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A B S T R A C T

In the present paper, we evaluate the performances of three stochastic models for particle dispersion in the case
of a three-dimensional turbulent flow. We consider the flow in a channel with a cubic wall-mounted obstacle,
and perform large-eddy simulations (LESs) including passive particles injected behind the obstacle, for cases
of low and strong inertial effects. We also perform Reynolds-averaged simulations of the same case, using
standard turbulence models, and employ the two discrete stochastic models for particle dispersion implemented
in the open-source code OpenFOAM and the continuous Lagrangian stochastic model proposed by Minier et al.
(2004). The Lagrangian model is consistent with a Probability Density Function (PDF) model of the exact
particle equations, and is based on the modelling of the fluid velocity seen by particles. This approach allows
a consistent formulation which eliminates the spurious drifts flawing discrete models and to have the drag force
in a closed form. The LES results are used as reference data both for the fluid RANS simulations and particle
simulations with dispersion models. The present test case allows to evaluate the performance of dispersion
models in highly non-homogeneous flow, and it used in this context for the first time. The continuous stochastic
model generally shows a better agreement with the LES than the discrete stochastic models, in particular in
the case of particles with higher inertia.
1. Introduction

Bluff-body flows are of primary importance because present in nu-
merous applications in natural and engineering sciences. In particular,
the flow around a surface-mounted blunt obstacle placed in a channel
is fundamental to the understanding of the flow in complex two- and
three- dimensional geometries, often in relation with the movement of
cars, buses, trains or trucks (Simpson, 2001).

A canonical example of such flows is given by a cube with sharp
edges mounted over a plate in a channel. This flow has been thoroughly
investigated since the pioneering experimental work by Martinuzzi
and Tropea (1993), and has become a classical benchmark for sepa-
rated flows both for direct numerical simulation (DNS) and different
models (Rodi, 1997; Iaccarino et al., 2003).

The progress in computational tools together with the practical
importance of such flows has motivated several DNS studies of this
configuration (Yakhot et al., 1992; Diaz-Daniel et al., 2017) or similar
bluff-body flows (Bruno et al., 2014; Cimarelli et al., 2018). However,
while DNS remain important to get physical insights, only Reynolds
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averaged (RANS) models can be routinely used in practice, and large-
eddy simulations (LES) have to be further developed as the reference
numerical tool for high-Reynolds-number flows. Hence, to develop and
assess RANS and LES models remain a crucial research activity for these
complex fluid flows.

In many cases of interest for environmental studies and engineering
applications, the flow is laden with particles or droplets, as for instance
when a car encounters rain or snow. Even considering only the case of
small particles heavier than the carrier fluid, these systems are much
more complex than their single-phase counterpart and the motivation
for the development of reliable models is even stronger because of
the complexity of performing relevant experiments (e.g. in cases with
snow). In this context, the field of simulating and modelling particle-
laden flows is yet in its infancy, even in very dilute conditions when
the modifications of the turbulence by the solid phase can be neglected
and one is interested in the particle dynamics, notably clustering and
preferential sampling.
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Important advances in understanding the basic physics of such
flows have been acquired in simple configurations (Balachandar and
Eaton, 2010), and combined progress in computational approaches
have been made, as recently reviewed in Fox (2012), Elghobashi (2019)
and Brandt and Coletti (2022). Nevertheless, as regards to modelling
particle-laden complex flows, notably when the geometry is complex
and/or recirculation is important, the state-of-the-art is still to use
empirical approaches often flawed by errors (Fox, 2014; Minier et al.,
2014). The development of accurate engineering models for complex
particle-laden flows is therefore one urgent task, to which the present
research aims at contributing.

Generally speaking, engineering models for turbulent disperse flows
can be developed both in an Eulerian (Simonin, 1996) or Lagrangian
framework (Minier and Peirano, 2001; Peirano et al., 2006). In analogy
with classical RANS models of single-phase flows, Eulerian models
represent the two phases as two fluids. The advantage is the possibility
to exploit existing Reynolds stress models for single-phase turbulence.
Yet, due to the specific nonlinear character of the particle equations,
this approach has to overcome a difficult closure problem, and hence
it may be considered relevant only for dense flows (Marchisio and Fox,
2013; Fox, 2014).

The Lagrangian approach appears thus necessary for dilute collision-
less conditions, and indeed it has received attention for many years
(Stock, 1996). In particular, researchers have tried to develop a rigor-
ous Lagrangian probability density function (PDF) formulation (Minier
and Peirano, 2001; Peirano et al., 2006), similarly to the PDF approach
to reactive flows (Pope, 2000). This approach consists in modelling
the relevant one-point PDF as a diffusion process and solving the
corresponding set of stochastic equations, which allows to correct the
drawbacks present in previous empirical-based models (Minier et al.,
2014). The PDF approach is nowadays well established in reactive
flows even in complex geometries (Pope, 2000). It can be considered
as the standard approach for dispersion in homogeneous media, like
atmospheric flows (Stohl et al., 2005).

Modelling of Particle-laden non-homogeneous flows appears more
difficult and therefore it is less developed. Heuristic Lagrangian mod-
els have been applied to many free and bounded flows showing yet
a modest capability of prediction, notably as to deposition in wall-
bounded flows (Henry et al., 2012). The PDF approach has shown
good performances in several homogeneous and non-homogeneous
free-shear flows (Peirano et al., 2006), and most notably when applied
to a benchmark bluff-body case (Minier et al., 2004). The Lagrangian
PDF approach has been recently extended also to moderately dense
homogeneous flows (Innocenti et al., 2019), where it can be a useful
complement to Eulerian two-fluid models.

Wall-bounded flows usually ask for a special treatment of the bound-
ary layer and can be considered less developed, even though progresses
have been recently achieved. Notably, good results have been obtained
in the LES framework (Innocenti et al., 2016), and a first attempt
to model moderately dense bounded flows has been made (Innocenti
et al., 2021). Concluding this brief description of the state-of-the-art, we
can conclude saying that the assessment of present numerical models of
particle-laden flows is a crucial ongoing research field (Berrouk et al.,
2007; Pozorski and Apte, 2009; Michałek et al., 2013; Alletto and
Breuer, 2012; Breuer and Hoppe, 2017; Salehi et al., 2017). Indeed,
while the Lagrangian approach is a mature and reliable approach
for particle-laden flows in homogeneous and simple non-homogeneous
flows, it remains to be analysed and developed to be routinely used in
more complex flows.

From a technical point of view, while in principle a fully Lagrangian
fluid/particle approach is possible (Minier and Peirano, 2001), in prac-
tice a Hybrid Eulerian/Lagrangian approach is always used, as in
the present work. This means solving the fluid phase in an Eulerian
framework, which may be LES or RANS, and to couple with it a
Lagrangian PDF approach for the particles (Peirano et al., 2006). The
2

hybrid approach has many advantages from the computational side and
is the only one possible for complex flows. Yet, specific issues arise in
this framework, as already pointed out in similar efforts for reactive
flows (Muradoglu et al., 2001), which need careful attention and make
the benchmark of particle models subtle and difficult.

The main aim of this work is precisely to validate different La-
grangian models on a relevant particle-laden test-case which has not
yet been investigated and may represent a standard benchmark for the
future improvement of the modelling.

Specifically, we present and discuss LES and RANS results for the
cube-mounted benchmark case in the presence of particles. This test-
case appears well-suited to represent a challenging yet relevant test-
case to evaluate the predictions of different Lagrangian dispersion
models. In particular, being the first time this benchmark case is used in
presence of particles, LES and RANS are carried out first in the single-
phase configuration to be compared with the literature, and then the
particle-laden case will be analysed using different fluid and particle
models. A remark is in order to clarify the context of the present
work. All Lagrangian models for particles are implicitly based on a
model for the fluid phase. Furthermore, since particles are coupled
to the fluid, fluid statistical moments are used in the particle model
in a hybrid approach. Both facts point out to an often overlooked
consistency issue, which has been addressed both in single reactive and
particle-laden flows (Pope, 1987; Muradoglu et al., 2001; Chibbaro and
Minier, 2011; Chibbaro et al., 2014). The consequence is that when
studying a particle-laden flow, the model used to tackle the fluid flow
should be consistent with that used in the particle model, in the sense
indicated by Chibbaro et al. (2014). Otherwise, uncontrolled errors and
nonphysical results may arise, most notably in the RANS framework.
This also implies that particle models cannot be assessed singularly,
independently from the fluid phase models. In particular, it has been
shown that the naive idea to couple DNS with standard Lagrangian
models, as to assess them directly, leads to huge bias errors (Chibbaro
and Minier, 2011). In the present work, we try a first extensive bench-
mark using several different models, and we hope that these results
could be used in the future as a reference to improve the quality of the
different models.

The paper is organized as follows: in Section 2, we describe the
test case that we considered; in Section 3, we introduce the governing
equations of the system and the particle dispersion models; in Section 4,
we describe our simulations, separately for the fluid and the particle
phases, and we discuss our results; and in Section 5, we summarize our
findings and give perspectives on further developments.

2. Test case

We focus on the case of a cubic obstacle mounted on the lower wall
of a channel. This case has been investigated in details by Martinuzzi
and Tropea (1993), who employed different experimental techniques to
obtain information about the mean fields as well as the second order
moments at several positions around the obstacle. The experimental set-
up employed by Martinuzzi and Tropea (1993) consists of a channel
of 390 cm × 60 cm × 5 cm (length × width × height), with a cubic
obstacle of side 2.5 cm mounted 52 channel heights far from the inlet.
We take the cube side as characteristic length, denoted by 𝐿𝑐𝑢𝑏𝑒, and the
mean velocity at the inlet, denoted by 𝑈𝑖𝑛𝑙𝑒𝑡, as reference velocity. The
low reaches a fully developed state far before the cube. The natural
efinition of the Reynolds number becomes then:

𝑒 =
𝑈𝑖𝑛𝑙𝑒𝑡 𝐿𝑐𝑢𝑏𝑒

𝜈𝑎𝑖𝑟
. (1)

We study the case with 𝑅𝑒 = 50,000, for which high quality experi-
mental data are available online.1 The same experimental set-up has
already been chosen as reference for different benchmark studies (Rodi
et al., 1997; Rodi, 1997; Muld et al., 2012). Note that we will present
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Fig. 1. Visualization of the mid wall-normal plane and turbulent structures identified with the Q criterion (Hunt et al., 1988) at an arbitrary time step of the simulation. The
structures are coloured with the average-velocity magnitude, whose range of values is from 0 (dark blue) to 1.8 (dark red). (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
Table 1
Comparison between the domain size in experiment and simulations.

𝛥𝑋𝑖𝑛(𝐿𝑐𝑢𝑏𝑒) 𝛥𝑋𝑜𝑢𝑡(𝐿𝑐𝑢𝑏𝑒) 𝛥𝑍𝑊 (𝐿𝑐𝑢𝑏𝑒)

Experiments 104 51 24
Present work 4 20 10
LES by Muld et al. (2012) 4 10 10
LES and RANS described by Rodi et al. (1997) 3 ≥6 7

the results in dimensionless variables 𝑈 ≡ 𝑈∕𝑈𝑖𝑛𝑙𝑒𝑡, 𝑥 ≡ 𝑥∕𝐿𝑐𝑢𝑏𝑒, and
thus 𝜈 = 1∕𝑅𝑒. The time is scaled consequently: 𝑡 ≡ 𝑡 × 𝐿𝑐𝑢𝑏𝑒∕𝑈𝑖𝑛𝑙𝑒𝑡.

In our reference system the 𝑥 axis correspond to the main flow
direction, the 𝑦 axis to the vertical direction and the 𝑧 axis to the
span-wise direction. The domain can be described via three parameters:
the length of the channel upstream of the cube 𝛥𝑋𝑖𝑛; the length of
the channel downstream the cube 𝛥𝑋𝑜𝑢𝑡; the width of the channel
𝛥𝑍𝑊 . Due to the fact that the cubic obstacle occupies half of the
channel height, the full height is included in the computational domain,
while the streamwise and spanwise dimensions of the computational
domain may be smaller than the experimental channel to reduce the
computational costs. The parameters used here are reported in Table 1
in units of 𝐿𝑐𝑢𝑏𝑒. As reported in the table, the domain used in present
computations is clearly reduced with respect to experiments, and it is
in line with previous computations, where it was shown that the choice
of such small upstream length was sufficient to get reasonably accurate
results for the fluid statistics (Muld et al., 2012).

To give a visual illustration of the most prominent features of the
chosen flow configuration, we display vortical structures at an arbitrary
time step of our simulation in Fig. 1. It is possible to appreciate the
complexity of the turbulent structures in the wake of the obstacles,
as well as in the separation regions caused by the sharp edges of the
geometry.

1 https://scholar.lib.vt.edu/ejournals/JFE/data/JFE/DB93-085/.
3

3. Problem description and modelling assumptions

3.1. Governing equations

In the present work, we consider dilute incompressible gas–particle
flows, so that the modulation of the fluid by the particles and particle–
particle interactions are neglected. The fluid flow obeys the continuity
and Navier–Stokes equations,

𝜕𝑈𝑓,𝑗

𝜕𝑥𝑗
= 0, (2a)

𝜕𝑈𝑓,𝑖

𝜕𝑡
+ 𝑈𝑓,𝑗

𝜕𝑈𝑓,𝑖

𝜕𝑥𝑗
= − 1

𝜌𝑓
𝜕𝑃
𝜕𝑥𝑖

+ 𝜈
𝜕2𝑈𝑓,𝑖

𝜕𝑥2𝑗
. (2b)

For the disperse phase, we consider heavy particles (𝜌𝑝 ≫ 𝜌𝑓 );
the equations of motion for such particles can be written as (Gatignol,
1983; Maxey and Riley, 1983):

𝑑𝐱𝑝
𝑑𝑡

= 𝐔𝑝, (3a)

𝑑𝐔𝑝

𝑑𝑡
= 1

𝜏𝑝
(𝐔𝑠 − 𝐔𝑝) , (3b)

where 𝐔𝑠 = 𝐔(𝐱𝑝(𝑡), 𝑡) is the fluid velocity at the particle position, i.e.
the fluid velocity sampled along the particle trajectory 𝐱𝑝(𝑡). To simplify
the analysis and the comparison among different cases, gravity has been
neglected. The particle relaxation time is defined as:

𝜏𝑝 =
𝜌𝑝
𝜌𝑓

4𝑑𝑝
3𝐶𝐷|𝐔𝐫 |

, (4)

where the local instantaneous relative velocity is 𝐔𝐫 = 𝐔𝑝 − 𝐔𝑠 and
the drag coefficient 𝐶𝐷 is a non-linear function of the particle-based
Reynolds number, 𝑅𝑒𝑝 = 𝑑𝑝|𝐔𝐫 |∕𝜈𝑓 (Clift et al., 2005). A commonly
used empirical relation for the drag coefficient is:

𝐶𝐷 =

⎧

⎪

⎨

⎪

24
𝑅𝑒𝑝

[

1 + 0.15𝑅𝑒0.687𝑝

]

if 𝑅𝑒𝑝 ≤ 1000,

0.44 if 𝑅𝑒 ≥ 1000.
(5)
⎩

𝑝

https://scholar.lib.vt.edu/ejournals/JFE/data/JFE/DB93-085/
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3.2. Numerical approach for the fluid phase

The fluid phase has been investigated via LES and RANS. Since the
main novelty of the present work resides in the particle statistics, we
have simulated the fluid phase with standard models using the standard
values for the different model coefficients and parameters. For this
reason, we shall not give details here, and we refer to the literature
for further details (Pope, 2000).

Specifically, we have performed several LES of the fluid phase
(Pope, 2004; Ferziger and Perić, 2002) using the Spallart–Almaras
IDDES model (Shur et al., 2008) to estimate the turbulent viscosity . In
these simulations, the governing equations and the transport equation
for the model variable, denoted by 𝜈̃, are solved for each cell of the
domain and each time step. The length scale for the 𝜈̃-production term
is computed using the cell size far from the wall, the wall distance in the
near-wall region, and a blending function in the intermediate regions.
Concerning the RANS, we have used the 𝑘− 𝜀, the realizable 𝑘− 𝜀 and
he 𝑘−𝜔 models. All models are used in their standard implementation
n the OpenFOAM package.

.3. Particles tracking

Let us denote variables obtained via a generic numerical simulation
ith the superscript (⋅)𝑆 . The central question in performing particle

racking is how to evaluate 𝐔𝑠 in Eq. (3).
For DNS, whose aim is to solve exactly all the scales of motion so

hat the uncertainties are due only to numerical errors, we can write
or the definition of the fluid seen by particles:

𝑠,𝑖 = 𝑈DNS
𝑖 (𝐱𝑝(𝑡), 𝑡). (6)

Then, to track particles in the simulation amounts to solving the particle
equations, together with the fluid ones, using 𝐔𝑆 in Eq. (3); in the DNS
spirit, the particle trajectories should be considered as experimental
data.

If closure models are employed, they a priori introduce errors related
to the unsolved scales. In the following paragraphs, we shall explain the
different strategies used in the present work.

When we perform a LES, we have access to the filtered velocity
𝑈𝑖(𝐱) = ∫ 𝐺(𝐱, 𝐫)𝑈𝑖(𝐫) 𝑑𝐫, where the function 𝐺 indicates the filter. This

coarse-grained version of the full velocity field, yet fluctuating and
athering some detailed information about the large-scale motion, that
s for those scales above the filter length. In this case, the first-order
pproximation is to simply use

𝑠,𝑖 = 𝑈LES
𝑖 (𝐱𝑝(𝑡), 𝑡) = 𝑈̃𝑖(𝐱𝑝(𝑡), 𝑡) , (7)

as for a DNS, and the resulting trajectories provide an approximated
picture of the real ones. This approximation is known to lead to
important errors (Bianco et al., 2012; Geurts and Kuerten, 2012; Chib-
baro et al., 2014), which can be corrected with appropriate stochastic
subgrid models, see Innocenti et al. (2016). However, it has been shown
that in shear flows the error might be reasonably small with respect to
the large-scale statistics (Armenio et al., 1999). Given the complexity
of the flow studied in this work, and the lack of previous simulations
with particles, in this work we discuss the LES results obtained without
introducing a stochastic subgrid model, whose behaviour is left for
future studies.

When the fluid phase is solved through a RANS approach, the
Reynolds decomposition 𝑈𝑖 = 𝑈 𝑖 + 𝑢′𝑖 is used and only statistical
verages are available. The first and simplest approach to particle
racking is to simply write:

𝑠,𝑖 = 𝑈RANS
𝑖 (𝐱𝑝(𝑡)) = 𝑈 𝑖(𝐱𝑝(𝑡)). (8)

This procedure surely allows to close the problem but is a too rough
approximation; one therefore needs to add a model for the effects of
4

the turbulent fluctuations. We therefore resort to a statistical approach
and formally write:

𝑈𝑠,𝑖 = 𝑈 𝑖(𝐱𝑝(𝑡)) + 𝑢𝑆𝑖 (𝐱𝑝(𝑡), 𝑡). (9)

o estimate 𝐮𝑆 (𝐱𝑝(𝑡)) using only the RANS fields leads to considerable
ifficulties (Minier and Peirano, 2001). Nevertheless, several methods
ave been presented to adapt RANS simulations to particle tracking,
ecause of their low computational cost. Generally speaking, this ap-
roach has some validity in homogeneous flow (Stock, 1996; Wilson
nd Sawford, 1996).

The first attempts were based on the assumption that the particle
otion can be described via a homogeneous diffusion process, assump-

ion which is justified only if 𝐮𝑆 is Gaussian. In this simple approach,
n effective diffusion coefficient for the Eulerian field that represents
he particle concentration can be estimated, and 𝐮𝑆 is evaluated as

random variable with Normal distribution  (0, 𝜎), and different
alues at each integration time steps (Dukowicz, 1980). The three
omponents of 𝐮𝑆 are independent and the standard deviation 𝜎 is
inked to the other variables of the turbulent model. An improvement
ame from the idea of taking directly into account a time-scale when
odelling 𝐮𝑆 (Gosman and Ioannides, 1983; Kabanovs et al., 2016). In

his approach, the turbulence is still assumed to be isotropic, and the
luctuations are evaluated from the turbulent kinetic energy 𝑘:

𝑆
𝑖 ≈  (0, 𝜎𝑖𝑗 )

{

𝜎𝑖𝑖 = (2∕3 𝑘)1∕2

𝜎𝑖≠𝑗 = 0
(10)

he value of 𝑢𝑆 used for any single particle is not selected at each
ime step, but after a turbulent time interval 𝛥𝑡𝑡𝑢𝑟𝑏 . This choice has
een inspired by the consideration that the velocity seen by the particle
𝑠 changes significantly only if the particle moves from a coherent

tructure to another. Thus, the turbulent time interval is defined as:
𝑡𝑡𝑢𝑟𝑏 = min(𝛥𝑡𝜀, 𝛥𝑡𝑅), where 𝛥𝑡𝜀 represents the time needed for the
ddy that is carrying the particles to be dissipated; this is estimated
s the dissipation length scale 𝑙𝜀 over the magnitude of the randomly
enerated fluctuation 𝐮𝑆 :

𝑡𝜀 =
𝑙𝜀

|𝐮𝑆 |
𝑙𝜀 = 𝐶1∕2

𝜇
𝑘3∕2

𝜀
, (11)

and 𝛥𝑡𝑅 represents the time needed for the particles to pass through the
eddy; this is estimated from a linearized form of Eq. (3):

𝛥𝑡𝑅 = −𝜏𝑝 ln
(

1 −
𝑙𝜀

𝜏𝑝|𝐔𝑠 − 𝐔𝑝|

)

. (12)

In this work, we have used two standard models available in Open-
OAM. More specifically, the two models implemented are

• the so-called Stochastic Dispersion model, which we rename Ran-
dom Dispersion model to avoid confusion in the following, and is
partly related to the Gosmann model. In this model, the turbulent
time interval, 𝛥𝑡𝑡𝑢𝑟𝑏, is defined as:

𝛥𝑡𝑡𝑢𝑟𝑏 = 𝑚𝑖𝑛
(

𝑘
𝜀
, 𝐶𝑠

𝑘3∕2

𝜀 ⋅ |𝐔𝑟|

)

; (13)

where 𝐶𝑠 ≈ 0.16 is a model constant. After 𝛥𝑡𝑡𝑢𝑟𝑏 elapses, the
particle velocity is perturbed by adding a vector of random direc-
tion and magnitude generated as a Gaussian distributed random
variable of variance:

𝜎 =
√

2
3
𝑘. (14)

• the so-called Gradient Dispersion model, which adopts the same
definition of 𝛥𝑡𝑡𝑢𝑟𝑏 to determinate how often the fluctuation is seen
by the particle and the same random generated amplitude with
variance 𝜎, but introduce a more refined system to determine the
direction of the velocity perturbation: this is chosen parallel to
the opposite of the gradient of the turbulent kinetic energy, i.e.:

𝐮𝑆 = − ∇𝑘 (15)

|𝐮𝑆 | |∇𝑘|
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Such models may lead to large errors and nonphysical behaviour in
strongly non-homogeneous flows. Namely, they are affected by spuri-
ous drifts (Thomson, 1987; Pope, 1987), which may be avoided using
rigorous stochastic models (Pope, 1985; Minier et al., 2014). For this
reason, we have also implemented and used in our simulations a
Lagrangian stochastic model, which is detailed in the next section.

3.3.1. Diffusion stochastic model
The present Lagrangian stochastic model has been developed and

extensively validated previously (Minier and Peirano, 2001; Minier
et al., 2004; Peirano et al., 2006). We summarize here its main
characteristics.

The variables retained in the model are the particle position 𝐱𝐩, the
article velocity 𝐔𝐩 and the velocity of the fluid seen by the particles
𝐬. Therefore, the system will be described by the stochastic process
= (𝐱𝑝,𝐔𝑝,𝐔𝑠). In particular, the model is given directly in terms of

he total instantaneous velocity 𝐔𝑠 = 𝐔𝑠 + 𝐮𝑠, as it has been shown
to be a better practice (Minier et al., 2014). On physical analysis
ground (Minier et al., 2004), it is a sound choice to model the stochastic
process as a generalised Langevin equation, that is to describe 𝐔𝑠 as a
diffusion process (Gardiner et al., 1985). The governing equations for
the three variables of the stochastic process are as in (Minier et al.,
2004):

𝑑𝑥𝑝,𝑖 = 𝑈𝑝,𝑖

𝑑𝑈𝑝,𝑖 =
𝑈𝑠,𝑖 − 𝑈𝑝,𝑖

𝜏𝑝
𝑑𝑡 (16)

𝑑𝑈𝑠,𝑖 = − 1
𝜌𝑓

𝜕𝑃
𝜕𝑥𝑖

𝑑𝑡 +
(

𝑈 𝑝,𝑗 − 𝑈𝑓,𝑗

) 𝜕𝑈𝑓,𝑖

𝜕𝑥𝑗
𝑑𝑡

− 1
𝑇 ∗
𝐿,𝑖

(

𝑈𝑠,𝑖 − 𝑈𝑓,𝑖

)

𝑑𝑡

+
√

𝜀
(

𝐶0𝑏𝑖𝑘̃∕𝑘 + 2
3
(𝑏𝑖𝑘̃∕𝑘 − 1)

)

𝑑𝑊𝑖 .

The equations show that the particle position and velocity equations
re closed and unaltered with respect to the exact ones in Eq. (3). The
elocity of the fluid seen by the particles contains a drift term (terms
roportional to the differential 𝑑𝑡) and a diffusion term, which is related
o the Wiener process 𝐝𝐖.

For the sake of clarity, we provide below a brief account of the
ational behind the model. The starting point is the Langevin equation
odel used in single-phase PDF modelling (Pope, 2000), since particles

educe to fluid tracers in absence of inertia. The model is hence built
o to retrieve the classical simplified Langevin model in the zero-Stokes
imit (Pope, 2000; Minier and Peirano, 2001), which assures the model
o be free of spurious drift by construction.

When inertia is present, two main effects affect the dispersion of
articles: (i) in all cases, the typical integral time scale of the fluid
elocity seen by the particles becomes different from the Lagrangian
luid velocity scale. (ii) When the flow is non-homogeneous, particles
ay drift which induces the Crossing-Trajectory-effect (CTE), that is
significant decorrelation of the fluid velocity fluctuations along the

article path. The first effect is much smaller than the second and is
enerally neglected in non-homogeneous flows. The crossing-trajectory
ffect (CTE) is due to the mean shear and has been modelled by chang-
ng the timescales in the drift and diffusion terms following Csanady’s
nalysis (Csanady, 1963; Minier and Peirano, 2001). Assuming, for
he sake of simplicity, that the mean drift is aligned with the first
oordinate axis (the general case is discussed in Minier and Peirano,
001), the model relations for the timescales are, in the longitudinal
irection:

∗
𝐿,1 =

𝑇 ∗
𝐿

√

1 + 𝛽2
|𝐔𝑟|

2
, (17)
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2𝑘∕3
and in the transversal directions (axes labelled 2 and 3)

𝑇 ∗
𝐿,2 = 𝑇 ∗

𝐿,3 =
𝑇 ∗
𝐿

√

1 + 4𝛽2
|𝐔𝑟|

2

2𝑘∕3

. (18)

In these equations 𝛽 is the ratio of the Lagrangian and the Eulerian
imescales of the fluid, 𝛽 = 𝑇𝐿∕𝑇𝐸 , and 𝑇 ∗

𝐿 represents the Lagrangian
ime scale in the absence of mean drifts but accounting for particle
nertia. Since in the present work shear effects are dominant, changes
nduced by the particle inertia are neglected. We therefore assume that
∗
𝐿 = 𝑇𝐿, and 𝛽 = 1 for the sake of simplicity. To make the stochastic
rocess consistent, a different kinetic energy has been introduced in the
iffusion matrix; with 𝑏𝑖 = 𝑇𝐿∕𝑇𝐿,𝑖, this reads

̃ = 3
2

∑3
𝑖=1 𝑏𝑖𝑢2𝑓,𝑖
∑3

𝑖=1 𝑏𝑖
. (19)

Finally, a mean gradient term is added to the drift model, representing
the dispersion of the particles with respect to the fluid trajectory. In
this model, there is only one free parameter: the constant 𝐶0. Although
this can be considered as a free parameter, useful to calibrate the
model (Minier and Pozorski, 1999), we have chosen to fix it to 𝐶0 = 2.1,
which is a standard value in literature (Pope, 2000).

The model Eq. (16) constitutes a set of stochastic differential equa-
tions (SDEs) in the form of a Langevin Equation (or a diffusion process
more rigorously), and therefore they are equivalent to a closed Fokker–
Planck equation for the one-point pdf 𝑓 (𝑡, 𝐱𝐩,𝐔𝐩,𝐔𝐬) (Gardiner et al.,
1985). For this reason, it is possible to refer to it as a PDF model (Pope,
1985; Minier and Peirano, 2001). It is worth noting that the diffusion
coefficient is not a constant, but a nonlinear function of space. This
means that in non-homogeneous conditions the PDF may be strongly
non-Gaussian. (Pope, 2000; Minier and Peirano, 2001; Innocenti et al.,
2020)

We conclude the description of the dispersion models with few
comments about their consistency with fluid models. The discrete
models are built on a pure heuristic ground, and strictly speaking
cannot be fully consistent with any fluid model. Hence the two standard
models implemented in OpenFOAM as well as all other models of the
same class of discrete dispersion models, are in principle affected by
spurious drifts, that is conservation laws may not be satisfied. The
Langevin model is instead fully consistent with the SLM fluid model,
which in turn corresponds to the ROTTA Reynolds stress model (Pope,
2000), but numerical studies have shown that the present model can
be considered consistent with the standard 𝑘 − 𝜖 class models for
engineering purposes (Chibbaro and Minier, 2011).

4. Results and discussions

4.1. Fluid phase statistics

4.1.1. LES computation: numerical setup
First, we show the LES results, which will be used as a reference for

the RANS calculations. Concerning the boundary conditions, we use a
fit of the experimental data with a second order polynomial function
at the position which corresponds to the inlet of the computational
domain. Furthermore, we resort to the synthetic turbulent generator
‘‘LEMOS’’2 to introduce fluctuations at the inflow, based on empirical
parameters lengths and time scales. We have checked that using more
complex conditions has no effect on the flow downstream the obstacle.
For the inlet condition of the variable in the Spalart–Allmaras model,
̃, we have studied different values in the range between 𝜈̃ = 𝜈 and
̃ = 10𝜈. We have obtained similar results both for the mean values and
for the root mean squares, so that we have then always used 𝜈̃ = 𝜈.

2 https://github.com/LEMOS-Rostock.

https://github.com/LEMOS-Rostock
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Table 2
Meshes employed in the LES validation. The table reports the number of points, cells and four indexes of the quality of the meshes: the percentage of hexahedra among the cell,
the maximum non-orthogonality, the maximum skewness, and the maximum aspect ratio of the cells.

N points N cells % hexahedra M. non-orth. M. skewness M. aspect ratio

LES1 12,490,435 12,161,940 99 43 2.4 24
LES2 6,202,526 6,056,924 99 44 2.5 24
The standard wall function implemented in OpenFOAM, which uses
the Spalding formula for the law of the wall (Spalding, 1961), limits
the turbulent viscosity, 𝜈𝑡, in the proximity of the wall. Lastly, the
boundary condition for the pressure at the inlet has been set to the so
called zero-gradient condition, which consists in imposing zero normal
gradient at the boundary. At the outlet, a standard outflow condition
is imposed for the velocity, which consists of a zero-gradient condition
for each velocity component in the absence of backflow, and a fixed-
value condition that set the velocity to 0 in case of backflow (backflow
events at the outlet are virtually absent in these simulations). The zero-
gradient condition is also imposed for turbulent viscosity, and the value
of the reference pressure is set to 0. The sides of the computational
domain have free-slip conditions whereas no-slip conditions are applied
at walls. The pressure field satisfies the zero-gradient condition on the
walls.

To show the difficulties inherent to our flow configuration, we dis-
play in Fig. 1 a three-dimensional visualization of the vortical structures
arising from the walls. Tubes of vorticity of different importance are
created and the resulting flow is very highly disordered. It is worth
emphasizing that appreciable vorticity can be found also relatively
far from the obstacle, which underlines the importance of turbulence
fluctuations in this complex bluff-body problem.

Given the complexity of the problem, an extensive grid convergence
study has not been possible. Nevertheless, after preliminary analysis,
we have focused our attention on two different grids, whose parameters
are given in Table 2. To evaluate the mesh quality we employed three
quality indicators: non-orthogonality, skewness, and maximum aspect
ratio. The non-orthogonality is defined as the angle between the line
passing through two adjacent cell centres, and the vector normal to
the common face of the two cells. The skewness is defined as the
distance between the line passing through two adjacent cell centres and
the centre of the common face, normalized with the distance between
the cell centres. The cell aspect ratio is defined as minimum between
the ratio between the largest and smallest areas of the cell bounding
box, and the result of the expression 1∕6 ⋅ 𝐴𝑏𝑏∕𝑉

2∕3
𝑐 (where 𝐴𝑏𝑏 and

𝑉𝑐 denote the surface of the cell bounding box and the cell volume,
respectively). Hereafter, we denote the simulation performed on the
finer grid as ‘‘LES1’’, and that performed on the coarser grid as ‘‘LES2’’.
In both grids, the distance of the first point from the wall is between
𝑦+ = 1 and 2, in the region of higher refinement in the proximity of
the object, and up to 𝑦+ = 5 in the region farther from the object
where reaching higher accuracy is less relevant (𝑦+ is computed based
on the mean velocity). Note that the grid LES1 has a higher degree
of refinement around the cube, in the region 𝑥 ∈ (−1, 2.5), than the
coarse-grid LES2, while the rest of the domain is discretized similarly.
The number of point on the obstacle edges in LES1 and LES2 is 160
and 40, respectively. A boundary-layer mesh is used in both cases
to obtain the proper resolution in the wall-normal direction near the
surfaces. In the region of turbulent flow around the obstacle and in
its wake, the two highest levels of refinement in LES1 result in a value
of turbulent viscosity approximately equal to the physical viscosity. In
the same regions in LES2, which is designed as LES1 without the third
and fourth refinement levels, we measure a mean turbulent viscosity
approximately twice as high as the physical viscosity. Note that the
turbulent viscosity, denoted by 𝜈𝑡, is estimated based on the model
variable 𝜈̃, as defined in Spalart and Allmaras (1992). Higher values
of 𝜈𝑡 are reached in the region of low refinement farther away from the
6

obstacles, up to approximately ten times the physical viscosity.
A visualization of the results obtained with the two meshes is
given in Fig. 2, which displays a snapshot of the 𝑥 component of
the instantaneous velocity around the cube, showing that both grids
provide the same qualitative behaviour of the flow. All the statistical
results we will show in the following have been obtained via averaging
in time for 200 time units, starting from the instant 𝑡∗ = 25. We checked
stationarity comparing qualitatively the flow history over 10 time units
before and after 𝑡∗ = 25 at selected locations in the obstacle wake. We
checked statistical convergence comparing the mean velocity averaged
over 100 and 200 time units, which showed lower discrepancies that
those between the coarse and fine grids.

4.1.2. LES: comparisons with experiments
Next, we quantitatively analyse the statistical results obtained with

the LES approach and the two meshes against the available experi-
mental data. To this end, we consider the mean streamwise velocity
component 𝑈𝑥 and the shear Reynolds stress component 𝑢′𝑣′, see
Fig. 3. Results for the streamwise velocity fluctuations, 𝑢′𝑢′, do not
add insights and are not shown for the sake of clarity. The locations
both on top and behind the cube are chosen as in the literature (Rodi,
1997). The remarks in order are the following: (i) Globally, the results
are in reasonable agreement at all locations for both velocity and
Reynolds stress. The most important differences are found at 2𝐿 behind
the obstacle, where the fluctuation peak is underestimated. On the
contrary, very good comparison is found on top of the cube both for the
average and fluctuating quantities. (ii) Our results are similar to recent
LES simulations (Muld et al., 2012) of the same case. (iii) Although
the agreement with experiments appear a little better for the results
obtained with the fine-grid LES1, notably near the cube, globally the
difference between the profiles computed with the two meshes is small.
In particular, no significant improvement is found for the fluctuations.
Having considered also other meshes (not shown here), the mesh LES2
has been found to be the coarsest for which the results are in acceptable
agreement with the experimental data, and convergence is reached. For
this reason, the simulations with the particles have been carried out
with the mesh LES2.

4.1.3. RANS computations
The boundary conditions can be set consistently for each two-

equations model, thanks to the relations among 𝑘, 𝜀 and 𝜔; these are:
(i) at the inlet, in dimensionless unit: 𝑘 = 1.5 ⋅ 10−2, 𝜀 = 2 ⋅ 10−3

and 𝜔 = 0.175; (ii) at outlet the zero-gradient condition; (iii) at the
lateral patches the slip condition; (iv) the standard wall functions
implemented in OpenFOAM are used for solid walls. The wall functions
limit the turbulent dissipation, 𝜀, and the turbulent specific dissipation,
𝜔, in simulations that use a transport equation for 𝜀 or 𝜔, respec-
tively (Menter and Esch, 2001; Popovac and Hanjalic, 2007). We have
carried out several simulations for the different RANS models to test
grid-convergence, until reaching a satisfying accuracy. The first set of
simulations have been performed using a grid roughly corresponding
to the mesh used for LES2 without refinement in the cube proximity. A
second and third set of simulations, were performed after subsequent
refinements, using as initial condition the solution of the previous
simulation. The number of cells and quality indicators for the grids
employed in the RANS simulations is reported in Table 3. The grid
with highest refinement (denoted by RANS1/LES1 in Table 3) is over-
resolved with respect to the RANS simulations, and all turbulence
models gave virtually the same results on RANS2 and RANS1 for the

fluid (not shown in the paper). However, using the same resolutions for
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Fig. 2. Grids employed in the simulation, illustrated together with the instantaneous fluid velocity at an arbitrary time step, for (top) LES1 and (bottom) LES2. The grid employed
for LES2 is the same as in the RANS simulations.
Fig. 3. (a-b) Vertical profiles of the mean streamwise velocity, 𝑈 , at different streamwise locations: from left to right, 𝑥 = 2, 𝑥 = 3. (c-d) Vertical profiles of the shear Reynolds
stress at the same locations. The symbols denote profiles extracted from the dataset created by Martinuzzi and Tropea (1993).
Table 3
Meshes employed for RANS simulations. The table reports the number of points, cells and four indexes of the quality of the meshes: the percentage of hexahedra among the cell,
the maximum non-orthogonality, the maximum skewness, and the maximum aspect ratio of the cells.

N points N cells % hexahedra M. non-orth. M. skewness M. aspect ratio

RANS1/LES2 6,202,526 6,056,924 99 44 2.5 24
RANS2 1,673,625 1,599,956 99 44 2.4 24
RANS3 754,428 727,294 99 44 2.3 24
both sets of simulations avoids additional uncertainty when comparing
dispersion models, because the Eulerian grid needs to be used in both
cases to sample the Eulerian fields for particle tracking.

The main flow features obtained with LES2 and the RANS are
illustrated in Fig. 4. As anticipated, we have used different models,
namely standard 𝑘 − 𝜀 and 𝑘 − 𝜔, and the Realizable 𝑘 − 𝜀.

In Fig. 4, a quantitative comparison among the different models is
displayed for the average velocity on the centre-plane of the domain.
In this figure, the colour map represents the mean velocity in the
streamwise direction, 𝑈 , the black contours denote 𝑈 = 0, and the
red lines are streamlines computed using the mean velocity compo-
nents on the centre plane. Even though the residual convergence is
fulfilled, discrepancy between the LES and the different RANS models
are apparent. Overall, the 𝑘−𝜔 model is able to capture relatively well
the length of the recirculation region behind the obstacle, but it fails
7

to describe the separation caused by the obstacle edges. On the other
hand, the 𝑘−𝜀 model is slightly better around the cube but overpredicts
the length of the recirculation region. The Realizable 𝑘 − 𝜀 gives the
best representation of separation, but also an even longer recirculation
region than the standard 𝑘 − 𝜀 model.

In Fig. 5, a comparison between mean streamwise velocity and
turbulent kinetic energy, 𝑘, is shown for two vertical profiles extracted
behind the obstacles. It is possible to observe that, in the wake region
(lower values of 𝑦), 𝑈 is lower for all RANS models than in the LES,
which is a result of the longer recirculation bubble. In the region above
the wake however, at 𝑦 ≈ 1.5, 𝑈 is in better agreement between the LES
and the 𝑘−𝜀 and Realizable 𝑘−𝜀 models, which is a consequence of the
larger acceleration above the obstacle in these models due to a more
prominent separation. We also observe that the RANS models tend to
under-predict 𝑘 in the wake region and overpredict it above it when
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Fig. 4. Streamwise component of the mean velocity for (from top to bottom) LES2, 𝑘 − 𝜔, 𝑘 − 𝜀, and Realizable 𝑘 − 𝜀 RANS. The black contours denote 𝑈 = 0, and the red lines
are streamlines computed using the mean velocity components on the centre plane. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
Fig. 5. (a-b) Vertical profiles of the mean streamwise velocity, 𝑈 , and (c-d) the turbulent kinetic energy at different streamwise locations, from left to right, 𝑥 = 2, 𝑥 = 3.
compared to the LES data. The underprediction of 𝑘 in the wake region
is more apparent for the 𝑘 − 𝜀 and Realizable 𝑘 − 𝜀 models, while the
overprediction above the wake is more prominent for the 𝑘−𝜔 model.
The general distribution of 𝑘 is arguably better captured by the 𝑘 − 𝜀

and Realizable 𝑘 − 𝜀, which at least exhibit a shape of the 𝑘 profiles
similar to that from the LES.
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It is difficult to conclude which RANS model gives a better pre-
diction of the mean flow, since this depends on the region of the
domain where the differences are evaluated; nevertheless, the mean
flow predicted by the Realizable 𝑘 − 𝜀 model is the most similar to
the reference LES results around the cubic obstacle. Hereafter, we shall
focus on the results from the 𝑘 − 𝜔 and the Realizable 𝑘 − 𝜀 models.
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Fig. 6. Particle cloud coloured with the streamwise velocity for (left) 𝑆𝑡 = 10−3 and (right) 𝑆𝑡 = 3 at an arbitrary time step of the simulations. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)
4.2. Particle phase

We consider small heavy particles and examine the behaviour of
three types of particles. The main dimensionless parameter that char-
acterized infinitesimal particles is the Stokes number, defined here as
𝑆𝑡 = 𝜏𝑝𝑈∕𝐿, where 𝑢0 and 𝑙0 are the characteristic velocity and length
scales of the fluid and 𝜏𝑝, defined in (4), is the particle relaxation time.
The Stokes number is varied changing the particle radius, while keeping
constant the density ratio 𝜌𝑝∕𝜌𝑓 = 1000. The Stokes numbers investi-
gated in this study are 𝑆𝑡 = 10−3, 10−1, and 3. It is worth noting that
gravity is not considered in the present study to simplify the problem
and focus on turbulence effects. Whether it is actually negligible for a
similar test case would depend on the physical dimensions. Similarly,
collisions are neglected, assuming that the particle volume fraction is
low enough, which is plausible for such a kind of flow. This allows
the use of an arbitrary number of particle during the simulation, which
makes easier reaching statistical convergence.

We design the particle injection as a theoretical model for cases of
complex geometries where dispersion is limited to a certain region of
the domain. The injection is continuous, releasing particles from a large
number of points spread on a surface behind the cubic obstacle. More
specifically, particles are continuously released from 372 points equally
distributed on the square (𝑥 = 5.01, 0.1 < 𝑦 < 1, 4.5 < 𝑧 < 5.5) (the cubic
obstacle occupies the region (4 < 𝑥 < 5, 0 < 𝑦 < 1, 4.5 < 𝑧 < 5.5)), at a
total rate of approximately 10,000 particles per time unit. This means
that we handle in total ≃ 106 particles for simulations of ≃ 100 time
units.

To provide a visual image of the kind of numerical simulations
carried out, we present in Fig. 6 an instantaneous visualization of
the particle dispersion in the flow as obtained in the LES for two
different classes of particles, namely the smallest and the largest ones,
𝑆𝑡 = 10−3, 𝑆𝑡 = 3. The visualizations reveal that large particles follow
more closely ballistic paths, and therefore show less important lateral
and vertical displacements, although the flow is highly chaotic. Fur-
thermore, small particles display a larger variability in velocity, with
very large fluctuations. More importantly, while many small particles
explore the region ahead of the injection at the end of the cube, this
is true only for a small amount of heavy particles, which anyway
remain in the near vicinity of the walls. It turns out that the results
of the numerical simulation of particles at 𝑆𝑡 = 10−1 are practically
indistinguishable from those at 𝑆𝑡 = 10−3. For this reason, these results
obtained for this intermediate Stokes number will not be shown in the
following.

As explained previously in Section 3.3, three models have been used
to describe the particle phase when the RANS approach is used for the
fluid, which have been labelled in the following way:
9

1. OF1: the Gradient Dispersion model available in OpenFOAM.
2. OF2: the Random Dispersion model available in OpenFOAM.
3. Stoch: the Diffusion Stochastic model we have implemented.

We first discuss the profiles of the average velocity of the particles and
of the fluid seen by the particles (relevant for the model accuracy), for
two different Stokes numbers. Then, we shall discuss the particle disper-
sion for each 𝑆𝑡 number. We will compare the average fields computed
with the LES against those obtained with the different particle models
coupled with two RANS models, namely with the realizable 𝑘−𝜀 and the
𝑘−𝜔 model. Since no experiment is available for the particle dynamics
in this configuration, the LES is taken here as the reference result.

4.2.1. Particle velocity
We focus on comparing the particle velocity in the region down-

stream of the injection. Only a small portion of particle explore the
region upstream of the injection, as discussed in the next section, so
that in this region a comparison between particle velocity would be
less meaningful.

In Fig. 7, we display the mean particle velocity 𝑈 𝑝 and the velocity
of the fluid seen by particles 𝑈 𝑠 at the two locations 𝑥 = 2, 𝑥 = 3
behind the cube, for the 𝑆𝑡 = 10−3 particles. A first comment is that 𝑈 𝑝
and 𝑈 𝑠 are indistinguishable for this small 𝑆𝑡 number case. Neither the
location in the channel nor the RANS model coupled with the particle
dynamics have impact on this result, so that for 𝑆𝑡 = 10−3, one can
safely write 𝑈 𝑝 = 𝑈 𝑠 in the entire domain, which is physically expected
since particles act mainly as tracers in this regime.

Looking at the LES fields, it is possible to appreciate the reattach-
ment at 𝑥 = 3, while negative velocity is found at 𝑥 = 2 at low 𝑦. The
profiles appear similar to those computed in the Eulerian LES, Fig. 3,
and yet different. In particular, the discrepancy is more important
for 𝑦 > 1.5. The discrepancy between 𝑈𝑠 and 𝑈 is the result of the
non-homogeneous particle distribution due to the injection location.
Only particles which are caught by larger coherent structures explore
the region above the obstacle wake, thus experience a flow history
that does not correspond to all the possible states of the flow which
contribute to the Eulerian average 𝑈 .

Regarding the RANS simulations with dispersion models (denoted
hereafter by RANS-PDF) important differences among the various mod-
els are nonetheless present. In the cube proximity, the stochastic model
(Stoch) (16) gives overall better results when the RANS 𝑘−𝜔 is used. In
particular, 𝑈𝑝 at higher 𝑦 and at the first streamwise location examined,
closer to the obstacle, is in better agreement with that of the LES,
where the other two models underestimate the particle velocity. When
the 𝑘 − 𝜀 model is used, the OF2 and the Stoch models give similar
results and are also in reasonably good agreement with the LES. The
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Fig. 7. Mean particle velocity 𝑈 𝑝 (thick lines) and the velocity of the fluid seen by particles 𝑈 𝑠 (dotted lines) at the two locations 𝑥 = 2, 𝑥 = 3 for 𝑆𝑡 = 10−3. On the left panels,
the particle models are coupled with the 𝑘 − 𝜔 model for the fluid. On the right panels, the particle models are coupled to the realizable 𝑘 − 𝜀 model.
Fig. 8. Mean particle velocity 𝑈𝑝 (thick lines) and the velocity of the fluid seen by particles 𝑈𝑠 (dotted lines) at the two locations 𝑥 = 2, 𝑥 = 3 for 𝑆𝑡 = 3. On the left panels, the
particle models are coupled with the 𝑘 − 𝜔 model for the fluid. On the right panels, the particle models are coupled the Realizable 𝑘 − 𝜀 model.
OF1 model, on the other hand, gives the lest accurate predictions in all
cases. Comparing the RANS approach to the LES, as expected the 𝑘−𝜔
model performs better in the separation region 𝑦 < 1, but worse in the
region above the wake, notably for 𝑦 > 1.5. The discrepancies between
the particle velocity estimated using the two different RANS models are
more important near the cube, at 𝑥 = 2.

We next discuss Fig. 8, where the same quantities are shown for the
high-St case, i.e., 𝑆𝑡 = 3. Looking first at the LES, we see that there is an
obvious difference not only between 𝑈 𝑠 and the Eulerian fluid velocity
𝑈𝑓 (Fig. 3) because of the drift linked to the Lagrangian sampling, but
also with the relative velocity 𝑈 𝑠 in the case of small inertia, cf. Fig. 7.
Important inertial effects are demonstrated by the differences between
𝑈 𝑝 and 𝑈 𝑠, which can be traced back to the crossing trajectory effect,
typical of such a non-homogeneous flow. It is worth emphasizing that
the differences we observe are of the order of 50% at some locations.
In particular, the inertia strongly reduces the proportion of particles
trapped in the re-circulation region. Indeed it is possible to see that 𝑈𝑝
does not become negative downstream of the cube at 𝑥 = 2, whereas
𝑈 𝑠 does. The profiles become more similar farther from the obstacle
where the flow non-homogeneity is less strong.

As regards the RANS-PDF approach, we find the same trend dis-
played by the results obtained at 𝑆𝑡 = 10−3, yet more emphasized at
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higher Stokes number. The predictions obtained with the OF1 model
are largely inaccurate in all cases, although some inertial effects are
captured. When the 𝑘 − 𝜔 model is used for the fluid phase, the
results are satisfactory only with the Stoch model. However, while
the qualitative behaviour is correctly captured by this model, the
quantitative discrepancies with the LES are found to be important. In
particular, the crossing-trajectory-effect (CTE) is exaggerated and the
particle velocity is under-estimated. On the contrary, the OF2 model
gives reasonable qualitative predictions, notably at 𝑦 < 1, but largely
underestimates the inertial effect displaying 𝑈𝑠 and 𝑈𝑝 profiles that are
almost identical, despite the large Stokes number. Furthermore, the
same trend is displayed with the 𝑘 − 𝜀 model. Unlike the cases with
small Stokes number, only the Stoch model is capable to give good
predictions while the OF2 model clearly underestimates the particle
velocities for 𝑦 > 1. Moreover, only the Stoch model predicts the
important difference between 𝑈 𝑝 and 𝑈 𝑠. We can appreciate that, in
this case, 𝑈 𝑠 is accurately predicted by the Stoch model in the region
𝑦 > 1. The predicted profile displays a decent agreement also for 𝑦 < 1
at 𝑥 = 2, while the re-attachment is not captured at 𝑥 = 3. The mean
particle velocity 𝑈 𝑝 is underestimated with respect to the LES results,
yet inertial effects due to CTE are overall captured.
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Fig. 9. Contours of the averaged particles probability distributions on the lateral view of the domain for 𝑆𝑡 = 10−3 from the LES (black), the stochastic model used in this paper
(red) and models OF1 and OF2, (blue and green, respectively). For each case, the two contours enclose 50% and 99% of the particles with age between 1 and 2 dimensionless time
units (left column), and 4 and 5 dimensionless time units (right column). For the three RANS-based dispersion models, the mean velocity, turbulent kinetic energy and dissipation
are computed using the 𝑘−𝜔 (top row) and realizable 𝑘− 𝜀 (bottom row) models. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
The comparison between the two different models is less sharp for
the higher Stokes number under investigation. As noted before for the
smaller Stokes number, the 𝑘−𝜔 model appears to give better results in
the separation region, with smaller differences than for the low-Stokes
particles. Instead, the performance of the Realizable 𝑘 − 𝜀 model is
largely superior in the central region, 𝑦 > 1.

Concluding our discussion on the mean particle velocity, the follow-
ing remarks are in order.

• The OF1 model is not able to describe the particle dispersion
neither at small or at large Stokes. This underline the need of
considering not only intensity and time scales, but also the flow
non-homogeneity in modelling turbulent fluctuations.

• The OF2 model includes some effect from the flow non-
homogeneity but does not take into account the CTE in a direct
way. As a consequence, the model produces better predictions
than the OF1, however it largely underestimates inertial effects
because the particle velocity and the fluid velocity seen by the
particles are barely different for higher Stokes number.

• The Stoch model is the sole to include the CTE, and to fulfil
basic consistency rules, notably the model is consistent with scalar
diffusion in the limit of tracer dynamics. This is the reason for the
superior performance in all cases.

• Globally, Realizable 𝑘− 𝜀 + Stoch model is the configuration that
performs best. This is probably due to the better agreement of the
mean velocity field predicted by the Realizable 𝑘 − 𝜀. However,
it is interesting to note that the Stoch model is less influenced by
the differences between RANS models than OF1 and OF2.

4.2.2. Particle dispersion
In this section we study in more detail particle dispersion, compar-

ing the results obtained with the different models against the LES. We
focus first on the small Stokes case, namely 𝑆𝑡 = 10−3, for which we
have seen that the particles basically behave as tracers. We display
in Fig. 9 the particle probability distribution projected on the lateral
view of the domain for the LES and the three dispersion models, for
particles of age between 1 and 2 dimensionless time units and age
between 4 and 5 dimensionless time units, where the particle age is
the time spent by the particle in the flow after release. Most of the
young particles remain near the cube, and the different models give
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similar results, as highlighted by the 50% isoline (the line delimiting
the region containing 50% of the released particles). More important
differences are found when looking at the ‘‘tails’’ of the distributions
(the regions delimiting 99% of the particles), for which fluctuations
have a more significant impact. All dispersion models underestimate
the movement of particles upstream of the injection, in particular when
the 𝑘−𝜔 model is used for the fluid (this model performs poorly in the
separation regions on the obstacle surfaces). On the other hand, the
longer recirculation region predicted by the realizable 𝑘 − 𝜀 leads to
underestimate the dispersion over the cubic obstacle. We can observe
that the OF1 model offers always the worst predictions, in line with
what obtained for the velocity statistics. Overall, the best agreement
with LES is given by the stochastic approach when coupled to the
realizable 𝑘 − 𝜀 model, while the stochastic and the OF2 models give
similar results when coupled with the 𝑘−𝜔 model for the fluid model.
The results for particles allowed to disperse in the flow for longer times
confirm the scenario, even though the stochastic and the OF2 models
give closer predictions in all cases investigated here.

In general, the LES shows that particles initially disperse in a rather
symmetric way around the obstacle, and that the dispersion becomes
more important ahead of the obstacle as time goes on.

The same data are displayed in Fig. 10 in the cross-stream 𝑦−𝑧 plane
to analyse the dispersion around the sides of the obstacle. For the sake
of clarity, we only display particles that spent more time in the flow.
Overall, the results confirm what observed above for the dispersion
in the 𝑥–𝑦 plane. The OF1 model is unable to give physically-sound
results, as particles do not disperse in a significant way and remain
basically trapped in the cube vicinity. The other two models behave
similarly and are in relatively good agreement with the LES data. The
CTE is not particularly important in the cross-stream direction, and
in particular far from the obstacle, so that both models are able to
capture the basic features of the particle dynamics, although dispersion
is weakly underestimated by the RANS models, as also seen from the
data in the streamwise–wall-normal plane.

Finally, we investigate the case with higher Stokes number, 𝑆 = 3,
that is the case of large-inertia particles. The statistical properties of the
dispersion in the 𝑥–𝑦 plane are shown in Fig. 11. For inertial particles,
the dispersion is initially very small as expected (see data pertaining the
younger particles), and therefore data obtained at these early times are

not useful to assess the quality of the different models. At later times,
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Fig. 10. Contours of the averaged particles probability distributions on the frontal view of the domain for 𝑆𝑡 = 10−3 for LES (black), the stochastic model described in this paper
(red), and models OF1 and OF2 (blue and green, respectively). For each case, the inner contours enclose 50% of the particles with age between 4 and 5 dimensionless time units,
and the outer contour encloses 99% of the particles. For the three RANS-based dispersion models, the mean velocity, turbulent kinetic energy and dissipation are computed using
the 𝑘−𝜔 (top row) and Realizable 𝑘− 𝜀 (bottom row) models. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
Fig. 11. Contours of the averaged particles probability distributions on the lateral view of the domain for 𝑆𝑡 = 3 from the LES (black), the stochastic model used in this paper
(red) and models OF1 and OF2, (blue and green, respectively). For each case, the two contours enclose 50% and 99% of the particles with age between 1 and 2 dimensionless time
units (left column), and 4 and 5 dimensionless time units (right column). For the three RANS-based dispersion models, the mean velocity, turbulent kinetic energy and dissipation
are computed using the 𝑘−𝜔 (top row) and realizable 𝑘− 𝜀 (bottom row) models. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
dispersion is more significant and model comparisons more insightful.
Comparing to the case of small-inertia particles, we see that disper-
sion is less important both upstream and downstream of the obstacle.
While the OF1 model still provides non physical results, the OF2 and
stochastic diffusion models perform similarly. Overall, the stochastic
approach together with the 𝑘 − 𝜀 model appears the best, notably
looking at the reattachment points before and after the obstacle. Yet,
this model seems to overemphasize inertial effects, whereas the OF2
model presents slightly larger fluctuations and therefore dispersion.

The results in the 𝑦 − 𝑧 plane confirm these findings, see Fig. 12.
Neglecting the OF1 model, the other models provide quite similar
results. The predictions are better when using the 𝑘 − 𝜀 than the
𝑘 − 𝜔 model; the dispersion is underestimated with respect to the LES,
suggesting that the reconstruction of the velocity of the fluid seen by
the particles is reasonable while the effect of inertia is overestimated.

4.3. Computational cost

Four different types of numerical simulations have been carried
out in this study: (i) time-dependent simulations of the fluid; (ii)
time-dependent simulations of the fluid including particles; (iii) RANS
simulations of the fluid; and (iv) particle simulations using dispersion
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models. The computational cost of these simulations is different be-
cause of the different number of time steps or iterations needed to
obtain meaningful results and the different cost of each time step or
iteration. We report in Table 4 the number of iterations or time steps,
as well as the total computational cost for a single simulation. Note
that the total computational cost is computed as the wall-clock time
required by the simulation, multiplied by the number of cores that are
used. Hereafter, for the sake of brevity, we will refer to ‘‘time step’’ for
all simulations, even though a different set of operation is carried out
in each case.

Simulations LES1 and LES2 belong to type (i), representing the
time-resolved simulations of the fluid, which have been discussed
in Sections 4.1.1 and 4.1.2. The LES with highest resolution is the
most expensive simulation by far, with a total computational cost of
almost 400,000 CPUh. Note that simulations LES1 and LES2 are run
for approximately the same number of dimensionless time units, but a
lower time interval is covered in LES1 each time step, explaining the
higher number of time steps. The cases denoted by LES2 (P), which
are the LES with particles described in Section 4.2, belong to type
(ii) and are potentially the most expensive ones, because each time
step requires both the solution of the incompressible Navier–Stokes
equation and particle tracking. However, the relatively small number of
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Fig. 12. Contours of the averaged particles probability distributions on the frontal view of the domain for 𝑆𝑡 = 3 for LES (black), the stochastic model described in this paper
(red), and models OF1 and OF2 (blue and green, respectively). For each case, the inner contours enclose 50% of the particles with age between 4 and 5 dimensionless time units,
and the outer contour encloses 99% of the particles. For the three RANS-based dispersion models, the mean velocity, turbulent kinetic energy and dissipation are computed using
the 𝑘−𝜔 (top row) and realizable 𝑘− 𝜀 (bottom row) models. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
Table 4
Computational cost of the simulations. The table reports the total number of time steps (for time-resolved simulations) or iterations (for averaged simulations) required for
convergence, the number of MPI ranks, and the corresponding Total computational cost in CPU hours. Cases LES1, LES2, and RANS1 are simulations of fluid only. LES2 (P) denotes
simulations of both fluid and particles. Stoch, OF1, and OF2 denote simulations of particles only, carried out with dispersion models.

Type of simulation N time steps/iterations N MPI ranks Total computational cost (CPUh)

LES1 ≈886,000 512 ≈378,000
LES2/LES2 (P) ≈236,000 256 ≈42,000
RANS1 ≈3000 32 ≈350
Stoch ≈55,000 32 ≈1400
OF1 ≈55,000 32 ≈730
OF2 ≈55,000 32 ≈390
particles in the domain at each time step, and the fact that both particle
collisions and particle–fluid momentum transfer have been neglected,
result in a very similar computational cost between LES2 and LES2 (P).
Averaged simulations of the fluid only, which belong to type (iii), are
the least expensive. In these simulations, each time step corresponds
to a iteration of the SIMPLE algorithm and the simulation ends once
the residuals of all variables have reached convergence. Particle sim-
ulations using dispersion models do not require the solution of the
Navier–Stokes equation because only particle tracking is performed,
which is a much cheaper operation. However, they need to cover
a time interval long enough to reproduce the statistically-stationary
condition of the reference simulations, which leads to a relatively large
number of time steps. As expected, more complex dispersion models
require a higher number of operation for each particle, and are thus
more expensive. Note, however, that the continuous stochastic model
has been implemented for the first time in OpenFOAM and that the
implementation has not been optimized yet.

5. Conclusions

In this work, we have performed an extensive numerical analysis
of a turbulent particle-laden flow in a test-case, which is a standard
benchmark for the development of numerical simulations of single-
phase fluid mechanics, namely the flow around a wall-mounted cube.
To best of our knowledge this test case is examined here for the first
time for particle-laden flows, and we have considered cases with both
small and large particle inertia.

The purpose of the work is to provide a benchmark test for the de-
velopment of reliable numerical modelling of turbulent dispersed flows.
The test-case is particularly interesting for its engineering relevance and
the challenging features to be captured, namely flow separation and
stagnation. Indeed, while a serious assessment of the available models
has been carried out since long time for the single-phase flows, the same
is not true for the particle-laden flows, where simple heuristic models
are usually used in applications.

The flow is investigated both with LES and RANS-based models,
and a thorough comparison is made. In both cases, a hybrid approach
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is taken, solving on an Eulerian basis the fluid phase and through
Lagrangian tracking the particle phase.

The LES has been performed with standard subgrid models and
no specific subgrid model has been added for the particle phase.
Different RANS models for the fluid have been considered, and even-
tually the Realizable 𝑘 − 𝜀 and 𝑘 − 𝜔 models have been used for
the multiphase flows. In the RANS framework, the particle phase has
been described with two simple discrete stochastic models already
available in the OpenFOAM package, and with a consistent continuous
diffusion stochastic model developed previously and implemented in
OpenFOAM for this work. It is worth emphasizing here that it is
crucial to couple consistent fluid and dispersion models to get accurate
predictions, most notably in RANS framework. Therefore, the present
class of fluid models appear the best suited for the dispersion models
used. To couple them with more sophisticated models like 𝑣2−𝑓 might
lead to huge errors, even though the fluid model had given better
predictions. Moreover, given that this is the first time this test-case
is considered for particle-laden flows, no particular calibration of the
models have been attempted, in order to emphasize the basic features
of the different approaches for engineering-oriented applications. The
improvement and the calibration of the models will be the object of
future work.

Since neither DNS nor experiments of such a complex flow are cur-
rently available for cases including particle dispersion, a well-resolved
LES has been carried out and used as reference solution. Of course,
errors are to be expected, notably for particle statistics because of the
lack of a specific model. However, we have used a fine-grained LES for
this test-case such that we can be confident that the reconstruction of
the fluid velocity seen by particles may be considered accurate enough
at least for the low-order statistics investigated here (Armenio et al.,
1999). We therefore consider the present framework as satisfactory
with respect to this first benchmark. Nevertheless, significant errors
may be encountered looking at the near-to-the-wall region and con-
sidering features like particle preferential concentration as obtained
in LES, as highlighted in previous studies (Innocenti et al., 2016). To
perform a DNS of the present case together with the assessment of a
more complex particle LES model is suggested as the subject of future
work.
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From a physical point of view, particles behave as passive tracers
in the small-inertia case and they therefore show the Lagrangian char-
acteristics of the fluid flow. For larger inertia, a significant difference
is found between the particle velocity and that of the carrier phase.
The particles are still influenced by flow separation and stagnation,
but the dynamics is smoother, in particular near to the obstacle. In the
far region, particle and fluid velocity profiles become rather similar.
The same observations can be made when looking at the geometrical
dispersion of particles.

From the point of view of the model performances of the particle
simulations based on RANS, the simplest dispersion model (OF1) based
on a rough randomization of the turbulence fluctuations seen by the
particles is found to give unacceptable results and should be aban-
doned. Furthermore, it is the most sensitive in respect of the specific
RANS model employed for the fluid. The stochastic PDF model (stoch)
gives the best agreement with the LES, especially when coupled to
the Realizable 𝑘 − 𝜀 model for the fluid and in the case of higher
article inertia. The results obtained through the more refined discrete
tochastic model (OF2) lie in-between the two other models. This
odel performs globally worse than the PDF one, yet it is qualitatively

omparable to it in many case giving overall reasonable predictions.
ince we have not pursued any calibration of the diffusion stochastic
odel, its formulation free from spurious drifts and taking account for

he crossing-trajectory effect appears superior and more promising for
uture developments.

Overall, the discrepancy between the LES and the RANS/PDF pre-
ictions is still important, even in the best case. In fact, we have used
he models that are the common choices in engineering applications,
nd yet it is to be stressed that a significant error on the prediction of
he fluid-phase alone is present for such a complex flow. To greatly
mprove the present predictions, it would be needed to use a more
ffective RANS model for the fluid. Because of the consistency issues
n two-phase flows, that would imply to develop a consistent stochastic
odel for the particles. While possible, it is not clear whether this kind

f complex development is viable for engineering applications.
On a more modest ground, some improvements could be obtained

erforming a complete calibration of the diffusion stochastic model.
he development of effective strategies to perform the calibration will
e the objective of future studies. It is important to note that heuristic
iscrete models cannot be improved by construction, and therefore
mprovements are only possible by further developing the stochastic
odel.

Finally, considering the complexity of the problem, and that the
low has not been investigated before, we have simplified the config-
ration not considering the gravity in the present work. It is known
hat gravity may have an important crossing-trajectory effect and the
ssessment of the dispersion models in the general case also constitutes
n important future direction.
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