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a b s t r a c t

This work presents the GPU acceleration of the open-source code CaNS for very fast
massively-parallel simulations of canonical fluid flows. The distinct feature of the
many-CPU Navier–Stokes solver in CaNS is its fast direct solver for the second-order
finite-difference Poisson equation, based on the method of eigenfunction expansions. The
solver implements all the boundary conditions valid for this type of problems in a unified
framework. Here, we extend the solver for GPU-accelerated clusters using CUDA Fortran.
The porting makes extensive use of CUF kernels and has been greatly simplified by the
unified memory feature of CUDA Fortran, which handles the data migration between
host (CPU) and device (GPU) without defining new arrays in the source code. The overall
implementation has been validated against benchmark data for turbulent channel flow
and its performance assessed on a NVIDIA DGX-2 system (16 T V100 32Gb, connected
with NVLink via NVSwitch). The wall-clock time per time step of the GPU-accelerated
implementation is impressively small when compared to its CPU implementation on
state-of-the-art many-CPU clusters, as long as the domain partitioning is sufficiently
small that the data resides mostly on the GPUs. The implementation has been made
freely available and open source under the terms of an MIT license.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Fluid flows are ubiquitous in nature and industry. Very often these flows are turbulent, exhibiting highly unsteady,
haotic, three-dimensional and multi-scale dynamics. Consistently, the Navier–Stokes equations governing the dynamics
f incompressible, Newtonian fluid flows are highly non-linear, which makes analytical predictions often difficult. This
hallenge, together with the increasing computing power and development of efficient numerical methods has been
riving the ever-expanding field of computational fluid dynamics (CFD), which aims to unveil the physics of these complex
ystems by numerical computations. In particular, Direct Numerical Simulations (DNS) of turbulent flows as a first-
principles simulation must resolve all spatial and temporal scales of the turbulent flow; one can easily show that the
number of operations required for achieving this ambitious goal scales with Re3L [1] with ReL being a Reynolds number
based on the largest flow scales, which can easily reach values of 106–109 in many real industrial or environmental
ontexts. By virtue of the aforementioned developments, it is now possible to simulate fluid flows in O(1012) spatial
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degrees of freedom, in relatively simple geometries [2], orders of magnitude more than the first DNS of homogeneous
isotropic turbulence in the seminal work by [3]. Though encouraging, these numbers are still orders of magnitude lower
than those required in many real applications.

Due to the inherently large computational demand of these simulations (both in terms of memory and processing
power), parallel computers based on many Central Processing Units (CPU) have been the machine of choice to tackle
DNS of turbulent fluid flows. In the past ten years, however, there has been a paradigm shift in high-end supercomputer
architectures, with a strong focus on accelerated computations, in particular with Graphics Processing Units (GPU). The
Top500 list of the most powerful supercomputers in the world has been dominated by accelerator-based systems for
several years, and at present the current #1 and #2 systems in the world are both GPU accelerated [4]. Accelerated systems
(in particular GPU-based systems) are also very power-efficient: the Green500 list of the most efficient supercomputers
has also been dominated by accelerated systems in the same time window. Another exciting consequence of this paradigm
shift is the increasingly easier access to petascale computing through GPU-based machines, such as the NVIDIA DGX-2
system.

GPUs are one of the most popular accelerators. These devices offer high computational power (the Tesla V100
has around 7 teraflops of 64 bit floating-point peak performance) and high memory bandwidth (the Tesla V100 can
sustain around 840 GB/s on the STREAM benchmark), coupled with the availability of high-level programming languages,
numerical libraries and performance/debugger tools. GPUs are well-suited for problems where the arithmetic intensity
(the ratio between the floating-point operations performed relative to the amount of memory accessed) is low, as in
finite-difference operations often performed in DNS solvers. The challenge for a many-GPU incompressible DNS solver is
parallelizing the remaining tasks that are serial in nature. These are mostly associated with the solution of linear systems
of equations for e.g. imposing mass conservation, or integrating implicitly in time the diffusion terms in the momentum
conservation equation. Fortunately, recent efficient libraries have become available for efficient computations of linear
algebra and Fast Fourier Transforms (FFT) on GPUs; e.g. in the NVIDIA CUDA Toolkit, or the MAGMA library for linear
algebra [5].

Not surprisingly, numerous recent studies have been devoted towards porting finite-difference DNS codes for incom-
pressible flows in GPU-based architectures. Some examples are the AFiD code for wall-bounded turbulent flows with
thermal convection [6]; the boundary layer code in [7,8]; and the spectral/finite-difference channel flow code in [9];
see also the review of CFD calculations on GPUs in [10]. A common outcome in all these studies is the achievement of
remarkable computational performance of the GPU implementations, compared to the many-CPU codes used as starting
point.

The present work describes the extension of a fast DNS solver for massively-parallel calculations on GPU-accelerated
clusters. The starting point for this work is the efficient and fast open-source code for DNS of canonical flows, CaNS,
described in [11]. The solver uses a fast (FFT-based) second-order, finite-difference pressure-correction scheme, where the
pressure Poisson equation is solved with the method of eigenfunction expansions. The algorithm explores all combinations
of pressure boundary conditions valid for such a solver, in a single and general framework. The method is implemented
in Fortran90/95 and extended with a hybrid MPI-OpenMP parallelization, with a 2D pencil-like domain decomposition,
which enables efficient massively-parallel simulations. Several recent examples of numerical implementations using this
direct solver, combined with a 2D domain decomposition, achieved unprecedented performances for complex flows in
domains with O(109)–O(1010) grid points, see e.g. [12–14]. Despite the complexity of the systems addressed in these
eferences, the efficient base Navier–Stokes solver used is a key element that has made the simulations therein presented
n reach.

Here, we extend CaNS for computations on GPUs using CUDA Fortran. With its recent unified (or managed) memory
eature, we were able to port the code to GPU architectures, mostly with small changes in the original source, while still
eaching excellent computational performance. The GPU extension has been validated and its performance assessed. The
esults show a code performance on 4 NVIDIA Tesla V100 GPUs on a DGX-2 to be about the same (0.9 times slower) to
.6 times faster as the CPU code on 2048 cores on state-of-the-art CPU-based supercomputers, and 3.1 to 5.6 times faster
hen all the 16 GPUs of the DGX-2 cluster are used.
This paper is organized as follows. Section 2 describes the overall numerical method and the approach used in the

ast Poisson solver. Section 3 summarizes the many-CPU implementation in CaNS and presents in detail the approach
for the many-GPU extension. Section 4 validates the implementation and presents the computational performance of the
many-GPU extension. Finally, in Section 5 we summarize the main conclusions of the work.

2. Numerical method

The numerical algorithm solves the Navier–Stokes equations for an incompressible, Newtonian fluid with constant unit
density ρ = 1 and dynamic viscosity µ (kinematic viscosity ν),

∇ · u = 0, (1a)

ρ

(
∂u
∂t

+ ∇ · (u ⊗ u)
)

= ∇ · σ, (1b)

where the stress tensor σ = −pI + µ(∇u + ∇uT ), with u and p being the fluid velocity vector and pressure.
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These equations are solved on a structured Cartesian grid, uniformly-spaced in two directions. The method uses second-
order finite-differences for spatial discretization with a staggered (marker and cell) disposition of grid points, and a
low-storage, three-step Runge–Kutta scheme for time integration [15]. For the sake of clarity the numerical scheme is
summarized below, and we refer to [11] for more details.

The advancement at each substep k reads (k = 0, 1, 2; k = 0 corresponds to a time level n and k = 3 to n + 1):

u∗
= uk

+ ∆t
(
αk
(
Auk

+ νLuk)
+ βk

(
Auk−1

+ νLuk−1)
− γkGpk−1/2) , (2a)

LΦ =
Du∗

γk∆t
, (2b)

uk+1
= u∗

− γk∆tGΦ, (2c)

pk+1/2
= pk−1/2

+ Φ, (2d)

here A, L, G, and D denote the discrete advection, Laplacian, gradient and divergence operators; u∗ is the prediction
velocity and Φ the correction pressure. The RK3 coefficients are given by α = {8/15, 5/12, 3/4}, β = {0, −17/60, −5/12}
and γ = α + β . For low Reynolds number flows, or very fine grids, implicit temporal discretization of the diffusion term
can be desirable. In this case, the temporal integration is as follows:

u∗∗
= uk

+ ∆t
(
αkAuk

+ βkAuk−1
+ γk

(
−Gpk−1/2

+ νLuk)) , (3a)

u∗
− γk

ν∆t
2

Lu∗
= u∗∗

− γk
ν∆t
2

Luk (3b)

LΦ =
Du∗

γk∆t
, (3c)

uk+1
= u∗

− γk∆tGΦ, (3d)

pk+1/2
= pk−1/2

+ Φ − γk
ν∆t
2

LΦ. (3e)

Note that Eqs. (3a) and (3b) are not combined, to illustrate that u∗∗ is a better approximation of the final velocity
than the sum of the terms in the right-hand-side of Eq. (3b). This splitting is desirable e.g. in case of direct forcing
immersed-boundary methods (IBM), for u∗∗ is the prediction velocity from which the IBM force should be computed;
see e.g. [16].

A sufficient criterion for a stable temporal integration is given in [15]:

∆t < min

(
1.65∆ℓ2

ν
,

√
3∆ℓ

maxijk(|u| + |v| + |w|)

)
, (4)

ith ∆ℓ = min(∆x, ∆y, ∆z) and ∆xi the grid spacing in direction xi = {x, y, z}, where the time step restriction due to
the viscous effects is absent with implicit treatment of the diffusion term (left term on the right-hand-side of Eq. (4)).

FFT-based Poisson solver

Since the solution of the Poisson/Helmholtz equations introduced above comprises the most elaborate implementation
steps, these are summarized below. The Poisson equations (Eqs. (2b) and (3c)) are discretized in space at grid cell i, j, k
as follows:

(Φi−1,j,k − 2Φi,j,k + Φi+1,j,k)/∆x2+

(Φi,j−1,k − 2Φi,j,k + Φi,j+1,k)/∆y2+

(Φi,j,k−1 − 2Φi,j,k + Φi,j,k+1)/∆z2 = fi,j,k; (5)

with fi,j,k being the right-hand-side of Eq. (2b) or (3c) at grid cell i, j, k. The solution method reduces this system of
equations, with 7 non-zero diagonal terms to a tridiagonal system, which can be solved very efficiently with Gauss
elimination. To achieve this we apply the discrete operator Fxi to Eq. (5) in two domain directions, which reduces the
roblem to:

(λi/∆x2 + λj/∆y2) ˆ̂
Φi,j,k + ( ˆ̂

Φi,j,k−1 − 2 ˆ̂
Φi,j,k +

ˆ̂
Φi,j,k+1)/∆z2 =

ˆ̂fi,j,k, (6)

where ˆ̂□ = Fy(Fx(□)). The discrete operator Fxi can be expressed in terms of discrete Fourier transforms and depends on
he problem’s boundary conditions; see [11,17] for more details. We should note that the equations are written assuming
uniform grid spacing in z for simplicity; as we will show, the grid in z can be non-uniform.
Finally, in the case of implicit treatment of viscous momentum diffusion, the three Helmholtz equations in Eq. (3b)

re solved with the same type of direct solver, rather than following the (computationally cheaper) alternating direction
mplicit approach used e.g. by Kim & Moin [18], where a third-order-in-time approximation of the system of equations can
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be solved with three sequential tridiagonal solves per velocity component. We preferred using the same direct FFT-based
solver as that of the pressure, as we found it more straightforward to generalize the approach to different combinations
of boundary conditions.

3. Implementation

Many-CPU implementation with MPI-OpenMP in CaNS

Here we summarize the original implementation of CaNS for massively-parallel DNS in CPU clusters and refer to [11]
for more details. As mentioned above, the numerical algorithm is implemented in Fortran90/95, extended with MPI-
OpenMP for distributed-memory parallelization. The domain is partitioned into several computational subdomains in a
2D pencil-like decomposition. In most steps of the calculation, the domain is partitioned in x and y into Nx

p × Ny
p pencils,

aligned in the z direction. The 2DECOMP&FFT library is used for performing the data transpositions to x- and y-aligned
pencils, which are required for computing the FFT-based transforms. The vectors of real-to-real FFT-based transforms are
computed using the GURU interface of the FFTW library [19]. A very convenient feature of this interface is that each of the
9 types of fast discrete transforms that are used (dictated by the boundary conditions of the Poisson/Helmholtz equation)
are computed with exactly the same syntax, just by evoking the right transform type in the planner, and considering the
different scaling factors.

Many-GPU extension with MPI-CUDA Fortran

For this specific porting effort, we used CUDA Fortran [20] since the original CPU code is in Fortran90/95. CUDA Fortran
is an analog to the NVIDIA CUDA C compiler. It provides both a lower-level explicit programming model that gives direct
access to all aspects of GPU programming and a higher-level implicit programming model via kernel loop directives (CUF
kernels). It is similar to what OpenACC offers but simpler, since CUF kernels can only be applied to nested loops and scalar
reductions and all the data movements/allocations is left to the programmer. They are nevertheless a very powerful tool;
indeed, most of all the porting was done with CUF kernels. In order to use CUF kernels, the PGI compiler needs to be used
(the IBM XLF compiler is able to compile explicit CUDA Fortran but does not support CUF kernels). PGI offers a freely
available community edition of their compiler on both x86 and Power systems (support for ARM systems has just been
announced), so this restriction is not an issue.

In a typical GPU-accelerated code, since the CPU and GPU have different memory spaces, for each array defined on the
CPU (host) there will be an equivalent array defined on the GPU (device). A consistent memory view will be enforced by the
programmer, copying data back and forth between host and device before operating on them. All the array declarations
need to be duplicated and explicit copies need to be inserted in the code. A typical sequence of operations for CUDA
Fortran code will look like:

• Declare and allocate host and device memory;
• Initialize host data;
• Transfer data from the host to the device;
• Execute one or more kernels;
• Transfer results from the device to the host.

New features in Fortran (like molded and sourced allocations) may help to reduce the amount of code that needs to be
added. This was the approach used in a previous porting of a similar DNS code [6], where all the arrays were explicitly
re-declared in device memory. This porting is instead using a recent feature called unified (or managed) memory, which
dramatically simplifies GPU programming, making arrays accessible from either the GPU or the CPU. With managed
memory the previous sequence of operations will look like:

• Declare and allocate managed memory;
• Initialize data;
• Execute one or more kernels.

With managed memory, the data movement still occurs, but, rather than being explicit, it is now controlled by the unified
memory management system behind the scenes, similarly to the operating system managing virtual memory. DNS are
very amenable to this approach: after the initialization or restart, the flow field will reside in GPU memory essentially all
the time. Since a simulation will run for several thousands iterations, the initialization part is usually a negligible portion
of the total runtime. There are also hints and prefetch commands that can be given to the compiler to optimize the data
traffic. With managed memory, the GPU memory can be in principle over-subscribed: while the code will run and give
the correct result, the speed of execution will be severely impacted since the data will continually migrate over the PCI-e
bus (with a typical transfer speed of 10 GB/s) on x86 systems or NVlink (with a typical transfer speed of 30–50 GB/s) on
Power system, an order of magnitude smaller than on device memory.

In order to have a code as close as possible to the original CPU version, the GPU implementation makes extensive

use of the preprocessor, and all the GPU specific code and directives are guarded by USE_CUDA macro or sentinel !@cuf
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(this is similar to the !omp sentinel defined only when OpenMP is enabled, in this case the sentinel is active when the
compiler generates code for the GPU). For the same Fortran90 source file, a CPU object file can be created with the standard
optimization flags while a GPU version can be created adding the ‘‘-DUSE_CUDA -Mcuda’’ flags.

A typical subroutine will look like listing 1. When compiled for the GPU, line 2 imports the module cudafor to access
he cudaDeviceSynchronize() routine (this is needed to ensure that the mpi_allreduce call is executed only after
the kernel, since a typical kernel will run asynchronously). The ifdef macro at line 7 adds the managed attribute to the
arrays that are accessed in the kernel. The ifdef macro at line 15 generates the GPU kernel for the triple nested loop
following, or alternatively generate the multithreaded code for CPU with OpenMP. The cuf kernel directive is very simple
to use; there is no need to indicate that dti is a reduction variable.

1 subroutine chkdt (n , dl , dzci , dzf i , visc , u , v ,w, dtmax)
2 !@cuf use cudafor
3 impl i c i t none
4 . . .
5 rea l ( rp ) , intent ( in ) , dimension (0 : ) : : dzci , dz f i
6 rea l ( rp ) , intent ( in ) , dimension (0 : , 0 : , 0 : ) : : u , v ,w
7 #i f de f USE_CUDA
8 at t r ibutes (managed ) : : u , v ,w, dzci , dz f i
9 integer : : i s t a t

10 #endif
11 integer : : i , j , k
12 !
13 dt i = 0 .
14 . . .
15 #i f de f USE_CUDA
16 ! $cuf kernel do(3) <<<∗ ,∗>>>
17 #else
18 !$OMP PARALLEL DO DEFAULT(none) &
19 !$OMP SHARED(n , u , v ,w, dxi , dyi , dzi , dzci , dz f i ) &
20 !$OMP PRIVATE ( i , j , k , ux , uy , uz , vx , vy , vz ,wx,wy,wz, dtix , dtiy , dt iz ) &
21 !$OMP REDUCTION(max: dt i )
22 #endif
23 do k=1 ,n(3)
24 do j =1 ,n(2)
25 do i =1 ,n(1)
26 ux = abs (u( i , j , k ) )
27 vx = 0.25∗abs ( v ( i , j , k)+v ( i , j 1 , k)+v ( i +1 , j , k)+v ( i +1 , j 1 , k ) )
28 wx = 0.25∗abs ( w( i , j , k)+w( i , j , k 1 ) +w( i +1 , j , k)+w( i +1 , j , k 1 ) )
29 dt ix = ux∗dxi+vx∗dyi+wx∗dz f i (k )
30 . . . .
31 dt iz = uz∗dxi+vz∗dyi+wz∗dzci (k )
32 dt i = max( dti , dtix , dtiy , d t iz )
33 enddo
34 enddo
35 enddo
36 #i fndef USE_CUDA
37 !$OMP END PARALLEL DO
38 #endif
39 !@cuf i s t a t =cudaDeviceSynchronize ( )
40 c a l l mpi_allreduce (MPI_IN_PLACE , dti , 1 ,MPI_REAL_RP ,MPI_MAX,MPI_COMM_WORLD, i e r r )
41 . . .
42 return
43 end subroutine chkdt

Listing 1: Source code for the computation of the maximum allowable time step, ∆t .

.1. CUF kernels

CUDA Fortran allows automatic kernel generation and invocation from a region of host code containing one or more
ightly nested loops. Launch configuration and mapping of the loop iterations onto the hardware is controlled and specified
s part of the directive body using the familiar CUDA chevron syntax: the developer can specify a particular launch
onfiguration or delegate the choice to the compiler. As with any kernel, the launch is asynchronous and the program
an use cudaDeviceSynchronize() or CUDA Events to wait for the completion of the kernel. The work in the loops
pecified by the directive is executed in parallel, across the thread blocks and grid. CUF kernels can also handle scalar
eduction operations, such as summing the values in a vector or matrix. For these operations, the compiler handles the
eneration of the final reduction kernel, inserting synchronization into the kernel as appropriate.

.2. Implementation of the FFT-based transforms using cuFFT

The FFTs required by the Poisson/Helmholtz solver are computed with the cuFFT library from the CUDA Toolkit, and
re parallelized with the same approach as in the AFiD code (see [6] for details). Despite having a similar interface to
he FFTW library used in the CPU version, cuFFT does not support the family of real-to-real transforms implemented in
FTW. Therefore, the different real-to-real transforms must be implemented by pre- and post-processing FFTs [17,21,22].
ome of these transforms have been implemented in the GPU version, namely the standard fast discrete sine and cosine
ransforms DCT-II and DST-II (and the corresponding inverse transforms, DCT-III and DST-III), following the low-storage
pproach of Makhoul [21]. Hence, all the flows presented in the paper describing the CPU version [11] – a lid-driven
avity, a pressure-driven turbulent channel and square duct, and a decaying Taylor–Green vortex – can be also simulated
ith the GPU version.
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Fig. 1. Example nvvp session with markers from NVTX.

3.3. Profiling using NVTX

Profiling is an essential part of performance tuning. It allows to identify parts of the code that may require additional
attention. When dealing with GPU codes, profiling is even more important as new opportunities for better interactions
between the CPUs and the GPUs can be discovered. The standard profiling tools in CUDA (nvprof and nvvp or the new
NSight tools), are able to show the GPU timeline but do not present CPU activity. The NVIDIA Tools Extension (NVTX) is a
C-based library that can annotate the profiler time line with events and ranges, can customize their appearance and can
assign names to resources such as CPU threads and devices [23].

We have written a Fortran module to instrument CUDA/OpenACC Fortran codes using the Fortran ISO C bindings [24].
The use is very simple, once the NVTX module is loaded, the developer needs to mark the region of interest with
nvtxRangePush and nvtxRangePop calls. Calls to nvtxStartRange("text") with a single argument will insert green
markers with a text label in the timeline. Different colors can be selected using an optional integer parameter and the
regions of interest can be nested. Fig. 1 shows an example for CaNS.

4. Validation and computational performance

A turbulent channel flow at friction Reynolds number Reτ ≈ 590 [25] was simulated to validate the code and assess
erformances. The flow is driven by a uniform pressure gradient that ensures a constant bulk velocity Ub. The simulation
as been carried in a computational domain with parameters Nx/Lx ×Ny/Ly ×Nz/Lz = 1536/(6h)× 768/(3h)× 576/(2h),
here N/L denotes the number of grid points/domain length, h is the channel half height, and the subscripts x, y and
denote the streamwise, spanwise and wall-normal directions. The grid is regular in x and y, as per requirement of

he fast Poisson solver, and periodic boundary conditions are imposed therein. In the wall-normal direction the grid is
on-uniform, clustered at the two walls. Following [26], the centered wall-normal position of a grid cell i, j, k is given by

zk =
1
2

(
1 +

tanh [a (Zk − 0.5)]
tanh [a (1 − 0.5)]

)
Lz, (7)

with Zk = (k − 0.5)/Lz, k = 1, 2, . . . ,Nz ; the grid clustering parameter is set to a = 1.6, so that a resolution of about
ne viscous wall unit is achieved near each wall. No-slip and no-penetration boundary conditions are imposed at the
alls, i.e. at z = h ∓ h. We set the bulk Reynolds number Reb = Ub(2h)/ν = 12700, estimated from Reτ = 0.09Re0.88b
o yield the desired pressure drop [1]. We expect a corresponding friction Reynolds number close to the target value,
ut not exactly Reτ ≈ 590, due to the uncertainty of the correlation. The flow is initialized with a laminar Poiseuille
elocity field, together with a high amplitude disturbance consisting of streamwise counter-rotating vortices, to trigger
urbulence effectively [27]. The simulation has been carried out with explicit temporal integration of the diffusion term,
s the maximum allowed time step in this problem is dictated by advection (i.e. second term on the right-hand-side of
q. (4)). The system was simulated for 300 000 time steps, corresponding to a total physical time in bulk units of about
00(2h)/Ub.
Fig. 2 depicts a three-dimensional visualization of the flow. The planes showing contours of streamwise velocity clearly

llustrate some of the usual features of turbulent channel flow, such as near-wall low- and high-speed streaks.
The evolution of the pressure drop is shown in Fig. 3, expressed in terms of the friction Reynolds number Reτ = uτh/ν

ith uτ =
√
(−dp/dx)h. The initial condition effectively triggers transition, and the flow reaches a fully-developed state

at t ≈ 100(2h)/Ub, when the friction Reynolds number fluctuates around the mean value of Reτ = 583.8. The dashed
red line in the same figure shows same quantity computed from the CPU implementation. It can be easily seen that, as
transition is triggered, the results from the GPU and CPU start to fluctuate around the same mean pressure drop, with
different instantaneous values. This is attributed to the chaotic nature of the governing equations, which are extremely
sensitive to round-off errors. In particular, the codes have been compiled in different systems, using different FFT libraries,
which is likely the cause for the deviations. Expectedly, the time-averaged statistics are the same for both CPU and GPU
simulations.
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Fig. 2. Visualization of the turbulent channel flow. The planes show the contours of streamwise velocity. The wall-parallel plane is located at
z+

= zuτ /ν ≈ 12.

Fig. 3. Time evolution of the pressure drop, expressed in terms of the friction Reynolds number Reτ . The gray dashed line corresponds to the time
verage in the fully-developed regime Reτ = 583.8.

Fig. 4 compares the present results to those of [25], for the inner-scaled profiles of the mean streamwise velocity (panel
a)), and the three velocity r.m.s. (panel (b)). The present results correspond to ensemble-averages of 300 samples in the
ully-developed regime, equally-spaced over a time interval of about 300 (2h)/Ub. The agreement with the reference data
is excellent, which validates the GPU implementation. The good agreement also holds for the Reynolds stresses profile
shown in Fig. 5, where the minor differences in the bulk of the channel are attributed to the slightly smaller friction
Reynolds number in the present simulation.

Next, we assess the performance of the GPU implementation on state-of-the-art GPU-based systems. The simulations
with the GPU code have been performed on two systems: a DGX Station with 4 NVIDIA Tesla V100 32 GB, a DGX-2 system
with 16 V100 32 GB. The wall-clock time per time step for the simulation in the DGX-2 system is presented in Table 1,
for different computational grids (i.e. distributions of computational subdomains). Due to memory requirements, the DGX
Station can run the selected grid only with the implicit diffusion turned off: since the code is using managed memory,
the simulation will run but the wall-clock time per time step will be an order of magnitude longer, since there is a lot of
memory migration between the CPU and GPU. The time per time step of the run on the four GPUs of DGX Station is 0.7s.
Remarkably, when the full DGX-2 system is used, the implementation reaches a very low wall-clock time per time step
that allows to reach a fully-developed state (≈ 38000 time steps) in 1.5 h.

From Table 1, we can also see that a 1D decomposition of the problem is always faster, since one of the transpose
steps in the all-to-all communication, required by the Poisson solver, is done in the GPU memory instead of going
through NVLink. When the implicit diffusion is active, the gain is even more pronounced since there are more all-to-all
communications that need to be performed. The difference in wall-clock time per step between the 4 GPU runs on the
DGX Station (0.7s, not reported in Table 1) and DGX-2 system (0.48s, first line in Table 1) can also be explained by the
different bandwidth of NVLink on these two systems. NVLink speed depends on the number of links active. Each Tesla
V100 has 6 links available, where each link has a signal rate of 25 GB/s. In the DGX-2 system, each of the 16 GPUs has 6
links active (translating into 150 GB/s) and is connected to all the others via a NVSwitch that can simultaneously drive
communications between all 8 GPU pairs at full speed. On the DGX Station, there is no NVSwitch and the 4 GPUs are
connected to each other directly. Some of the GPUs are connected to each other via a single link, and others via two links.

The same setup has been simulated with the CPU version, in a computational grid of 64 × 32, i.e. 2048 cores, in two
upercomputers based in Sweden: Beskow (151 in the June 2019 TOP500 list; Cray XC40, Xeon E5-2695v4/E5-2698v3
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Fig. 4. (a): mean streamwise velocity profile for turbulent channel flow at friction Reynolds number Reτ ≈ 590. (b): profiles of root-mean-square
velocity ur

i . Both figures use inner-scaling, i.e. velocity scaled with the wall friction velocity uτ , and distance with the viscous wall-unit ν/uτ . The
rofiles are compared to DNS data from [25] (MKM).

Fig. 5. Profile of inner-scaled Reynolds shear-stresses −
⟨
u′v′

⟩
versus the outer-scaled wall-normal distance. The profiles are compared to DNS data

rom [25] (MKM). The dashed-gray line corresponds to the analytical profile of total stresses.

6C 2.3 GHz, Aries interconnect), and the more recent Tetralith (74 in the June 2019 TOP500 list; Intel H2204XXLRE,
eon Gold 6130 16C 2.1 GHz, Intel Omni-Path), the timings pertaining to these machines for the same channel flow DNS,
ith diffusion treated explicitly, are shown in the caption of Table 1. Quite remarkably, the simulations on the DGX-2
ystem with 4 GPUs are about as expensive (0.9 times slower) to 1.6 times faster than the CPU simulations, and 3.1 to
.6 times faster when all the 16 GPUs of the system are used. Assuming that the speedup of the many-CPU simulation for
his setup scales linearly with further increase of the number of cores (which is an extremely conservative premise, since
he load per task in this case becomes too small for the CPU implementation speedup to scale linearly), we can estimate
hat the CPU system requires 6100 to 11200 cores in the tested systems to match the wall-clock time per time step of
he whole DGX-2. In regard to strong scaling of the GPU implementation on this system, one can depict in the present
etup a small performance loss for the best-performing computational grids, between 5% and 10%. This suggests that, as
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Table 1
Wall-clock time per time step on a DGX-2 system. The numbers in bold are for runs that will not
fit in the GPU memory. The timings of the same simulation using explicit diffusion on a 64 × 32
computational grid, i.e. 2048 MPI tasks for the CPU simulation carried out on Beskow (Cray XC40, Xeon
E5-2695v4/E5-2698v3 16C 2.3 GHz, Aries interconnect) and Tetralith (Intel H2204XXLRE, Xeon Gold 6130
16C 2.1 GHz, Intel Omni-Path) are respectively 0.78 and 0.43 seconds per time step.
# GPU grid Implicit diffusion off Implicit diffusion on

4 4 × 1 0.481 s 12.39 s
4 2 × 2 0.532 s 12.62 s
8 8 × 1 0.251 s 0.73 s
8 4 × 2 0.275 s 0.846 s

16 16 × 1 0.1404 s 0.398 s
16 8 × 2 0.1477 s 0.444 s
16 4 × 4 0.149 s 0.459 s

data is partitioned into smaller subdomains, the local problem size for this setup may become too small to fill the GPU
efficiently.

5. Conclusions and outlook

We have extended the open-source code CaNS for massively-parallel simulations in GPU-accelerated systems. Since
he original version of the code was implemented in Fortran90/95, CUDA Fortran is used for porting the code to GPUs
ith a manageable effort, while still achieving very good computational performance. The portability with CUDA Fortran
as been further simplified by the novel, unified memory model which allows the programmer to define arrays that can
eside on the host or on the device, without duplicating the arrays in the source code.

The implementation has been validated against benchmark data for turbulent channel flow, and the performance on a
VIDIA DGX-2 system has been examined. Sufficient data partitioning to ensure that the data resides mostly on the GPU
s a key element for achieving a good performance, as excessive data migration between the CPU and GPU can severely
egrade the performance. The results show that, remarkably, wall-clock time per time step using only 4 of the 16 GPUs of
he DGX-2 system, is just slightly larger than the CPU implementation in 2048 cores of a state-of-the-art supercomputer,
nd about 3 faster times when the entire DGX-2 system is used.
Based on its good computational performance, and in particular the very low wall-clock time per time step, we believe

hat the current tool will serve well as a base Navier–Stokes solver on top of which numerical methods for simulating
ore complex phenomena on many-GPU systems (e.g. multiple phases and complex geometries) can be implemented.
Both implementations are freely-available and open-source on GitHub, under the terms of an MIT license. See

ithub.com/p-costa/CaNS for the original MPI-OpenMP implementation [11], and github.com/maxcuda/CaNS for the
mplementation addressed in this manuscript.

RediT authorship contribution statement

Pedro Costa: Software, Validation, Writing - original draft. Everett Phillips: Methodology, Software, Writing - original
raft. Luca Brandt: Conceptualization, Funding acquisition, Writing - original draft. Massimiliano Fatica: Methodology,
oftware, Validation, Writing - original draft.

cknowledgments

PC and LB acknowledge the funding from the European Research Council Grant No. ERC-2013-CoG-616186, TRITOS,
nd the computing time provided by SNIC (Swedish National Infrastructure for Computing). PC acknowledges funding
rom the University of Iceland Recruitment Fund, Iceland Grant No. 1515-151341, TURBBLY. Finally, PC thanks Ali Yousefi
rom KTH Mechanics for producing the visualization in Fig. 2.

eferences

[1] S.B. Pope, Turbulent Flows, Cambridge University Press, 2000, http://dx.doi.org/10.1017/CBO9780511840531.
[2] T. Ishihara, T. Gotoh, Y. Kaneda, Study of high–Reynolds number isotropic turbulence by direct numerical simulation, Annu. Rev. Fluid Mech.

41 (2009) 165–180.
[3] S.A. Orszag, G. Patterson, Numerical simulation of three-dimensional homogeneous isotropic turbulence, Phys. Rev. Lett. 28 (2) (1972) 76.
[4] https://www.top500.org/lists/2019/06/. (Accessed on September 28, 2019).
[5] E. Agullo, J. Demmel, J. Dongarra, B. Hadri, J. Kurzak, J. Langou, H. Ltaief, P. Luszczek, S. Tomov, Numerical linear algebra on emerging

architectures: the plasma and magma projects, in: Journal of Physics: Conference Series, 180, IOP Publishing, 2009, 012037.
[6] X. Zhu, E. Phillips, V. Spandan, J. Donners, G. Ruetsch, J. Romero, R. Ostilla-Monico, Y. Yang, D. Lohse, R. Verzicco, M. Fatica, R.J.A.M. Stevens,

AFiD-GPU: A versatile Navier Stokes solver for wall-bounded turbulent flows on GPU clusters, Comput. Phys. Comm. 229 (2018).
[7] S. Ha, J. Park, D. You, A GPU-accelerated semi-implicit fractional-step method for numerical solutions of incompressible Navier–Stokes equations,

J. Comput. Phys. 352 (2018) 246–264.

https://github.com/p-costa/CaNS
https://github.com/maxcuda/CaNS
http://dx.doi.org/10.1017/CBO9780511840531
http://refhub.elsevier.com/S0898-1221(20)30009-2/sb2
http://refhub.elsevier.com/S0898-1221(20)30009-2/sb2
http://refhub.elsevier.com/S0898-1221(20)30009-2/sb2
http://refhub.elsevier.com/S0898-1221(20)30009-2/sb3
https://www.top500.org/lists/2019/06/
http://refhub.elsevier.com/S0898-1221(20)30009-2/sb5
http://refhub.elsevier.com/S0898-1221(20)30009-2/sb5
http://refhub.elsevier.com/S0898-1221(20)30009-2/sb5
http://refhub.elsevier.com/S0898-1221(20)30009-2/sb6
http://refhub.elsevier.com/S0898-1221(20)30009-2/sb6
http://refhub.elsevier.com/S0898-1221(20)30009-2/sb6
http://refhub.elsevier.com/S0898-1221(20)30009-2/sb7
http://refhub.elsevier.com/S0898-1221(20)30009-2/sb7
http://refhub.elsevier.com/S0898-1221(20)30009-2/sb7


P. Costa, E. Phillips, L. Brandt et al. / Computers and Mathematics with Applications 81 (2021) 502–511 511
[8] S. Ha, J. Park, D. You, A scalable multi-GPU method for semi-implicit fractional-step integration of incompressible Navier-Stokes equations,
2018, arXiv preprint arXiv:1812.01178.

[9] G. Alfonsi, S.A. Ciliberti, M. Mancini, L. Primavera, Gpgpu implementation of mixed spectral-finite difference computational code for the
numerical integration of the three-dimensional time-dependent incompressible Navier–Stokes equations, Comput. & Fluids 102 (2014) 237–249.

[10] K.E. Niemeyer, C.-J. Sung, Recent progress and challenges in exploiting graphics processors in computational fluid dynamics, J. Supercomput.
67 (2) (2014) 528–564.

[11] P. Costa, A FFT-based finite-difference solver for massively-parallel direct numerical simulations of turbulent flows, Comput. Math. Appl. 76 (8)
(2018) 1853–1862.

[12] P. Costa, F. Picano, L. Brandt, W.-P. Breugem, Universal scaling laws for dense particle suspensions in turbulent wall-bounded flows, Phys. Rev.
Lett. 117 (13) (2016) 134501.

[13] M.S. Dodd, A. Ferrante, On the interaction of Taylor length scale size droplets and isotropic turbulence, J. Fluid Mech. 806 (2016) 356–412.
[14] R. Ostilla-Mónico, R. Verzicco, S. Grossmann, D. Lohse, The near-wall region of highly turbulent Taylor–couette flow, J. Fluid Mech. 788 (2016)

95–117.
[15] P. Wesseling, Principles of Computational Fluid Dynamics, Vol. 29, Springer Science & Business Media, 2009.
[16] M. Uhlmann, An immersed boundary method with direct forcing for the simulation of particulate flows, J. Comput. Phys. 209 (2) (2005)

448–476.
[17] U. Schumann, R.A. Sweet, Fast Fourier transforms for direct solution of Poisson’s equation with staggered boundary conditions, J. Comput. Phys.

75 (1) (1988) 123–137.
[18] J. Kim, P. Moin, Application of a fractional-step method to incompressible Navier-Stokes equations, J. Comput. Phys. 59 (2) (1985) 308–323.
[19] M. Frigo, S.G. Johnson, FFTW: An adaptive software architecture for the FFT, in: Proceedings of the 1998 IEEE International Conference on

Acoustics, Speech and Signal Processing, ICASSP’98 (Cat. No. 98CH36181), Vol. 3, IEEE, 1998, pp. 1381–1384.
[20] G. Ruetsch, M. Fatica, CUDA Fortran for Scientists and Engineers, Morgan Kaufmann, 2013.
[21] J. Makhoul, A fast cosine transform in one and two dimensions, IEEE Trans. Acoust. Speech Signal Process. 28 (1) (1980) 27–34.
[22] J.J. Hasbestan, I. Senocak, PittPack: An open-source Poisson’s equation solver for extreme-scale computing with accelerators, 2019, arXiv preprint

arXiv:1909.05423.
[23] http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx. (Accessed on August 21, 2019).
[24] https://devblogs.nvidia.com/parallelforall/customize-cuda-fortran-profiling-nvtx. (Accessed on August 21, 2019).
[25] R.D. Moser, J. Kim, N.N. Mansour, Direct numerical simulation of turbulent channel flow up to Reτ = 590, Phys. Fluids 11 (4) (1999) 943–945.
[26] P. Orlandi, Fluid Flow Phenomena: A Numerical Toolkit, Vol. 55, Springer Science & Business Media, 2012.
[27] D.S. Henningson, J. Kim, On turbulent spots in plane poiseuille flow, J. Fluid Mech. 228 (1991) 183–205.

http://arxiv.org/abs/1812.01178
http://refhub.elsevier.com/S0898-1221(20)30009-2/sb9
http://refhub.elsevier.com/S0898-1221(20)30009-2/sb9
http://refhub.elsevier.com/S0898-1221(20)30009-2/sb9
http://refhub.elsevier.com/S0898-1221(20)30009-2/sb10
http://refhub.elsevier.com/S0898-1221(20)30009-2/sb10
http://refhub.elsevier.com/S0898-1221(20)30009-2/sb10
http://refhub.elsevier.com/S0898-1221(20)30009-2/sb11
http://refhub.elsevier.com/S0898-1221(20)30009-2/sb11
http://refhub.elsevier.com/S0898-1221(20)30009-2/sb11
http://refhub.elsevier.com/S0898-1221(20)30009-2/sb12
http://refhub.elsevier.com/S0898-1221(20)30009-2/sb12
http://refhub.elsevier.com/S0898-1221(20)30009-2/sb12
http://refhub.elsevier.com/S0898-1221(20)30009-2/sb13
http://refhub.elsevier.com/S0898-1221(20)30009-2/sb14
http://refhub.elsevier.com/S0898-1221(20)30009-2/sb14
http://refhub.elsevier.com/S0898-1221(20)30009-2/sb14
http://refhub.elsevier.com/S0898-1221(20)30009-2/sb15
http://refhub.elsevier.com/S0898-1221(20)30009-2/sb16
http://refhub.elsevier.com/S0898-1221(20)30009-2/sb16
http://refhub.elsevier.com/S0898-1221(20)30009-2/sb16
http://refhub.elsevier.com/S0898-1221(20)30009-2/sb17
http://refhub.elsevier.com/S0898-1221(20)30009-2/sb17
http://refhub.elsevier.com/S0898-1221(20)30009-2/sb17
http://refhub.elsevier.com/S0898-1221(20)30009-2/sb18
http://refhub.elsevier.com/S0898-1221(20)30009-2/sb19
http://refhub.elsevier.com/S0898-1221(20)30009-2/sb19
http://refhub.elsevier.com/S0898-1221(20)30009-2/sb19
http://refhub.elsevier.com/S0898-1221(20)30009-2/sb20
http://refhub.elsevier.com/S0898-1221(20)30009-2/sb21
http://arxiv.org/abs/1909.05423
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
https://devblogs.nvidia.com/parallelforall/customize-cuda-fortran-profiling-nvtx
http://refhub.elsevier.com/S0898-1221(20)30009-2/sb25
http://refhub.elsevier.com/S0898-1221(20)30009-2/sb26
http://refhub.elsevier.com/S0898-1221(20)30009-2/sb27

	GPU acceleration of CaNS for massively-parallel direct numerical simulations of canonical fluid flows
	Introduction
	Numerical method
	FFT-based Poisson solver

	Implementation
	Many-CPU implementation with MPI-OpenMP in CaNS 
	Many-GPU extension with MPI-CUDA Fortran
	CUF kernels
	Implementation of the FFT-based transforms using cuFFT 
	Profiling using NVTX

	Validation and computational performance
	Conclusions and outlook
	CRediT authorship contribution statement
	Acknowledgments
	References


