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The nonlinear stability of laminar sinuously bent streaks is studied for the plane Couette flow at Re = 500
in a nearly-minimal box and for the Blasius boundary layer at Reδ∗ = 700. The initial perturbations are
nonlinearly saturated streamwise streaks of amplitude AU perturbed with sinuous perturbations of amplitude
AW . The local boundary of the basin of attraction of the linearly stable laminar flow is computed by bisection
and projected in the AU − AW plane providing a well defined critical curve. Different streak transition
scenarios are seen to correspond to different regions of the critical curve. The modal instability of the streaks is
responsible for transition for AU > 25−27% for the considered flows, where sinuous perturbations of amplitude
below AW ≈ 1 − 2% are sufficient to counteract the streak viscous dissipation and induce breakdown. The
critical amplitude of the sinuous perturbations increases when the streamwise streak amplitude is decreased.
With secondary perturbations amplitude AW ≈ 4%, breakdown is induced on stable streamwise streaks with
AU ≈ 13%, following the secondary transient growth scenario first examined by Schoppa & Hussain (J. Fluid
Mech. 453, 2002). A cross-over, where the critical amplitude of the sinuous perturbation becomes larger than
the amplitude of streamwise streaks, is observed for streaks of small amplitude AU < 5 − 6%. In this case
the transition is induced by an initial transient amplification of streamwise vortices, forced by the decaying
sinuous mode. This is followed by the growth of the streaks and final breakdown. The shape of the critical
AU − AW curve is very similar for Couette and boundary layer flows and seems to be relatively insensitive
to the nature of the edge states on the basin boundary. The shape of this critical curve indicates that the
stability of streamwise streaks should always be assessed in terms of both the streak amplitude and the
amplitude of spanwise velocity perturbations.
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I. INTRODUCTION

Streamwise streaks are narrow regions of excess or de-
fect streamwise velocity that are elongated in the stream-
wise direction. Their existence was first remarked in
boundary layers forced by free-stream-turbulence1–3 and
it was then realised that they play an essential role in
the buffer layer of turbulent shear flows4. Further in-
vestigations have revealed the presence of these struc-
tures at all scales in virtually all shear flows in the tran-
sitional and turbulent regimes. Streamwise streaks are
very efficiently generated from streamwise vortices via
the lift-up effect.5,6 The ratio of the energy of the streaks
compared to the energy of the vortices that have gen-
erated them can reach values of the order of the square
of the Reynolds number7 even with a stable base flow.
These very large energy amplifications are related to
the strongly non-normal nature of the linearized Navier-
Stokes operator for shear flows8,9 and the associated tran-
sient energy growths and sustained harmonic responses
have been computed for all the canonical shear flows.
Streamwise uniform streaks of large enough amplitude

are known to become unstable via an inviscid inflectional-
type mechanism.10–13 In laminar flows the unstable
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modes are streamwise non-uniform with a streamwise
wavelength of the order of the spanwise wavelength of
the streaks. Usually the first unstable modes are sinuous
and have the same spanwise wavelength of the streaks
(fundamental modes). The instability of the streaks is
important because the amplification of the secondary
mode leading to the streak breakdown allows to regen-
erate streamwise vorticity and close the loop of self-
sustained processes. It was indeed proposed that such
an endogenous self-sustained process is essential in the
understanding of turbulent dynamics in the near-wall
region,14,15 and it has been shown that a similar sce-
nario is likely to induce subcritical transition in laminar
channel flows.11,16

The original view that a secondary modal instability
of the streaks is necessary for their breakdown has been
questioned by Schoppa & Hussain.17 These authors use
data extracted from near-wall DNS of turbulent channel
flows and note that only less than 20% of the near-wall
streaks exceeds the critical amplitude for secondary in-
stability. They suggest as relevant breakdown mechanism
the transient growth of secondary perturbations riding on
top of modally stable streaks. Optimal secondary tran-
sient growths have been computed for boundary layer and
channel flows streaks18,19. Similar considerations arise in
the case of the transition induced by free-stream turbu-
lence in the flat plate boundary layer where transition to
turbulence is observed for streak amplitudes below the
critical threshold for secondary instability. Also in this
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case alternative mechanisms have been proposed to by-
pass the secondary instability of the streaks.20,21 For in-
stance, Brandt et al.20 perform numerical simulations of
collision of finite-length streaks and show that this is able
to initiate the breakdown below the critical amplitudes.
The recent analyses of the instability of linearly stable

streaks can be rationalized by recognizing the subcrit-
ical nature of the streaks breakdown e.g. revealed by
the continuation procedure used by Waleffe22,23 to find
self-sustained nonlinear states. If streaks of large enough
amplitude, above the critical one, will experience break-
down even in the presence of infinitesimal perturbations,
linearly stable streaks will need perturbations of finite
amplitude to undergo breakdown; and indeed finite am-
plitude perturbations were considered in previous inves-
tigations of streaks breakdown17,20.
In all the previous studies on secondary streak tran-

sient growth and streak breakdown, however, a system-
atic quantitative analysis of the critical secondary per-
turbation amplitudes is missing and it is therefore diffi-
cult to appreciate the actual relevance of the proposed
subcritical scenarios. The scope of the present study is
therefore to quantify the breakdown boundary in terms
of the amplitude of the streaks and of their secondary
perturbations. The secondary perturbations will be as-
sumed to be sinuous, as this is the shape of the critical
unstable mode and of the perturbations observed in the
breakdown. This is equivalent to investigating the shape
of the boundary of the basin of attraction of the lami-
nar solution for a two-parameter family of sinuously bent
streaks.
We introduce the main processes we are interested in

with the help the simple toy model of Waleffe10 in sec-
tion 1. For this model, we determine the local boundary
of the basin of attraction of the laminar solution in terms
of amplitudes of the streamwise streak and of its span-
wise perturbation. The relation between the local basin
boundary and the lower branch saddle solutions, the edge
state of this system, is also discussed on the toy model.
The main ideas discussed in section 1 are then applied to
the plane Couette flow at Re = 500 and to the Blasius
boundary layer at Reδ∗ = 700 in sections 2 and 3 respec-
tively. Finally, the main implications of the results are
discussed in section 4.

II. INTRODUCTORY ANALYSIS ON A TOY MODEL

We first develop our arguments on the simple four-
dimensional model system proposed by Waleffe:10,24

du/dt = −(k2u/R)u+ σuv − σw w2 + σu mv (1a)

dv/dt = −(k2v/R)v + σv w
2 (1b)

dw/dt = [−(k2w/R) + σw u− σm m− σv v]w (1c)

dm/dt = −(k2m/R)m− σu u v (1d)

The system is designed to mimic the nonlinear dynamics
of streamwise vortices of amplitude v, streamwise streaks

of amplitude u, sinuous perturbations to the streaks of
amplitude w and the change m to the mean shear in-
duced by these perturbations at the Reynolds number R.
The same coefficients as those considered in Ref. 24 have
been selected ([km, ku, kv, kw] = [1.57, 2.28, 2.77, 2.67]
and [σu, σv, σw] = [1.29, 0.22, 0.68]) with the exception
of the choice σm = 0, as in Ref. 15. We define the state
vector as u = [u, v, w,m]. The ‘laminar solution’ u = 0
is linearly stable for all R, but the linear non-normal cou-
pling σuv in the equation for the evolution of the streaks
u sustains optimal transient energy growths25 propor-
tional to R2 at sufficiently large R. The optimal lin-
ear initial condition is essentially composed of streamwise

vortices (u
(opt)
V ≈ [0, 1, 0, 0]) and the corresponding opti-

mal output is essentially composed of streamwise streaks

(u
(opt)
U ≈ [1, 0, 0, 0]).
Following the approach used in a number of previous

studies13,18,19,26,27, nonlinear primary streaky base flow
can be generated by using the linear optimal initial per-

turbations with finite amplitude A1u
(opt)
V as initial con-

dition for the nonlinear system (1). Typical examples
of the streak transient nonlinear growth for two selected
amplitudes A1 are reported in panels (a) and (b) (solid,
red line) of Fig. 1. Near the times of maximum growth
the solutions are of the form U1 ≈ [U, 0, 0,M ].

Analysis of the eigenvalues of the linearized opera-
tor show that U1 is (locally in time) unstable when
U > Uc = k2w/(Rσw) with the unstable mode uW =
[0, 0, 1, 0]. Uc therefore represents the critical amplitude
of streaks, above which secondary instabilities can grow
leading to streak breakdown and transition. As the pri-
mary base flow is actually decaying for t > tmax, values
of U well above Uc are often required to trigger the streak
breakdown11 with very low initial amplitudes of the sec-
ondary mode uW , especially at low or moderateR. When
U < Uc the primary streaks are linearly stable but recog-
nizing that the streak instability is subcritical, one should
be able to observe breakdown for suitable perturbations
of sufficiently large amplitude. To investigate this issue
we therefore add a secondary perturbation A2uW , a sin-
uous mode, to the streaky primary baseflows U1 at the
time of their maximum amplitude (the small triangles in
Fig. 1) and track their long-time evolution. When the
secondary perturbation is too small, the solution relaxes
to the laminar solution, while for sufficiently large sec-
ondary perturbation amplitudes, the solution is attracted
to a finite equilibrium point, corresponding to an upper
branch solution uUB in the terminology of Waleffe10,24.
The critical secondary perturbation amplitude is found
by bisection.11,16

As seen in Fig. 1, if the bisection is sufficiently refined,
the solutions remain for a finite time on the boundary of
the basin of attraction of the laminar solution and are
attracted to the lower branch saddle solution uLB before
eventually escape to the upper branch solution or to the
laminar solution. Here, uLB represents the ‘edge state’
of the system.28–30

The saddle point uLB is approached in different ways,
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FIG. 1. (Color online) Temporal history of the streaks amplitude u(t) (panels a and b) and trajectory in the u−w plane (panels
c and d) of selected solutions of eqn. (1) at R = 300 respectively corresponding to large (panels a and c) and small (panels
b and d) initial streak amplitudes. Solid line (red): primary streaks in the absence of secondary perturbations. Dashed line
(blue) primary streaks plus marginally stable secondary perturbations. Dotted line (green) primary streaks plus marginally
unstable secondary perturbations. The triangles correspond to the time at which the secondary perturbation is added on top
of the nonlinearly saturated streaks. The filled circle corresponds to the lower branch saddle solution.

depending on the initial primary streak amplitude. For
a primary base flow with primary streak amplitude well
above Uc, the ‘classical’ scenario is observed where the
growth of the secondary unstable perturbations (w) is
sustained even during the initial decay of the primary
streaks, before approaching the lower branch solution
and finally escaping it (panels a and c in Fig. 1). When
the primary streaks are stable (U1 < Uc), a secondary
perturbation with larger amplitude is needed to undergo
transition. In this case, the lower branch is approached
after an initial decrease of w, the secondary perturbation
amplitude, while a secondary growth of the streak am-
plitude u is occurring at the same time (panels b and d
in Fig. 1).

The secondary perturbation thresholds have been com-
puted for a full range of primary streak amplitudes and
are reported in Fig. 2. This figure conveys the essential
message of the paper. Because of the subcritical nature of
the sinuous instability of the streaks, the streak break-
down can be achieved for low-amplitude streaks, if the
amplitude of the secondary perturbations is sufficiently
large. To determine the fate of the streamwise streaks,
one should therefore consider not only the amplitude of
the streaks, but also the amplitude of their secondary

perturbations, unless the streak amplitudes are definitely
supercritical (U ≫ Uc). The set of threshold amplitudes
(the triangles in Fig. 2) represents a projection on the
u − w plane of the boundary of the basin of attraction
of the laminar flow in which the lower branch solution
uLB is contained. From the point of view of nonlin-
ear hydrodynamic stability, it is the whole shape of the
basin boundary that is important and not only the lower
branch solution. We believe that for real shear flow at
large Reynolds number the shape of the basin boundary
is more robust than the exact nature of the edge state
(steady, periodic or chaotic solution).

Interestingly, transition can be obtained even in the
almost complete absence of initial streaks and of initial
vortices, in accordance with previous findings.31 The un-
derlying mechanism can be easily understood in the case
of the model system. Consider an initial condition es-
sentially composed of spanwise perturbation w (this cor-
responds to the far left points in Fig. 2). Upon multi-
plication by w, and defining the new variable χ = w2,
equation (1c) is transformed into dχ/dt ≈ −2(k2w/R)χ
(we neglect u and v at small times in this case). There-
fore, initially, the energy of the sinuous mode χ = w2

decays, at least as long as the amplitude of the streaks
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FIG. 3. (Color online) Transient growth of vortices from an
initial sinuous perturbations added to weak streaks. Solu-
tion obtained for the model system eqn. (1) corresponding
to the critical point at lowest u (first point on the left) in
Fig. 2. During its initial decay the sinuous mode (solid thick
line, black) induces a transient growth of the vortices (solid
line, red) that, in their turn, induce the growth of the streaks
(dashed line, blue).

u is small. However, during its decay, the sinuous mode
triggers the growth of vortices v through the non-normal
coupling in equation (1b): dv/dt = −(k2v/R)v + σv χ.
By this mechanism the vortices quickly attain relatively
large amplitudes inducing the growth of the streaks, by
standard lift-up, as clearly seen in Fig. 3a. The phe-
nomenology remains essentially the same in the DNS of
transition in Couette and boundary layer flows (see next
section). This mechanism, that is essentially active for
initial conditions on the left of the saddle point in Fig. 2,
cannot be considered as a secondary transient growth on
the streaks since w decreases during the process and be-
cause there are virtually no primary streaks that would
sustain such a secondary growth.

III. SECONDARY SUBCRITICAL THRESHOLDS IN
PLANE COUETTE FLOW

The concepts discussed on the toy model in the previ-
ous section are now tested on the plane Couette flow of a
viscous fluid of kinematic viscosity ν and constant density
ρ between two parallel plates located at y = ±h, where
we denote by x, y and z the streamwise, wall-normal and
spanwise coordinates respectively. The plates move in
opposite directions with velocity (±Uw, 0, 0). The flow
is assumed periodic in the streamwise and spanwise di-
rections with respective wavelengths Lx and Lz. In the
following we will consider the specific values Lx = 2.5π,
Lz = π, and Re = 500. These values are similar to the
ones used in Ref. 14 (Re = 400, Lx = 1.75π, Lz = 1.2π)
and Ref. 11 (Re = 500, Lx = 2π, Lz = π).

The Couette solution (U0(y), 0, 0) with UC(y) =
Uwy/h is linearly stable for all Reynolds numbers Re =
Uwh/ν but sustains large linear transient energy growths
G(t) ≡ maxu0 ̸=0 ∥u(t)∥2/∥u0∥2 for the considered pa-
rameters. At the linear stage the different in-plane
Fourier modes of streamwise and spanwise wavenum-
bers α and β respectively can be considered separately.
The maximum growth Gmax ≡ maxt G(t) is attained,
at t = tmax, with the optimal initial perturbations

u
(opt)
V consisting of streamwise vortices that lead to maxi-

mum energy streamwise streaks u
(opt)
U at tmax. Standard

methods9 are used to compute the optimal perturbations
for the Couette flow using a Chebyshev-collocation dis-
cretization of the Orr-Sommerfeld-Squire equations on a
grid of Ny = 65 collocation points in the wall-normal
direction.

A family of finite amplitude streaky flows is then built
by direct numerical simulation of the nonlinear Navier-

Stokes equations with initial condition UC + A1u
(opt)
V ,

where the linear optimal vortices are given initial finite
amplitude A1. The DNS are performed using the Simson
code32,33; it integrates the Navier–Stokes equations, dis-
cretized using a Fourier–Chebyshev–Fourier representa-
tion in space and a third-order Runge–Kutta method for
the nonlinear terms and a second-order Crank–Nicolson
method for the linear terms in time. A grid of 32 ×
65× 32 collocation points has been used for the compu-
tations discussed below. We consider streamwise uniform
(α = 0) initial perturbations which induce unsteady so-
lutions u1(y, z, t, A1) also streamwise uniform. These so-
lutions consist in streamwise streaks that reach a finite-
amplitude maximum energy at times t slightly smaller
times than tmax. Here we denote by U1(y, z, A1) the
streaky velocity field u1 extracted at the time where it
reaches its peak perturbation energy.

The velocity fields U1(y, z, A1) form a family of non-
linear streamwise uniform streaks whose amplitude is a
monotonic function of A1. Secondary sinuous perturba-
tions uW are assumed of the form used by Schoppa &
Hussain:17

uW = C {0, 0, g(y) sin(αx)} . (2)
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FIG. 4. (Color online) Streak breakdown in Couette flow at Re = 500. Two cases are considered with respectively large (panels
a and c) and small (panels b and d) initial primary streak amplitude. (a,b): Temporal history of the rms streamwise velocity
perturbation urms. (c,d): Evolution of the solutions in the urms −wrms plane. Solid line (red): primary streaks in the absence
of secondary perturbations. Dashed line (blue) primary streaks plus marginally stable secondary perturbations. Dotted line
(green) primary streaks plus marginally unstable secondary perturbations. The triangles correspond to the time at which the
secondary perturbation is added on top of the nonlinearly saturated streaks. The filled circle corresponds to the lower branch
saddle solution.

with g(y) = (1 − y2) and C a normalizing constant en-
suring that ∥uW ∥ = 1.
Also here, when the amplitude of the secondary per-

turbation is low the solution relaxes to the laminar Cou-
ette solution, while for sufficiently large amplitudes it
leads to the streak breakdown. The critical secondary
amplitude is found by a bisection algorithm whose out-
come is reported in Fig. 4 for two sample cases with large
and small primary streak amplitude. The phenomenol-
ogy observed is analogous to that described by the toy
model in the previous section. For the largest ampli-
tude of the primary streak (panels a and c of Fig. 4),
which is linearly unstable, the thershold amplitude of the
secondary perturbation is small while it is significantly
larger for primary streaks that are linearly stable (panels
b and d of Fig. 4). For all cases considered, the marginal
solutions approach a saddle solution (the Nagata lower
branch solution30,34,35) as shown by the constant rms
level of the perturbation. Eventually the flow transitions
to turbulence or relaxes to the laminar Couette solution.
The full set of secondary threshold amplitudes ob-

tained via DNS-based bisection is reported in Fig. 5a;
the behavior is again similar to the picture provided by
the toy model.

In the discussion above we have used the rms values
of each velocity component, defined as u2

rms =
∫
Ω
(u −

UC)
2dΩ/U2

ref and w2
rms =

∫
Ω
w2dΩ/U2

ref but the results
remain almost unchanged when other measures of the
streak and of the secondary perturbation amplitudes are
considered. In particular in Fig. 5b the critical curve is
reported in terms of the amplitudes AU −AW defined as:

AU = (max
y,z

∆U −min
y,z

∆U)/2 Uref ; (3a)

AW = (max
x,y,z

W − min
x,y,z

W )/2 Uref , (3b)

where we choose as reference velocity the difference of
the velocity of the two walls: Uref = 2Uw. AU is the
primary streak amplitude as defined for streamwise uni-
form streaks13 in terms of the maximum and minimum
of the distortion of the streamwise velocity ∆U(y, z) =
U(y, z)−UC(y). AW is defined in a similar way to mea-
sure the amplitude of sinuous secondary perturbations.
In terms of these amplitudes, the streamwise-uniform
streaks become linearly unstable when of AU > 25%.
For primary streak amplitudes above this linear critical
value, breakdown is obtained with secondary perturba-
tions of amplitude AW ≈ 1%. Such a value is determined
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FIG. 5. Threshold amplitudes (triangles) for the sinuous
streaks breakdown in Couette flow at Re = 500 in terms of
(a) rms primary streak and secondary perturbations ampli-
tude urms, wrms and (b) of the amplitudes AU -AW defined
in eqn. (3). The filled circle symbol corresponds to the lower
branch saddle solution at the same Reynolds number.

as a compromise between the viscous dissipation of the
streaks (whose amplitude is not frozen in our simulations)
and the time it takes for the instability modes to reach
energy levels able to trigger new and more detrimental
nonlinear interactions. Only AW ≈ 4% is necessary to
induce breakdown when the primary streak amplitude is
decreased to AU ≈ 13%. When further decreasing the
amplitude of the primary streaks below AU ≈ 6%, the
amplitude AW of the secondary perturbations needed for
the streaks breakdown becomes larger than the ampli-
tude of the primary streaks.

The points on the far left in the plots in Fig. 5 indicate
that transition can be induced by an initial secondary sin-
uous perturbation almost without initial primary streaks
or vortices. The transition mechanisms active at very low
initial amplitudes of the streaks is not based on a sec-
ondary transient growth since the weak primary streaks
would not sustain that growth. In this case, a distinct
two-stage mechanism is observed, as shown in Fig. 6:
the initially decaying sinuous mode (associated with the
rms spanwise velocity) forces the growth of streamwise
vortices (associated with streamwise vorticity) that then
induce the growth and breakdown of streaks (associated
with streamwise velocity perturbation and wall-normal
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FIG. 6. (Color online) Transient growth of vortices from an
initial sinuous perturbations superposed to weak streaks: so-
lution for the Couette flow DNS corresponding to the crit-
ical point at lowest urms (first point on the left) in Fig. 5.
Short-term temporal evolution of the rms streamwise and
wall-normal vorticity (panel a) and streamwise, wall-normal
and spanwise velocities (panel b).

vorticity). This mechanism, that has been already dis-
cussed on the toy model10,24 (see Fig. 3), can be easily
understood considering the streamwise component of the
vorticity transport equation:

Dωx

Dt
=

∂u

∂x
ωx +

∂u

∂y
ωy +

∂u

∂x
ωz +

1

Re
∇2ωx, (4)

where D/Dt denotes the material derivative. Consider-
ing, for simplicity, an initial condition in the complete ab-
sence of streaks u = U1(y), v = 0, w = w2(x, y), and as-
suming that the action of viscosity is negligible for short
times, then the equation reduces to:

Dωx

Dt
=

∂u

∂y
ωy. (5)

The tilting of the initial wall-normal vorticity ωy =
−∂w2/∂x by the wall normal shear ∂U1/∂y is respon-
sible for the initial amplification of streamwise vorticity
documented in figure 6. From this figure it is also seen
how the initial pulse of ωx almost exactly corresponds
to the initial pulse of the wall-normal velocity as can be
understood either in terms of the standard Biot-Savart
law or by taking the wall-normal component of the curl
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of the vorticity definition ∇2v = ∂ωz/∂x−∂ωx/∂z where
the streamwise vortices clearly appear as a source term
for the wall-normal velocity. Therefore, the streamwise-
periodic vorticity induced by the tilting of the initial
wall-normal vorticity disturbance generates on a short
time scale streaks of finite length, alternating in a pe-
riodic fashion in the streamwise direction. Indeed, the
initial spanwise-velocity perturbation is periodic in the
streamwise direction and induces therefore streamwise-
dependent streamwise vortices. The streaks induced
by these vortices also have a finite length and their
breakdown to turbulence is associated with the inter-
action between a downstream low-speed region and an
upstream high-speed region that generates strongly in-
flectional wall-normal profiles.20

A final comment is worth about the small offset, that
can be seen in Fig. 5b, between the lower branch sad-
dle solution and critical curve. This is due to the fact
that the somehow arbitrary initial conditions we use [the
saturated straight streak U1 plus the secondary pertur-
bation A2 uW defined in eqn. (2)] is always different from
the lower branch solution. Our critical initial condition
therefore will be on the basin boundary but always at
some finite distance from the lower branch solution. This
is why the projection of the lower branch solution is not
exactly on the critical curve found using our specific ini-
tial conditions.

IV. SECONDARY SUBCRITICAL THRESHOLDS IN
BOUNDARY LAYER FLOW

The second flow we consider in our analysis is the
zero-pressure-gradient boundary layer with freestream
velocity (Ue, 0, 0), that is taken as reference velocity
Uref = Ue. The optimal steady, spanwise periodic per-
turbations computed in Ref. 36 are used as inflow con-
dition close to the leading edge with amplitude A1 and
their downstream evolution u(x, y, z, A1) is followed by
both direct numerical simulations13,26,27 and nonlinear
parabolized stability equations.37 The streaky profiles
U1(y, z, A1) = U0(y) + u1(y, z, A1) are extracted at the
downstream position xmax where the streaks reach max-
imum energy. The local parallel-flow assumption is used
to investigate the stability of the boundary layer profile
to initial conditions composed of primary streaks and sec-
ondary sinuous perturbations uW given by eqn. (2) with
wall-normal distribution

g(y) = y/(πσ2))−1/2exp[−((y − y0)
2/(σ2)]

with σ = 1.7 and y0 = 1.8. Even if the streaks are
allowed to diffuse, a body force is used during the whole
simulation in order to prevent the diffusion of the Blasius
profile.32,33

The fate of the initial conditions is determined by di-
rect numerical simulations assuming the streak profile
constant in the streamwise direction and the flow periodic

in the streamwise and spanwise directions with respec-
tive wavelengths Lx = 9δ∗ (corresponding to αδ∗ = 0.7)
and Lz = 5.737δ∗ (corresponding to βδ∗ = 1.1) and
Reδ∗ = 700. The values of the streamwise wavelength
and of the Reynolds number are chosen to reproduce
those previously observed in numerical simulations and
experiments of transition in boundary layers exposed
to free-stream turbulence.38 Threshold amplitudes are
found by bisection, exactly like in the case of Couette
flow. The main difference with the Couette case is that
even for very long times no convergence to a simple edge
state such a saddle or limit cycle solution is observed, as
can be seen in Fig. 7. No conclusions about the nature of
the edge state in the Blasius case can therefore be drawn
here because extending the computations to even larger
times would clearly violate the parallel flow assumption.
This, however, is not really a problem because the crit-
ical amplitudes converge on a fast time scale, where the
parallel flow assumption holds; in addition, here we fo-
cus on the shape of the basin boundary more than on the
nature of the edge states lying in it. The determination
of the edge state in the fully non-parallel case has been
recently considered elsewhere.39

The marginal initial conditions pertaining to two cases
with respectively low and large initial streak amplitude
are shown in Fig. 8. The velocity vector field is displayed
in the wall-parallel plane at y/δ∗ = 2. Note that the
spanwise velocity is amplified by a factor 2: indeed rel-
atively low bending is necessary to trigger the laminar-
turbulent transition.

The results of the bisection procedure, reported in
Fig. 9, reproduce the trends and considerations of the
Couette flow, as well as those of the toy model. The crit-
ical AU −AW boundary is also quantitatively similar to
the one found for the Couette case, despite the important
differences between the two flows.

V. SUMMARY AND CONCLUSIONS

In this study we have explicitly computed by direct
numerical simulation the nonlinear stability of the Cou-
ette and boundary-layer laminar solutions with respect
to initial conditions consisting of a primary streamwise-
uniform streak and secondary sinuous spanwise pertur-
bation.

The critical curve, found by bisection using direct nu-
merical simulations, has been computed in terms of the
amplitude of the streamwise streak and the of amplitude
of the sinuous perturbation. This critical curve is a two-
dimensional projection of the shape of the boundary of
the basin of attraction of the laminar state for the con-
sidered subcritical bifurcations.

The different streak transition scenarios that have been
considered in previous investigations correspond to differ-
ent parts of the threshold curve. Transition due to modal
instability10–1310111213 of the streaks is found for large
streak amplitudes (AU > 25 − 27%), where small am-



Secondary threshold amplitudes for streak breakdown 8

 0

 2

 4

 6

 8

 10

 12

 0  1000  2000  3000  4000

t

10
0 

* 
u r

m
s

(a)

 0

 2

 4

 6

 8

 10

 12

 0  1000  2000  3000  4000

t

10
0 

* 
u r

m
s

(b)

FIG. 7. (Color online) Streak breakdown in Blasius flow at Reδ∗ = 700. Temporal history of the rms streamwise velocity
perturbation urms for two cases with respectively large (panel a, corresponding to the third point from the right in Fig. 9)
and small (panel b, corresponding to the first point from the left in Fig. 9) initial primary streak amplitude. Solid line (red):
primary streaks in the absence of secondary perturbations. Dashed line (blue) primary streaks plus marginally stable secondary
perturbations. Dotted line (green) primary streaks plus marginally unstable secondary perturbations.
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FIG. 8. Velocity field in the wall-parallel plane (u-w compo-
nents) at y = 2δ∗ corresponding to the critical initial condi-
tions in the boundary layer corresponding to: (a) large pri-
mary streak amplitude (panel a in Fig. 7) and (b) lowest pri-
mary streak amplitude (panel b in Fig. 7). Note that the
magnitude of the spanwise velocity component is multiplied
by a factor 2.

plitudes of the secondary perturbation, (AW < 1 − 2%)
are sufficient to overcome the streak decay and trigger
the breakdown. Transition based on streaks transient
growth17–19 is found for smaller values of AU , where
larger amplitudes of secondary perturbations are required
for transition. For the plane Couette flow case, the so-
lutions approach the lower branch saddle solution30,34,35
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FIG. 9. Threshold amplitudes (triangles) for the sinuous
streaks breakdown in in the boundary layer flow at Reδ∗ =
700 in terms of (a) rms primary streak and secondary per-
turbations amplitude urms, wrms and (b) of the amplitudes
AU -AW defined in eqn. (3).

in the transition process, which represents an edge state.
These lower branch solutions, however, represent a single
point on the boundary of the basin of attraction of the
laminar solution. From the nonlinear stability perspec-
tive, the whole critical curve is of interest to assess the
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stability of the laminar flow.

For streamwise streaks amplitudes below AU ≈ 6%,
spanwise perturbations of amplitude larger than that of
the streak are required for breakdown. In this case sec-
ondary transient growth is inactive because the weak
primary streaks would not sustain that growth. A new
two-stage mechanism has been found to be operating in
this range: the initially decaying sinuous mode forces the
growth of vortices that then induce the growth of streaks.
This interpretation has been devised onWaleffe’s reduced
model10,24 and confirmed by the analysis of the DNS for
both Couette and boundary-layer flow.

The computation of the transition threshold curve for
the streak breakdown in terms of the amplitude of the
streaks and of the sinuous perturbations is probably also
relevant for the design of control protocols aimed at e.g.
suppressing transition by reducing the amplitude of the
streaks or at delaying transition using streaks.26,40 Due
to the artificial type of perturbations we have consid-
ered (spatially periodic with a specific initial shape),
some caution is recommended in the direct application of
the computed critical curves to real world experiments.
Also, localized perturbations, typical of natural transi-
tion, have not been considered here. However, with all
these words of caution, we believe that the main con-
clusions of the present study still apply, at least qualita-
tively: for the control to be robust, the level of spanwise
perturbations should also be kept particularly low.

An important question is to know in which part of the
AU − AW critical curve, natural transition, like transi-
tion induced by free-stream turbulence, is likely to be
observed. If the external perturbations, or the nonlinear
terms in the Navier-Stokes equations, can be modeled
as a stochastic forcing term or as a noisy initial condi-
tion, then it is known that the amplification of stream-
wise uniform perturbations (the streaks) is larger than
the amplification of spanwise perturbations with finite
streamwise wavelength and that the difference in ampli-
fication increases with the Reynolds number. When the
Reynolds number is large, therefore, one would expect to
observe the ‘classical’ modal scenario, where the streaks
are largely amplified, and become locally modally unsta-
ble. Sustained amplification of low-amplitude transverse
perturbations would then initiate the breakdown. How-
ever, bypass transition is usually observed at Reynolds
numbers that are not asymptotically large, where the
amplification of the streaks is not likely to be more than
one order of magnitude larger than the amplification of
transverse perturbations. In such a situation, it is per-
fectly likely, and it is indeed observed, that transition
can occur even when the streamwise streaks are locally
stable. To fully understand the transition scenario, ex-
perimental and numerical data could be processed not
only with the aim of computing the streamwise streaks
amplitude, but also the amplitude of secondary perturba-
tions, and the results checked versus the critical curve we
have computed. This also applies to the interpretation
of the self-sustained processes in turbulent shear flows.

In that case is it also likely that the effective Reynolds
number, based on some sort of eddy viscosity, is relatively
low, and therefore that low amplitude unsteady streaks
are observed. This is indeed the case that has motivated
previous investigations.17 One could therefore conjecture
that bursting events correspond to forcing of the streaks
by other structures, with spanwise perturbations above
the critical threshold.

In the present investigation we have considered only
sinuous perturbations because they are the ones that first
become unstable when the primary streak amplitude is
increased. However, for streaks different from the one
considered here, which are issued from optimal initial
vortices, it could be that the first unstable modes are
varicose. In that case, of course the results of the present
study do not apply, and appropriate critical curves should
be recomputed using the same rationale.
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