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Linear and nonlinear evolution of a localized
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The evolution of an initially localized disturbance in polymeric channel flow is
investigated, with the FENE-P model used to characterize the viscoelastic behaviour of
the flow. In the linear growth regime, the flow response is stabilized by viscoelasticity,
and the maximum attainable disturbance-energy amplification is reduced with
increasing polymer concentration. The reduction in the energy growth rate is attributed
to the polymer work, which plays a dual role. First, a spanwise polymer-work term
develops, and is explained by the tilting action of the wall-normal vorticity on the
mean streamwise conformation tensor. This resistive term weakens the spanwise
velocity perturbation thus reducing the energy of the localized disturbance. The
second action of the polymer is analogous, with a wall-normal polymer work term
that weakens the vertical velocity perturbation. Its indirect effect on energy growth
is substantial since it reduces the production of Reynolds shear stress and in turn of
the streamwise velocity perturbation, or streaks. During the early stages of nonlinear
growth, the dominant effect of the polymer is to suppress the large-scale streaky
structures which are strongly amplified in Newtonian flows. As a result, the process
of transition to turbulence is prolonged and, after transition, a drag-reduced turbulent
state is attained.
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1. Introduction
Transition to turbulence has been studied extensively in Newtonian channel flows

due to its theoretical and practical importance. Previous numerical (Henningson,
Lundbladh & Johansson 1993) and experimental (Breuer & Landahl 1990) studies
have examined the transition process starting from three-dimensional, initially
localized disturbances to model generic perturbations in the flow. The early stages
of transition can be explained by appealing to linear theory, but nonlinear effects
ultimately become important and give way to the onset of turbulence. Both the linear
and nonlinear stages can, however, deviate from the Newtonian behaviour when small
quantities of polymers are introduced in the flow. Previous linear theory has focused
on the stability of a laminar base state, while the nonlinear efforts have focused on
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fully turbulent flows due to the propensity of the polymer to reduce drag (Toms 1948).
The transition process, which includes the early linear dynamics and the subsequent
nonlinear stages leading to turbulence, is examined herein using direct numerical
simulations (DNS) of initially localized disturbances in polymeric channel flow.

1.1. Localized disturbance in Newtonian channel flow
Linear stability theory predicts that Poiseuille flow is stable up to a critical Reynolds
number Re = 3848 based on the channel half-height and the bulk velocity (Orszag
1971). By appealing to Squire’s theorem, at this critical Reynolds number the flow is
unstable to a two-dimensional disturbance. Below the critical Reynolds number, while
the flow does not possess any long-time instabilities, it can sustain transient energy
amplification due to two- and three-dimensional disturbances of finite amplitude.
Several growth mechanisms have been proposed for subcritical transition (Bayly,
Orszag & Herbert 1988), and breakdown to turbulence in this regime is known as
bypass transition (Orszag & Kells 1980): it bypasses the amplification of discrete
instability waves seen in the natural transition route.

The evolution of a three-dimensional localized disturbance in channel flow has
been studied by Henningson et al. (1993). According to those authors, a disturbance
of small amplitude undergoes linear growth due to the lift-up mechanism (Landahl
1975) during which the three-dimensionality of the disturbance causes a growth in the
wall-normal perturbation vorticity. The disturbance is dominated by the streamwise
velocity component, and starts to become elongated in the streamwise direction.
However, the period of energy amplification is short lived and the flow returns
to a laminar state due to viscous dissipation. For disturbances with larger initial
amplitude, nonlinearity transfers energy from the initially localized disturbance into
lower streamwise wavenumbers. Elongated vortices are formed close to the wall
and are further intensified by the mean shear. These elongated structures are most
effective at generating streaks via the lift-up mechanism; the streaks themselves are
dominated by high streamwise velocity fluctuations. The flow ultimately breaks down
due to a roll-up process of the stretched vortical structures which is initiated due to
sharp wall-normal gradients of streamwise velocity fluctuations. This process leads to
a rapid growth of the wall-normal perturbation velocity and the formation of turbulent
spots, as observed in experiments (Henningson & Andersson 1987) and in numerical
simulations (Henningson & Kim 1991). After the inception of the spot, turbulence
continues to spread and ultimately fills the entire channel.

The above description of transition follows a general classification into an initial
linear stage, a secondary instability mechanism and ultimately a nonlinear spot
inception. These general stages have been examined in various flow configurations and
for transition due to different initial conditions. The early linear stage in subcritical
transition is often attributed to non-modal energy amplification, for example due to
the Orr mechanism for two-dimensional disturbances or lift-up for three-dimensional
perturbations. In supercritical flows, the same mechanisms persist, but discrete
instability waves can also play an important role in the linear stage. The second
stage has been examined using secondary instability analyses, and the final stage
where turbulent spots are formed is often examined empirically due to its nonlinear
nature. Similarities in the transition process in different shear flows, and starting
from various initial conditions, have emerged since they are related to the same
fundamental mechanisms. In addition, transition due to localized initial disturbances
in channel flow has been considered an informative testbed for the study of bypass
transition (Henningson et al. 1993).
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1.2. Simulations of non-Newtonian channel flow
The literature on viscoelastic channel flow has focused on the phenomenon of drag
reduction in the fully turbulent regime upon the addition of polymers. DNS have
been extensively employed to investigate this phenomenon and to evaluate the effects
of viscoelasticity on turbulence (Sureshkumar, Beris & Handler 1997; Dimitropoulos,
Sureshkumar & Beris 1998; Min, Yoo & Choi 2001; De Angelis, Casciola & Piva
2002; Dubief et al. 2005; Dallas, Vassilicos & Hewitt 2010; Tsukahara et al. 2011).
DNS have also been used to isolate flow structures in minimal-flow-unit configurations:
the smallest flow domain in which turbulence can be sustained (Stone, Waleffe &
Graham 2002; Xi & Graham 2010). These efforts have revealed changes in the flow
energetics, in particular the root-mean-square (r.m.s.) of the velocity fluctuations, and
in the turbulence kinetic energy budget, which are in agreement with experimental
measurements of surfactant-laden turbulent flow (Yu, Li & Kawaguchi 2004). A
common observation in drag-reduced non-Newtonian turbulent flow is the decrease
in the wall-normal and spanwise velocity perturbations (White & Mungal 2008),
which is consistent with the observations of Xi & Graham (2012) who state that
polymers weaken streamwise vortices. Connections between these changes and the
mechanism for the sustenance of a drag-reduced state have been suggested (e.g.
Min et al. 2003b; Dubief et al. 2004). However, despite the extensive experiments
and numerical records of the effects of viscoelasticity on the flow, the mechanisms
through which polymer chains cause these changes have not been fully isolated due
to the complex nature of fully turbulent flow.

Unlike simulations of fully turbulent channel flow, nonlinear simulations of
transition in this flow configuration are absent from the literature. The study of
transition, however, provides a unique manner to examine the changes to the flow
in both the linear stages and in the nonlinear regime due to polymeric effects. In
the latter regime, changes to isolated flow structures become evident, unlike the
more complex fully turbulent configuration. The existing literature on transition in
bounded polymeric shear flows is primarily focused on the linear regime, which
has been examined using linear stability theory. The effect of Reynolds number
and elasticity on energy amplification of channel flows of Oldroyd-B fluid was
studied by Hoda, Jovanovic & Kumar (2008, 2009), while Page & Zaki (2014)
have analysed streak amplification in Oldroyd-B Couette flow. Zhang et al. (2013)
report the effects of viscoelasticity on oblique modes in a channel flow of finitely
extensible nonlinear elastic fluid with the Peterlin closure (FENE-P), which is relevant
to the current study. Numerical simulations of the entire transition process would
therefore complement these studies, and are performed herein. Starting from an
initially localized disturbance, transition to turbulence in a polymeric channel flow is
simulated and analysed in detail. The governing equations and a description of the
simulation setup are presented in § 2. Results from the linear evolution regime are
discussed in § 3, followed by a discussion of the results from the nonlinear regime
in § 4. Finally, concluding remarks are provided in § 5.

2. Governing equations and simulation set-up
Assuming a uniform concentration of the polymeric solution, the incompressible

Navier–Stokes equations for viscoelastic flow take the form,

∂ui

∂t
+ uj

∂ui

∂xj
=− ∂p

∂xi
+ β

Re
∂2ui

∂x2
j
+ 1− β

Re
∂τij

∂xj
(2.1)
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∂ui

∂xi
= 0. (2.2)

In these equations, β ∈ [0, 1] is the ratio of the solvent to the total viscosity and
is effectively a measure of the polymer concentration. The polymeric stress, τij,
accounts for the interaction between the solvent and the polymer, and depends on the
extension of the polymer chains which is represented by the conformation tensor, cij.
This tensor is the ensemble average 〈qiqj〉, where qi is the end-to-end vector of a
polymer molecule. The polymer stress, τij, is obtained from the polymer conformation
tensor according to the FENE-P model,

τij = 1
We

(
cij

ψ
− δij

a

)
(2.3)

ψ = 1− ckk

L2
max

(2.4)

a= 1− 3
L2

max

. (2.5)

The Weissenberg number, We, is the ratio of the polymer relaxation and the flow time
scales. The maximum dimensionless extensibility of the polymer chain is Lmax. Finally,
the conformation tensor satisfies the evolution equation,

∂cij

∂t
+ uk

∂cij

∂xk
= ckj

∂ui

∂xk
+ cik

∂uj

∂xk
− τij, (2.6)

which includes advection by the velocity field, stretching due to the strain exerted on
the polymer chains, and relaxation due to the elastic nature of the polymer.

The accuracy of the FENE-P model in predicting polymeric stresses has been
studied extensively by Zhou & Akhavan (2003) who compared results for the
pre-averaged models with those for the FENE chain. The FENE-P model was
found to over-predict the polymeric stresses in elongational and shear flows, which
results in numerical inaccuracies especially in regions of strong polymer stretching.
However, the FENE-P results are found to be in qualitative agreement with those
for the FENE chain. As a result, after addressing any numerical instabilities through
appropriate computational methods, the model has been used extensively to simulate
non-Newtonian channel flow (Dimitropoulos et al. 1998; Dubief et al. 2004; Dallas
et al. 2010).

Simulations of non-Newtonian flows are challenging due to the hyperbolic nature
of the conformation tensor evolution equation (El-Kareh & Leal 1989). For example,
sharp gradients form in the conformation field and can lead to numerical instabilities
and errors. Several measures have been suggested in the literature in order to ensure
stability and accuracy. For example, Sureshkumar & Beris (1995) state that upwind
schemes along with artificial diffusivity increase the stability of the numerical solution
of hyperbolic equations. Vaithianathan & Collins (2003) note that, in simulations of
polymeric fluids with a maximum extensibility constraint, numerical errors can lead
to predictions of the polymer extension that exceed their bounds. This problem can
be resolved by evaluating the conformation tensor equation implicitly.

The numerical method for the solution of the governing equations follows the
general approach by Min, Yoo & Choi (2003a). The spatial discretization of the
Navier–Stokes equations is performed using a control-volume formulation. The
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FIGURE 1. Flow configuration and coordinate system.

equation is advanced in time using a fractional-step algorithm where diffusion and
polymer stress terms are treated implicitly using Crank–Nicholson, and the advection
term is treated explicitly. Spatial derivatives of the conformation tensor in (2.6) are
computed using a third-order upwind central scheme. To ensure numerical stability,
a local artificial diffusivity is added at locations where the conformation tensor
loses its positive definiteness (Min et al. 2001). This additional term takes the form
κ∆2

k(∂
2cij/∂x2

k), where ∆k is the local grid spacing in the k direction (Dubief et al.
2005). The coefficient κ is set to 10−3 for all simulations. This value is sufficiently
small, and guarantees that artificial diffusivity is inactive in the linear evolution, and
is restricted to less than 10 % of the grid nodes during transition, which is consistent
with the recommendation by Dubief et al. (2005).

The flow configuration is shown in figure 1. Periodic boundary conditions are
enforced in the streamwise, x, and spanwise, z, directions and no-slip conditions at
both walls. The simulations are performed at a Reynolds number Re= 2000 based on
the channel half-height, h, and the bulk flow velocity, Ub. The Weissenberg number
is therefore We ≡ λUb/h, where λ is the polymer relaxation time. Throughout this
work, time, t, is normalized by the convective time scale, h/Ub, but can readily be
expressed in reference to the relaxation time scale, tλ = t/We.

The mass flow rate is maintained constant by adjusting the required streamwise
pressure gradient. Since the focus is on bypass transition, the Reynolds number is
lower than the critical value for Newtonian channel flow, Rec = 3848 (Orszag 1971),
and non-Newtonian flow at similar rheological conditions, Rec = 3600 for a FENE-P
fluid at β = 0.9 and high maximum extensibility (see figure 5 in Zhang et al. 2013).

The initial condition for the simulations consists of a laminar base state, along with
a localized velocity perturbation. The laminar base state for non-Newtonian flow, as
reported by Richter, Iaccarino & Shaqfeh (2010), is given by

U(y)= Re
2β

dP
dx
(y2 − 1)− 1− β

β

3
8J0

[
(F+(y)G−(y)+ F−(y)G+(y))

− (F+(h)G−(h)+ F−(h)G+(h))
]

(2.7)

F±(y)=
(

J0y±
√
(J0y)2 +K3

0

)1/3

(2.8)

G±(y)=
(

3J0y±
√
(J0y)2 +K3

0

)1/3

(2.9)
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FIGURE 2. Mean velocity profile, mean shear, and trace of the conformation tensor
at t = 0 for Re = 2000: · · · ·, dU/dy; A, Newtonian flow; E, non-Newtonian flow at
We= 100, Lmax = 300 and β = 0.9.

J0 = Re
4β

(
Lmax

aWe

)2 dP
dx

(2.10)

K0 = 1
6β

(
Lmax

aWe

)2

. (2.11)

The difference between the velocity profiles for Poiseuille (β = 1 in (2.7)) and
non-Newtonian laminar flow is negligible for the values of We and β used here as
demonstrated by the comparison in figure 2. The trace of the associated polymeric
conformation tensor is also shown.

The localized disturbance added to the base flow is a pair of counter-rotating
vortices (figure 3), previously used by Henningson et al. (1993) in simulations of
Newtonian channel flow. The disturbance is placed at the centre of the channel
and spans the entire channel height. The streamwise and spanwise extents, and the
disturbance orientation and amplitude can be specified. The disturbance streamfunction
and velocity are

ψ = εf (y)
(

x′

lx

)
z′ exp

[
−
(

x′

lx

)2

−
(

z′

lz

)2
]

(2.12)

(u′, v′,w′)=
(
−∂ψ
∂y

sin θ,
∂ψ

∂z′
,−∂ψ

∂y
cos θ

)
(2.13)

(x′, z′)= (x cos θ − z sin θ, x sin θ + z cos θ) (2.14)
f (y)= (1+ y)p(1− y)q. (2.15)

The constants lx, ly and lz are the streamwise, wall-normal and spanwise length scales
of the disturbance and ε is its amplitude. For this study, lx = lz = 2. The exponents
of the wall-normal dependence are also equal, p = q = 2. The orientation of the
disturbance in the horizontal plane is dependent on θ ; for the current study, θ = 0.

Details of the parameters of the computational domain are provided in table 1.
The dimensions are in accordance with the recommendation by Li, Sureshkumar &
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FIGURE 3. Initial wall-normal and spanwise velocity perturbation fields: (a) v′ at
y = −0.56, contour spacing 2.0 × 10−6; (b) v′ at z = −1.0, contour spacing 2.0 × 10−6;
(c) w′ at y = −0.56, contour spacing 8.0 × 10−6; (d) w′ at z = −1.0, contour spacing
8.0× 10−6. Solid and dashed lines indicate positive and negative velocities, respectively.

Khomami (2006) for fully turbulent non-Newtonian flow. The grid spacing is uniform
in the streamwise and spanwise directions and is given by a hyperbolic tangent
stretching in the wall-normal coordinate. A grid refinement study was performed in
order to ensure that the flow in the Newtonian and non-Newtonian cases is fully
resolved.

In the following, instantaneous flow variables are decomposed according to φ(x, t)=
φ(y, t) + φ′(x, t). Overline and uppercase denote variables that are averaged in both
the streamwise and spanwise directions, and φ′(x, t) is the perturbation. Where integral
quantities are plotted, they are averaged over the bottom half of the channel and are
defined as, φ̂(t)≡ 1/(Ly/2)

∫ 0
−Ly/2

φ(y, t)dy. The difference between the non-Newtonian

and Newtonian (φ̂N(t)) values of a quantity is denoted by [φ̂](t)= φ̂(t)− φ̂N(t).

3. Evolution of linear disturbance
The study of transition is often aided by considering the evolution of small-

amplitude, or linear, perturbations. In order to examine linear effects, a vortex
pair with an amplitude ε = 1.5 × 10−4 is prescribed as the initial disturbance.
In the Orr–Sommerfeld and Squire equations for the wall-normal velocity and
vorticity, the three-dimensionality of the initial disturbance, namely ∂v′/∂z, causes
forcing of the wall-normal vorticity perturbation. This results in an increase in the
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FIGURE 4. Evolution of the disturbance (ε= 1.5× 10−4) in Newtonian flow at y=−0.56
and t= {3, 7, 13, 20}. Contours denote (a) wall-normal v′ and (b) streamwise u′ velocity
perturbations.

Disturbance amplitude Computational grid Grid resolution
(ε) (Nx ×Ny ×Nz) (∆+x ×∆+y,min ×∆+z )

0.00015 384× 320× 384 —
0.10485 384× 320× 384 —
0.20970 1024× 400× 512 6.19× 0.03× 6.19

TABLE 1. Parameters describing the computational domain and grid. The computational
domain for all simulations presented has dimensions Lx = 48, Ly = 2, Lz = 24. The grid
resolution is normalized by the wall variable y+= yuτ/ν where ν is the kinematic viscosity
and uτ the friction velocity in the fully turbulent Newtonian flow.

streamwise velocity perturbation and therefore energy growth owing to the linear
lift-up mechanism (figure 4). This growth is opposed and eventually damped by
viscous dissipation. Snapshots of the disturbance in Newtonian flow (figure 4) show
the effect of dissipation: a decrease in the magnitude of perturbation velocities is
observed at large times during the disturbance evolution. In figure 5, the evolution
of the disturbance energy per unit volume, E(t), is plotted and is normalized by its
initial value E0,

E(t)≡ 1
Lx × Lz × Ly/2

∫ 0

−Ly/2

∫ Lz/2

−Lz/2

∫ Lx/2

−Lx/2

1
2
(u′2 + v′2 +w′2)dxdzdy. (3.1)

The same trend of energy growth and decay in Newtonian flow is followed in the
non-Newtonian case (figure 5a), but the extent of energy amplification decreases. For
the non-Newtonian cases shown, the energy suppression varies from approximately 5
to 15 %, depending on the elasticity of the flow. A decomposition of the perturbation
energy in the three coordinate directions is shown in figure 5(b). The wall-normal
and spanwise energy make up a progressively smaller fraction of the total energy
with time. The streamwise energy, on the other hand, becomes dominant for t> 3.28.
Its amplification and further decay therefore dictate the shape of the E(t) curve in
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FIGURE 5. Evolution of perturbation energy for ε= 1.5× 10−4. (a) Amplification of total
perturbation energy normalized by the initial value. (b) Components of perturbation energy,
Ei(t), normalized by the total energy in the Newtonian flow, (E(t))N . ——, Newtonian
flow; - - - -, non-Newtonian flow at Lmax = 300 and β = 0.9; E, We= 15; @, We= 40; A,
We= 100.

figure 5(a). Relative to the Newtonian case, viscoelasticity causes a faster decay in
the spanwise energy and suppresses the streamwise energy growth. During the initial
phase of energy amplification, these two components are comparable in magnitude.
The wall-normal component is also suppressed, although inappreciably.

We now examine the influence of the ratio We/Lmax on Emax ≡ maxt{E(t)}, shown
in figure 6, where the maximum perturbation kinetic energy is normalized by the
Newtonian value, Emax,N . For low We/Lmax, viscoelasticity appears to enhance transient
growth, although inappreciably. The main region of interest here is for higher We/Lmax,
where a significant decrease in the maximum perturbation energy is observed. This
trend is consistent with the optimal disturbance results by Zhang et al. (2013). Those
authors reported a stabilizing effect of oblique disturbances at high We. The origin
of the stabilizing influence observed in figure 6 is analysed in the next section by
examining the perturbation-energy equation. The case with We = 40 and Lmax = 300
is examined in detail since this relatively high Weissenberg number emphasizes the
difference between the Newtonian and non-Newtonian flow. The change in trend at
We/Lmax ∼ 0.5 is explained in § 3.2.

An energy analysis was also performed by Hoda et al. (2009) for a non-Newtonian
channel flow perturbed with stochastic body forcing. In order to isolate the mechanism
for streak formation and amplification, they focused on streamwise-independent linear
disturbances. In contrast, the localized disturbance in the current study has a finite
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FIGURE 6. The effect of elasticity on the maximum perturbation energy in non-Newtonian
flow: · · · ·, Lmax = 50; — · · —, Lmax = 100; — · —, Lmax = 200; - - - -, Lmax = 300;E,
We= 15;@, We= 40;A, We= 100.

streamwise and spanwise extent, and the associated terms play an important role in
the energy evolution.

3.1. Energy analysis
For the non-Newtonian polymeric flow, the transport equation for the Reynolds stress
is given by

∂u′iu′j
∂t
= −Uk

∂u′iu′j
∂xk︸ ︷︷ ︸

Aij

−∂u′iu′ju′k
∂xk︸ ︷︷ ︸
Qij

−
(

u′j
∂p′

∂xi
+ u′i

∂p′

∂xj

)
︸ ︷︷ ︸

φij

−
(

u′ju′k
∂Ui

∂xk
+ u′iu′k

∂Uj

∂xk

)
︸ ︷︷ ︸

Pij

+ β

Re
∂2u′iu′j
∂x2

k︸ ︷︷ ︸
Dij

−2
β

Re
∂u′i
∂xk

∂u′j
∂xk︸ ︷︷ ︸

εij

+ 1− β
Re

(
u′j
∂τ ′ik
∂xk
+ u′i

∂τ ′jk
∂xk

)
︸ ︷︷ ︸

Wij

. (3.2)

The evolution equation for the perturbation energy is obtained by setting i= j,

1
2
∂ û′iu′i
∂t
= ∂E
∂t
= 1

2
(Âii + Q̂ii + φ̂ii + P̂ii + D̂ii + ε̂ii + Ŵii). (3.3)

In the above equation, repeating indices imply summation over the three coordinate
directions. In (3.2), Aij is mean advection, Qij is energy transport by fluctuations, φij

is pressure redistribution, Pij is production, Dij is viscous diffusion, εij is dissipation
and Wij is polymer work. The polymer work, Wij, depends on the perturbation to the
polymer stress. The latter is governed by the evolution equation for the perturbation
to the conformation tensor,
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FIGURE 7. Components of the perturbation energy budget (see (3.3)): (a) ——, Newtonian
flow; - - - -, non-Newtonian flow at Lmax = 300, β = 0.9, We = 40; A, P̂ii/2E0; E,
ε̂ii/2E0; p, Ŵii/2E0; F, (1/2E0)∂ û′iu′i/∂t; (b) A, [P̂ii/2E0]; E, [ε̂ii/2E0]; p, Ŵii/2E0; F,
[(1/2E0)∂ û′iu′i/∂t].

(
∂

∂t
+Uk

∂

∂xk

)
c′ij = −u′k

∂Cij

∂xk
− u′k

∂c′ij
∂xk
+ Ckj

∂u′i
∂xk
+ c′kj

∂Ui

∂xk
+ c′kj

∂u′i
∂xk
+ Cik

∂u′j
∂xk

+ c′ik
∂Uj

∂xk
+ c′ik

∂u′j
∂xk
− τ ′ij. (3.4)

In the linear evolution, the production, dissipation and polymer work are the only
significant contributors to the energy budget (3.3). These contributions are compared
with the Newtonian reference simulation in figure 7(a) and the difference between the
Newtonian and non-Newtonian simulations is plotted in figure 7(b). Relative to the
Newtonian case, both the production and dissipation are reduced, and the difference
between the energy growth rate in the non-Newtonian and Newtonian flows, [∂ û′iu′i/∂t],
is negative thus signalling weaker energy amplification in the polymeric flow. The
maximum [∂ û′iu′i/∂t] is recorded near t∼ 6 and is primarily due to a negative polymer
work and a decrease in production, both of which contribute to the weaker energy
amplification in the flow. The decrease in production is in agreement with the
observations of Dimitropoulos et al. (1998) and Zhang et al. (2013) and represents
a weaker rate of energy transfer from the mean flow to velocity fluctuations. The
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FIGURE 8. Evolution of the components of polymer work for We= 40, Lmax = 300 and
β = 0.9; — · —, Ŵxx/2E0; · · · ·, 30Ŵyy/2E0; — · · —, Ŵzz/2E0.

negative polymer work indicates that energy from the velocity fluctuations is exerted
as work onto the polymer chains, an assertion which is further examined below.

3.1.1. Polymer work
Since the initial disturbance is a streamwise vortex with the majority of the energy

in the spanwise component (see figure 5b), the polymer work term is expected to
affect primarily the spanwise component of the velocity disturbance at early time.
This view is supported by figure 8 where the time evolution of the polymer work is
reported. The wall-normal polymer work is multiplied by a factor of 30 in the figure
to emphasize that it is slightly negative. While this component is smaller than the
dominant spanwise polymer work, it has an indirect effect on energy which will be
analysed in the next section. Most relevant here, however, is the negative Ŵzz at early
time,

Wzz = 2(1− β)
Re

(
w′
∂τ ′xz

∂x
+w′

∂τ ′yz

∂y
+w′

∂τ ′zz

∂z

)
= Wzz(x) +Wzz(y) +Wzz(z). (3.5)

The relation between polymeric stress and conformation tensor is given by (2.3). An
expression for the polymeric stress perturbation is derived by simplifying the equation
using a Taylor series expansion and taking into account that Ckk + c′kk < L2

max for the
set of non-Newtonian parameters (We∼O(10), Lmax ∼O(102)) used in this study,

τ ′ij ≈
1

We

(
Cijc′kk

L2
max

+ c′ij

(
1+ Ckk + c′kk

L2
max

))
≈
(

1+ Ckk

L2
max

)
c′ij
We
. (3.6)

The final simplification in the equation above is valid for Cij/L2
max � 1. This holds

for all components except i = j = x since Cxx ∼ O(We2). In order to explain the
origin of the spanwise polymer work, we consider the evolution of a small-amplitude
perturbation to the conformation tensor governed by the linear approximation of the
full transport equation for the conformation tensor perturbation (3.4),(

∂

∂t
+Uk

∂

∂xk

)
c′ij =−u′k

∂Cij

∂xk
+ Ckj

∂u′i
∂xk
+ c′kj

∂Ui

∂xk
+ Cik

∂u′j
∂xk
+ c′ik

∂Uj

∂xk
− τ ′ij. (3.7)
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For the current mean flow, V =W = 0 and Cxz=Cyz= 0. Therefore, the conformation
tensor perturbations obey the governing equations,(

∂

∂t
+U

∂

∂x

)
c′xz = Czz

∂u′

∂z
+ c′yz

∂U
∂y
+ Cxx

∂w′

∂x
+ Cxy

∂w′

∂y
− τ ′xz

≈ ∂w′

∂x
Cxx︸ ︷︷ ︸

O
(

w′
lx

We2
)

(3.8)

(
∂

∂t
+U

∂

∂x

)
c′yz = Czz

∂v′

∂z
+ Cxy

∂w′

∂x
+ Cyy

∂w′

∂y
− τ ′yz

≈ ∂w′

∂x
Cxy︸ ︷︷ ︸

O
(

w′
lx

We
)

(3.9)

(
∂

∂t
+U

∂

∂x

)
c′zz = −v′

∂Czz

∂y
+ 2Czz

∂w′

∂z
− τ ′zz

≈ − v′ ∂Czz

∂y︸ ︷︷ ︸
O
(
v′
ly

)
+ 2Czz

∂w′

∂z︸ ︷︷ ︸
O
(

w′
lz

)
. (3.10)

The above approximations are valid at short time (t<We) and take into account that
Czz∼O(1), Cxy∼O(We) and Cxx∼O(We2). Further, the extent of the disturbance in all
three directions (lx, ly, lz) is comparable at the early time. From the above equations,
it is evident that the perturbation c′xz, and in turn τ ′xz, are dominant contributors to
the negative spanwise polymer work. The physical mechanism in the approximation
(3.8) is the action of the initial wall-normal vorticity which tilts, or rotates, the mean
Cxx component of the conformation tensor and thus creates a perturbation c′xz. This
will in turn result in the polymer stress perturbation τ ′xz, and ultimately a negative
polymer work term w′(∂τ ′xz/∂x) in the w′w′ equation. Therefore, the kinetic energy
from the spanwise velocity perturbation field is diminished as it is expended to
stretch the polymer chains in the x–z plane. Contour plots from the simulation at
t = 4 support this view: in figure 9(a), ∂w′/∂x is in phase with c′xz, consistent with
the approximation (3.8). Furthermore, the resulting negative polymer work, Wzz(x),
is captured by the negative correlation between w′ and ∂τ ′xz/∂x in figure 9(b). In
summary, the wall-normal vorticity triggers a resistive spanwise polymer work which
weakens the spanwise velocity of the localized disturbance as shown by the energy
curves in figure 5(b).

3.1.2. Production of disturbance kinetic energy
When considering the variation in the production term relative to Newtonian flow

in figure 7, it is important to note that the change in the mean-velocity profile is
negligible when the disturbance evolution is linear. Therefore the change in the
averaged shear stress, −u′v′, is responsible for the decrease in production. The shear
stress is, in turn, weaker due to a decrease in its own production term, v′v′(∂U/∂y),
during the initial energy growth phase (see figure 10).
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FIGURE 9. Snapshots at t = 4, y = −0.56 during the evolution of the small-amplitude
vortex pair in non-Newtonian flow at We= 40, Lmax= 300 and β = 0.9. (a) Contour lines,
∂w′/∂x (contour spacing 2× 10−5); flood, c′xz (contour range [−3, 3]). (b) Contour lines,
w′ (contour spacing 2× 10−5); flood, ∂τ ′xz/∂x (contour range [−8× 10−2, 8× 10−2]).
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FIGURE 10. Difference between the corresponding components of the shear stress budget
in non-Newtonian and Newtonian flow:A, [−P̂xy/2E0];E, [−ε̂xy/2E0];p, −Ŵxy/2E0;F,
[−(1/2E0)∂ û′v′/∂t].

The reduction in v′v′ is examined by computing its budget (figure 11). The results
demonstrate that the decrease in v′v′ is mainly caused by a negative wall-normal
polymer work,

Wyy = 2(1− β)
Re

(
v′
∂τ ′xy

∂x
+ v′ ∂τ

′
yy

∂y
+ v′ ∂τ

′
zy

∂z

)
= Wyy(x) +Wyy(y) +Wyy(z). (3.11)

The origin of this component of the polymer work can be explained in a manner
similar to that for the negative spanwise polymer work. Taking into account the
simplification for the polymeric stress perturbation in (3.6) and the base state
(V = W = 0 and Cxz = Cyz = 0), the evolution of the relevant conformation tensor
perturbations is determined from (3.7),
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FIGURE 11. Difference between the corresponding components of ∂v′2/∂t (see (3.2))
in non-Newtonian and Newtonian flow: A, [P̂yy/2E0]; E, [ε̂yy/2E0]; p, Ŵyy/2E0; F,
[(1/2E0)∂v̂′v′/∂t].
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c′yz = Czz
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+ Cxy
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(

w′
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)
. (3.14)

As for the spanwise polymer work, the approximations above are valid for early
time and utilize the relations, Cxy ∼ O(We) and Cxx ∼ O(We2). Comparing the
simplified equations, c′xy is the dominant contributor to the wall-normal polymer
work. The approximation (3.12) is the action of the spanwise vorticity perturbation
∂v′/∂x which tilts, or rotates, the mean conformation tensor Cxx, and thus amplifies
c′xy. This is captured in figure 12(a) where contours of ∂v′/∂x coincide with c′xy. The
resulting perturbation in the polymer stress is τ ′xy, and the associated polymer work
Wyy(x) is negative as demonstrated by the negative correlation between v′ and ∂τ ′xy/∂x
in figure 12(b). This polymer work term therefore extracts energy from v′v′. The
impact is important because a weaker v′v′ leads to a decrease in the production of
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FIGURE 12. Snapshots at t = 4, y = −0.56 during the evolution of the small-amplitude
vortex pair in non-Newtonian flow at We = 40, Lmax = 300 and β = 0.9. (a) Contour
lines, ∂v′/∂x (contour spacing 5 × 10−6); flood, c′xy (contour range [−0.6, 0.6]).
(b) Contour lines, v′ (contour spacing 5 × 10−6); flood, ∂τ ′xy/∂x (contour range
[−2× 10−2, 2× 10−2]).

the Reynolds shear stress u′v′ and, in turn, in the production of u′u′ which is the
principal contributor to energy amplification.

The two terms Wzz(x) and Wyy(x) are dominant because they are associated with
perturbations to the mean streamwise polymer stress. In the limit of streamwise-
independent disturbances, however, both terms vanish and, as a result, they were
not part of the energy analysis by Hoda et al. (2009). In that work, the streamwise
polymer-work term makes the leading contribution, and acts to increase the energy
amplification which is consistent with the sign of Wxx in the current simulations (see
figure 8).

In summary, the polymer work plays a dual role in reducing the disturbance energy
in the current flow configuration, with both effects acting on the streamwise vortex:
first, a direct effect is due to the negative spanwise polymer work Ŵzz on w′w′. Second,
an indirect effect is via the wall-normal Ŵyy term which suppresses v′v′ and, as a
result, the production of u′v′ and ultimately of the disturbance kinetic energy.

3.2. Influence of elasticity beyond We/Lmax ∼ 0.5
The stabilizing influence of the polymer in terms of suppressing energy amplification
was discussed above. Figure 6, however, also shows that this effect is reduced for
We/Lmax > 0.5. This is a result of the nonlinear dependence of the polymer stress on
the polymer conformation for the FENE-P model and is illustrated below.

In the previous section, energy suppression was explained in terms of the
perturbations to the conformation tensor, c′xz and c′xy, which arise due to the vorticity
perturbation acting on the mean conformation. The elastic effect of the polymer is
fed back to the velocity field through the polymer stress. Using the simplification
(3.6) for the polymeric stress perturbation, the evolution of τ ′xz is governed by,(

∂

∂t
+U

∂

∂x

)
τ ′xz ≈

∂w′

∂x
Cxx

We

(
1+ Ckk

L2
max

)
≈ ∂w′

∂x
τ xx. (3.15)
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FIGURE 13. Variation of ‘xx’ component of the mean conformation tensor and polymeric
stress tensor: · · · ·, Lmax=50; — · · —, Lmax=100; — · —, Lmax=200; - - - -, Lmax=300.

A similar expression governs the early time behaviour of τ ′xy,(
∂

∂t
+U

∂

∂x

)
τ ′xy ≈

∂v′

∂x
τ xx. (3.16)

The perturbation stress therefore arises due to the action of the vorticity disturbance
onto the mean stress, in analogy to the conformation. Figure 13 shows the
dependence of Ĉxx and τ̂xx on We/Lmax. While the mean conformation tensor increases
monotonically with increasing We/Lmax, the mean stress tensor reaches a maxima at
We/Lmax ∼ 0.5. In a sense, the reservoir of mean stress from which the perturbation
stress, and consequently polymer work, are extracted diminishes (similar behaviour
was observed in mixing layers by Ray & Zaki 2014). Beyond the maxima, τ̂xx
decreases and as a result the perturbations τ ′xz and τ ′xy also decrease, which weakens
the polymer work, or the influence of elasticity.

3.3. Effect of increasing polymer concentration
For all of the results reported so far, a solution with low polymer concentration has
been considered, β = 0.9. In a solution with higher polymer concentration, or a lower
β, the effects of the polymer are expected to be enhanced, and the results indicate
that this is indeed the case as shown in figure 14.

The energy analysis reveals that the mechanism for energy suppression remains
unchanged, and that the enhanced effect of the polymer is primarily due to the
corresponding increase in the magnitude of the polymer work, which was previously
identified as the cause of the reduced energy amplification. This is illustrated in
figure 15 where the magnitude of polymer work is shown to increase with polymer
concentration.

4. Nonlinear evolution
A high-amplitude initial disturbance leads to a regime of nonlinear development

beyond a short-lived initial linear phase. Results from the evolution of disturbances
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FIGURE 14. The effect of polymer concentration, represented by β, on the maximum
perturbation energy in non-Newtonian flow:A, β = 0.9;@, β = 0.7;E, β = 0.5.
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FIGURE 15. The effect of β on polymer work during the evolution of the small amplitude
vortex pair at We= 30 and Lmax = 100:A, β = 0.9;@, β = 0.7;E, β = 0.5.

with amplitudes sufficiently large to cause nonlinear growth are presented by
Henningson et al. (1993) for the Newtonian flow (ε = 0.10485 for the moderate-
amplitude disturbance and ε = 0.2097 for the large-amplitude disturbance). The
authors state that the nonlinear regime is characterized by pronounced streaky
structures in the streamwise direction. Streak amplification can be understood in
the linear growth limit by the lift-up mechanism (Landahl 1975). In the current
flow configuration, the moderate- and large-amplitude localized disturbances generate,
by nonlinear interactions, low-frequency components that lead to the emergence of
more pronounced streaky structures via the lift-up mechanism (see figure 16). While
the streaks decay in the case of the moderate amplitude disturbance, breakdown to
turbulence is initiated in the case of the large-amplitude disturbance via a roll-up
mechanism. As a result, a turbulent spot is formed (figure 17) and spreads thus
leading to fully turbulent flow.

4.1. Evolution of the moderate amplitude vortex pair in non-Newtonian flow
The normalized energy amplification, E(t)/E0, in the case of a moderate-amplitude
vortex pair is shown in figure 18. The three curves correspond to the linear and
nonlinear evolutions of the Newtonian case, and the nonlinear energy growth of
the polymeric flow. The parameters We = 15 and Lmax = 100 were selected for the
viscoelastic fluid since they are comparable to those used in previous studies of fully
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FIGURE 16. Evolution of the disturbance (ε = 0.10485) in Newtonian flow at y=−0.56
and t= {7, 13, 20, 27}; (a) wall-normal v′ and (b) streamwise u′ velocity perturbations.
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FIGURE 17. Turbulent spot in contours of v′ at t= 40 and y=−0.56 during the evolution
of a large vortex pair (ε = 0.2097) in Newtonian flow. Contour spacing 3.75× 10−2.

turbulent non-Newtonian channel flow (Dimitropoulos et al. 1998; Dubief et al. 2004;
Dallas et al. 2010).

At early times, t . 10, the linear and nonlinear simulations are in agreement.
Beyond t = 10, the nonlinear energy growth departs from the curve for the linear
evolution. For the non-Newtonian flow, there is a substantial reduction in the nonlinear
growth phase. This phase is characterized by streaky structures with high streamwise
perturbation velocity. The energy suppression suggests that these structures are
weakened in the non-Newtonian case. The three components of polymer work are
evaluated in figure 19. During the initial linear growth, the mechanism discussed for
the evolution of the small amplitude vortex pair is applicable: namely the influence
of negative spanwise and wall-normal polymer work.

Beyond t = 30, a negative streamwise component of polymer work dominates and
acts to oppose the growth of streaks (figure 19). A snapshot of the instantaneous
negative polymer work and its correlation with the streaky structures in the flow at
t= 40 is shown in figure 20. In the figure, I and II are isosurfaces of the positive and
negative streaks respectively, staggered in the spanwise direction such that II is closer
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FIGURE 18. Evolution of energy amplification for ε = 0.10485: ——, Newtonian flow;
- - - -, non-Newtonian flow at Lmax = 100, β = 0.9 and We= 15;A, ε = 0.00015.
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FIGURE 19. Evolution of the components of polymer work for ε = 0.10485, We= 15,
Lmax = 100 and β = 0.9: — · —, Ŵxx; · · · ·, Ŵyy; — · · —, Ŵzz.

to the central x–y plane of the channel. The isosurfaces are coloured with the negative
streamwise polymer work that dominates during this nonlinear growth phase. There
is a region of strong negative streamwise polymer work aligned along each streaky
structure in the flow, illustrating a strong correlation between the streaky structures and
Wxx < 0. This correlation supports the hypothesis that the streamwise polymer work
suppresses streaks during this early phase of nonlinear growth, consistent with the
suppression in the perturbation energy. The weakening of streaks due to viscoelasticity
has also been observed in the fully turbulent regime in previous studies (Dallas et al.
2010), especially at Weissenberg numbers which match those examined in the current
simulations. With weaker streamwise streaks, transition to turbulence is expected to
be prolonged in viscoelastic flow: a phenomenon which we examine next.

4.2. Breakdown to turbulence in non-Newtonian flow
For the moderate-amplitude vortex pair case, the formation of streaks is followed by
disturbance decay and the flow returns to a laminar state. A higher-amplitude initial
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FIGURE 20. Isosurfaces of the streamwise perturbation velocity (I, u′ = 0.2; and II,
u′ = −0.2), coloured by the streamwise polymer work at t = 40. Contour levels range
from Wxx/2E0 =−3.3 (black) to Wxx/2E0 =−1.1 (white).

disturbance (ε = 0.2097) is required to cause breakdown to turbulence as reported by
Henningson et al. (1993) for Newtonian flow. In response, the disturbance evolution
follows the same stages of growth described for the two lower-amplitude disturbances,
but continues to amplify beyond the formation of streaks, and supports the formation
of a turbulent spot.

Snapshots of u′ and v′ at t=50 during the evolution of a large-amplitude vortex pair
in Newtonian flow capture the shape of the spot (figure 21a,b). At this time instance,
the spot has returned to the centre of the domain due to the periodic boundary
conditions. The spot can be divided into two parts: upstream of x = 0, the spot is
composed primarily of small-scale structures; downstream of x= 0, the spot consists
of large-scale structures oriented in the streamwise direction. The upstream region is
more appreciably altered by the presence of the polymer in the non-Newtonian flow
(figure 21c,d), and the small-scale structures are visibly suppressed. The large-scale
structures downstream of x = 0 are still present, although at a lower magnitude.
In Newtonian flow, the turbulent spot represents a region in which a statistically
stationary turbulent state is approached (Henningson & Kim 1991). Adopting an
analogous view in the non-Newtonian flow, and based on the observed changes to the
turbulent spots, it is expected that the velocity perturbations in the eventual turbulent
state will be significantly weaker. This prediction is in agreement with existing
literature on fully turbulent non-Newtonian flow (e.g. Dubief et al. 2004; Dallas et al.
2010).

In Newtonian flow, the high-frequency region of the turbulent spot upstream of x=0
in figure 21 spreads and leads to fully turbulent flow in the entire channel. In the
case of non-Newtonian flow, the perturbation velocity in that region is suppressed,
and the late stages of the transition process whereby the turbulence spreads, fills the
channel and becomes statistically stationary is substantially delayed. This delay is
demonstrated in figures 22 and 23. In the former, the friction Reynolds number, Reτ ≡
uτh/ν where uτ is the friction velocity, is plotted as a function of time. The Newtonian
curve rises from the initial laminar level to the turbulent state in a relatively short
period of time. Beyond t ∼ 250, a fully turbulent state is maintained throughout the
computational domain. The prolonged transition to turbulence in the non-Newtonian
case is reflected in the longer time for Reτ to level off, t > 800, even though its
final level indicates a reduced-drag state. Snapshots of the polymeric flow during the
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FIGURE 21. Snapshots of perturbation velocity at t = 50 and y = −0.56 during the
evolution of the large-amplitude vortex pair. Newtonian flow: (a) u′=[−0.3, 0.3]; (b) v′=
[−0.05, 0.05]. Non-Newtonian flow at We= 15, Lmax= 100 and β= 0.9: (c) u′; (d) v′ with
the same contour limits.

transition process in figure 23 demonstrate the slow spreading of velocity perturbations
across the channel. When a fully turbulent state is achieved, it differs significantly
from that in Newtonian flow, as seen in figure 23(d,e), respectively.

Ultimately the non-Newtonian flow reaches a drag-reduced turbulent state, close to
the maximum drag reduction (MDR) state described by the Virk asymptote (Virk &
Mickley 1970). Statistics from the turbulent regime, t> 800, are plotted in figure 24.
The mean velocity profile for the non-Newtonian flow (figure 24a) matches that of
the Newtonian flow in the viscous sublayer. However, in the log layer, its slope is
significantly increased. A drag reduction of 40 % is achieved in the current simulations.
The r.m.s. velocity perturbations are compared to the Newtonian curves in figure 24(b).
All three components of velocity have a weaker disturbance field in the polymeric flow.
The recorded reduction in the r.m.s. is consistent with earlier work on drag-reduced
flows (e.g. White & Mungal 2008). The statistics in figure 24 are also consistent with
those in the elasto-inertial turbulence regime (Dubief, Terrapon & Soria 2013; Samanta
et al. 2013) where the authors report the formation of sheet-like structures of polymer
extension which are large in the streamwise and spanwise dimensions. Structures with
similar physical size are also established in the fully turbulent state of the current
study. Since our computational domain is approximately five times larger in each of
the horizontal directions, the structures are observed to occupy only a fraction of the
channel width.
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FIGURE 22. Effect of the addition of polymers to the process of transition: ——,
Newtonian; - - - -, non-Newtonian at We = 15, Lmax = 100 and β = 0.9. The dotted lines
mark Reτ in fully turbulent flow for the Newtonian (i) and non-Newtonian (ii) cases.
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FIGURE 23. Snapshots of u′ at y = −0.56 during the evolution of the large-amplitude
vortex pair: (a–c) non-Newtonian flow during transition at We= 15, Lmax = 100, β = 0.9
and t = {200, 400, 600}; (d) and (e) are a comparison of non-Newtonian and Newtonian
flows, respectively, at t= 900. Contour limits: [−0.2, 0.2].

The current simulations are performed at Re = 2000. Breakdown to turbulence in
viscoelastic channel flow in the low-Reynolds-number regime where elastic forces
are strong (Shaqfeh 1996) is largely unexplored. Recent linear theory (Jovanovic
& Kumar 2011) and experiments (Pan et al. 2013) demonstrate the potential for
significant energy amplification and nonlinear subcritical instabilities in channel flow
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FIGURE 24. Statistics from fully turbulent flow: ——, Newtonian; - - - -, non-Newtonian
at We= 15, Lmax = 100 and β = 0.9; (a) mean velocity profiles; · · · ·, Virk asymptote for
MDR; (b) root-mean-squared velocity fluctuations; A, streamwise; F, spanwise; E, wall-
normal.

at Re � 1. Future DNS of transition at low Reynolds number would complement
these efforts.

5. Conclusion
This study is the first to detail the laminar-to-turbulence transition process in

polymeric channel flow starting from a mathematically well-defined and reproducible
disturbance. The numerical simulations capture the complete evolution of the
disturbance until breakdown to turbulence. An energy analysis provides an explanation
of the influence of polymer additives on the transition process which can be broadly
divided into three phases. During the first linear phase, energy growth takes place via
the lift-up mechanism. The wall-normal and spanwise vorticity perturbations tilt the
mean conformation Cxx and generate c′xz and c′xy components. This results in negative
polymer work which acts to suppress the spanwise and wall-normal components of
perturbation velocity. Both effects lower the rate of energy growth in the linear stage,
the former directly and the later indirectly by reducing the production of u′v′ and in
turn of u′u′. This is in agreement with the results for non-modal behaviour reported
by Hoda et al. (2008) and Zhang et al. (2013). The lift-up mechanism results in the
formation of streaky structures with high streamwise velocity perturbation, which are
weakened by elasticity.

During the second phase, there is a significant growth of the streamwise streaks
which reach high amplitude and nonlinear effects become important. During this
stage, a negative streamwise polymer work weakens the streaky structures, causing a
significant reduction in energy growth. The final step of transition is the formation of
a turbulent spot, or breakdown to turbulence. The spot consists of a spectrum of flow
structures: the streamwise-oriented structures from the preceding phase persist while
small-scale structures are suppressed in the non-Newtonian flow. This leads to further
suppression in the rate of energy growth and the transition process is prolonged. This
delay in establishing turbulence motivates future studies of the influence of polymers
on the secondary instability of the flow. The turbulent state which is established at
long time is a drag-reduced state, close to the MDR asymptote.
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The analysis of transition in the non-Newtonian flow has shed light on the effect
of viscoelasticity on the linear and nonlinear stages. By focusing on an isolated
initial disturbance, an uncluttered view of the transition process is possible and the
disturbance evolution is examined in detail. The results from the late stages, or
the nonlinear regime, naturally complement existing studies of viscoelastic turbulent
channel flow.
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