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This article presents techniques for the analysis of fluid sys-

tems. It adopts an optimization-based point of view, formu-

lating common concepts such as stability and receptivity in

terms of a cost functional to be optimized subject to con-

straints given by the governing equations. This approach dif-

fers significantly from eigenvalue-based methods that cover

the time-asymptotic limit for stability problems or the reso-

nant limit for receptivity problems. Formal substitution of

the solution operator for linear time-invariant systems re-

sults in the matrix exponential norm and the resolvent norm

as measures to assess the optimal response to initial condi-

tions or external harmonic forcing. The optimization-based

approach can be extended by introducing adjoint variables

that enforce governing equations and constraints. This step

allows the analysis of far more general fluid systems, such

as time-varying and nonlinear flows, and the investigation of

wavemaker regions, structural sensitivities and passive con-

trol strategies.

1 Introduction and motivation

Fluid systems are often described and characterized by

their stability or receptivity behavior. Perturbations of in-

finitesimal amplitude that grow when superimposed on an

equilibrium state of the flow render the base flow unstable;

similarly, a flow that responds strongly when harmonically

forced by an external excitation is referred to as receptive

to this particular driving. Standard mathematical techniques

have been devised to describe these fundamental questions of

fluid dynamics: eigenvalue analysis for stability problems,

and the resonance concept for receptivity problems. If the

linearized equations exhibit at least one eigenvalue in the

unstable half-plane, an instability is deduced; if the forcing

frequency coincides with one of the eigenvalues of the lin-

earized equations, a resonance is present in the flow.

Even though these techniques are valuable quantita-

tive tools for the description of fluid problems, they have

been found inadequate to account for the full behavior of

many fluid systems. A property of the underlying equations,

known as nonnormality, allows for a far richer linear behav-

ior than what can be measured by eigenvalues or resonances

alone. By recasting the questions of instability and recep-

tivity into a framework based on constrained optimization,

new tools and viewpoints arise that present a more complete

picture of linear perturbation dynamics for fluid flows. An

even more effective framework emerges by the transforma-

tion of the constrained into an unconstrained optimization

problems using adjoint variables (or Lagrange multipliers).

The introduction of adjoint variables may, at first glance, ap-

pear as a mathematical device to enforce constraints; their in-

terpretation as sensitivity measures or cost-functional gradi-

ents, however, gives them a physical meaning that can readily

be used to assess important aspects of the flow behavior, to

quantify robustness or to design passive control strategies.

The objective of this article is to present a suite of tech-

niques for the analysis of fluid behavior for simple shear

flows, but also to advocate an approach for this analysis that

exceeds standard methods and harnesses the capability and

potential of modern mathematical techniques arising from an

optimization and system-theoretic framework. This article is

based on a tutorial given at the Nordita workshop on “Sta-

bility and Transition” which took place in Stockholm from

May 6-31, 2013. The Matlab codes used in this tutorial are

available from the journal website and cover the majority of

the concepts (and figures) treated in this article.
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Fig. 1. Sketch of the two flow configurations, the coordinate system

and the base flow profiles. (a) Plane Poiseuille flow, and (b) plane

Couette flow.

2 The governing equations

Even though the tools and techniques in this article read-

ily apply to more complex flows, for sake of clarity we will

consider the flow of an incompressible fluid confined by two

walls. Two cases will be be treated: (i) the pressure-driven

flow between two resting plates yielding a parabolic base-

flow velocity profile (i.e., plane Poiseuille flow), and (ii) the

flow induced by the two plates moving in-plane in opposite

directions by the same speed producing a linear base-flow

velocity profile (i.e., plane Couette flow). In either case,

the base flow is given by the streamwise velocity component

U(y) which only varies in the normal (plate-to-plate) direc-

tion y. A sketch of the two flow cases, together with the

coordinate system, is given in figure 1.

Linearizing the incompressible Navier-Stokes equations

about the base flow U(y) yields the following system of

equations

∂u

∂t
+U

∂u

∂x
+ vU ′ = −∂p

∂x
+

1

Re
∇2u+ fu (1a)

∂v

∂t
+U

∂v

∂x
= −∂p

∂y
+

1

Re
∇2v+ fv (1b)

∂w

∂t
+U

∂w

∂x
= −∂p

∂z
+

1

Re
∇2w+ fw (1c)

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0 (1d)

for the perturbation velocities (u,v,w) and the perturba-

tion pressure p, where ∇2 stands for the standard Cartesian

Laplace operator and ′ denotes differentiation with respect

to y. To each of the momentum equation, we have added an

external driving term which will later be used in receptiv-

ity studies. The above equations have been nondimensional-

ized by the channel half-height and the center-line velocity

(in the Poiseuille case) or the speed of the moving wall (in

the Couette case). These nondimensionalizations produce a

Reynolds number as follows: Re=Uh/ν, with ν as the kine-

matic viscosity. No-slip boundary conditions on the wall,

i.e., u = v = w = 0 at y = ±1, and appropriate initial condi-

tions complete the evolution problem for the perturbations.

Both flow configurations are assumed infinite in the stream-

wise (x) and spanwise (z) directions. We also observe that

the governing equations (1) have coefficients that are con-

stant in these two coordinate directions. As a consequence,

this allows the application of a Fourier transform in these

directions, which is equivalent to assuming solutions of the

form







u(x,y,z, t)
v(x,y,z, t)
w(x,y,z, t)
p(x,y,z, t)







=







û(y, t)
v̂(y, t)
ŵ(y, t)
p̂(y, t)







(α,β)

exp(iαx+ iβz). (2)

This mathematical step introduces the streamwise and span-

wise wavenumbers α and β and simplifies the governing

equations to

∂û

∂t
+ iαUû+U ′v̂ = −iαp̂+

1

Re
(D2 − k2)û+ f̂u (3a)

∂v̂

∂t
+ iαUv̂ = −D p̂+

1

Re
(D2 − k2)v̂+ f̂v (3b)

∂ŵ

∂t
+ iαUŵ = −iβ p̂+

1

Re
(D2 − k2)ŵ+ f̂w (3c)

iαû+D v̂+ iβŵ = 0 (3d)

where D = ∂/∂y represents differentiation with respect to y,
and the total wavenumber k is defined through k2 = α2 +β2.
In a final step we eliminate the pressure from the above

equations. This is accomplished by a variable transforma-

tion which introduces the normal velocity v̂ and the nor-

mal vorticity η̂ = iβû− iαŵ in lieu of the primitive variables

û, v̂, ŵ, p̂. Mathematically, we proceed in two steps. First, we

multiply (3a) by iβ and subtract it from iα times (3c) which

yields an equation for η̂. This step is equivalent to taking the

curl ∇× of the governing equations and extracting the nor-

mal y-component; it naturally eliminates the pressure gra-

dient term. The second step consist of multiplying (3a,3c)

by iα and iβ, respectively, and adding the two equations.

Using (3d) and the definition of the normal vorticity η̂, an

expression for the pressure p̂ can be derived that solely de-

pends on the normal velocity v̂. This latter expression is then

resubstituted into (3b) to eliminate the remaining pressure

term D p̂. After these algebraic manipulations we arrive at a

system of two evolution equations (for the normal velocity v̂

and the normal vorticity equation η̂) which reads



M
∂v̂

∂t
+ iαUM v̂+ iαU ′′v̂+

1

Re
M 2v̂ = ĝv, (4a)

∂η̂

∂t
+ iαU η̂+

1

Re
M η̂ = −iβU ′v̂+ ĝη,(4b)

with M = k2 −D2. The above equations have to be supple-

mented by boundary conditions. Requiring no-slip condi-

tions at the wall, it is straightforward to derive the following

boundary conditions for v̂ and η̂.

D v̂(±1) = v̂(±1) = η̂(±1) = 0 (5)

To conclude the derivation of the governing equations, we

discretize the above partial differential equation in the wall-

normal y-direction. Even though a variety of numerical

techniques are available, we choose a spectral technique

using Chebyshev polynomials and replace the continuous

wall-normal differentiation operator D by the Chebyshev-

differentiation matrix D. Consequently, the dependent vari-

ables v̂ and η̂ transform into column vectors v,η contain-

ing the values of the wall-normal velocity and vorticity at

the Chebyshev collocation points. After these steps we end

up with a system of ordinary differential equations in time

which reads

d

dt

(
v

η

)

=

(
LOS 0

LC LSQ

)

︸ ︷︷ ︸

L

(
v

η

)

+B





fu

fv

fw



 (6)

with

LOS = M−1(−iαUM− iαU ′′− 1

Re
M2), (7a)

LSQ = −iαU − 1

Re
M, (7b)

LC = −iβU ′, (7c)

B =

(
iαM−1D M−1k2 iβM−1D

iβ 0 −iα

)

. (7d)

We notice that the normal-velocity equation is homogeneous,

while the normal-vorticity equation is driven by the normal

velocity in the presence of base-flow shear U ′ and as long

as β 6= 0. This observation will play a very important role in

the analysis to follow. Upon further introducing the compos-

ite vector of unknowns q = (v,η)T , as well as the composite

forcing f = (fu, fv, fw)
T , the above set of equations then sim-

plifies to

d

dt
q = Lq+Bf (8)

which will form the foundation for the analysis to follow.

Even though the bulk of this article is concerned with

the stability, receptivity and sensitivity analysis of wall-

bounded incompressible shear flow (in particular, with plane

Poiseuille and plane Couette flow), it will be instructive at

times to consider a small model problem with two degrees of

freedom that mimics many of the features observed in the full

flow equations. In accordance with the governing equations

derived above we propose the simple equation

d

dt

(
q1

q2

)

=







1

100
− 1

Re
0

µ − 2

Re







︸ ︷︷ ︸

A

(
q1

q2

)

(9)

for the temporal evolution of two variables q1 and q2. As

is immediately obvious, it closely resembles the structure

of (6): in particular, the driving of the second variable by the

first has been incorporated via the parameter µ. An explicit

dependence on a parameter (taken as the Reynolds number

Re) has also been introduced. A quick analysis of this sys-

tem as to its eigenvalues gives a first (though incomplete)

glance of the perturbation dynamics. The particular form of

the system matrix A allows us to determine the eigenvalues

as λ1 = 1/100−1/Re and λ2 =−2/Re; the first one changes

sign at a critical value of the Reynolds number (Recrit = 100),

the second one is always negative. For Re < 100, we thus

have a configuration with stable eigenvalues λ1,2. Analo-

gous findings can be derived for the full system matrix L

for plane Poiseuille flow (with a critical Reynolds number

of Recrit = 5772.2).

3 Stability analysis of fluid systems

Before continuing with the stability analysis of fluid sys-

tems, it is necessary to give a definition of stability. Tra-

ditionally this has been done following the concept of Lya-

punov stability. An equilibrium state has to be defined first,

after which the system is perturbed around this state. If the

system returns back to the equilibrium state, it is deemed

stable; if the system diverges from the equilibrium state, the

system (or, more precisely, this particular equilibrium state)

is regarded as unstable. In the definition of Lyapunov sta-

bility, an infinite time horizon is allowed for the return to

equilibrium.

In many fluid systems where stability issues play an im-

portant role an infinite time horizon does not account for the

many time-scales that characterize local fluid processes. In

fact, it can be argued that most dynamic processes in wall-

bounded shear flows occur on a finite time-scale, often re-

lated to, e.g., a characteristic eddy turn-over time or the life-

time of coherent structures involved in the process. A stabil-

ity definition that is based on an infinite time horizon seems

to run counter to the observation of finite-time processes. For



this reason, we will abandon the concept of Lyapunov sta-

bility and define stability as the amplification of initial per-

turbation energy over a prescribed time-interval [1, 2]; this

definition reintroduces the time variable as a parameter. The

amplification of initial energy of course depends on the initial

condition. This dependence can be eliminated by optimizing

over all permissible initial conditions and accepting the max-

imum as the optimal energy amplification. Mathematically,

we can write

G(t) = max
q0

E(q(t))

E(q0)
(10)

where E(q) denotes the kinetic energy of the perturbation q.
We will introduce a more general measure by defining the

general norm of q as the quantity to be optimized. Other

quantities that define a norm, such as, e.g., enstrophy or dis-

sipation rate, are conceivable and may be more appropriate

for specific applications or problem settings.

In anticipation of the analysis that follows below, we re-

formulate the above norm of the perturbations (in our case

yielding the kinetic energy) and relate it to the common L2-

norm of a vector q. The following simple transforms estab-

lish a connection between the energy norm ‖.‖E and the stan-

dard (Euclidean) L2-norm ‖.‖2.

E(q) = ‖q‖2
E = 〈q,q〉E = qHQq

= qHFHFq = 〈Fq,Fq〉2 = ‖Fq‖2
2 (11)

The above expression introduces the energy weight matrix

Q which contains the proper weighting of the variables, in

our case v and η at the spectral collocation points, as well

as the integration weights to evaluate the integral in the wall-

normal direction from the lower to the upper plate. It fol-

lows from the fact that we express a positive quantity (energy

norm), that the weight matrix Q has to be positive definite.

In this case, it can be decomposed into Q = FHF using a

Cholesky decomposition. The energy norm of a perturbation

q is thus equivalent to the L2-norm of the vector Fq.
We further have to introduce the equivalent energy norm

for matrices and, as before, relate it to the common L2-norm.

Using the definition of a vector-induced norm we easily find

‖L‖E = max
q

‖Lq‖E

‖q‖E

= max
q

‖FLF−1Fq‖2

‖Fq‖2
= ‖FLF−1‖2.

(12)

It follows from the above expression that a simple similarity

transformation using the Cholesky factor F relates the energy

norm to the L2-norm for matrices.

3.1 The matrix exponential norm

We proceed by evaluating the ratio of perturbation en-

ergy at a given time t to the initial energy maximized over all

possible initial conditions. This ratio of output (the pertur-

bation energy at t) to input (the perturbation energy at time

t = 0) will be taken as our measure of (in)stability over a

given time interval [0 t]. Of course, the output q(t) is related

to the initial condition q(0) = q0 by equation (6) governing

the evolution of initial conditions in time. We will neglect

the forcing term f for this analysis. The governing equations

are linear, time-invariant which allows us to state the formal

solution in form of the matrix exponential according to

q(t) = exp(tL)q0. (13)

This expression links initial conditions to solutions of our

governing equation at a later time. Substituting the above

expression into our definition of energy amplification (10),

we obtain

G(t) = max
q0

‖q(t)‖2
E

‖q0‖2
e

= max
q0

‖exp(tL)q0‖2
E

‖q0‖2
E

= ‖exp(tL)‖2
E

(14)

where the last step in the above expression has invoked the

definition of a vector-induced matrix norm, taking care of the

optimization over all initial conditions. The energy norm of

the matrix exponential is thus the largest amplification of en-

ergy any initial perturbation can experience over a given time

interval [0 t]. This expression can be evaluated for a variety

of time horizons t, including values that are deemed charac-

teristic of the time-scales imposed by the flow. The values

of the corresponding matrix exponential norms give a first

insight into the capability of the fluid system to optimally

amplify perturbation energy contained in an initial condition

over a limited time span.

It is important to realize that the energy amplification

G(t) is optimal over all possible initial conditions, but that

for each chosen time span t a different initial condition may

yield the optimal gain G(t). The curve G(t) versus t may thus

be thought of as an envelope over optimal initial conditions;

an initial condition at a chosen time horizon t1 may not be

optimal for a different time horizon t2 6= t1.

We will illustrate the energy amplication or gain G(t) for

the 2× 2-model equation for µ = 1. In this case, the matrix

exponential can be computed analytically. We obtain

exp(tA) =







exp(tλ1) 0

exp(tλ1)− exp(tλ2)

λ1 −λ2
exp(tλ2)






, (15)

and its L2-norm is given by
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Fig. 2. Energy amplification G(t) for the model problem for three

different Reynolds numbers, showing monotonic decay (for Re = 2),

transient growth and asymptotic decay (for Re = 25), and transient

and asymptotic growth (for Re = 125).

G(t) = ‖exp(tA)‖2
2 =

tr

2
+

√

tr2

4
− det, (16a)

tr = (1+
1

(λ1 −λ2)2
)(exp(2λ1t)+ exp(2λ2t))

− 2
√

det

(λ1 −λ2)2
, (16b)

det = exp(2(λ1 +λ2)t). (16c)

We choose a set of Reynolds number Re= 2,25,125 and

display G(t) as a function of time in figure 2. We observe

monotonic decay of G(t) for the case of Re = 2, a transient

peak followed by exponential decay for Re = 25, and for a

supercritical Reynolds number Re = 125 a strong amplifica-

tion followed by exponential growth. In particular the case

of Re = 25 may come as a surprise, given the fact that at this

Reynolds number the system matrix A had two eigenvalues

with decaying real parts. We will next explore the origin of

this transient growth in energy.

3.2 The modal limit

A closer look at the gain G(t) involves an eigenvalue de-

composition of A, given as A= VΛV−1 with V as the matrix

containing the normalized eigenvectors as columns and Λ as

a diagonal matrix containing the corresponding eigenvalues.

For the energy amplification or gain G(t) we then have

G(t) = ‖exp(tA)‖2 = ‖Vexp(tΛ)V−1‖2. (17)

The last expression makes clear that the eigenvalues con-

tained in Λ represent only one part of the gain G(t), with

the eigenvector matrix V and its inverse accounting for the

remaining factors. Deducing the gain G(t) from the eigen-

value matrix Λ alone is only valid, if the similarity transfor-

mation given by V and its inverse does not alter the value of

the norm. This is the case for unitary matrices V as they

represent pure rotations in vector space. In our case, or-

thogonal eigenvectors of A will result in a unitary V. We

conclude from this that G(t) evolves according to the eigen-

value matrix Λ for system matrices A that have orthogonal

eigenvectors. If this is not the case, eigenvalues alone do

not fully describe the potential energy amplification that can

take place in our system. System matrices A that result in

non-orthogonal eigenvectors are known as nonnormal matri-

ces, while matrices with orthogonal eigenvectors are referred

to as normal.

The observation above suggests that short-time growth

of perturbation energy is possible even though the system

matrix has stable eigenvalues. The eigenvalue decompo-

sition clearly shows that exponentially decaying solutions,

given by the term exp(tΛ), can produce short-time growth

in energy when superimposed non-orthogonally, given by V

and V−1. This fact is illustrated geometrically in figure 3. In

both subplots, we represent a unit-norm initial condition (the

thick blue line) as a superposition of two eigenvectors; also

in both cases, we assume that the eigenvalues along these

eigendirections are real, distinct and negative, thus decaying

to zero over time. On the left subplot, we chose orthogonal

eigenvectors, and consequently the length of the initial con-

dition shrinks monotonically to zero with a decay rate that is

given by the larger of the two contractive eigenvalues. In the

right subplot we perform the same exercise, with identical

eigenvalues, this time, however, with non-orthogonal eigen-

vectors. We clearly observe that the initially unit-norm initial

condition stretches before ultimately decaying to zero (again,

with the decay rate of the least stable eigenvalue). Evaluat-

ing the norm (length) of the evolving initial condition, we

observe transient growth in the nonnormal case and mono-

tonic decay in the normal case.

A corollary to the above observation is that eigenval-

ues are an inherently time-asymptotic tool when dealing with

nonnormal system matrices; they only accurately describe

the complete perturbation dynamics (i.e., the perturbation

dynamics for all times) for normal systems. We also con-

clude that Lyapunov stability (based on an infinite time hori-

zon) is properly captured and evaluated by the eigenvalues of

the underlying system matrix, but we have concluded earlier

that finite-time processes in fluid systems call for a different

approach, such as the one based on the matrix exponential.

Before proceeding to additional tools for the analysis of

finite-time stability we present the spectra (eigenvalues) and

energy amplification for our two flow configurations, plane

Poiseuille and plane Couette flow (see figure 4). We note

that the system matrices arising from the discretization of

the linearized Navier-Stokes equations for plane Poiseuille

and plane Couette flow are highly nonnormal; in fact, the de-

gree of nonnormality increases exponentially with Reynolds

number. This is confirmed by the transient energy growth

G(t) displayed in figure 4. The results in the figure are ob-
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Fig. 4. Spectrum (left column) and transient energy growth (right

column) for plane Poiseuille flow (top row) and plane Couette flow

(bottom row). The parameters for plane Poiseuille flow are: α =
1,β= 0.25,Re= 2000; the parameters for plane Couette flow are:

α = 1,β = 0,25,Re = 1000. Results obtained with the routine

TransientGrowth.m.

tained with the routineTransientGrowth.m. The choice

of parameters for the two flow cases produces stable spectra:

all the eigenvalues are confined to the stable half-plane. Con-

sequently, we expected exponential energy decay according

to the least stable eigenvalue for sufficiently large times. Due

to their nonnormality, however, substantial energy amplifi-

cation is possible before the time-asymptotic behavior sets

in. The G(t)-curves in figure 4 show energy amplification

of more than one order of magnitude over the initial energy

within a time-span of t ≈ 13.

3.3 The numerical abscissa and the numerical range

We learned that for nonnormal systems the eigenvalues

of L describe the time-asymptotic behavior of disturbances,

but fail to capture the short-time dynamics. The matrix ex-

ponential captures the entire perturbation dynamics, but is

costly to evaluate for many realistic applications.

A simpler tool that captures the short-time dynamics can

be derived by taking advantage of a Taylor-series expansion

of the matrix exponential around t = 0+, that is exp(tL) ≈
I+ tL+ . . . Starting with the definition of the energy growth

rate at short time, we can readily derive

dG

dt

∣
∣
∣
∣
t=0+

= max
q0

1

‖q0‖2

d

dt
‖(I+ tL)q0‖2

∣
∣
∣
∣
t=0+

, (18a)

= max
q0

d

dt

〈(I+ tL)q0,(I+ tL)q0〉
〈q0,q0〉

∣
∣
∣
∣
t=0+

,(18b)

= max
q0

〈q0,(L+LH)q0〉
〈q0,q0〉

, (18c)

= λmax

(
L+LH

)
. (18d)

In this derivation, we see that the slope of the gain curve

G(t) at t = 0+ is given by the maximum Rayleigh quotient of

the composite matrix L+LH . This latter matrix is Hermitian

and thus normal, even though L by itself may be non-normal.

Consequently, the maximum Rayleigh quotient is formed by

choosing the principal eigenvector of L+LH for q0. The re-

sulting value of the Rayleigh quotient and therefore the slope

of the gain curve G(t) at t = 0+ is given by the largest (real)

eigenvalue of L+LH which is expressed in the last line of the

above derivation. This quantity is referred to as the numeri-

cal abscissa of L.
We can summarize our findings for non-normal stability

problems so far as the short-time (t = 0+) dynamics is de-

scribed by the eigenvalue of L+LH with the largest real part,

while the long-time (t → ∞) dynamics is represented by the

eigenvalue of L with the largest real part.

We can learn even more by generalizing the concept of

the numerical abscissa to the concept of the numerical range.

To this end, we proceed by considering the energy growth

rate (at any time t) and follow a similar procedure than out-

lined above for the numerical abscissa. We have

γ(t) =
1

E

dE

dt
=

1

‖q‖2
E

d

dt
〈q,q〉E , (19a)

=
1

〈q,q〉E

(〈
dq

dt
,q

〉

E

+

〈

q,
dq

dt

〉

E

)

, (19b)

= 2Real

( 〈Lq,q〉E

〈q,q〉E

)

. (19c)
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Fig. 5. Illustration of the numerical range using the 2× 2 model

problem for Re = 10. (a) Choosing µ = 1 results in a non-normal

matrix and a numerical range (delimited by the red curve) which is

detached from the spectrum (black symbols); (b) for µ = 0 we have

a normal matrix with identical eigenvalues, but a numerical range that

deteriorates to the convex hull of the two eigenvalues, given simply

by a line connecting the two eigenvalues.

The last expression establishes a link between the en-

ergy growth rate γ(t) and the set of all Rayleigh quotients

〈Lq,q〉E/〈q,q〉E . This latter set is known as the numerical

range of L and represents a set in the complex plane.

For our purposes, three properties of the numerical range

are important. First, the numerical range of L is a convex set

in the complex plane; a line connecting any two points in the

set is entirely contained in the set. Second, the numerical

range contains the spectrum of L, which can easily verified

since the Rayleigh quotient coincides with an eigenvalue of

L when choosing the corresponding eigenvector of L as q in

the above expression. Third, and less obvious, the numerical

range degenerates into the convex hull of the spectrum of L if

L is normal, with the convex hull being the smallest convex

set that contains the spectrum.

Again, we use our 2× 2 model problem to illustrate the

concept of the numerical range. We choose a Reynolds num-

ber of Re = 10 and µ = 1 and plot the numerical range in

the complex plane, together with the spectrum of A (see fig-

ure 5). We verify that for nonnormal matrices A the numer-

ical range is convex and contains the spectrum (the eigen-

values, illustrated by the two black symbols in figure 5(a)).

We observe that the numerical range reaches into the unsta-

ble half-plane, indicated in gray. This means that there exist

positive energy growth rates, despite the fact that both eigen-

values are confined to the stable half-plane. By choosing

µ = 0 in the model problem (and thus diagonalizing the sys-

tem matrix), we arrive at a normal problem. In this case, the

numerical range collapses to the convex hull of the spectrum,

simply given by a connecting line between the two eigen-

values. In other words, all Rayleigh quotients that can be

formed with this normal matrix A (for µ= 0) fall on this line.

In this case, the entire numerical range (the connecting line)

is contained in the stable half-plane and no positive energy

growth is possible. The least stable eigenvalue governs the

dynamics of the system for all times.

Before discussing the numerical range for our two cases

of plane Poiseuille flow and plane Couette flow, we present
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Fig. 6. Numerical range (red boundary), resolvent contours and

spectrum (blue symbols) for plane Poiseuille flow (top) and plane

Couette flow (bottom). The parameters are α = 1,β = 0.25 and

Re = 2000 for plane Poiseuille flow and Re = 1000 for plane Cou-

ette flow. The results are obtained with the routine NumRange.m.

a numerical algorithm to compute the boundary of the nu-

merical range [3]. This algorithm is based on the fact that

the numerical abscissa, i.e., λmax(A+AH), coincides with

the right-most point of the numerical range. By rotating

the matrix through an angle of 2π we can thus trace out

the boundary of the numerical range by repeated numerical-

abscissa calculations. More specifically, we form a matrix

N= exp(iθ)A and its Hermitian component N̄= N+NH . A

point z on the boundary of the numerical range is then given

by z(θ) = (vH
maxAvmax)/(v

H
maxvmax) with vmax as the princi-

pal eigenvector (corresponding to the principal eigenvalue)

of N̄. As the angle θ traverses through the interval [0 2π], the

point z traces out the boundary of the numerical range.

The spectrum and numerical range for plane Poiseuille

and plane Couette flow is presented in figure 6. The results

in the figure are obtained with the routine NumRange.m.

Parameters have been chosen for plane Poiseuille flow that

render the parabolic mean flow asymptotically stable; plane

Couette flow, on the other hand, is asymptotically stable

for all Reynolds numbers. In both cases, however, we ob-

serve that the numerical range, indicated by the red contour,
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Fig. 7. Sketch of supercritical (left) and subcritical (right) bifurca-

tion behavior. The critical parameter is indicated by the red symbol.

Dashed lines denote unstable branches. For supercritical behav-

ior, finite-amplitude states exist only after the (linear) infinitesimal-

amplitude state has gone unstable (right of the thin green line). For

subcritical behavior, finite-amplitude states exist even before the (lin-

ear) infinitesimal-amplitude state has become unstable (left of the

thin green line).

reaches far into the unstable half-plane (shaded in gray). We

thus conclude that initial energy growth is possible — up to a

growth rate given by the maximum protrusion of the numeri-

cal range into the unstable half-plane — but that asymptotic,

exponential decay follows as time tends to infinity. The gray

contour lines, indicating isolines of constant resolvent norm,

will be discussed later.

3.4 Supercritical versus subcritical bifurcation behav-

ior

For incompressible flow the two stability analysis tools,

numerical range and spectrum, allow us to establish an

interesting connection between non-normality and bifurca-

tion behavior. It is easy to verify that the nonlinear terms

of the incompressible Navier-Stokes equations are energy-

preserving: the role of the nonlinear terms is the distribution,

scattering and transfer of energy, but this reorganization is

accomplished in a conservative manner. Energy growth or

decay can only come from linear processes. Energy growth,

however, is necessary to reach finite-amplitude states. For

normal systems, energy growth is only possible through un-

stable eigenvalues, since for normal systems the numerical

range is attached to the spectrum (via the convex-hull condi-

tion) and both numerical range and spectrum cross into the

unstable half-plane at the same value of the governing pa-

rameters. For this reason, finite-amplitude states can only

be reached, after the infinitesimal state has become unstable.

This type of bifurcation is known as supercritical (see left

subplot of figure 7 for a sketch of supercritical bifurcation be-

havior). Rayleigh-Bénard convection, for example, falls into

this category. Normal systems (with energy-conserving non-

linearities) thus reach nonlinear finite-amplitude states super-

critically.

In contrast, subcritical bifurcation behavior is charac-

terized by the existence of nonlinear, finite-amplitude states

at values of the governing parameter where the infinitesimal

state is still stable (left of the thin green line in figure 7b). In

order to generate energy growth to reach this finite-amplitude

state, we need linear energy amplification of an asymptoti-

cally stable system. In other words, the numerical range has

to protrude into the unstable half-plane, when the spectrum

is still confined to the stable half-plane. This configuration is

only possible for a nonnormal system. Both plane Poiseuille

flow and plane Couette flow fall into this category; they be-

have subcritically as the governing parameter (commonly the

Reynolds number) is varied.

We conclude from this above argument, that normal sys-

tems behave supercritically and that subcritical bifurcation

behavior necessitates a nonnormal underlying system matrix.

This argument holds only if the nonlinearities cannot con-

tribute to energy growth, that is, when energy amplification

can only stem from a linear process.

3.5 Parameter dependence

The analysis above has been demonstrated on both a

model problem and on two generic flow configurations. The

governing equations for the fluid systems contain numerous

parameters: the Reynolds number Re, the streamwise and

spanwise wavenumbers α,β, the time horizon t. It is thus nat-

ural to ask how short-time energy amplification and asymp-

totic behavior depend on these parameters and, in particular,

which structures (given by their streamwise and spanwise de-

pendence) optimally exploit the transient growth of energy.

For this parameter study we will trace three quantities:

(i) the maximum protrusion of the numerical range into the

unstable half-plane (which is negative if the numerical range

is contained in the stable half-plane), (ii) the maximum tran-

sient energy amplification given as Gmax = maxt>0 G(t) and

(iii) the growth/decay rate of the least stable eigenvalue.

First, we will set β = 0 and consider only two-

dimensional waves propagating in the streamwise direction.

We then vary the remaining parameters α and Re and deter-

mine the maximum energy growth Gmax, the numerical ab-

scissa and the growth rate of the least stable eigenvalue, thus

covering the short-time (numerical abscissa), intermediate-

time (Gmax) and long-time (least stable eigenvalue) behavior

of the flow. The results of these computations are shown

in figure 8 for plane Poiseuille flow (left) and plane Cou-

ette flow (right). For Poiseuille flow we observe three do-

mains delimited by the zero-contour of the numerical ab-

scissa (white contour line) and the zero-contour of the growth

rate of the least stable eigenvalue, resulting in the parameter

space where exponential instabilities exist (gray area). The

latter contour is rather familiar and referred to as the neutral

curve for plane Poiseuille flow. Its left-most point determines

the critical Reynolds number of Re = 5772, i.e. the smallest

Reynolds number above which infinitesimal perturbations

will show asymptotic exponential growth. This growth is

realized by streamwise waves (β = 0) with a wavelength of

about α = 1.02. To the left of the zero-contour of the numer-

ical abscissa the flow exhibits monotonic energy decay. The

parameter range enclosed between these two zero-contours

are characterized by transient growth followed by exponen-

tial decay. The same calculations for plane Couette flow are

qualitatively different in as far as this type of flow is asymp-

totically stable for all parameter combination and thus does

not have a neutral curve. Nevertheless, a substantial amount

of transient energy growth can be observed above the zero-
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Fig. 8. Parametric study of maximum transient growth as a func-

tion of the streamwise wavenumber and Reynolds number (α,Re)

for plane Poiseuille flow (top) and plane Couette flow (bottom). The

spanwise wavenumber in both cases is β = 0. The area shaded

in gray (for plane Poiseuille flow) denotes the parameter space

for exponential (modal) growth. The white contour line is given

by a zero value of the numerical abscissa. The contour levels

represent log10(Gmax). The results are obtained with the routine

Neutral a Re.m.

contour of the numerical abscissa.

In a second parameter study, we investigate the transient

growth potential for a fixed Reynolds number but varying

wavenumbers. This is equivalent of asking which waves are

most favored by the transient energy amplification mecha-

nism. For asymptotic long-time considerations, Squire’s the-

orem states that for every unstable three-dimensional per-

turbation there exists a two-dimensional (β = 0) unstable

perturbation at a lower Reynolds number. For this reason,

it suffices to compute the asymptotic growth-rates of two-

dimensional waves (with β = 0) when determining the long-

time behavior for plane Poiseuille flow. Squire’s theorem

does not hold for transient growth or short-time instabilities,

however, and figure 9 shows the result of Gmax-calculations

for varying wavenumbers α and β. For plane Poiseuille flow,

we have chosen a Reynolds number of Re = 10000, above

the critical ones; consequently, a region (in gray) where in-

finite energy amplification can be obtained due to an ex-
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Fig. 9. Parametric study of maximum transient growth as a func-

tion of the streamwise and spanwise wavenumber (α,β) for plane

Poiseuille flow (top, Re = 10000) and plane Couette flow (bottom,

Re = 500). The area shaded in gray (for plane Poiseuille flow) de-

notes the parameter space for exponential (modal) growth. The con-

tour levels represent log10(Gmax). The results are obtained with the

routine Neutral alpha beta.m.

ponential instability is include in the figure. Squire’s the-

orem is confirmed as two-dimensional waves (with β = 0)

are most favored by the exponential, eigenvalue-based insta-

bility. A different picture emerges for transiently amplified

waves: perturbations that show no streamwise dependence

(α = 0) are most amplified. The maximum occurs at a span-

wise wavenumber of about β = 2. A similar behavior can

be observed for plane Couette flow (see figure 9(bottom);

Re = 1000). The most amplified waves can be found near

the β-axis for β ≈ 2. In contrast to plane Poiseuille flow, the

maximum is reached for a non-zero, but small streamwise

wavenumber.

For our two fluid configurations — and in general

for nonnormal system — we can distinguish three genuine

regimes of flow behavior parameterized by the governing pa-

rameter, in our case the Reynolds number. These regimes

are given by the critical Reynolds number at which either the

numerical range or the spectrum cross into the unstable half-

plane. In the first regime, both numerical range and spec-

trum are contained in the stable half-plane and we observe
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Fig. 10. Three parameter domains of qualitative stability behavior:

in region I (Re < Re1) both the numerical abscissa and the growth

rate of the least stable eigenvalue are negative, resulting in mono-

tonic energy decay; in region II (Re1 < Re < Re2) the numerical

abscissa is positive, but the eigenvalues are still confined to the sta-

ble half-plane, yielding short-time energy amplification followed by

asymptotic decay; in region III (Re > Re2) both the numerical range

and the spectrum have crossed into the unstable half-plane, giving

rise to transient and asymptotic energy growth.

Table 1. Table of critical Reynolds numbers for the numerical ab-

scissa (Re1) and the spectrum (Re2) for our model problem, our

two flow cases and thermal convection. [nn: nonnormal system ma-

trix, n: normal system matrix.]

case type L Re1 Re2

2× 2 model (µ = 1) nn A
√

8 100

Poiseuille flow nn Lpoi 49.6 5772.2

Couette flow nn Lcou 20.7 ∞

thermal convection n Ltc 1705 1705

monotonic energy decay. The second regime is character-

ize by a numerical range protruding into the unstable half-

plane and the entire spectrum in the stable half-plane; in this

case, we can observe short-term energy growth followed by

asymptotic decay. Finally, the third regime is determined

by both numerical range and at least one eigenvalue in the

unstable half-plane; in this regime, we exhibit asymptotic,

exponential growth, which may still be preceded by signif-

icant transient growth before the time-asymptotic behavior

prevails. Figure 10 sketches these three regimes, while ta-

ble 1 lists the critical Reynolds numbers for plane Couette,

plane Poiseuille, Rayleigh-Bénard convection (a normal sys-

tem) and our simple 2× 2 model problem. While for non-

normal systems the two critical Reynolds numbers for the

crossing of the numerical range and spectrum are vastly dif-

ferent, they coincide for the normal Rayleigh-Bénard system

since in this case the numerical range is the convex hull of

the spectrum and crosses with the spectrum into the unstable

half-plane.

3.6 How to recover the optimal initial condition

For non-normal systems that exhibit substantial tran-

sient growth, it is often instructive to calculate the specific

initial condition that reaches maximum energy amplification

Gmax or an energy amplification at another user-specified

=V U

v u

K

‖K‖

Σ

Fig. 11. Sketch of the computational procedure to recover the opti-

mal initial condition via a singular value decomposition.

time t∗. Recalling the definition of the matrix exponential

norm, it is given by an optimization over all initial condi-

tions; the resulting curve G(t) is thus an envelope over many

individual realizations. In fact, each point on the curve G(t)
may have been generated by a different initial condition. The

initial condition that yields optimal energy amplification at a

given time t∗ we write

exp(t∗L)q0 = ‖exp(t∗L)‖q (20)

where the unit-norm initial condition q0 is advanced in time

by exp(t∗L) producing the unit-norm state vector q that is

amplified by G(t∗) = ‖exp(t∗L)‖. The above expression is

reminiscent of a singular value decomposition (SVD), or

KV = UΣ where V and U are unitary matrices with ortho-

normalized columns and Σ is a diagonal matrix containing

the singular values. Recalling that the dominant singular

value is equivalent to the L2-norm of K we can extract the

principal components from the singular value decomposition

and write

Kv1 = ‖K‖u1. (21)

where the index 1 denotes the first column of V or U (see fig-

ure 11). Matching this last expression to (20), it is straight-

forward to identify the optimal initial condition q0 as the

principal right singular vector of exp(t∗L) and the resulting

state-vector q as the principal left singular vector. The com-

putational steps to recover the optimal initial condition thus

simply involve a singular value decomposition of the matrix

exponential evaluated at the user-specified time t∗. The rou-

tine OptimalDisturbance.m computes the optimal ini-

tial condition and the corresponding flow response, the out-

put.

4 Receptivity analysis of fluid systems

The revised role of eigenvalues for describing the be-

havior of non-normal systems, see also [4], carries over to

many other areas where eigenvalues have traditionally dom-

inated. One such area is receptivity analysis which is con-

cerned with the general response of a fluid system to exter-

nal disturbances. These external disturbances can take on

the shape of free-stream turbulence, acoustic perturbations or



wall roughness, among many other possibilities. The maxi-

mum response in energy of the fluid system to a unit-energy

forcing is a reasonable and common receptivity measure. Of-

ten, receptivity is described via a resonance argument, given

by the closeness of the external frequencies to any of the

eigenvalues of the driven system. As we will see below,

this argument is valid and accurate for normal systems. For

non-normal systems, however, this eigenvalue-based analy-

sis proves inadequate.

4.1 The resolvent norm

We will return to our general fluid system and include

the driving term introduced earlier. In addition, we adopt

an input-output framework and introduce a supplementary

equation that evaluates a user-specified component g of the

full state-vector q. Within this framework, the matricesB and

C determine the input and output quantities, respectively. We

have

d

dt
q = Lq+Bf, (22a)

g = Cq. (22b)

The above linear equation can readily be solved yielding the

expression

g(t) =
∫ t

0
Cexp((t − τ)L)Bf(τ) dτ (23)

which constitutes a memory integral where the current out-

put state g depends on the entire history of the forcing f. In

the above expression we assumed a zero initial condition,

q0 = 0. For stable systems L the influence of the forcing

on the current state decays exponentially according to the

decay rate of the least stable eigenvalue. Even though the

above equation could be solved numerically, we will make

a further assumption regarding the form of the forcing and

assume a harmonic external driving f = f̂exp(iωt). Due to

the linearity of the governing equations, the output g re-

sponds with the same frequency and can also be represented

as g = ĝexp(iωt). Furthermore, the above memory integral

simplifies to

ĝ = C(iωI−L)−1Bf̂ (24)

which presents a mapping between the harmonic input forc-

ing and the corresponding output response. Analogous to

the case treated in section §3, we define the maximum gain

in energy by harmonic forcing as the ratio of driving energy

to response energy, maximized over all possible forcing pro-

files f̂, but for a given forcing frequency ω. We obtain

R(ω) = max
f̂

‖ĝ‖2
E

‖f̂‖2
E

,

= max
f̂

‖C(iωI−L)−1Bf̂‖2
E

‖f̂‖2
E

,

= ‖C(iωI−L)−1B‖2
E . (25)

The final expression is referred to as the resolvent norm,

measuring the maximum response due to harmonic forcing,

optimized over all forcings.

By changing from an initial-value problem to a har-

monically driven problem, we replace the matrix exponential

norm with the resolvent norm to quantify the amplification of

energy in our system. We also notice that the resolvent can

be related to the matrix exponential via a Laplace transform.

For plane Poiseuille and plane Couette flow, the re-

solvent norm is shown in figure 12 as a function of forc-

ing frequency ω. The results are obtained with the routine

Resolvent.m which also displays the resolvent norm in

the complex ω-plane. We detect strong peaks, indicating a

strong response to forcing at the peak frequencies. These

strong peaks appear correlated to the location of the least sta-

ble eigenvalues of the respective flows. Alternatively, these

plots can also be thought of as transfer functions where the

system given by L acts as a filter: amplifying certain frequen-

cies while damping others.

4.2 The resonant limit

The resolvent norm is a less familiar concepts for quan-

tifying forced responses to external, harmonic driving, just as

the matrix exponential norm is less common than an assess-

ment of the spectrum for stability considerations. As before,

we apply an eigenvalue decomposition of the system matrix,

i.e., L = VΛV−1, to establish a link between the resolvent

norm and more standard tools for the treatment of forced so-

lutions. We have

R(ω) = ‖C(iωI−L)−1B‖2
E ,

= ‖CV−1(iωI−Λ)−1VB‖2
E . (26)

The inner part of the final expression, containing the

eigenvalue matrix Λ, can be written as a diagonal matrix

with 1/(iω−λ j) on the diagonal. Each individual term mea-

sures the inverse distance of the external forcing frequency

with the eigenvalues of our linear system. This is the clas-

sical definition of a resonance: the coincidence of the driv-

ing frequency with an eigenfrequency of the driven system.

This classical definition of a resonance (based on eigenval-

ues only) discards the information contained in the eigenvec-

tor structure the same way as the definition of stability based

on the spectrum ignored the same information. For normal

system matrices L this is justified as the eigenvector matrix
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Fig. 12. Resolvent norm ‖(iωI− L)−1‖ for plane Poiseuille (top)

and plane Couette flow (bottom), thick black line. The parameters

are: α = 1,β = 0.25 and Re = 2000 for plane Poiseuille flow and

Re = 1000 for plane Couette flow. The thin red line represents the

resonant limit, based on the inverse of the minimal distance of the

forcing frequency ω to the spectrum. The results are obtained with

the routine Resolvent.m.

V (and its inverse) is unitary in this case, representing ro-

tations that do not alter the norm of the matrix (iωI− L)−1

in the expression above. For nonnormal system matrices L,
though, the eigenvector structure plays an important role, and

large responses due to forcing can occur even if the forc-

ing frequency is far from an eigenvalue of the system matrix

L. These instances are referred to as pseudo-resonances [4].

For highly nonnormal matrices they cannot be distinguished

from true resonances. The response curves based on eigen-

values only is given by thin red lines in figure 12; the differ-

ence between the red and black curves has to be attributed

to nonnormal effects involving the non-orthogonality of the

eigenvectors.

4.3 Recovering the optimal forcing and response

Analogous to the initial-value problem discussed in §3,

it is often instructive to identify the shape of the forcing

which produces the largest response in the flow, together

with the flow response. To this end, we select a specific fre-

quency ω∗ and use, as before, the singular value decomposi-

tion (SVD) of the matrix (iω∗I−L)−1. We have

(iω∗I−L)−1V = UΣ (27)

where V and U are unitary matrices with ortho-normalized

columns and Σ is a diagonal matrix containing the singular

values.

As mentioned above for the optimal initial condition, the

largest singular value is equivalent to the norm of the decom-

posed matrix, i.e., the resolvent, and the first column ofV and

U define the optimal forcing and response, respectively. The

computation of the optimal forcing thus amounts to a singu-

lar value decomposition of the resolvent matrix for a given

forcing frequency ω∗; see also section 3.6 and figure 11.

Finally, we would like to point out the close link be-

tween the tools used for stability and receptivity analyses in-

troduced in the above two sections. In both cases, we con-

sider inputs (the initial condition q0 or the harmonic forc-

ing f̂) and measure outputs (the flow at time t, q(t), or the

response ĝ) — with a transfer matrix (the matrix exponen-

tial exp(tL) or the resolvent matrix (iωI− L)−1) connecting

the two. This connection recasts either problem as an input-

output problem; the associated analysis is referred to as an

input-output analysis.

4.4 Input-output analysis

The resolvent analysis based on (iωI− L)−1 measures

the response of the entire state (measured by its energy) to

a forcing in all components (again, measured by its energy).

More information about a fluid system can be gained by be-

ing more specific about the type of forcings and the type of

response. For this purpose, the matrices B and C, controlling

the type of input and output, respectively, can be adjusted to

determine the transfer behavior of specific forcings to spe-

cific responses. This type of analysis, referred to as com-

ponentwise input-output analysis [5], will give insight into

particular input-output combinations that are specially am-

plified (or suppressed) by the fluid system and will allow a

more mechanistic viewpoint than a pure global energy-based

analysis.

Our fluid system has been formulated in a compact nota-

tion using the normal velocity and normal vorticity. For our

input-output analysis, we will revert back to the three veloc-

ity component and consider the nine combinations arising

from forcing by and from measuring three different veloc-

ity components. The mappings between the v,η-formulation

and the u,v,w-formulation are given as follows



qin =

(
iαM−1D M−1k2 iβM−1D

iβ 0 −iα

)

︸ ︷︷ ︸

B





uin

vin

win



 , (28)





uout

vout

wout



=












iα

k2
D − iβ

k2

1 0

iβ

k2
D

iα

k2












︸ ︷︷ ︸

C

qout . (29)

The matrices B and C have already been introduced in the

definition of the resolvent norm. We will now use their

block-components to determine the transfer of energy be-

tween various velocity components in the forcing and var-

ious velocity components in the response. By considering

only certain blocks and setting the remainin block to zero,

we can determine the energy transfer between, say, the input

normal velocity v and the output velocity u. To eliminate the

dependence on the forcing frequency, we consider the maxi-

mal response over a given frequency range. Figure 13 shows

the nine combinations of input-output transfer functions for

a fixed Reynolds number but for varying wavenumbers α and

β. The colormap is constant across all panels, allowing a di-

rect comparison. It becomes immediately obvious that the

transfer from (v,w) to u is particularly efficient, showing the

largest amplification. All other panels are far inferior in their

amplification of forcing energy. In addition, for the domi-

nant energy transfer, perturbations with a vanishing stream-

wise dependence constitute the preferred structures; see the

black symbols indicating the maximum in each panel.

A similar picture emerges for plane Couette flow (see

figure 14). Also in this case, the most efficient amplifica-

tion of forcing energy follows the v → u and w → u route.

And again, disturbances that are streamwise independent

dominate over other structures. The most amplified waves

have a spanwise wavenumber of β ≈ 2. The efficient trans-

fer of streamwise independent (v,w)-structures into stream-

wise independent u-structures can be attributed to the lift-up

mechanism which converts streamwise vortices into streaks

(streamwise indpendent u-perturbations) in the presence of

mean shear.

The above input-output analysis, tuning the matrices B

and C, can also be used to extract physical mechanisms in

complex flows. An example is provided by results reported

in Klinkenberg et al. [6], based on a model by Saffman [7],

showing that transient growth is enhanced when coarse dust

is present in a channel flow.

We close this section by mentioning that the input-

output formulation of linear fluid systems is both flexible and

powerful and gives great insight into dominant mechanisms

at play and the coherent structures that are responsible for

the bulk of the energy transfer.

5 Sensitivity analysis of fluid systems

So far, we have studied the optimal response to ini-

tial conditions and to external forcing using an optimiza-

tion point-of-view intrinsic in the matrix norm of the ma-

trix exponential, resolvent or input-output transfer function.

A related, and in a sense, more encompassing issue is the

sensitivity of fluid systems to external or internal changes.

The external part has already been addressed above, but will

nonetheless be revisited here in light of sensitivity measures.

Sensitivity analysis is the starting point for many other fluid

problems, among them shape optimization, actuator/sensor

placement, flow manipulations and feedback control.

The core of this section will introduce a variational

framework which casts a constrained optimization problem

into an unconstrained one by using adjoint variables (or La-

grange multipliers). These adjoint variables will carry sen-

sitivity information that is valuable in its own right as well

as in combination with other flow variables. The full frame-

work is versatile and capable of answering many questions,

such as: how does drag respond to periodic forcing? how

does wall roughness influence dissipation rate? how do

blowing/suction strategies affect mixing efficiency? how do

changes in Reynolds number cause shifts in growth rates and

frequencies?

5.1 Eigenvalue sensitivity as a first indicator of nonnor-

mality

A first instructive exercise is the simple perturbation of

our system matrix L by small random perturbations. We are

in particular interested in shifts in eigenvalues due to an ad-

ditive perturbation. A simple perturbation analysis of the

eigenvalue problem λq = Lq can be cast into the form

(λ+∆λ)(q+∆q) = (L+∆L)(q+∆q) (30)

with ∆L as the given matrix perturbation and ∆λ and ∆q as

the resulting perturbation in the eigenvalue and eigenvec-

tor, respectively. Rearranging the above equation and left-

multiplying with a (yet) unknown vector p yields

pH(L−λI)∆q = pH(∆L−∆λI)q. (31)

We require the left expression to be identically zero for all

perturbations ∆q which leads to an equation for p of the form

0 = pH(L−λI), (32a)

= (LH −λ∗
I)p. (32b)
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Fig. 13. Componentwise input-output analysis for plane Poiseuille flow (Re = 2000). Each panel displays the maximal amplification over

all forcing frequencies, as a function of the streamwise and spanwise wavenumbers. In each panel, the black symbol indicates the maximum

response.

The above expression identifies p as an eigenvector of LH ,
the matrix adjoint to L. This vector is also referred to as the

adjoint or left eigenvector of L, and the problem involving LH

is known as the adjoint problem. The eigenvalues of the ad-

joint problem are simply the complex conjugate of the spec-

trum of L. We continue with the above derivation and arrive

at a relation between a matrix perturbation and the resulting

eigenvalue shift of the form

∆λ =
pH∆Lq

pHq
=

〈p,∆Lq〉
〈p,q〉 . (33)

Bounding the response of an eigenvalue due to an additive

perturbation of the matrix entries produces

|∆λ| ≤ ‖p‖ ‖q‖
|〈p,q〉| ‖∆L‖= 1

|cos(θ)| ‖∆L‖ (34)

where the angle θ between the direct and adjoint eigenvector

appears as a proportionality constant between the norm of

the matrix perturbation and the response in the associated

eigenvalue.

The results of a simple numerical exercise by which the

system matrix A of our simple 2× 2-system is perturbed by

random matrices of norm 10−2 is shown in figure 15. In



10
-3

10
-2

10
-1

10
0

10
-1

10
0

10
1

α

β

Hu→u

10
-3

10
-2

10
-1

10
0

10
-1

10
0

10
1

α
β

Hv→u

10
-3

10
-2

10
-1

10
0

10
-1

10
0

10
1

α

β

Hw→u

10
-3

10
-2

10
-1

10
0

10
-1

10
0

10
1

α

β

Hu→v

10
-3

10
-2

10
-1

10
0

10
-1

10
0

10
1

α

β

Hv→v

10
-3

10
-2

10
-1

10
0

10
-1

10
0

10
1

α
β

Hw→v

10
-3

10
-2

10
-1

10
0

10
-1

10
0

10
1

α

β

Hu→w

10
-3

10
-2

10
-1

10
0

10
-1

10
0

10
1

α

β

Hv→w

10
-3

10
-2

10
-1

10
0

10
-1

10
0

10
1

α

β
Hw→w

Fig. 14. Componentwise input-output analysis for plane Couette flow (Re = 1000). Each panel displays the maximal amplification over all

forcing frequencies, as a function of the streamwise and spanwise wavenumbers. In each panel, the black symbol indicates the maximum

response.

the nonnormal case (µ = 1) the eigenvalues deviate by far

more than 10−2 from their unperturbed location, while in the

normal case (µ= 0) we observe a dislocation of the perturbed

eigenvalues of approximately 10−2.

The same exercise — perturbation of the stability matrix

by a random matrix of norm ε — can also be applied to the

stability matrices of our two flow cases, plane Poiseuille and

plane Couette flow. The results of this exercise is displayed

in figure 16, where a superposition of the spectra of L+∆L
are shown. For a perturbation ∆L of norm ε = 5 · 10−3 and

ε = 10−3, respectively, we see that in both cases some of the

eigenvalues move by an order-one magnitude from their un-

perturbed locations, while other eigenvalues show very little

sensitivity to the added perturbations. Also in this case, the

angle between the direct and adjoint eigenvectors determines

the sensitivity of the corresponding eigenvalue. It is interest-

ing to note that the eigenvalues resulting from a perturbation

of ε are contained within the contour of the resolvent given

by ‖(iωI−L)−1‖ ≥ ε−1, see [8].

Exercise: Derive a link between a bound on the maximum

excursion of a perturbed eigenvalue from its unperturbed location

for a perturbation of norm ε and the resolvent norm contour of ε−1.
Verify your results numerically.

5.2 Adjoint modes

In the previous section we have seen how the eigenvec-

tor p of LH , the matrix adjoint to L, provides information
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Fig. 15. Sensitivity of eigenvalues, illustrated on the 2× 2-model

problem. (left) Superposition of 100 spectra of the perturbed non-

normal system matrix with µ = 1; (right) same for the normal system

matrix with µ = 0. In both cases, the norm of the perturbation matrix

is ||∆L||= 10−2.

about the system’s sensitivity. We next show how the ad-

joint eigenvalue problem and, more generally, solutions of

the adjoint system can be used to study the sensitivity of the

underlying flow to external and internal perturbations.

An important property of the adjoint modes has been

treated in [1]. Given two vectors we define an inner product

as 〈p,q〉 = pHq, from which we derive that the transpose

complex-conjugate matrix LH satisfies 〈p,Lq〉 = pHLq =
〈LHp,q〉 which also provides a definition of the adjoint ma-

trix LH .
Exercise: Compute the matrix adjoint to L associated with

the weighted inner product 〈p,q〉= pHQq.

From the above definition, we obtain

〈p,Lq〉= pHQLq = pHQLQ−1Qq,

where the adjoint matrix L+ is given by L+ = (QLQ−1)H =
Q−1LHQ.

If we consider the eigenpairs (qi,λi) and (p j,λ
H
j ) of the

matrix L and its adjoint, it is straighforward to show that the

eigenvalues of LH and L are complex conjugate to each other.

Starting with the identity 〈(λH
j −LH)p j ,qi〉= 0, we derive

〈p j,(λ j −L)qi〉= 〈p j,(λ j −L−λi+L)qi〉= 0, (35)

where we applied the definition of the adjoint and added 0 =
(λi −L)qi. After a few manipulations, we finally arrive at

(λ j −λi)〈p j,qi〉= 0 =⇒ 〈p j,qi〉= δi j. (36)

The last expression, with δi j as the Kroenecker delta, es-

tablishes the so-called bi-orthogonality condition: the eigen-

modes of the direct and adjoint matrix are orthogonal to each

other, if they are not associated with the same eigenvalue.

This condition can be exploited to project any initial condi-

tion or external forcing onto the basis formed by the system’s

eigenvectors.
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Fig. 16. Sensitivity of eigenvalues, for plane Poiseuille (left) and

plane Couette (right) flow. The unperturbed spectrum is illustrated

by red symbols. A superposition of 200 spectra (in blue) is shown for

α= 1,β= 0. The Poiseuille spectrum (for Re= 2000) is perturbed

by random matrices of norm ε= 5 ·10−3. The Couette spectrum (for

Re = 1000) is perturbed by random matrices of norm ε = 10−3.
The resolvent norm can be displayed in the complex plane using the

routine Resolvent.m.

5.2.1 Sensitivity to initial conditions and forcing

In many situations we are particularly interested in the

sensitivity of eigenvalues to initial conditions or external

forcing. Again, the adjoint solution is playing an important

role. Let us consider the asymptotic behavior of the driven

linear system

d

dt
q = Lq+ f (37)

with initial conditions q(0) = q0 and external forcing f. Ap-

plying the Laplace transform to (37) we obtain

[L+ sI] · q̂ = f̂(s)+q0 (38)
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Fig. 17. Sketch of two non-orthogoonal eigendirections, q1 and q2,

and the corresponding bi-orthogonal adjoint modes, p1 and p2. The

figure displays how the adjoint mode provides the largest projection

in the direction of the corresponding direct eigenvector.

with s as the Laplace variable. The solution of (37) can then

be formally written in terms of the inverse Laplace transform

as

q(t) =
1

2πi

∫ γ+i∞

γ−i∞
[L+ sI]−1 · (f̂(s)+q0) exp(st) ds. (39)

We can further simplify this expression by rewriting the op-

erator [L+ sI]−1 using its dyadic representation

[L+ sI]−1 = ∑
k

1

(s−λk)

qk pH
k

pH
k qk

, (40)

where pk and qk are, respectively, the left and right eigenvec-

tors of L (corresponding to the eigenvalue λk) satisfying the

equations

[L+λkI]qk = 0 pH
k [L+λkI] = 0. (41)

Using the residue theorem we obtain

q(t) =
1

2πi

∫ γ+i∞

γ−i∞
∑
k

1

(s−λk)

qkpH
k

pH
k qk

,

(f̂(s)+q0) exp(st) ds, (42a)

= ∑
k

qkpH
k

pH
k qk

(f̂(λk)+q0) exp(λkt), (42b)

= ∑
k

Akqk exp(λkt), (42c)

where the coefficients Ak, representing the amplitude of the

modal expansion, are given by

Ak =
pH

k

[

f̂(λk)+q0

]

pH
k qk

=
pH

k f̂(λk)+pH
k q0

pH
k qk

. (43)

This expression indicates how a specific mode is initial-

ized by the initial condition q0 or by an external (Laplace-

transformed) forcing f̂(λk). The adjoint vector pk is a deter-

mining factor in this expression; it can also be thought of as

the variable that quantifies the influence of initial condition

or external forcing on the temporal behavior of the solution

(expressed in terms of an eigenvector expansion).

This result shows that the optimal way to introduce an

unstable mode is not by initializing it at t = 0 but, rather,

to start with the adjoint mode. In the case of normal sys-

tems, these two modes coincide, while for non-normal sys-

tems they can differ substantially. In the latter case, using

the adjoint mode as an initial condition maximizes the mag-

nitude of the unstable mode while maintaining a specified

initial energy, as shown in the sketch in figure 17. As an ex-

ercise the reader can verify that for an unstable system and

for long optimization times (after all transients have died out)

the optimal initial condition is indeed the adjoint of the un-

stable mode.
Exercise: Compute the adjoint of the least stable mode, e.g.

for Poiseuille flow with Re = 10000, α = 1 and β = 0. Compute

the optimal initial condition for the same configuration and large

final time, t f = 1000. Compare the two results and explain what

you observe.

5.2.2 Sensitivity analysis using adjoint variables

Next, a more general derivation is presented that pro-

vides more detail on the specific terms of the Navier-Stokes

equations and their adjoint analogue. In particular, the role

of adjoints in the description of sensitivity measures will be

stressed. The following derivation is general and conceptu-

ally extends to more complex equations in a straightforward

manner, although with a sometimes substantial increase in

algebraic manipulations. In contrast to the previous section,

we will abandon the modal expansion and examine general

disturbances. To this end, we consider the continuous, lin-

earized, incompressible Navier-Stokes equations in primitive

variables according to

∂u

∂t
+L(U,Re)u+∇p = 0, (44a)

∇ ·u = 0, (44b)

where the linear operator L contains the base flow advection

and diffusive terms and is given by L(U,Re)u = U ·∇u +

u ·∇U − 1

Re
∇2u. Multiplying, respectively, by the differen-

tiable vector and scalar fields u+ and p+ and adding the two

resulting expressions, we obtain

(
∂u

∂t
+L(U,Re)u+∇p

)

·u++(∇ ·u) p+ = 0. (45)

Upon integration by parts over time and space, using a

spatio-temporal inner product covering the spatial domain D



and the time-interval [0 t], we can write

∫ t

0

∫
D

[(
∂u

∂t
+L(U,Re)u+∇p

)

·u++(∇ ·u) p+
]

=

−
∫ t

0

∫
D

[

u ·
(

∂u+

∂t
+L+(U,Re)u++∇p+

)

+ p(∇ ·u+)

]

∫ t

0

∂u ·u+

∂t
+

∫
D

∇ · J = 0,

(46)

where the adjoint operator L+ is given by L+(U,Re)u+ =
U ·∇u+−∇U ·u++ 1

Re
∇2u+ and the so-called bilinear con-

comitant J

J =U(u ·u+)+
1

Re

(
∇u+ ·u−∇u ·u+

)
+ p+u+ pu+, (47)

arises during integration by parts from the exact differentials

evaluated at the boundaries. Use of the divergence theorem

in (46) gives the generalized Green’s theorem for the lin-

earized Navier-Stokes equations. We now assume that both

u+ and p+ satisfy the equations defined by the double inte-

gral above; boundary conditions for these variables can be

chosen to simplify some of the boundary terms appearing in

J. The adjoint equations thus read

∂u+

∂t
+L+(U,Re)u++∇p+ = 0, (48a)

∇ ·u+ = 0. (48b)

The sign change in the diffusive term of L+ indicates that the

above adjoint equations have to be integrated backwards in

time to be well-defined.

Following the procedure of the previous section, we con-

sider the same linearized Navier-Stokes equations defined

by (44) with an external volume forcing f and a mass source

S. Substituting into the expression above and integrating in

time, we arrive at

u(t) ·u+(t) = u(0) ·u+(0)+

∫ t

0

∫
D

(
f ·u++ Sp+

)
+

∫
ΓD

J ·n.
(49)

If one then chooses the initial condition for the adjoint prob-

lem at time t to be u+(t) = u(t), eq. (49) shows that the

adjoint fields represent the effect of variations of the initial

condition, external forcing and mass source on the energy

of the perturbation at time t. In particular we see that the

adjoint field u+ acts as a filter for the initial condition u(0)
and external forcing f whereas the so-called adjoint pressure

p+ multiplies the mass source term. This implies that forc-

ing and initial excitations are most efficient in those regions

where the adjoint fields are largest, in agreement with the

observation that the best way to trigger a specific mode is by

using the velocity profile defined by its adjoint.

In the absence of external forcing f = 0 and mass

sources/sinks S= 0, we have u(t) ·u+(t)= u(t) ·u(t)= u(0) ·
u+(0) and the largest variation of the disturbance at a pre-

scribed final time t is obtained when u(0) is parallel to u+(0).
In a more formal way, the gradient of the disturbance energy

at some final time with respect to the initial condition is the

terminal solution of the adjoint equation ∇u(0)u
2(t) = u+(0).

In the same way, the variations of the final energy with re-

spect to any external forcing are given by the adjoint solution

∇f u2(t) = u+ and those with respect to mass sources by the

adjoint pressure, ∇S u2(t) = p+. The case of sensitivity to

boundary conditions is slightly more complicated: it can be

shown that in the case of non-homogeneous boundary con-

ditions at a wall (e.g. wall-normal blowing and suction), we

have

∇uwall
u2(t) =

1

Re
∇u++ p+ ·n, (50)

with n as the unit vector normal to the boundary. Equa-

tion (49) is general and valid for generic disturbances, not

only for modal waves: the sensitivity map is obtained by a

single calculation of the linearized Navier-Stokes equations

and their adjoint. For practical purposes, one can iteratively

determine the most dangerous initial condition and forcing

by repeated time integration of (44) and (48), as shown,

among others, in [9–11]. For a review of the use of adjoint

equations for stability analysis the reader is also referred to

the forthcoming review [12]. The approach introduced above

can also be used to determine the effect of an external actua-

tion on an instability.
Example: Determine the wall distribution of blowing

and suction designed to reduce the growth of unstable Tollmien-

Schlichting waves over a flat plate.

Assuming we have a two-dimensional solver for the direct and ad-

joint Navier–Stokes equations linearized about a spatially evolving

boundary-layer flow, let us first integrate forward in time, with the

unstable wave at the inflow, until the disturbance has reached the

outflow boundary of the computational domain. We then choose

the final field as the initial condition for the backward-in-time in-

tegration of the adjoint Navier–Stokes equations. The wall stress

associated with the adjoint field, (50), then indicates where, when

and how to actuate at the wall to decrease/increase the disturbance

energy at the final time. This procedure provides information about

the location and timing that yields the largest effect on the distur-

bance evolution. See [11].

5.3 Parametric sensitivity

It should be apparent to the reader that the above

framework is far more flexible than demonstrated so far.

Changes in initial conditions, external forces and wall-

blowing/suction strategies are not the only variations of in-

terest. In particular, we often are interested in internal pertur-

bations, i.e., perturbation of the operator, rather than external

perturbations, i.e., perturbations in anything other than the

governing equations. Examples of the former kind would be

responses to changes in a wavenumber, the Reynolds number

(or any other non-dimensional parameter) or even the base



flow. For these types of changes, the response in, e.g., the

eigenvalue is given by a weighted inner product of the direct

and adjoint mode; the weight is given by a scalar or an oper-

ator. As an example, the response in an eigenvalue λ j due to

a change in the Reynolds number is given by (33) as

∆λ j =
pH

j ∆Lq j

pH
j q j

=
pH

j (k
2 −D2)q j

pH
j q j

∆Re. (51)

In a similar fashion, the change in eigenvalue with respect

to a change in wavenumber can be determined, i.e., ∆λ/∆α,
which is related to the group velocity of a perturbation and

forms the foundation of an analysis of absolute or convec-

tive instabilities in shear flows. The formulation involving

the adjoint can be used to circumvent the more cumbersome

deformation of Fourier-integration paths and the location of

pinch-points in the complex plane.

5.4 Structural sensitivity

It is often instructive to determine the location in the

computational domain that can be thought of as the origin

of an instability. This location is characterized by both a

high sensitivity of and a strong response in the most unstable

mode. It thus should not come as a surprise that both the

modal shape of the direct mode (measuring response) and the

shape of the associated adjoint mode (measuring sensitivity)

enter into the analysis of the origin of an instability.

5.4.1 The origin of an instability

In an attempt to gain physical understanding of an insta-

bility, the concept of a wavemaker, which locates the origin

of an instability, can be introduced. This concept identifies

the spatial location where a structured modification in the

governing equations produces the largest drift of an eigen-

value. In our case, this coincides with determining the region

where feedback from the velocity field to the external force

is most effective. The derivation underlying this analysis is

briefly outlined here for the discrete case. Further details and

the corresponding derivation for continuous operators can be

found in [13]. We start by introducing a feedback forcing in

our linear system

∂q

∂t
= Lq+ f = Lq+Mq (52)

by taking the external forcing f proportional to the state vec-

tor q via a matrix M. Recalling expression (33) we can state

∆λ =
pH∆Lq

pHq
=

∆L : pqH

pHq

and, identifying ∆L=M, we define the structural sensitivity

S as

S=
∆λ

∆L
=

pqH

pHq
(53)

which represents a matrix. If we consider a structural pertur-

bation, spatially localized at xn with a force proportional to

the local velocity, M = δ(x− xn)q, we deduce that S repre-

sents the sensitivity to a feedback forcing in a discrete point

xn of the vector q; in our discretized system, xn simplifies

to a specific wall-normal location. Different norms of the

matrix S can be used to build a spatial sensitivity map.
Exercise: Use the Matlab codes provided with this ar-

ticle and compute the structural sensitivity of the unstable mode

for plane Poiseuille flow (Re = 10000, α = 1). Do not forget to

use the energy weight matrix when computing the adjoint matrix

L+ = Q−1LHQ (see exercise above) and use equation (29) to ex-

tract the different velocity components. Compare the value of the

base flow U(y) at the location of maximum sensitivity with the phase

speed c = ω/α of the unstable mode.

5.4.2 Sensitivity to base-flow modifications

An even more challenging and interesting application

of the adjoint-based sensitivity framework involves an as-

sessment of the response of an eigenvalue with respect to

changes in the base flow [14]. This problem is closely re-

lated to passive flow control, as it addresses the issue of

a particular base-flow modification to avoid or delay the

onset of modal perturbation growth on the modified base

flow [15, 16]. When studying the structural sensitivity to

base-flow modifications we specify the type of variations of

the matrix L used in the derivation of (53). Within a linear

context, a variation of the eigenvalue can be caused not only

by a structural perturbation of the linearized equation but also

via a variation of the base flow U.
In what follows, we outline a procedure to obtain an

eigenvalue sensitivity when the base-flow modifications are

brought about by a small-amplitude steady forcing of the

Navier–Stokes equations; we do not assume any generic

modification. We start by assuming

∆L=
δL

δU
∆U (54)

to express (53) as

∆λ =
pH δL

δU
∆Uq

pHq
. (55)

To specify the type of base-flow variation, we assume that

U is a solution of the Navier–Stokes equations with a small,

steady structural perturbation proportional to the local veloc-

ity CU. Mathematically, we have N (U) = CU , with N as

the Navier-Stokes operator. Taking the first variation of the



expression above (in the limit of small perturbations), the

following relation is obtained for the base-flow modification

δN

δU
∆U ≈ CU =⇒ ∆U =

(
δN

δU

)−1

CU, (56)

where the forcing CU is constant. The structural sensitivity

to base-flow variations can then be recast by combining (55)

and (56) to yield

∆λ =

pH δL

δU

(
δN

δU

)−1

CU q

pHq
. (57)

Similarly to the case of the structural sensitivity to per-

turbations, when the feedback forcing is assumed to be local-

ized in space, the sensitivity becomes a spatial map given by

a dyadic product. The structural sensitivity presented in the

previous section assumes a local force proportional to the lo-

cal perturbation velocity, that is, a time-periodic forcing with

the frequency of the instability mode. In contrast, the sensi-

tivity considered here assumes a local force proportional to

the local base-flow velocity, that is, a steady forcing inducing

small base-flow deformations.

We now use the previous results to demonstrate and vali-

date a passive control strategy for the flow around a cylinder.

In principle, several approaches can be used to control the

flow behind a bluff body. A very simple one was suggested

by Strykowski & Sreenivasan [17] who introduced a small

control cylinder in the wake of the main cylinder. The effect

of a small control cylinder on the flow field can be studied

in terms of a structural sensitivity analysis as outlined above.

The placement of a small cylinder of diameter d∗ in the near

wake of a bluff body effectively results in a reaction force

acting on the fluid which modifies the flow field and leads

to a shift of the eigenvalue λ. Since the control cylinder is

small, its presence can be thought of as a localized struc-

tural perturbation of the governing equations representing a

localized feedback from velocity to force. In the limit of an

infinitesimal small control cylinder, the local reacting force

can be modeled by the first term of the Lamb-Oseen expan-

sion for the drag of a cylinder in a creeping flow according

to

f = δO=
4π

Re ln(
7.4

Rec

)
, (58)

where δO depends on the Reynolds number Re of the flow

under investigation and on the Reynolds number of the small

control cylinder Rec based on its diameter and the local ve-

locity. The expression for f represents pure resistance, i.e.,

a force whose direction is locally aligned with the local ve-

locity vector. This means that the local feedback matrix is

diagonal with elements of equal magnitude δO.
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Fig. 18. Streamlines and velocity magnitude for the base flow past

a circular cylinder at Re = 50.

It is important to note that the structural perturbation acts

both at the perturbation level by modifying in a direct way

the structure of the eigenvalue problem and at the base-flow

level by perturbing the steady base-flow which in turn af-

fects the linearized Navier-Stokes operator. In order to build

a spatial map which can be used as a guideline for a con-

trol strategy, both effects must be taken into consideration,

i.e., the total eigenvalue drift is the sum of the two contri-

butions: structural sensitivity to base-flow modifications and

the structural sensitivity to perturbations (53). By inspecting

the real and imaginary part of the sensitivity measure, it is

possible to quantify the effect of the structural perturbation

on the growth rate and the frequency of the unstable mode,

respectively. A more detailed review of these concepts is

provided in Sipp et al. [18].

5.5 A complete analysis of a global instability

Before discussing various extensions of the receptiv-

ity and sensitivity analysis introduced so far, we will

work through the different steps of an inclusive recep-

tivity/sensitivity analysis associated with a flow instabil-

ity. To this end, we introduce the concept of global

modes [19]. Many relevant flow configurations are char-

acterized by multiple inhomogeneous coordinate directions;

therefore, one cannot use the Fourier transform to reduce

the governing equations to only one inhomogeneous di-

rection, as is the case for plane channel flows introduced

above. Rather, the eigenfunctions and the optimal initial

conditions/forcing depend on more than one coordinate di-

rection. In other words, while in parallel wall-bounded

shear flows (such as channel flow) we seek solutions of the

form ũ(x,y,z, t) = u(y)exp [i(αx+βz−ωt)], in more gen-

eral geometries we are interested in solutions expressed as

ũ(x,y,z, t) = u(x)exp(−iωt).
For simplicity, we will consider as a test case the two-

dimensional flow past a circular cylinder: this flow is known

to undergo a first bifurcation from a two-dimensional steady

state U(x,y) to a two-dimensional periodic limit cycle as the

Reynolds number, based on the free-stream velocity and the

cylinder diameter, increases above Rec = 47. The analysis is

presented for a modal instability: a supercritical Hopf bifur-

cation. A similar approach can be followed for a globally sta-

ble system characterized by large transient growths (see [20]

for an example of the latter).
Example: Analysis of the first bifurcation of incompressible

flow past a circular cylinder.
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Fig. 19. (Top) Spectrum of eigenvalues and (bottom) unstable

global mode, real and imaginary part, for the flow past a circular cylin-

der at Re = 50.

1. Base flow

The first step consists of the computation of a base flow, see

figure 18. The steady base flow cannot be computed by time-

marching the Navier–Stokes equations due to a global instability

for Reynolds numbers larger than Re = 47. In such cases, one can

resort to Newton iterations or, in some cases, exploit the symmetry

of the instabilities. In our case, this would amount to considering

only the upper half of the domain and impose symmetry conditions

at the centerline: under this setup, asymmetric unstable modes

are not feasible, and the flow will eventually converge to a steady

state. More recently, a procedure denoted as selective frequency

damping (SFD) has been proposed to eliminate instabilities by

low-pass filtering the velocity field; this technique causes the

filtered simulations to eventually converge to a steady state [21].

This approach allows us to use an existing Navier–Stokes solver

and still adopt a time-marching procedure.

2. Modal analysis

The second step includes the computation of the eigenvalues

(spectrum) and eigenmodes of the system. The spectrum for flow

around a cylinder at Re = 50 and the corresponding unstable

global mode are illustrated in figure 19. Note the appearance of

two unstable eigenvalues characterized by the same absolute value

of the frequency owing to the time-invariance of the problem. The

shape of the global mode displayed in the lower panel of the same

figure shows the shedding of a traveling mode behind the cylinder.

Only a part of the computational domain is shown, and care has to

be exercised regarding its truncation to arrive at converged results.

3. Adjoint modes and receptivity

As discussed above, the adjoint global mode represents the initial
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Fig. 20. Adjoint of the unstable global mode (real and imaginary

part) for flow past a circular cylinder at Re = 50.

 

 

0 2 4
-3

-2

-1

0

1

2

3

0

0.05

0.1

0.15

 

 

0 2 4
-3

-2

-1

0

1

2

3

-0.04

-0.02

0

0.02

0.04

Fig. 21. Structural sensitivity (the wave maker) for flow past a circu-

lar cylinder at Re = 50. Variations of the real and imaginary part of

the eigenvalue are reported in the figure.

condition that projects maximally onto the associated global

mode. In addition, its maximum reveals the location in the

flow domain where an external forcing most efficiently triggers

the corresponding global mode. The adjoint mode, associated

with the unstable global mode, is shown in figure 20 for flow

past a circular cylinder at Re = 50. Interestingly, the regions

most receptive to external forcing are located on the sides of

the cylinder and inside the recirculation zone. Non-negligible

receptivity to external forcing is also found upstream of the cylinder.

4. Structural sensitivity: the wave maker

The point-wise product of adjoint and direct mode provides

information about the region in space where a feedback-forcing

proportional to the local velocity has the largest impact on the

eigenvalue drift. This region is referred to as the core (or origin) of

the instability or the wave maker: since small structural perturba-

tions of the system will have the largest impact on the instability,

this is the region in space where the instability originates. Due

to the fact that the system eigenvalues are complex numbers,

the sensitivity can be divided into real and imaginary part,

corresponding to variations of the frequency of the unstable mode

and of its growth rate. The wave maker for the first bifurcation of

flow past a circular cylinder is depicted in figure 21. It is located

symmetrically near the re-circulation zones behind the cylinder.

5. Sensitivity to base-flow modifications

Finally, we display the sensitivity to base-flow modifications, fig-

ure 22. The top panel displays the shift of the real and imaginary

part of the least stable eigenvalue in the presence of base-flow mod-

ifications induced by a purely resistive force, proportional to the lo-

cal base flow and directed against it. Comparing to the structural

sensitivity to external perturbations (see figure 21), we observe that

modifications of the base flow are most effective, if implemented

near the boundaries of the re-circulation region, somewhat farther

away from the symmetry axis. The bottom panels in the figure show
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Fig. 22. Sensitivity to base-flow modifications and total sensitivity to

a localized resistance force for flow past a circular cylinder at Re =
50. Variations of the real and imaginary part of the eigenvalue are

reported in the figure.

the total eigenvalue shift, as induced by base-flow modifications due

to a feedback forcing proportional to the local mean velocity and by

a structural feedback proportional to the local perturbation veloc-

ity. This type of analysis provides first suggestions on the passive

control of an instability: by forcing the system with a smaller con-

trol cylinder, strategically placed in the wake of the principal one,

we are able to optimally delay the onset of vortex shedding and thus

stabilize the flow. It is important to keep in mind that the sensitivity

analysis is targeting the least stable mode. For a complete analysis

of the effect of passive control strategies, one also has to verify that

formerly stable modes are not destabilized by the proposed actua-

tion.

6 Extensions

The techniques, tools and methodology described in this

article provides a more complete and encompassing treat-

ment of linear fluid systems. Even though we have demon-

strated these techniques on toy models and rather generic

flow configurations (plane Couette flow, plane Poiseuille

flow, flow around a cylinder), they apply — in principle —

to flows with more complexity, inhomogeneous dimensions

and complicated flow behavior. While generalizing the tech-

niques above to these situations exceeds the scope of this ar-

ticle, we shall briefly outline the extensions most commonly

encountered in fluid systems.

6.1 Computing global modes

Most problems dealing with the stability of fluid flow

have inhomogeneous directions and in general take place in

a more complex geometry than those covered in this article.

The theoretical framework introduced so far is unchanged in

the latter case; however, difficulties arise due to the substan-

tial computational costs associated with significantly larger

system matrices.

From a physical point of view, it is interesting to note

that when dealing with open, spatially evolving flows, e.g.,

Table 2. Computational storage cost for the state vector q and the

system matrix L and operation count for stability problems with one

and two inhomogeneous directions. N: number of grid points in one

coordinate direction.

case q L Operation count

q(x) O(N) O(N2) O(N3)

q(x,y) O(N2) O(N4) O(N6)

in the presence of an inhomogeneous streamwise direction, a

new source of non-normality appears: the so-called stream-

wise non-normality [22], in contrast to the case of chan-

nel flows where the non-normality is defined as component-

wise. In non-normal systems, the direct and adjoint eigen-

vectors are not parallel and their inner product tends to be-

come very small. In parallel shear flows, direct and adjoint

modes are varied in different velocity components, as re-

flected by the fact that the optimal initial condition and re-

sponse consist of different velocity components: dominantly

wall-normal velocity for the initial condition and dominantly

wall-normal vorticity, parallel to the streamwise velocity, for

the flow response. In open flows, on the other hand, direct

and adjoint global modes have different spatial support (typi-

cally, upstream for the adjoint mode and downstream for the

direct mode) so that their overlap is limited and their inner

product small. This feature reflects the spatial amplification

of unstable waves, which eventually decay or leave the com-

putational domain.

In table 2 we list the increase of storage and compu-

tational time associated with a stability problem where two

coordinate directions are inhomogeneous. In the case of

multiple inhomogeneous directions, direct eigenvalue algo-

rithms quickly become prohibitively expensive, and one has

to resort to iterative algorithms such as the Arnoldi tech-

nique [23].

The idea underlying the Arnoldi procedure is to reduce

the system by approximating the action of the linear oper-

ator in an orthonormal basis V, see figure 23. By repeated

application of the system matrix L to a starting vector, a

Krylov subspace is formed, which, after orthonormalization,

is used to reduced the stability matrix L to a low-dimensional

representation, the upper Hessenberg matrix H. Some of

the eigenvalues of the original matrix are approximated by

those of the reduced-order matrix, i.e., eig(H)⊂ eig(L). The

Arnoldi technique can be applied to any matrix whose action

of a given vector can be computed in a convenient way, e.g.,

the exponential matrix exp(tL) for modal stability problems,

or the symmetric matrix exp(tL)exp(tLH), whose eigenval-

ues are the singular values of the exponential matrix, for tran-

sient growth analyses.

For completeness, the algorithm below lists the code

segment necessary to build the k-th column vk in V and the

entries in the matrix H, given the previous set of columns

{v1, ...,vk−1}.



Fig. 23. Sketch of the numerical procedure used to approximate a

matrix L by the Hessenberg matrix H using the orthonormal basis

V .

vk = Lvk−1

for j = 1 : k− 1

H j,k−1 = 〈v j,vk〉
vk = vk −H j,k−1v j

end

Hk,k−1 = ‖vk‖
vk = vk/Hk,k−1

The Arnoldi algorithm above has been used to compute the

global modes for the flow past a circular cylinder used in

the example of the previous section. For other examples of

global modes describing features of flows in complex ge-

ometries, the reader is referred to [19,24–26], among others.

6.2 Generalization to time-dependent base flows

The base flow about which we have linearized our gov-

erning equations has been assumed to be time-independent,

yielding a linear time-invariant (LTI) system. In many appli-

cations, however, the base flow is time-dependent. Startup or

inlet flows or flows produced by a periodic or non-periodic

pressure gradient (such as in pumps or turbomachinery) are

examples where the time-invariance assumption does not

hold for the base flow and U = U(x, t). Linearization about

a time-varying base flow yields a time-varying system ma-

trix L(t). In this case, we cannot express the solution of the

initial-value problem in the form of a matrix exponential.

Nonetheless, we can introduce the concept of a propagator

P(t), a linear operator that maps the initial condition q0 to

the perturbation q at a later time t according to

q(t) = P(t)q0. (59)

As before, we seek the largest possible energy amplification,

optimized over all admissible initial disturbances, using the

energy-based inner product 〈·, ·〉E , and arrive at

G(t) = max
q0

〈q,q〉E

〈q0,q0〉E

= max
q0

〈P(t)q0,P(t)q0〉E

〈q0,q0〉E

=

max
q0

〈PH(t)P(t)q0,q0〉E

〈q0,q0〉E

. (60)

Fig. 24. Sketch of adjoint looping procedure. Power iterations are

used to determine the principal eigenvector and eigenvalue corre-

sponding to the optimal initial condition and growth for any time-

dependent flow. The propagator P evolves the initial condition from

t = 0 to some final time t, while PH backpropagates a terminal vec-

tor from t to t = 0 using the adjoint equation.

From this last expression we see that the optimal amplifica-

tion is given by the largest eigenvalue of the symmetric (nor-

mal) matrix PH(t)P(t). The principal eigenvector and eigen-

value can be found simply by power iteration, see figure 24,

but the Arnoldi procedure is also a viable alternative, if more

than one mode is sought.

The largest eigenvalue is obtained by iteratively apply-

ing the composite mapping PHP according to

q
(n+1)
0 = ρ(n)PHPq

(n)
0 . (61)

We note that in general the matrices P(t) and PH(t) are not

explicitly available for time-dependent flows; however, their

action on a vector q0 can be computed straightforwardly. To

this end, we proceed in two steps

w = Pq
(n)
0 , q

(n+1)
0 = ρ(n)PHw. (62)

This two-step process amounts to propagating an initial con-

dition forward in time over a given interval [0, t] after which

the adjoint initial condition, w, is evolved backward in time.

At the end of each iteration, the initial condition is scaled to

unit energy by the factor ρ(n). Convergence of the adjoint

looping process can be assessed by monitoring the relative

variations of ρ(n) or of q
(n)
0 . It is apparent that this itera-

tive technique (adjoint looping) can be applied to any general

time-dependent fluid system and thus allows the treatment of

a far larger class of stability problems.

6.3 Link to constrained optimization

We have seen that the optimal growth problem can be re-

formulated in variational form as a constrained optimization

problem. This fact offers the possibility to enforce a great

variety of constraints and governing equations, even nonlin-

ear equations as will be discussed briefly below. The general

idea of constrained optimization is shortly introduced here;

more details can be found in the respective tutorial of this

issue and in [27].



To demonstrate the potential of this approach we con-

sider a slightly modified problem and take the time integral

of the disturbance energy from t = 0 to some time t f as

our cost objective. We introduce a functional J = {〈q,q〉}
where {·} indicates integration in time over the interval

[0, t f ]. Our constraint requires that q is a solution of the lin-

earized Navier–Stokes equations, written here for simplic-

ity as dq/dt − Lq = 0, including conservation of mass. In-

stead of direct substitution of this constraint into the cost

functional (using the matrix exponential for LTI systems),

we enforce the governing equation via a Lagrange multiplier

q+. This has the advantage that the solution of the governing

equations does not need to be known explicitly. The sec-

ond condition we need to impose is the initial perturbation

energy, which we normalize to one for the linear case con-

sidered here. We thus have

L = J−
〈

q+,
d

dt
q−Lq

〉

−σ(〈q0,q0〉− 1). (63)

The functional L reads L(q,q+,q0,σ), and its first variations

must be zero at optimality. The first two variations simply re-

state the imposed constraints

δL

δq+
= 0 =

d

dt
q−Lq, (64a)

δL

δσ
= 0 = 〈q0,q0〉− 1. (64b)

The variations with respect to the disturbance field q and the

initial condition q0 can be obtained using integration by parts

L = J −〈q+(t f ),q(t f )〉+ 〈q+
0 ,q〉+

〈

− d

dt
q+−LHq,q

〉

−σ(〈q0,q0〉− 1),

where we assume a zero initial condition q+(t f ) for the ad-

joint problem. The remaining optimality conditions follows

as

δL

δq
=− d

dt
q+−LHq++ 2q,

δL

δq0
= q+

0 − 2σq0. (66)

The first expression above defines the adjoint problem per-
taining to our objective functional (the time-integral of the
perturbation energy). We particularly stress the fact that the
adjoint system is forced by the solution of the direct prob-
lem q. From a practical point of view, this implies that the
solution must be stored and used when solving the adjoint
problem. The second relation in (66) dictates that the ini-
tial condition of the direct problem should fall parallel to the
adjoint solution at final time t = 0. The optimal initial condi-
tion, satisfying (64) and (66), can be obtained iteratively as
described below.

(i) Given an initial guess q
(n)
0 , we march the governing equa-

tions forward in time and retain the solution q(n)(t).

(ii) We solve the adjoint problem defined in (64) with ho-

mogenous initial conditions and forcings q(n)(t).
(iii) We rescale the final solution of the adjoint prob-

lem to obtain a next (and improved) guess q
(n+1)
0 =

q
+(n)
0 /〈q+(n)

0 ,q
+(n)
0 〉.

(iv) If |q(n+1)
0 −q

(n)
0 |> ε, we proceed to step (i); ε as a given,

user-specified tolerance.
Exercise: Show that the variational form of the optimization prob-

lem defined in section 3, maximum possible disturbance energy at fi-

nal time over initial disturbance energy, results in the conditions ob-

tained for general time-dependent system and that these are solved

by (61) as in figure 24.

6.4 Nonlinear analysis

We would like to conclude this review with a brief ref-

erence to a full nonlinear analysis. A variational formulation

is most appropriate in this case as the governing equations to

be added as a constraint are not limited to linear equations

but can also consist of the nonlinear Navier-Stokes equa-

tions. Nonlinear optimals in canonical wall-bounded shear

flows have recently been the object of several research ef-

forts [28–30]. Adding the nonlinear Navier-Stokes equations

to the augmented cost functional, the resulting adjoint sys-

tem is still linear, since the adjoint variable enters linearly

into the augmented cost functional. However, regardless of

the objective functional considered, the solution of the for-

ward problem appears in the adjoint system in the form of

variable coefficients. This can be most easily seen by con-

sidering the first variation of the nonlinear convective term

of the incompressible Navier-Stokes equations. We have

〈u+,u∇u〉 =⇒ 〈−u∇u+,δu〉. (67)

Therefore, the flow fields from the forward sweep have to be

stored and inserted during the backward sweep. For large

systems and long optimization horizons, these storage re-

quirements may become restrictive. In this case, a check-

pointing procedure can be used which stores direct solutions

at only a few, strategically placed, instants (checkpoints) in

time; during the backward sweep, these checkpoint solutions

will be used as initial conditions to recover the direct solu-

tions between two consecutive checkpoints which then will

be inserted in the backward sweep. The extra effort in addi-

tional forward simulations translates into a benefit of reduced

storage requirements. Recent studies have concentrated on

an optimal placement of the checkpoints which exploits the

available memory resources in the best possible manner dur-

ing the optimization procedure. Once checkpointing has

been taken into account, the adjoint looping procedure dis-

cussed in the previous two sections is still applicable in the

nonlinear regime.

As an example of a nonlinear optimization, we summa-

rize the formulation adopted in [30]. In this work the objec-

tive functional is the time-averaged dissipation

J =
1

T

∫ T

0

1

Re
∇u : ∇u dt, (68)



and the augmented Lagrange functional reads

L = J−
∫ T

0
〈u+,NS(u)〉+ 〈p+,∇ ·u〉 dt−

σ [〈(u0 −U),(u0 −U)〉− ε0] , (69)

where u+, p+, σ are the Lagrange multipliers, i.e., the ad-

joint variables. The nonlinear Navier–Stokes equations have

been abbreviated as NS, and ε0 stands for the initial kinetic

energy of the perturbation. As before, the velocity vector and

the base flow are denoted by u and U, respectively.
Exercise: Given the variational form defined by (69)

and (68), show that the linear system for the adjoint variable u+

is forced by the term

− 1

T Re
∇2u. (70)

7 Summary and conclusions

We have presented a suite of tools and techniques for the

analysis of fluid systems as to their stability, receptivity and

sensitivity. An argument for the replacement of eigenvalue-

based, modal analysis in favor of an optimization-based,

nonmodal approach has been made, and methods have been

introduced to quantify the response to initial conditions, to

external harmonic forcing, to a time-dependent base flow,

and to localized base-flow modifications. A variational

framework has proven flexible and efficient in addressing rel-

evant questions related to the linear (and nonlinear) behavior

of fluid systems. In particular, adjoint variables — carry-

ing sensitivity and gradient information — play an important

role in the analysis. It is hoped that this more complete de-

scription of stability, receptivity and sensitivity characteris-

tics of fluid flow will become more commonplace in the fluid

dynamics community; this article is intended to support this

effort.

The reader is encouraged to work through the exercises

and examples. Matlab-codes for most of the figures in this ar-

ticle are supplied at the NORDITA-website and are intended

to provide an easy and accessible introduction to the con-

cepts of this tutorial article. They should give researchers

and graduate students interested in these techniques a natural

starting point for their own studies of the stability, receptivity

and sensitivity of fluid systems.
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