vw(x)ϕ on the wall normal

velocity with streamwise shape given by (36). The linearized Navier-Stokes equations rep-

resented by A is now forced with external disturbances represented by the term B1(x)w(t)

on the right-hand side of equation (8a). External disturbances enter the boundary layer up-

stream through some receptivity mechanism such as freestream turbulence or acoustic waves

interacting with roughness as shown schematically in figure 1. In practice, the entire spatio-

temporal evolution of disturbances is not available and it is therefore necessary to monitor

the disturbance behavior through measurements. To accomplish this task, two sensors, C1

and C2 are introduced that measure the shear stress at the wall. The partial information of

the incoming perturbations provided from the first sensor measurements (C1 in figure 1) is

used to reconstruct the actual flow dynamics by using a Kalman filter. Based on this flow es-

timation we can alter the behavior of disturbances by injecting fluid through blowing/suction

holes in the wall. This type of actuation corresponds to imposing an inhomogeneous bound-
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ary condition uw at the wall y = 0 as given in equation (8b). Measurements provided by the

second sensor C2 located far downstream is used to determine whether our controller have

been successful in reducing the shear stress at the wall. It thus plays the role of an objective

function.

III.B. The lifting procedure and state space formulation

Unfortunately, the formulation (8) based on wall actuation does not fit into the standard

state-space formulation used in systems and control theory. Therefore, the boundary term

uw(x)ϕ(t) = (0, vw(x))Tϕ is lifted into a volume forcing.36 In the same manner as Ref. 37,

we the solution u is split into a homogeneous part uh and a particular part up, so that

u = uh + up. The particular solution fulfils the boundary conditions

u̇p = Aup

up(x, 0, t) = (0, vw(x))Tϕ(t),
(9)

and the homogeneous part satisfies homogeneous boundary conditions. In principle we can

seek any solution up of the above system, but one suitable choice is to use the steady steady

state Aup = 0. This is obtained by marching the DNS in time subject to steady (ϕ = 1) wall

blowing vw(x) until a stationary state u̇p = 0 is obtained. In the following we denote this

solution Z(x). The inhomogeneous boundary condition is satisfied by this solution, enabling

us to write the particular solution for all times as up = Zϕ, implying that the total field is

given by u = uh +Zϕ(t). Again expressing the equation for u in terms of the homogeneous

and particular solution we get

u̇h = Auh + AZϕ−Zϕ̇ = Auh + B2ϕ̇. (10)

Here we have used that AZ = 0. Further we have defined the input operator B2 = −Z

for the homogeneous system. The evolution of state and ϕ can be written as an augmented

system for û = (uh, ϕ)T as

˙̂u = Âû + B̂2φ, with Â =





A 0

0 0



 , B̂2 =





B2

1



 , φ = ϕ̇. (11)

Note that in the lifted system (11) the control signal is given by time derivative of the

boundary control signal, φ = ϕ̇. Similarly the input operator B1 is extended to B̂1 = (B1, 0)T

and the outputs are augmented to Ĉ1 = (C1, C1Z) and Ĉ2 = (C2, C2Z).

The system (8) with inhomogeneous boundary condition can now be written in the stan-
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dard state-space form

u̇ = Au + Bf , (12)

y = Cu + Df , (13)

where we have have dropped the superscript .̂ Furthermore, B = (B1, 0,B2) contains the two

input operators, C = (C1, C2) the two output operators, f = (w, g, φ) inputs time signals and

y = (y, z) the output time signals. We have introduced the additional feed-through term D

to model the effects of measurements noise (g) and to penalize the actuation effort φ,

D =





0 0 l

0 α 0



 . (14)

The outputs are now directly forced by in the inputs. The first output, or the objective

function, can be written as z(t) = C1u + lφ which results in the objective functionala

‖z‖2 =

∫ ∞

0

(

‖C1u‖+ l2φ2
)

dt, (15)

For large values of the scalar l the control effort is considered to be expensive, whereas small

values indicate cheap control. The second output y(t) = C2u + αg is forced with noise g to

model the uncertainty that may exists in the measurements under realistic conditions. It

can be considered as a third forcing, but rather than forcing the Navier–Stokes equations it

forces the measurements. Large values of the scalar α indicate high level of noise corruption

in the output signal, whereas for low values of α the measurement y reflects information

about the flow field with high fidelity.

III.C. The LQG/H2 Problem

The LQG/H2 framework provides a controller that minimizes the cost functional (15). It

is appropriate if the system operator A accurately describes the flow dynamics, whereas

a precise knowledge of external disturbances and the degree of noise contamination of the

measurements are not available. We refer to Refs. 9, 39, 40 for further details on the H2

control algorithm, as we will only outline the main steps here. The method can be extended

(the so called H∞ method) in order to guarantee certain robustness properties. The control

problem from an input-output viewpoint, or the H2 problem, can be formulated as follows:

Find an optimal control signal φ(t) based on the measurements y(t) such that the in the

aWe assume that the cross weighting between the state and control signal is zero38
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presence of external disturbances w(t) and measurement noise g(t) the output z(t) is mini-

mized.

The determination of the control signal φ is based only on the measurements from the

sensor C2. However, for linear systems — due to the separation principle40 — the feedback

control law can be determined assuming that the complete velocity field is known. The

forcing needed to reproduce the flow only from wall measurements can be computed inde-

pendently. Hence, the design of the H2-controller is performed by solving two quadratic

matrix equations called Riccati equations38 that are independent of each other. They have

the form

(AY + YA∗ − YC∗
2C2Y + B2B

∗
2)u = 0 (16)

(A∗X + XA− XB∗
1B1X + C2C

∗
2)u = 0. (17)

Solving the first Riccati equation we obtain the feedback type of control signal φ = l−2B∗
2Yu =

Ku. The second Riccati equation provides the estimation feedback gain L = −α−2XC∗
2 so

that the observer ˙̂u = (A + LC2)û + Ly can estimate the state û from the wall stress

measurements. Finally, the compensator is obtained by the combination of these two as

˙̂u = (A + B2K + LC2)û− Ly,

φ = Kû. (18)

This compensator runs online next to the experiments. Based on wall shear stress measure-

ments y extracted by the first sensor, it provides an optimal control signal φ proportional to

the estimated flow û.

Any adequately accurate spatial discretization of the Navier-Stokes equations linearized

about two or three dimensional baseflows results in a system with at least n ≥ 105 degrees

of freedom. Due to the high dimensional state-space we can in general not solve the Riccati

equations. Moreover, it would be very expensive to run the compensator online, since it

has the same dimension as the full system. Therefore, to be able to apply modern control

theoretical tools, it is important to construct a much smaller model of the Navier-Stokes

system.

III.D. The Model Reduction Problem and Balanced Truncation

The main features of the flow behavior which are relevant to preserve in the reduced order

model is the input-output (I/O) behavior of the system, i.e. the relation between distur-

bances, wall actuation and the sensor outputs. Rather than investigating entire dynamics of
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H = LoLc

Outputs
(y)

Inputs
(f)

State
(u0)

Figure 6. The operators used to examine the system input-output behavior. The controllability operator Lc

relates past inputs to the present state, while the observability mapping Lo relates the present state to the
future outputs. Their combined action is expressed by the Hankel operator H.

flow fields at different times, the I/O behavior considers the time signals, f(t) and y(t). For-

tunately, the I/O behavior has significantly simpler dynamics compared to stability analysis

where the entire flow dynamics is under investigation.

The model reduction problem for the preservation of input-output dynamics can be posed

as following: Find the state-space system of order r ( n,

κ̇ = Aκ+ Bf ,

ŷ = Cκ+ Df . (19)

so that for any input f the difference between the output of the original and of the reduced

system is small, i.e.

sup
f

‖y − ŷ‖

‖f‖
= ‖G−Gr‖∞ ≤ εr (20)

with εr ( 1. Equivalently, the model reduction error can be written in terms of the transfer

functions associated Gr = C(sI − A)−1B and G = C(sI − A)−1B in the frequency domain

s ∈ C instead of the time-domain.

One way to compute the reduced-order model (19) with a nearly minimal model reduction

error (20) is called balanced truncation.10 The method can be introduced in many different

ways. In this section we will outline the method in manner that is reminiscent of the

optimization problems that arise in the stability analysis. The presentation follows closely

Bagheri et al.,3 where also the definitions appropriate Hilbert spaces and adjoint operators

are defined. Whereas, in stability analysis we were concerned with the properties of the

evolution operator T (t), here our focus will lie on the so called Hankel operator41 that maps

input signals to output signals. In particular, it is defined as the mapping from past inputs

f(t) : t ∈ (−∞, 0] to future outputs y(t) : t ∈ [0,∞),

y(t) = Hf(t) = C

∫ 0

−∞

T (t− τ)Bf(τ) dτ. (21)

16 of 28



The amplification of the output signal at time t is given by

‖y(t)‖2 = (Hf ,Hf) = (f ,H∗Hf). (22)

In particular, the unit-norm input signals that result in the largest output response are the

eigenmodes of H∗H, i.e.

H∗Hf j = σ2
j f j, σ1 > σ2 > . . . (23)

where the square root of the eigenvalues σ2
j are called the Hankel singular values (HSV). If

σ1 > 1, then the unit-norm input signal f 1 active in the past t ∈ (−∞, 0] will generate an

amplified output signal in the future t ∈ [0,∞).

Upper and lower bounds of the model reduction error for balanced reduced-order model

of order r is given by the HSV as

σr+1 < ‖G−Gr‖∞ ≤ 2
n

∑

j=r+1

σj. (24)

To obtain the balanced reduced-order model (19) and its associated transfer function Gr

we project Navier-Stokes equations including inputs and outputs onto a set of bi-orthogonal

modes, referred to as the balanced modes. These modes can be derived by decomposing the

Hankel operator into H = LoLc (shown schematically in Figure 6) which is possible since

the operator (21) characterizes the I/O behavior via a reference state u0. In one part, the

controllability operator Lc, generates the reference state from past input signals, i.e.

u0 =

∫ 0

−∞

T (−τ)Bf(τ) dτ = Lcf(t). (25)

The range of Lc, i.e. the restriction of the state-space to all possible initial states that

we are able to reach with f(t) is called the controllable subspace. In particular the initial

conditions that require the smallest input effort to reach are called controllable states and

are the leading eigenmodes of the controllability Gramian

P = LcL
∗
c =

∫ ∞

0

T (τ)BB∗T ∗(τ) dτ. (26)

The other part of the Hankel operator is the observability operator Lo operator which gen-

erates future outputs from the reference state,

y(t) = CT (t)u0 = Lou0. (27)
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Figure 7. (1) Hankel Singular values. The streamwise velocity component of first and third direct (b,d) φi

and adjoint (c,e) balanced modes.

If Lou0 = 0 for an initial condition u0, then u0 is unobservable, since it cannot be detected by

the sensors. The observable states on the other hand are initial conditions that are respon-

sible for the largest output signals. These states the leading eigenmodes of the observability

Gramian,

Q = L∗
oLo =

∫ ∞

0

T ∗(τ)C∗CT (τ) dτ. (28)

Using the mapping Lc and Lo we can now obtain the balanced modes {φj}
m
j=1 by mapping

the most dangerous inputs signals f j, i.e. right eigenvectors of H∗H onto the state-space;

φj = Lcf j. A set of modes that are bi-orthogonal to φj ((φi,ψj) = δi,j) can be found

from ψj = L∗
ogj, where gj are the left eigenvectors of the Hankel operator (see Ref. 3

for further details). The projection of the full Navier-Stokes equations on the balanced

modes; Ai,j = (ψj,Aφi),B1 = (ψi,B1) and C1 = C1φi results in the balanced reducer-order

model (19).

Traditionally, the balanced modes are defined as the eigenvectors of the product of the

controllability and observability Gramian. This formulation is easily obtained by noting that

LcH
∗Hfj = LcL

∗
cL

∗
oLoLcfj = σ2

jLcfj (29)

resulting in the following eigenvalue problem for the balanced modes

PQφj = σ2
j φj. (30)

Similar to the modal and nonmodal analysis we end up with a very large eigenvalue problem

when the state-space system is discretized.
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III.E. The Snapshot Method

In this section a brief summary of the snapshot method42 for solving the eigenvalue prob-

lem (30) is presented. It is based on the recognition that the controllability and observability

Gramians are the state correlation matrices generated from the impulse response of the for-

ward and adjoint states respectively. The method for the computation of the balanced modes

based on snapshots was introduced by Ref. 11 where it is also described in more detail.

The method has similarities to the Krylov-method presented earlier to compute global

eigenmodes and optimal disturbances. This time, we will build two Krylov subspaces but

avoid iterative techniques by exploiting the fact that the input and output spaces are much

smaller than the state-space. In our case we have two inputs and two outputs (i.e. r = p = 2)

whereas the dimension of the state-space is approximately n = 105. The controllability and

observability subspaces are, respectively,

X = span{B, T (∆t)B, T (2∆t)B, . . . , T ((m− 1)∆t)B} (31)

Y = span{C∗, T ∗(∆t)C∗, T ∗(2∆t)C∗, . . . , T ∗((m− 1)∆t)C∗}. (32)

Each element of X contains snapshots from DNS simulations of the impulsive response of

each input Bi. Similarly, each element of Y contains snapshots from adjoint DNS simulations

of the impulse response of each output Ci.

In a discretized setting, X is a n×(rm) matrix and Y a n×(pm) matrix. The Gramians

can be approximated with P ≈ XXT∆t and Q ≈ Y Y T∆t. Thus the eigenvalue prob-

lem (29) can then be approximated as

PQφj ≈ (∆t)2XXHY Y Hφj = σ2φj. (33)

This eigenvalue problem is of size n×n and prohibitively expensive to solve for Navier-Stokes

system. One can again resort to Arnoldi method and iterative techniques to solve the above

eigenvalue problem as suggested in Ref. 12. However, this can be avoided by expanding the

sought-after balanced modes in snapshots, i.e. φj = XHj. The column vector Hj contains

the expansion coefficients. This leads to small eigenvalue problem of size pm× rm for H ,

(XY Y HX)Hj = σ2
j Hj. (34)

Usually the number of snapshots m times the number inputs (r) or outputs (p) is significantly

smaller than the number of states n, which makes this method computationally tractable

for systems of very large dimensions.
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III.F. Results

III.F.1. Performance of Reduced-Order Model

Figure 7 shows the spectrum and two eigenfunctions obtained by solving the eigenvalue

problem (30) using the snapshot method. The first and third balanced modes and their

associated adjoint modes compute are shown in figure 7(b). The singular values come in pairs

(2n − 1, n), resolving the n-th harmonics.3,13,14 Therefore the second and fourth balanced

mode looks like first and third mode respectively, but shifted in the streamwise direction.

We observe that the leading balanced modes (figure 7a and c) appear as wavepackets located

at the downstream end of the domain, whereas the adjoint balanced modes (figure 7b and

d) are upstream tilted structures located at the upstream end of the domain. The adjoint

modes are similar to the linear optimal disturbances shown in figure 5a and the balanced

modes are similar to global eigenmodes shown in figure 2b. The adjoint balanced modes

thus account for the output sensitivity and the direct balanced modes for the most energetic

structures.

The projection of the full Navier-Stokes equations on the balanced modes; Ai,j = (ψj,Aφi),B1 =

(ψi,B1) and C1 = C1φi results in the reducer-order model (19). The model reduction er-

ror (20) is shown in figure 8(a) together with the theoretical bounds given by the Hankel

singular values in (24). The infinity norm of the transfer function equals the peak value of

the frequency response. Estimating the model reduction error amounts to the calculation

of the difference of the peak values of the reduced-order and the Navier–Stokes system. We

observe the error norm remains approximately withing the bounds given by the Hankel sin-

gular values for the first 50 modes. Higher modes become increasingly ill-conditioned and

as a consequence the numerical round-off errors increase, the bi-orthogonality condition is

gradually lost and the reduced system is no longer balanced. However, the singular values

shown figure 7 decrease rapidly, indicating that the I/O behavior of the chosen setup can be

captured by a low-dimensional model.

To investigate this, the amplitudes of the transfer functions with s = iω, i.e. the frequency

response, are displayed in figure 8(b) for reduced-order models of order r = 2, 40 and 70 and

for the full DNS model of order 105. All frequencies in the interval [0, 0.13] are amplified

and the most dangerous frequency, i.e. the peak response of the full model is approximately

ω = 0.051. From figure 8(b) we observe that the reduced-order model of order 2 captures

the most important aspect of the input-output behavior, which is the response of the most

dangerous frequency. The model with 40 modes is able to estimate the gains of all the

amplified frequencies, but fails to capture the damped low and high frequencies. Adding 30

additional modes results in a model that preserves the input-output behavior correctly for

nearly all frequencies.
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Finally, the impulse responses from all inputs to all outputs of the reduced-order model (19)

are compared to the full Navier–Stokes system (12). In figure (9) three signals B1 → C1,

B1 → C2 and B2 → C1 are shown with black lines. The response of C2 to forcing in B2 is zero,

since disturbances traveling upstream are quickly damped. These impulse responses were

obtained by using the time-stepper with ∼ 105 degrees of freedom. The impulse responses of

the reduced-order model (19) with r = 70 given by y(t) = CeAtB are shown with red dashed

lines. We observe that reduced-model registers the same signal as the full model from all

inputs to all outputs. The wavepacket triggered by the impulse of B1 reaches the first sensor

C2 after 600 time units and the second sensor C1 after 1500 time units. The wavepacket

triggered from the actuator B2 reaches the second sensor after 600 time units.

III.F.2. Performance of Controller

In this section a reduced-order feedback controller, with the same dimension as the reduced-

order model (r = 70) of the previous section, is developed. The closed-loop behavior of the

system and the objective function will be investigated and compared to the uncontrolled

case for the flat-plate boundary layer flow. In particular, the output z of the closed-loop,

i.e. the compensator (18) connected to the full Navier–Stokes model (8)) is compared to the

linearized Navier–Stokes equations without control when the system is forced with stochastic

excitation or initiated with an optimal disturbance.

Three controllers are investigated; (i) cheap control/low noise contamination with control

penalty l = 1 and noise parameter α = 102, (ii) expensive control/high noise contamination

with l = 102 and α = 107 and (iii) an intermediate case with l = 10 and α = 105.
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Figure 9. The impulse response from B1 → C2 (a), B2 → C1 (b) and B1 → C1 (c). The black solid line represents
direct numerical simulations with 105 degrees of freedom and the red dashed line the balanced reduced-model
with 50 degrees of freedom.

The performance of the cheap controller in case (i) for the control of the optimal initial

condition discussed in Section II is examined first. This is interesting because the controller

is not designed specifically for this configuration and it only has a limited window in time

to counteract the disturbances that are propagating through the domain in the form of a

localized wavepacket. In figure 10(a) the full domain kinetic energy as a function of time

is shown as a solid black line for the uncontrolled evolution and as a dashed line for the

controlled case. The effect of the controller is evident. The measurement signal detected

by the sensor C2 is shown in figure 10(b) revealing that the sensor picks up the front of

the wavepacket arriving at t ≈ 350. A time lag of ≈ 300 consistent with the speed of

the propagating wavepacket (0.3U∞) is observed until the controller starts acting on the

information (see figure 10(c)). The downstream measurement, i.e. the objective function to

be minimized, is shown in figure 10(d) as a black solid line for the uncontrolled case and as

a dashed black line for the controlled case. It can be seen that also this measure shows a

satisfactory performance of the controller.

The three different controllers are tested on a flow case which is forced by the upstream

disturbance input B1 with a random time signal. The wall-normal maximum of the rms-

values of the streamwise velocity component in cases with and without control are shown in

figure 11. The rms-value grows exponentially downstream in the uncontrolled case until the

fringe region at x = 800. The rms of the controlled perturbation grows only until it reaches

the actuator position where it immediately begins to decay. At the location of the objective

function C1 (x = 750), the amplitude of the perturbations is one order of magnitude smaller
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Figure 10. Control of the wavepacket due to the worst case initial condition. (a) Solid black line shows
uncontrolled energy evolution (as in figure 4 (b)) and dashed black line shows the energy for the cheap
controller. (b) Output signal as measured by the sensor C2 driving the controller. (c) Control signal fed into
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than in the uncontrolled case for the cheapest controller.

The rms values in the case of the expensive (case ii) and intermediate control (case iii)

are shown with dashed and dashed-dotted lines respectively. The expensive control is very

conservative as the measurement signals are highly corrupted and the control effort limited;

it results only in a small damping of the disturbances. The intermediate controller (case iii)

is more cautious in reducing the perturbation energy just downstream of the actuator when

compared to the cheap controller. It is interesting to note, however, that at the location

where the objective function is measured, the disturbance amplitude has decreased nearly

as much as with the cheap controller, although the total perturbation energy is larger over

the entire domain.

IV. Conclusion

A framework for the stability and input-output analysis, model reduction and control

design of complex flows is presented based on matrix-free methods. The two-dimensional

Blasius boundary-layer flow is used here as example of a spatially inhomogeneous flow charac-

terized by a strong non-normal operator governing the linear evolution of velocity perturba-

tions.6 The approach followed here requires only the numerical solution of the Navier–Stokes

equations and of the associated adjoint problem. It avoids therefore the manipulation of large

matrices and can be extended to fully three-dimensional flows and more complex geometries.

It is shown how the stability of complex flows can be investigated by considering the

eigenvalues of the governing linear operator computed through iterative methods. However,

the boundary layer flow considered here is characterized by convective instabilities and is
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therefore stable in a global sense. The amplification of unstable waves traveling downstream

and leaving the control domain can be seen in this context as transient growth. Non-

modal analysis becomes therefore the correct tool to analyze these flows.6,7 Optimal initial

conditions yielding the largest possible energy growth over a finite time horizon are obtained

for the Blasius boundary layer by integrating the Navier-Stokes direct and adjoint equations

in time. The results reproduce and extend those previously obtained by expanding the flow

into the eigenmodes of the system.31

To apply tools from modern control theory to fluid flow systems with many degrees of

freedom model reduction becomes unavoidable. To build a low-order model of the problem

the main features of the flow behavior are investigated in an input-output framework. The

quantity one wishes to optimize for is now defined by a sensor output, in our case the

level of perturbations further downstream, while information to the controller is provided

by a sensor located upstream. Perturbations are introduced by the inputs considered in the

model: the input furthest upstream models incoming disturbances while a second actuator

is used to manipulate the flow. The balanced modes are computed from snapshots of the

flow as introduced in Ref. 11.

Model reduction is achieved by projecting the governing equations on the leading balanced

modes of the system. We show that the input-output behavior of the flat-plate boundary

layer can be captured accurately with a reduced-order model based on seventy balanced

modes. These modes are shown to provide a good description of the flow9,13 since the

account for both observability and controllability through a non-orthogonal projection. The

spatial structure of these modes reflect the location of sensors/actuators and the dynamics

of linear perturbation evolving in a boundary layer. The balances modes are mainly located
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downstream, where the response to the forcing is largest. The adjoint balanced modes are

instead located upstream, where the sensitivity to initial conditions is the largest.

Finally, the low-order model is used to obtain the feedback gain relating directly the

measurements from one upstream sensor to the actuator signal using the H2 (LQG) formu-

lation. The control is then applied in the numerical simulation of the full system where we

show that the perturbations growth could be reduced efficiently. The present formulation

accounts naturally for localized sensors and actuators and therefore, it can be directly ap-

plied to different flow configurations. Further, the control law derived from the low-order

system can be applied on-line in an experiment provided accurate modeling of the sensor

and actuator is available for the I/O analysis.

A. Inputs and outputs

The expression of inputs B1,uw and outputs C1 and C2 are given in this section. The

input B1 is modelled by Gaussian type of volume forcing





σw,xγw,y

−σw,yγw,x



 exp(−γ2
w,x − γ

2
w,y), γw,x =

x− xw

σw,x

, γw,y =
y − yw

σw,y

, (35)

with (σw,x = 4, σw,y = 0.25) determining the width and height of the function of the function

centered around (xw = 35, yw = 1). The actuator is in this case a localized zero mass-flux

actuation on the wall-normal velocity, uw = (0, vw)T at the lower wall given by

vw(x) =

(

1−

(

x− xu

σu,x

)2
)

exp

(

(x− xu)2

2σ2
u,x

)

, (36)

with the width σu,x = 2.5 and centered at xu = 400. Finally, both measurements extract

approximately the wall normal derivative of the streamwise velocity component (wall shear

stress) in limited regions at the wall

∫

Ω

(

γs,xγs,yDy 0
)





u

v



 dΩ, γs,x = exp

(

−
(x− xs)2

σ2
s,x

)

, γs,y =
1

σs,y

exp

(

y2

σ2
s,y

)

, (37)

with xe = 300 for the output C2 and xe = 750 for C1. The width of the regions are determined

by σs,x = 5 for both sensors. The operator Dy denotes the y-derivative. The y-dependent

weighting relies on a width parameter σs,y = 0.05. Note that in the limit σs,y → 0 the

function approaches the delta function so that (37) defines the exact wall wall shear stress

at the wall. The reason for using an approximation to the wall shear stress is the need for
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an adjoint sensor C∗ (see Section III.D), which is derived with the respect to the signal to

state inner product3

(r, Cu)s = (C∗r,u)Ω. (38)

These inner products are defined as

(r, s)s = sT r and, (p,q)Ω =

∫

Ω

pTq dΩ . (39)

for the scalars s and k, and the states q and p. The adjoint sensor obtained from this

definition is in other words

(r, Cu)s =

∫

Ω

rT
(

γs,xγs,yDy 0
)

u dΩ =

∫

Ω

rT
(

2yγs,xγs,y/σ2
s,y 0

)

u dΩ = (C∗r,u)Ω̂, (40)

where we have used integration by parts and the boundary conditions in y. This leads to

the recognition of the adjoint sensor in the definition of the observability Gramian (28) as

C∗ =





2yγs,xγs,y/σ2
s,y

0



 . (41)
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