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This study presents a novel pressure-based methodology for the efficient numerical 
solution of a four-equation two-phase diffuse interface model. The proposed methodology 
has the potential to simulate low-Mach flows with mass transfer. In contrast to the classical 
conservative four-equation model formulation, the adopted set of equations features 
volume fraction, temperature, velocity and pressure as the primary variables. The model 
includes the effects of viscosity, surface tension, thermal conductivity and gravity, and has 
the ability to incorporate complex equations of state. Additionally, a Gibbs free energy 
relaxation procedure is used to model mass transfer. A key characteristic of the proposed 
methodology is the use of high performance and scalable solvers for the solution of the 
Helmholtz equation for the pressure, which drastically reduces the computational cost 
compared to analogous density-based approaches. We demonstrate the capabilities of the 
methodology to simulate flows with large density and viscosity ratios through extended 
verification against a range of different test cases. Finally, the potential of the methodology 
to tackle challenging phase change flows is demonstrated with the simulation of three-
dimensional nucleate boiling.

© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Many flows of engineering interest exhibit compressibility effects, even if the flow velocities are relatively small and 
much smaller than the speed of sound in extended regions of the domain. Labelled as low-Mach flows, these types of 
flows share characteristics with both the fully compressible regime (pressure-density coupling dominates) and the fully 
incompressible regime (pressure-velocity coupling dominates), making their numerical simulation challenging [1]. To further 
complicate things, real-life applications usually involve two or more fluids that interact dynamically, with the possibility of 
mass transfer between different phases.

A typical example of this type of flow is boiling; the phenomenon occurring when a heated liquid reaches or exceeds 
its saturation temperature at a specific pressure. At that point, the vaporisation process is initiated and bubbles are formed 
either on the heated surface or in an adjacent liquid layer, due to the presence of microscopic surface imperfections or 
other impurities [2]. With continuous heat transfer, the bubbles grow and eventually detach from the heated surface, and 
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rise inside the liquid. Even though the liquid phase can be considered approximately incompressible, the large heat and 
mass transfer rates induce compressibility effects in the gas phase that cannot be ignored. Additional characteristics such as 
the sensitivity on wetting and surface roughness render boiling as a very complex physical phenomenon, one whose physical 
interpretation is yet to be fully revealed. Nonetheless, boiling is utilised in steam generators [3], heat exchangers [4] and 
electronics cooling [5] amongst other applications. Other phase transition processes such as cavitation and evaporation can 
also exhibit weak or strong compressibility effects. Even though these phase transition processes are seemingly different to 
boiling, they are all governed by the same physical mechanism, the equilibrium of the local Gibbs free energy between the 
two phases [6].

One of the most important aspects of the numerical modelling of multiphase flows is the method used to describe 
the movement of the liquid-gas interface. This is usually done with the use of a marker function that acquires different 
values for each fluid, and helps identify the interface. These methods can be broadly categorised as [7] (i) surface tracking 
methods, where the marker function is reconstructed by marker points on the interface that are advected [8,9], and (ii) 
surface capturing methods, where the marker function is advected directly. Prominent examples of this second category are 
the level–set methods [10], the volume–of–fluid methods [11] and the diffuse interface (DI) methods [12,13]. Even though DI 
methods have the drawback of adopting an interface thickness that is significantly larger compared to the physical thickness, 
these methods have important advantages when used for multiphase compressible flows. First of all, the thermodynamic 
consistency is retained everywhere, even at the interface where the averaging of the properties of each phase takes place. 
Also the diffused shape of the interface allows the numerical resolution of the property gradients, which is very beneficial 
on the overall accuracy and stability of the solution methodology. Moreover, the dynamic creation and disappearance of 
interfaces emerges naturally, a feature that is of great importance in boiling simulations [14].

The most general two-phase DI model is the Baer–Nunziato model [15] (and the variant of Saurel–Abgrall [13]), con-
sisting of seven equations: two equations for the mass conservation in each phase, two equations for the momentum 
conservation, two equations for the total energy conservation and one for the evolution of the volume fraction. This model 
is often characterised as a non-equilibrium model, meaning that in the regions where both phases coexist, there is no 
requirement for kinetic equilibrium (same velocity), mechanical equilibrium (same pressure), thermal equilibrium (same 
temperature) or chemical equilibrium (same Gibbs free energy). From this parent model, a hierarchy of models arises via 
relaxation processes that drive the system to specific equilibrium states [16], such as,

• the six-equation model of Saurel et al. [17], a kinetic equilibrium model where stiff pressure relaxation is applied (see 
also [18,19]),

• the five-equation model of Kapila et al. [20], with kinetic and mechanical equilibrium (see also [21–25]),
• the four-equation model of Abgrall [26], with kinetic, mechanical and thermal equilibrium (see also [27–30,6]).

Amongst these models, the five-equation model provides a good compromise between physical complexity and performance, 
and it is the most widely used model for compressible two-phase simulations. Nonetheless, in the presence of conductive 
heat transfer, the additional simplification of stiff thermal relaxation is justified [30]. More specifically, when the thermal 
boundary layers on either side of the liquid-gas interface are properly resolved, the temperature at the interface should be 
continuous and a four-equation model becomes appropriate. Since the numerical methodology proposed in this study aims 
to simulate boiling flows where conduction heat transfer is prominent, a four-equation model will be adopted.

To numerically solve the adopted model in the low-Mach regime, two broad categories of solution strategies exist, namely 
(i) the density-based approach, originating directly from methodologies for compressible flows (e.g. [31,14,32]), and (ii) 
the pressure-based approach, originating from methodologies for incompressible flows (e.g. [33,34]). Even though density-
based approaches have been shown to perform well in a range of different multiphase flows, they rely on preconditioning 
techniques to overcome the stiffness problem in the low-Mach limit [35]. Preconditioning techniques continue to develop 
and become more sophisticated, but there is still much room for improvement, especially for the simulation of unsteady 
flows [36] or three-dimensional cases where the computational cost of preconditioning becomes hardly feasible for practical 
applications. As commented in the Future Issues section of the recent review paper of Saurel and Pantano [37], precondition-
ing techniques for two-phase low-Mach simulations need to become more efficient. On the other hand, the pressure-based 
approach can achieve good performance in terms of computational cost. Moreover, it has the advantage of preventing pres-
sure oscillations at interfaces, since the pressure is solved for and not retrieved from the energy. This approach was mainly 
employed in single-phase cases, with the first true all-Mach number flow solver presented in [38]. Numerical schemes 
specific to single-phase low-Mach number flows were also presented in [39–41], inspiring further development of novel 
pressure-based low- and all-Mach number methods [42–44]. Only a small number of studies were devoted to weakly com-
pressible multiphase flows, such as [45,46] based on the Baer–Nunziato model, [47] based on the six-equation model, and 
other sharp interface methods [34,48,33,49]. These few studies showed promising results, both in terms of numerical effi-
ciency and overall performance for several test cases such as bubble oscillations, explosion shocks, oscillating water column, 
etc. In addition, few studies demonstrated the possibility to add phase transition to pressure-based methods, using either a 
sharp interface approach [50–53] or the Cahn–Hilliard phase-field method [54,55].

This study presents the development of a novel pressure-based methodology for the solution of a four-equation DI 
model. The methodology is capable of simulating low-Mach flows, where weak compressibility effects cannot be ignored 
even though the flow velocities are much smaller than the speed of sound. Mass transfer is also taken into account via a 
2
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Gibbs free energy relaxation procedure that is activated whenever the proper thermodynamic conditions are locally met. 
The physical description is enriched with additional terms, which account for viscous stresses, surface tension, heat conduc-
tion, and gravity. Moreover, the method is able to incorporate complex equations of state, specific to each phase, and can 
handle large density and viscosity ratios. The rest of this paper is organised as follows: Section 2 presents the mathematical 
model, followed by the description of the proposed solution methodology in Section 3. The verification of the methodology 
against benchmark single-phase and multiphase cases, with and without mass transfer, is presented in Section 4, where the 
conservation of mass and total energy are also evidenced. Furthermore, the potential of this method to simulate the com-
putationally demanding nucleate boiling flow is demonstrated in Section 5. Finally, Section 6 lists some possible extensions 
and improvements to be addressed and Section 7 concludes the study with a summary of the key findings.

2. Mathematical model

2.1. Governing equations

As indicated in the Introduction, the diffuse interface model presented here uses a four-equation model describing a 
two-phase flow in kinetic, mechanical and thermal equilibrium [29,30,6]. This two-phase model results from the velocity, 
pressure and temperature relaxation of the full Baer–Nunziato model [15]. For completeness, the main steps of the derivation 
of the relaxed model are illustrated in Appendix A. As a convention, phasic quantities are identified with subscript k or 
explicitly with {1,2}, while mixture quantities bare no such identification. We will denote with ak the volume fraction of 
phase k, with ρ the mixture density, ρ = a1ρ1 + a2ρ2, with �u the velocity field, and with E the internal energy per unit 
volume. The pressure and temperature equilibrium four-equation two-phase model in the literature is commonly written 
in terms of the conserved variables a1ρ1, a2ρ2, ρ�u and E = E + ρ|�u|2/2 (mixture total energy per unit volume). The 
formulation in terms of these variables, including here viscous stresses, surface tension, heat conduction, and gravity effects 
reads:

∂t (a1ρ1) + �∇ · (a1ρ1�u)= M, (1a)

∂t (a2ρ2) + �∇ · (a2ρ2�u)= −M, (1b)

∂t
(
ρ�u)+ �∇ · (ρ�u ⊗ �u)+ �∇p = �Du + �Σ + �G, (1c)

∂t E + �∇ · ((E + p)�u) = �Du · �u + DE + K + �Σ · �u + �G · �u. (1d)

Alternatively, one equation for one partial density (e.g. a2ρ2) can be replaced by the equation for the mixture density ρ:

∂tρ + �∇ · (ρ�u) = 0. (2)

The source terms on the right hand side of Eqs. (1), are defined as follows:

• Mass transfer M

M = ν(g2 − g1), (3)

where ν is the chemical relaxation parameter, and g is the Gibbs free energy.
• Viscous stress �Du

�Du = �∇ · ��τ , (4)

with ��τ = μ

(
�∇�u +

( �∇�u
)T − 2

3

( �∇ · �u
)��I
)

, (5)

where μ is the dynamic viscosity.
• Surface tension �Σ

�Σ = σ �∇ ·
⎛
⎝ �∇a1∣∣∣ �∇a1

∣∣∣
⎞
⎠ �∇a1, (6)

where σ is the surface tension coefficient. This modelling follows the continuum surface force model (CSF) proposed by 
Brackbill et al. [56].

• Gravity �G
�G = ρ�g, (7)

where �g is the acceleration of gravity.
3
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• Viscous dissipation DE

DE = �∇�u : ��τ (8)

• Heat conduction K

K = �∇ ·
(
λ �∇T

)
, (9)

where λ is the heat conduction coefficient and T is the temperature.

In the present work we adopt a different choice of primary variables for reasons related to the numerical discretization 
method which will be discussed in the next section. Our four-equation model formulation uses the governing equations for 
the volume fraction a1 of one phase, the temperature T , the velocity �u, and the pressure p:

∂ta1 + �∇ · (a1�u)+ (S(3)
a − a1

) �∇ · �u = S(1)
a M + S(2)

a (DE + K ), (10a)

∂t T + �∇ · (T �u)+ (S(3)
T − T

) �∇ · �u = S(1)
T M + S(2)

T (DE + K ), (10b)

∂t �u + �∇ · (�u ⊗ �u)− �u
( �∇ · �u

)
= 1

ρ

( �Du + �Σ + �G
)

, (10c)

∂t p + �u · �∇p + ρc2 �∇ · �u = S(1)
p M + S(2)

p (DE + K ). (10d)

The momentum Eq. (10c) is recast in a different form from Eq. (1c) using the conservation of mass, Eq. (2). This is done 
to avoid the need of the updated density since, as shown in the algorithmic part of this study (see Algorithm 1), the density 
is updated after the numerical solution of Eq. (10c). In the above equations c is the speed of sound, given by [57],

1

c2
= ρ

(
a1

ρ1c2
1

+ a2

ρ2c2
2

)
+ ρT C p1C p2

C p1 + C p2

(
Γ2

ρ2c2
2

− Γ1

ρ1c2
1

)2

. (11)

The quantities S(1)
a , S(2)

a , S(1)
T , S(2)

T , S(1)
p and S(2)

p are defined as:

S(1)
a = 1

D̄

[(
χ1

Γ1
− χ2

Γ2

)
(φζ )T +

(
a1

Γ1
+ a2

Γ2

)
φv

]
, (12a)

S(1)
T = 1

D̄

[(
χ2

Γ2
− χ1

Γ1

)
(ζρ)T +

(
ρ1c2

1

Γ1
− ρ2c2

2

Γ2

)
ζv +

(
a1

Γ1
+ a2

Γ2

)
Δρ

]
, (12b)

S(1)
p = 1

D̄

[(
χ1

Γ1
− χ2

Γ2

)
(φρ)T +

(
ρ2c2

2

Γ2
− ρ1c2

1

Γ1

)
φv

]
, (12c)

S(2)
a = 1

D̄
(φζ )T , (12d)

S(2)
T = − 1

D̄
(ζρ)T , (12e)

S(2)
p = 1

D̄
(φρ)T , (12f)

S(3)
a = ρc2

[(
a1a2

ρ2c2
2

− a1a2

ρ1c2
1

)
+ T C p1C p2

C p1 + C p2

(
Γ2

ρ2c2
2

− Γ1

ρ1c2
1

)(
a1Γ2

ρ2c2
2

+ a2Γ1

ρ1c2
1

)]
, (12g)

S(3)
T = ρc2T

C p1 + C p2

(
C p1Γ1

ρ1c2
1

+ C p2Γ2

ρ2c2
2

)
, (12h)

where,

(φρ)T = a1φ1ρ2 + a2φ2ρ1, φv = a1φ1 + a2φ2, (13a)

(ζρ)T = a1ζ1ρ2 + a2ζ2ρ1, ζv = a1ζ1 + a2ζ2, (13b)

(φζ )T = a1a2(φ1ζ2 − φ2ζ1), Δρ = ρ2 − ρ1, (13c)

D̄ =
(

ρ1c2
1

Γ1
− ρ2c2

2

Γ2

)
(φζ )T +

(
a1

Γ1
+ a2

Γ2

)
(φρ)T , (13d)
4
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φk =
(

∂ρk

∂T

)
p

= −ρk
Γkκpk

c2
k

, (13e)

ζk =
(

∂ρk

∂ p

)
T

= 1

c2
k

+ Γ 2
k κpk T

c4
k

, (13f)

χk =
(

∂ p

∂ρk

)
Ek

= c2
k − Γkhk. (13g)

In the above expressions, Γ = (∂ p/∂E)ρ is the Grüneisen coefficient, κp is the specific heat capacity at constant pressure 
and h is the specific enthalpy. The extensive heat capacity at a constant pressure for each phase is given by C pk = akρkκpk . 
The derivation of the form of the source terms appearing in the model formulation (10) from the conservative formulation 
(1) is presented in Appendix B. Let us note that in the equations (10) the source terms S(1)

a M , S(1)
T M and S(1)

p M model the 
effect of mass transfer on the evolution of the volume fraction a1, the temperature T and the pressure p; S(2)

a (DE + K ), 
S(2)

T (DE + K ) and S(2)
p (DE + K ) model viscous dissipation and heat conduction associated to the evolution of the same 

variables, a1, T and p. Note also that the contribution S(3)
a �∇ · �u in the volume fraction equation for liquid-gas mixtures 

accounts for mechanical cavitation, leading to an increase of the gaseous volume fraction in expansion regions and its 
decrease in compression regions. The term S(3)

T
�∇ · �u in the temperature equation leads to an increase of the temperature in 

compression regions and a decrease in expansion regions.
Let us remark that even though the model is fully compressible, discretizations based on the adopted non-conservative 

formulation (10) are not appropriate for the numerical solution of flows with strong compressibility effects. Since the total 
energy and mass are not solved for, and momentum is solved in a non-conservative form, the conservation of these quanti-
ties is not rigorously guaranteed at the discrete level. As a consequence, highly compressible flows such as those involving 
shock waves cannot be accurately captured. Nonetheless, as shown in the following sections, the model is appropriate for 
the simulation of weakly compressible flows with phase change, which are the applications targeted by the present study.

2.2. Equation of state

To close the system of equations above we need to specify an equation of state (EOS) for each phase, for instance 
by providing a pressure law pk(Ek, ρk) and a temperature law Tk(pk, ρk). Given the equation of state of each phase, the 
equation of state for the mixture is determined by the pressure and temperature equilibrium conditions p1 = p2 = p, 
T1 = T2 = T , by the mixture density relation ρ = α1ρ1 + α2ρ2 and by the mixture energy relation E = α1E1 + α2E2.

The thermodynamic closure used in this study is the Noble–Abel stiffened–gas (NASG) EOS [58]. The use of this specific 
EOS is not in any way mandatory, since the proposed method can be coupled with any complex EOS. The NASG EOS is 
expressed by,

Tk(pk,ρk) = (1 − ρkbk)(pk + p∞k)

κvkρk(γk − 1)
, (14a)

pk(Ek,ρk) = γk − 1

1 − ρkbk
(Ek − ηkρk) − γk p∞k. (14b)

Since the pressure and temperature fields are solved for using Eqs. (10d) and (10b), Eq. (14a) is used to calculate the phasic 
densities ρk , by setting pk = p and Tk = T (pressure and temperature relaxation). Following the above relations, the phasic 
specific entropy sk , specific enthalpy hk , Gibbs free energy gk , speed of sound ck and Grüneisen coefficient Γk become:

sk(p, T ) = κvk log

(
T γk

(p + p∞k)
γk−1

)
+ η̃k, (15a)

hk(p, T ) = κvp T + bk p + ηk, (15b)

gk(p, T ) = (γkκvk − η̃k)T − κvk T log

(
T γk

(p + p∞k)
γk−1

)
+ ηk + bk p, (15c)

ck(p,ρk) =
√

γk
p + p∞k

ρk(1 − ρkbk)
, (15d)

Γk(ρk) = γk − 1

1 − ρkbk
, (15e)

where κvk (phasic specific heat capacity at constant pressure), γk , ηk , η̃k , p∞ and bk are the phasic parameters of the EOS. 
It is noted that κpk = γkκvk . The set of adopted values will be presented separately for each test case.

Given the equations of state for the liquid and vapour phases of a species, the theoretical pressure-temperature saturation 
curve is determined by the Gibbs free energy equilibrium condition g1 = g2. For liquid and vapour phases governed by the 
NASG EOS [58] this gives the following equation defining the p-T saturation curve:
5
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As + Bs

T
+ Cs log T + Ds log(p + p∞1) − log(p + p∞2) + pEs

T
= 0, (16)

where,

As = κp1 − κp2 − η̃1 + η̃2

κp2 − κv2
, Bs = η1 − η2

κp2 − κv2
, Cs = κp2 − κp1

κp2 − κv2
,

Ds = κp1 − κv1

κp2 − κv2
, and Es = b1 − b2

κp2 − κv2
. (17)

The parameters of the NASG EOS of the two phases are defined so that the theoretical saturation curves fit the experimental 
ones of the chosen material in a certain temperature range [58].

3. Numerical methodology

This section details the solution of Eqs. (10a)–(10d) on a staggered (marker and cell) Cartesian grid, where all scalar 
fields are defined on cell centres while the velocity is defined on cell faces. To handle numerically the mass transfer source 
term M we use an operator splitting technique, which is commonly employed to treat relaxation terms in Baer–Nunziato 
type models (e.g. [13,59]): the equations are first solved without the mass transfer term M , and then a relaxation procedure 
is applied to integrate this source term accounting for phase transition.

3.1. Pressure-based solution method for the system without mass transfer term

The equations are integrated in time using an explicit, 3rd order Runge–Kutta (RK3) method [60]. Within the context of 
the RK3 method, each time-step n is split into three sub-steps m = 1,2,3. With this notation, the following convention is 
followed to represent any quantity q at the beginning and the end of each time-step,

qn,m=1 = qn and qn,m=4 = qn+1.

3.1.1. Volume fraction
First, Eq. (10a) (without the mass transfer term) is solved to obtain the volume fraction at the new sub-step an,m+1

1 . 
Following the RK3 method, the updated an,m+1

1 is calculated as:

an,m+1
1 = an,m

1 − Δt

[
α̃m
( �∇ · (a1�u)+ (S(3)

a − a1

) �∇ · �u
)n,m +

β̃m
( �∇ · (a1�u)+ (S(3)

a − a1

) �∇ · �u
)n,m−1 −

γ̃ m
(

S(2)
a (DE + K )

)n,m
]
,

(18)

where Δt is the time step, α̃m = {8/15, 5/12, 3/4}, β̃m = {0, −17/60, −5/12} and γ̃ m = α̃m + β̃m , in accordance to [60]. The 
convection terms �∇ · (a1�u) are discretised using the van Leer flux limiter [61,62], while the velocity divergence �∇ · �u, heat 
conduction and viscous dissipation terms are discretised with central differences.

Consequently, the viscosity and thermal conductivity fields can be updated as,

μn,m+1 = an,m+1
1 μ1 + an,m+1

2 μ2 and λn,m+1 = an,m+1
1 λc1 + an,m+1

2 λc2, (19)

where a2 = 1 − a1 and the phasic properties μ1, μ2, λc1, λc2 are constant.

3.1.2. Temperature
Similar to the volume fraction, the solution of Eq. (10b) (without the mass transfer term) is advanced in time as,

T n,m+1 = T n,m − Δt

[
α̃m
( �∇ · (T �u)+

(
S(3)

T − T
) �∇ · �u

)n,m +

β̃m
( �∇ · (T �u)+

(
S(3)

T − T
) �∇ · �u

)n,m−1 −

γ̃ m
(

S(2)
T (DE + K )

)n,m
]
.

(20)

For consistency, the same spatial discretisation schemes used for Eq. (18) are also applied to Eq. (20).
6
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3.1.3. Predicted velocity
To decouple velocity and pressure, a fractional-step approach is adopted (in the spirit of [63]), where a predicted velocity 

field �un,m∗ is first calculated without considering the pressure gradient term. In this form, the predicted velocity can be 
obtained as,

un,m∗ = un,m − Δt

[
α̃m

(
�∇ · (�u ⊗ �u)− �u

( �∇ · �u
)

− �Du

ρ

)n,m

+

β̃m

(
�∇ · (�u ⊗ �u)− �u

( �∇ · �u
)

− �Du

ρ

)n,m−1

+

γ̃ m

( �Σ + �G
ρ

)n,m ]
.

(21)

Following the discretisation used for the volume fraction and temperature equations, the convection term �∇ · (�u ⊗ �u) is 
discretised using the van Leer flux limiter, while all other terms are discretised with central differences.

Once the updated pressure field pn,m+1 becomes available, the corrected velocity field �un,m can be obtained as,

�un,m+1 = �un,m∗ − γ̃ mΔt
�∇pn,m+1

ρn,m
. (22)

3.1.4. Pressure solution
Eq. (10d) (without the mass transfer term) is discretised in time as,

pn,m+1 = pn,m−Δt
[
α̃m
( �∇ · (p�u)− p �∇ · �u

)n,m + β̃m
( �∇ · (p�u)− p �∇ · �u

)n,m−1 ]+
γ̃ mΔt

[
S(2),n,m

p (DE + K )n,m − (ρc2)n,m �∇ · �un,m+1
] (23)

Term �∇ · �un,m+1 is replaced by the divergence of Eq. (22),

�∇ · �un,m+1 = �∇ · �un,m∗ − γ̃ mΔt �∇ ·
( �∇pn,m+1

ρn,m

)
, (24)

yielding the following Helmholtz equation for the pressure,

pn,m+1−(γ̃ 2Δt2ρc2)n,m �∇ ·
( �∇pn,m+1

ρn,m

)
=

pn,m−Δt
[
α̃m
( �∇ · (p�u)− p �∇ · �u

)n,m + β̃m
( �∇ · (p�u)− p �∇ · �u

)n,m−1 ]+
γ̃ mΔt

[
S(2),n,m

p (DE + K )n,m − (ρc2)n,m �∇ · �un,m∗] .

(25)

In the present study, the Helmholtz equation is solved using the parallel semicoarsening multigrid (PFMG) solver combined 
with a Red-Black (RB) preconditioner, both available in the HYPRE library [64]. Once pn+1 is obtained, the corrected velocity 
field un+1 is updated using Eq. (22).

3.2. Phase transition solver

As mentioned above the mass transfer is treated via a (first-order) operator splitting method: we first solve the system 
without the source term M and then we solve a system of ordinary differential equations accounting for the mass transfer. 
Hence we consider: ∂t [a1, T , �u, p]T = ΦM , where here ΦM = [S(1)

a M, S(1)
T M, 0, S(1)

p M]T is the vector of the source terms in 
Eq. (10) containing the mass transfer term M = ν(g2 − g1). As one can easily see from this system of ODEs, during this 
chemical relaxation process the mixture density, mixture energy and velocity remain constant. To determine the state after 
the mass transfer step we need to determine three independent variables, for instance a1 , T and p. We have implemented 
two different relaxation techniques proposed in the literature to determine the updated values of a1, T and p after mass 
transfer.

The first one [30,19] assumes instantaneous chemical relaxation, ν → ∞, so that thermodynamic equilibrium is instan-
taneously attained. In this case we do not need to solve a system of ODEs, but instead impose directly the equilibrium 
condition g1(p, T ) = g2(p, T ). This gives an algebraic system of equations to be solved for the thermodynamic equilibrium 
state with the mixture relations ρ = a1ρ1(p, T ) + a2ρ2(p, T ) and E = a1E1(p, T ) + a2E2(p, T ).
7
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The second relaxation procedure, based on [65–67], allows the modelling of chemical relaxation of arbitrary rate, finite-
rate (for instance with a given function to define ν) or instantaneous. It is based on the idea of approximating the relaxation 
process toward the equilibrium g1 = g2 by an exponential behaviour. Within this approximation, a semi-exact exponential 
solution of the system of ODEs ∂t [a1, T , �u, p]T = ΦM can be found. This approximate solution is used to define the solution 
after the mass transfer step. This second approach is simpler since we update the variables using explicit formulas, whereas 
in the first approach we need the solution of a non-linear system of algebraic equations. We typically use this second 
relaxation technique, nonetheless the first method was also tested within the context of the present study (where we 
assume instantaneous mass transfer in all the tests) with very similar results.

Let us note that the temperature is equal to its saturation value Tsat(p) at the equilibrium g1(p, T ) = g2(p, T ). Denoting 
here with subscript 1 the liquid and with subscript 2 the vapour, if g1 > g2 then T > Tsat(P ) and liquid-to-vapour transition 
occurs (evaporation), whereas if g1 < g2 then T < Tsat(P ) and vapour-to-liquid transition occurs (condensation). This mass 
transfer processes modelled by the chemical relaxation term may be activated and deactivated in the numerical model 
depending on the desired criteria. In the present study, mass transfer is activated only in the presence of a two phase 
mixture, i.e. when both a1 > ε and a2 > ε , with ε = 10−8. Moreover, in some numerical tests we may activate chemical 
relaxation only if the condition for evaporation T > Tsat(P ) is met, as done for various tests for instance in [68,69,19]. This 
criterion is applied in the test taken from these references in Section 4.4. In such case, for the NASG EOS we solve the 
equation (16) using pn,m+1 as an independent variable, which provides T n,m+1

sat .

3.3. Algorithm overview and additional remarks

To make the proposed methodology as clear as possible, a step by step description of the overall solution procedure 
is presented in Algorithm 1. For the purposes of the present study, the algorithm was implemented using the framework 
already available in [70], with the substitution of the fast Fourier transform library with the Hypre library.

Algorithm 1 Overall solution procedure of the proposed methodology.
1: a1, T , �u, p are initialised.
2: ρk are calculated using Eq. (14a). ρ , μ and λc are calculated using the corresponding phasic quantities and c is calculated from Eq. (11).
3: S(2)

a , S(2)
T , S(2)

p , S(3)
a and S(3)

T are calculated from Eqs. (12d)–(12h) using the EOS Eqs. (14) and (15).
4: n = 0 is set.
5: while t < ttot do
6: n = n + 1, m = 0 are set.
7: Δt is calculated using Eq. (26).
8: while m < 3 do
9: m = m + 1 is set.

10: an,m+1
1 is calculated from Eq. (18).

11: T n,m+1 is calculated from Eq. (20).
12: �un,m∗ is calculated from Eq. (21).
13: Helmholtz Eq. (25) is solved and pn,m+1 is obtained.
14: �un,m+1 is calculated from equation (22).
15: ρk , ρ , μ, λc , c, S(2)

a , S(2)
T , S(2)

p , S(3)
a and S(3)

T are updated.
16: if phase change conditions then
17: an,m+1

1 , T n,m+1 and pn,m+1 are locally modified following the relaxation procedure of [65–67].

18: ρk , ρ , μ, λc , c, S(2)
a , S(2)

T , S(2)
p , S(3)

a and S(3)
T are updated.

19: end if
20: end while
21: end while
22: End of simulation.

Since the adopted four-equation model and the proposed solution methodology are significantly different from what 
was previously used in multiphase diffuse interface studies, a few key points on various aspects of the methodology are 
discussed below:

• Set of equations: Common formulations of the four-equation model in the literature adopt either (a1ρ1, a2ρ2, ρu, E) [26,
29] or (a1ρ1, ρ, ρu, E) [30] as the set of primary variables (see the set of Eqs. (1), (2)). In the present study, the choice 
to follow a pressure-based methodology was made to avoid pressure oscillations at interfaces when the pressure is 
retrieved from the energy. To construct a pressure-based methodology using either of these sets of equations, the total 
energy equation can be transformed to a pressure equation, and the temperature can be calculated from the EOS. This 
approach was followed in [43] for single-phase problems, using a pressure equation similar to Eq. (10d). Using this 
approach, the authors of the present study noted that the calculation of the temperature field was not very accurate, 
especially at the interface. Even a small error in the calculation of the temperature field in phase transition simulations 
could cause the temperature to artificially exceed or fall below the saturation temperature, severely affecting the re-
sults. For this reason, we adopted (a1, T , ρu, p) as the primary variables, so to have a more accurate calculation of the 
temperature field. As mentioned earlier, this model is not appropriate for the numerical solution of fully compressible 
flows, because there are no discrete equations that guarantee the conservation of the total energy and mass, while the 
8
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momentum is solved using a non-conservative form. Nevertheless, the following sections demonstrate the validity of 
this model in simulations of compressible flows with phase change at low speeds.

• Mass and energy conservation: Since the adopted four-equation model does not consider equations for the conservation 
of mass and energy, these quantities are not automatically conserved. Nonetheless, with proper spatial and temporal 
resolution, mass and energy are indeed conserved over long simulation times. This observation will be demonstrated 
and quantified in the verification cases presented in Section 4.

• Momentum discretisation: As described in Section 3.1.3, the discretised momentum equations adopt a non-conservative 
form of the advection term. The reason behind this is to avoid invoking the updated density field which is yet to 
be computed at this point. An alternative treatment (not used in the present study) would be to over-constrain the 
system of equations by solving an extra equation for the mass conservation before solving the momentum equation. 
In that case, mass will be conserved by definition and the updated density field would be available to be used in 
a fully conservative momentum equation. This of course would add the cost of having to solve an additional equa-
tion and encounter some loss of consistency between the various thermodynamic quantities because in that case 
ρ �= a1ρ1(p, T ) + a2ρ2(p, T ). A similar treatment of over-constraining the system for algorithmic purposes was adopted 
in sharp-interface formulations [33,48].

• Time step restrictions: It is generally accepted that explicit pressure-based methods bare overwhelming time-step re-
strictions. In the proposed methodology, this is overcome by using the updated pressure field in the momentum 
equation, that results in a Helmholtz equation (Eq. (25)) for the pressure field. In addition, the adoption of the RK3 
method for numerical integration improves the overall time step restrictions [60]. The time-step restriction employed 
in this study is [71],

Δt = CΔt min(Δtc,Δtσ ,Δtμ,Δtλ), (26)

where Δtc , Δtσ , Δtμ and Δtλ are the maximum allowable time steps due to convection, surface tension, momentum 
and thermal energy diffusion. These are determined as suggested in [71]:

Δtc =
( |ux,max|

Δx
+ |u y,max|

Δy
+ |uz,max|

Δz

)−1

,

Δtσ =
√

(ρ1,min + ρ2,min)min(Δx3,Δy3,Δz3)

4πσ
,

Δtμ =
[

max

(
μ1

ρ1,min
,

μ2

ρ2,min

)(
2

Δx2
+ 2

Δy2
+ 2

Δz2

)]−1

,

Δtλ =
[

max

(
λ1

ρ1,minC p,1
,

λ2

ρ2,minC p,2

)(
2

Δx2
+ 2

Δy2
+ 2

Δz2

)]−1

,

(27)

where |ui,max| is an estimate of the maximum value of the ith component of the flow velocity, ρk,min is the minimum 
density of phase k in the domain and Δx, Δy, Δz are the grid spacings along the x, y, z directions. Since this 
study considers only weakly compressible flows, the acoustic time-step restrictions are not taken into account. Setting 
CΔt = 0.25 − 1.0 was seen to be sufficient for a stable and accurate time integration. For a more accurate and fair 
comparison against reference results, a constant time step was adopted in some of the test cases. This is clearly specified 
in each test case.

4. Verification

The methodology presented in the previous sections will be verified in a number of different test cases, under incom-
pressible and compressible conditions, with and without mass transfer. When mass transfer is activated it is always assumed 
as an instantaneous process (chemical relaxation parameter ν → +∞). In the following sections, wherever a two-phase mix-
ture is present, subscript (1) refers to the liquid phase while subscript (2) refers to the gas phase.

4.1. Gresho vortex

The proposed numerical algorithm is first tested against the Gresho vortex benchmark [72], a rotating vortex which 
is a time-independent solution of the incompressible Euler equations. The aim of this test is to assess the accuracy of 
the method against an exact solution and its ability to preserve the vortex structure for different Mach numbers. To this 
purpose, we employ a variant of the original benchmark, where the analytical solution, reported in Eqs. (28) depends on a 
reference Mach number [73] and it is a continuous differentiable function [74]:

uφ(r) = 1

ur

⎧⎪⎨
⎪⎩

75r2 − 250r3 0 ≤ r ≤ 0.2lr,

−4 + 60r − 225r2 + 250r3 0.2lr < r ≤ 0.4lr,

0, r > 0.4l

(28)
r

9
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Table 1
EOS parameters adopted for (a) the 
“Gresho vortex” test case (Section 4.1) 
and (b) the thermally driven flow 
in a differentially heated cavity (Sec-
tion 4.2).

γ η η̃ p∞ b κv

1.4 0 0 0 0 717.5

where uφ is the angular velocity and ur a reference velocity. In this steady configuration, the pressure gradient is bal-
anced by the centrifugal force and the density is uniform and equal to a reference value, i.e. ρ = ρr . Therefore the radial 
momentum balance reads,

1

Ma2
r

∂ p

∂r
= u2

φ

r
. (29)

By splitting the pressure p into a reference pressure pr and a second order pressure p(2) , i.e., p = pr + p(2)Ma2
r and using 

Eq. (29), pr results to be a uniform and constant field, while p(2) can be computed as,

p(2)Ma2
r =

r2∫
r1

u2
φ(s)

s
ds, (30)

where Mar =√ρr/(prγr) is the reference Mach number. The EOS parameters used for the calculation of the reference Mach 
number and all other necessary quantities are listed in Table 1, modelling an ideal gas. Using Eq. (30) finally provides an 
expression for p,

p = pr +
r2∫

r1

u2
φ(s)

s
ds. (31)

The integrals in Eq. (31) are evaluated with a Gaussian quadrature method for each interval where uφ is defined, i.e. 
[r1, r2] = [0, 0.2]lr , [0.2, 0.4]lr and [0.4, 1]lr . Note that in Eq. (31) the reference pressure field pr is given by pr =
ρru2

r /(γr Mar) (with ρr = 1, ur = 1), r is the radial coordinate, given by r = √
(x − lr/2)2 + (y − lr/2)2 and lr a reference 

length. Since Eq. (28) is formulated in a polar reference frame, a coordinate transformation is performed to obtain the 
Cartesian velocities components, i.e. u(x, y) = uφ sin(θ) and v(x, y) = vφ cos(θ) with θ = arctan 2(y − lr/2, x − lr/2). The 
governing equations are solved in a two-dimensional square domain Ω = [0, lr] × [0, lr], discretized with four different grid 
spacings [Δx, Δy] = [lr/Nx, lr/N y] with Nx × N y = [16 × 16, 32 × 32, 64 × 64, 128 × 128]. Periodic boundary conditions are 
prescribed in both directions. The analytical solution given by Eqs. (28) and (31), is prescribed as initial condition for three 
different Mach numbers, Mar = 10−1, 10−2 and 10−3. Simulations are conducted up to tur/lr = 2 (i.e., one complete revolu-
tion of the vortex) using a constant time-step Δtur/lr = 2.5 × 10−3. Note that this value represents the maximum allowable 
time-step to ensure a stable time integration for the highest grid resolutions cases (i.e., 128 × 128) and is employed for the 
coarser cases, irrespective of Mar .

Fig. 1 shows the Mach number distribution for the various cases considered. It is clear that the proposed numerical 
methodology is able to preserve the vortex shape regardless of the employed Mar . This result is possible thanks to the 
implicit treatment of the acoustic part of the pressure field (using a prediction-correction approach [75]), which ensures a 
stable and bounded solution of the pressure equation, even for Mar → 0. The excellent ability of method in preserving the 
vortex shape is reflected also in the good conservation property of the kinetic energy Ek = 1/2 

∫
V ρ�u · �udV , whose temporal 

evolution is reported in Fig. 2(a) for different grid resolutions. Note that Ek is conserved at the highest resolution cases with 
Mar = 0.001 and a similar behaviour has been observed also for Mar = 0.01 and 0.1 (not shown).

We conclude the analysis with the accuracy assessment in terms of the L1-norm, evaluated as:

L1 = 1

NxN y

Nx∑
i=1

N y∑
j=1

|s(i, j) − sex(i, j)|, (32)

where s represents either one of the Cartesian velocity components, u or v or the pressure, p, while sex represents the 
corresponding exact fields computed with the analytical solution. If L1,N is the L1-error using Nx × N y grid point and L1,2N

is the L1-error evaluated with 2Nx × 2N y grid points, the order of accuracy nL1 is computed as:

nL1 =
log

(
L1,2N

L1,N

)
. (33)
log(2)
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Fig. 1. Mach number distribution in the Gresho vortex case for Mar = 10−1, 10−2 and 10−3 (from the left to the right) using 128 × 128 grid points. The 
dotted black lines refer to the initial condition, while the solid lines to the solution after one revolution of the vortex (i.e., tur/lr = 2). (For interpretation 
of the colours in the figure(s), the reader is referred to the web version of this article.)

Fig. 2. Gresho vortex with Mar = 0.001: (a) evolution of the normalized kinetic energy Ek/Ek,t=0 in the time interval tur/lr = 0 − 2 for different grid 
spacings, (b): L1 norm for (u, v, p) at tur/lr = 1.

Both L1-error and nL1 are evaluated at tur/lr = 1 and the results are reported in Fig. 2(b) for Mar = 0.001. As expected, a 
second-order accurate solution for (u, v, p) is achieved for all cases (a similar trend has been observed also for Mar = 0.01
and 0.1), confirming the correct behaviour of the proposed method irrespective of Mar .

4.2. Thermally driven flow in a differentially heated cavity

In this section, the flow of air in a closed two-dimensional square cavity with heated and cooled side walls and adiabatic 
horizontal walls is considered. The ascending and descending buoyant currents next to the heated and cooled walls form a 
circulation current, while the central region of the cavity features an almost stagnant fluid with stratified temperature. In 
thermally driven flows, the compressibility effects are directly related to the temperature difference between the thermally 
active side walls. For temperature differences less than approximately 30 K the flow of air is considered incompressible [76], 
and the Oberbeck–Boussinesq approximation is typically adopted [77–79]. Outside the limits of the Oberbeck–Boussinesq 
approximation, weak compressibility effects appear, and different low-Mach methodologies were utilised to study these 
effects [80–82]. For the purposes of this study, this test case helps to assess the ability of the methodology to accurately 
incorporate the effects of viscosity and thermal conductivity.

The case simulated here follows the setup presented in [80,81] and involves a temperature difference ΔT = 720 K, 
around a reference temperature of Tr = 600 K. The reference thermophysical quantities and the height of the cavity L are 
chosen such that the Rayleigh and Prandtl numbers are equal to,

Ra = gρ2
r κpβΔT L3

μλ
= 106, and Pr = μκp

λ
= 0.71, (34)

where β is the thermal expansion coefficient. The ideal gas EOS is used as the thermodynamic closure (parameters listed in 
Table 1) and the reference density value ρr is calculated using the reference temperature Tr =600 K and the reference pres-
sure pr =101325 Pa. All other thermophysical quantities are considered constant. Furthermore, no-slip boundary conditions 
are applied to the walls. Initially the air in the cavity is stagnant and isothermal with T (t = 0, x, y) = Tr , and a hydrostatic 
pressure field with p(t = 0, x = L/2, y = L/2) = pr is applied. The time step is dynamically adjusted according to Eq. (26), 
with CΔt = 0.5.
11
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Fig. 3. Temporal evolution of (a) the dimensionless total mass in the cavity and (b) the Nusselt number at the heated wall, for different grid sizes. The 
reference solution for the Nusselt number is reported in [81].

Even though this is a simple configuration, the introduction of large temperature difference increases the resolution 
requirements due to the thinning of the thermal boundary layer at the cooled wall [83]. In [81], a non-uniform grid of 
256 × 256 was used, with clustering of grid points next to the walls, while in [80] a uniform grid of size 512 × 512
was chosen. In the present study, four different uniform grid sizes were used, namely 64 × 64, 128 × 128, 256 × 256 and 
512 × 512 grid nodes. As shown in Fig. 3(a), the highest resolution considered is able to achieve conservation of the total 
mass with approximately 1% error.

The heat transfer rate inside the cavity is expressed through the Nusselt number, defined as,

Nu = hL

λc
= L

ΔT
�∇T
∣∣

w · n̂w (35)

where h is the heat transfer coefficient, �∇T
∣∣

w is the temperature gradient on any of the thermally active vertical walls and 
n̂w is the corresponding unit normal vector on the wall. The temporal evolution of the Nusselt number at the heated wall is 
plotted in Fig. 3(b), for different grid sizes. After a steep drop during the initial stages of the simulation, the Nusselt number 
increases gradually to a steady state value. All grid sizes considered capture the evolution of the Nusselt number fairly well, 
converging to the reference solution from [81] with increasing resolution. More specifically, the steady state solution of the 
512 × 512 grid differs by 1.3% with respect to the reference solution. Noting that the solution methodology followed in the 
reference study is based on the low-Mach number asymptotic expansion of the Navier-Stokes equations, and therefore is 
significantly different to the present method, the agreement between the two solutions is considered satisfactory.

4.3. Rising bubble

The well-established “Rising bubble” test case is employed here as a two-phase numerical benchmark [84]. This test case 
helps to assess the ability of the proposed numerical methodology to capture topological changes of a moving interface, in 
the presence of surface tension. More specifically, the evolution of the shape, position and velocity of the centre of mass of 
a rising bubble in a two dimensional liquid column will be compared against the reference solution in [84].

By introducing a reference length lr , a velocity ur , gas and liquid densities ρg,r and ρl,r and gas and liquid dynamic 
viscosities μg,r and μl,r , we can define the five dimensionless groups which governs the problem: the Reynolds number 
Re = ρg,rurlr/μg,r , the Weber number W e = ρg,ru2

r lr/σ with σ equal to the surface tension, the Froude number F r =
u2

r /(|�g|d0), the density ratios λρ = ρl,r/ρg,r and the viscosity ratio λμ = μl,r/μg,r . The liquid column has a dimension 
lx = 2d0 and l y = 4d0 where d0 is the bubble diameter, whose initial centre of mass position is (xc,0, yc,0) = (d0, d0).

This section considers two different rising bubble test cases. For the first test case, simulations are conducted setting lr =
d0, ur =√|�g|d0, Re = 35, W e = 1, F r = 1, λρ = 10 and λμ = 10 in a domain discretized with Nx × N y = 32 × 64, 64 × 128
and 128 × 256 grid points. Note that the EOS parameters reported in Table 2 are chosen to match the specific λρ . The top 
and bottom boundaries are no-slip non-moving walls, while periodic conditions are prescribed in the horizontal directions. 
The initial velocity field is zero and the pressure is uniform. A constant time step Δt

√|�g|/d0 = 3 × 10−4 is used. This 
value is the maximum allowable time-step to ensure a stable time integration for the highest grid resolutions cases (i.e., 
128 × 256) and is employed for the coarser cases in order to ensure that the same time discretization error is introduced in 
all the cases.

First, Fig. 4 shows the position of the interface at different time instances, providing a qualitative assessment of the 
numerical solution for the three grid resolutions. An excellent agreement is observed between the numerical solution on 
the most refined grid and the reference solution in all the analysed time instances. Similarly, an excellent agreement is 
confirmed by comparing the temporal evolution of the bubble’s centre of mass position and vertical velocity, reported 
in Fig. 5. Note that the proposed benchmark is often employed for assessing the accuracy of incompressible two-phase 
12
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Table 2
EOS parameters adopted for the two rising bubble test cases.

γ η η̃ p∞ b κv

Test case (1)

liquid (1) 1.187 −1.178 × 106 −1.178 × 106 105 0 3610

gas (2) 1.400 0 0 105 0 717.5

Test case (2)

liquid (1) 1.187 0 0 1.013 × 109 6.61 × 10−4 3610

gas (2) 1.400 0 0 0 0 717.5

Fig. 4. Interface position for the first rising bubble test case at t
√|�g|/d0 = 0.9, 2.7 and 4.5 (from the left to the right) and for different grid resolution 

Nx × N y = 32 × 64, 64 × 128 and 128 × 256.

Fig. 5. (a) Position of the centre of mass of the rising bubble, (b) vertical velocity of the centre of mass of the rising bubble. Results correspond to the first 
test case.

codes without temperature variation in the bulk regions of the phases. In the present work, since the two phases exhibit 
compressible effects, local temperature variations cannot be avoided a-priori given the local variation of the pressure field. 
However, the maximum temperature variations remain below ΔT /Tr ≈ 10−5; confirming the excellent behaviour of the 
proposed numerical method in the incompressible limit.

The second test case considers larger property variations and involves extreme events such as small bubble breakups. 
More specifically, the parameters considered in this second benchmark are Re = 3.5, W e = 0.125, λρ = 1000 and λμ = 100, 
while all other simulation parameters remain the same as the first test case. As before, the EOS parameters reported in 
Table 2 are chosen to match the specific λρ considered here. Three uniform grid resolutions are used to simulate the flow: 
128 × 256, 256 × 512 and 512 × 1024. First, the comparison of the interface position at dimensionless time t

√|�g|/d0 = 3 is 
presented in Fig. 6, for the three different grid resolutions considered. In this case, we observe the formation of two trailing 
bubble tails instead of two small circular bubbles that break away from the original structure in the reference solution. As 
13
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Fig. 6. Interface position for the second rising bubble test case at t
√|�g|/d0 = 3 for different grid resolutions Nx × N y = 128 ×256, 256 ×512 and 512 ×1024.

Fig. 7. Vertical velocity of the centre of mass of the rising bubble for different grid resolutions Nx × N y = 128 × 256, 256 × 512 and 512 × 1024. Results 
correspond to the second test case.

a result, the bubble rise velocity is lower than the reference results, as depicted in Fig. 7. This deviation is reduced as the 
grid becomes finer, reaching a value of approximately 9% at dimensionless time t

√|�g|/d0 = 3, for the 512 × 1024 grid.
Even though this method is able to accurately simulate flows with large property variations (as demonstrated in Sec-

tions 4.4 and 4.5) and capture large bubbles that break away from larger structures (demonstrated in Section 5), it requires 
a fine grid resolution to capture the break away of small bubbles. This drawback is solely attributed to the inherent diffusive 
nature of the diffuse interface method. Small bubbles that break away cannot get fully detached from the bigger structures 
without additional treatment of the interface thickness. Section 6 describes several approaches that can be incorporated in 
the proposed methodology to manage the interface thickness.

4.4. Water liquid-vapour expansion tube

The one-dimensional water liquid-vapour expansion tube test case was first proposed in [68] and was later adopted 
in other studies such as [69,19]. This test case is presented here to verify the code in a fully compressible flow and to 
demonstrate the accuracy of the phase transition solver. A tube of Lx = 1 m length is filled with a two-phase mixture of 
liquid water with a uniformly distributed small amount of vapour a2 = 0.01. The tube is open at both ends and the water 
is subject to atmospheric pressure, p = 105 Pa, with a liquid density of ρ1 = 1150 kg m−3. Initially, a velocity discontinuity 
is present at the centre of the cavity x = 0.5 m, with u = −u0 for x < 0.5 m and u = u0 for x > 0.5 m, where u0 = 2 m s−1. 
Viscosity, thermal conductivity and surface tension effects are not considered. The EOS parameters adopted for this test case 
are listed in Table 3. Using these parameters, the temperature of the two-phase mixture is calculated T = 354.728 K and 
the vapour density ρ2 = 0.63 kg m−3.

Two cases were simulated: (i) phase transition is not activated and (ii) phase transition is activated when the condition 
T > Tsat(p) is met. A uniform grid with 1024 points is used and a constant time step Δt = 3.2 × 10−6 s is adopted. To avoid 
numerical instabilities, the initial velocity discontinuity used in the present simulations is approximated via a hyperbolic 
tangent function in the form,
14
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Table 3
EOS parameters adopted for the study of water liquid-vapour expansion.

γ η η̃ p∞ b κv

liquid (1) 2.35 −1.167 × 106 0 109 0 1816
vapour (2) 1.43 2.030 × 106 −2.34 × 104 0 0 1040

Fig. 8. Solution of the water liquid-vapour expansion case with mass transfer (red) and without mass transfer (black), at t = 0.032 s. Solid lines correspond 
to the present results while dashed lines correspond to the reference solutions of [19].

u(x) = u0tanh((x − 0.5)/c̃), (36)

where u0 = 2 m s−1 and a value of c̃ = 10−2 m is adopted for the sharpness parameter. The flow was allowed to develop 
for 1000 time steps, and the relevant fields at t = 0.032 s are used for comparison against the reference results from [19].

The comparison between the present and reference results is shown in Fig. 8. Starting from the case without mass 
transfer, two rarefaction waves appear, moving in opposite directions. The induced small mechanical expansion of the vapour
phase causes an increase in vapour volume fraction at the centre of the tube. Due to the presence of the rarefaction 
waves, the liquid phase becomes metastable and the inclusion of mass transfer influences the solution significantly. More 
specifically, in the presence of mass transfer, the expansion of liquid water causes the decrease of the pressure at the centre 
of the tube, reaching its saturation value. Consequently, a small amount of vapour is generated, as evidenced in the increase 
of the vapour volume and mass fractions. These characteristics provide the basis of the comparison depicted in Fig. 8, 
where the agreement between present and reference results is verified with only minor discrepancies. Overall, the proposed 
methodology accurately captures the solution of this compressible flow with and without mass transfer.

Since the equations for the conservation of mass and energy are not explicitly solved within the context of the proposed 
methodology, the correct calculation of these quantities needs further assessment. Assuming that the rarefactions do not 
reach the boundaries, the exact total mass Mtot and total energy Etot in the domain as a function of time can be calculated 
as,

Mtot(t) = (1 − 2u0t)

1∫
0

ρt=0dx, (37)

Etot(t) = (1 − 2u0t)

1∫ (
E + 1

2
ρu2

)
t=0

dx. (38)
0
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Fig. 9. Temporal evolution of the total mass and total energy inside the tube for the water liquid-vapour expansion case with mass transfer. These quantities 
are divided by the corresponding initial values. Solid black lines correspond to the present results while dashed red lines correspond to the analytical 
solution described by Eqs. (37) and (38).

Table 4
EOS parameters adopted for the study of water liquid-vapour filled tube with a superheated region.

γ η η̃ p∞ b κv

liquid (1) 1.3878826 −1.244191 × 106 0 8.899 × 108 4.78 × 10−4 3202
vapour (2) 1.9545455 2.287484 × 106 6417 0 0 462

The ratios between these quantities and their corresponding initial values are shown in Fig. 9, for the case where mass 
transfer is activated. An excellent agreement is observed between the computed and analytically derived quantities.

4.5. Water liquid-vapour filled tube with a superheated region

The test case presented in this section was specifically designed to verify the code in conditions that are more relevant 
to boiling flows. A 1.7 m one-dimensional long tube is filled with a water mixture, with a liquid volume fraction of a1 = 0.9
for x < 0.68 m and a1 = 0.1 for x > 0.68 m. The tube is open at both ends and the mixture is subject to a pressure of 
p = 3.0104051 × 106 Pa. The gas-dominated region x > 0.68 m is set at saturation conditions, while the liquid-dominated 
region is overheated by 2.0K. The EOS parameters adopted for this test case are listed in Table 4. Using these parameters, 
the temperature for x > 0.68 m is set at T = Tsat = 513.21628 K, while for x < 0.68 m is set at T = 515.21628 K. Viscosity, 
thermal conductivity and surface tension are not considered.

To assess the accuracy of the results produced by the present methodology, the same test case was also simulated by 
using an established methodology for compressible two-phase flows with phase transition, documented in [19,65–67]. The 
reference methodology (formally second-order accurate) is based on a six-equation two-phase diffuse interface model, and it 
uses a HLLC-type Riemann solver for the homogeneous equations together with mechanical, and thermo-chemical relaxation 
procedures for inter-phase processes. A grid of 1024 points and a constant time step of 6 × 10−6 s was used to produce the 
present results, where the temperature and volume fraction discontinuities were approximated with a hyperbolic tangent 
function in the form of Eq. (36). The reference results were obtained with a grid of 5000 points and a varying time step 
with fixed Courant number equal to 0.5, without considering any smoothing of the initial discontinuities. For this numerical 
test, chemical relaxation is activated everywhere in the domain.

The comparison between the present and reference solution at t = 0.006 s is shown in Fig. 10. The pressure on the liquid 
side (x < 0.68 m) almost instantaneously jumps to the saturation value. Therefore a pressure discontinuity is generated, 
giving rise to two waves that propagate to induce a thermodynamic equilibrium between the two regions. Overall, a good 
agreement is observed between the results of the two numerical methods. The reference results display larger numerical 
diffusion, mainly due to the use of a dissipative HLLC-type Riemann solver compared to the Van-Leer flux limiter used in 
the present work. Some numerical diffusion is also added due to the fact that the six-equation numerical model of [19]
needs two additional relaxation steps (mechanical and thermal) in the fractional step algorithm after the solution of the 
homogeneous equations. The present method, therefore, provides a more accurate representation of the sharp variations, 
despite the smoothing applied to the initial temperature and volume fraction fields.

5. Three-dimensional nucleate boiling in water

To demonstrate the potential of the proposed methodology to simulate challenging boiling flows, a three-dimensional nu-
cleate boiling simulation was carried out. The setup for this case was previously presented in [30], albeit in two-dimensions. 
A closed cuboid box of dimensions Lx × L y × Lz = 7 ×7 ×12 cm is filled with a water liquid-vapour mixture, with a1 = 0.9999
for z < 6 cm and a1 = 0.0001 for z > 6 cm. A schematic representation of the domain is shown in Fig. 11. All the domain 
16



A.D. Demou, N. Scapin, M. Pelanti et al. Journal of Computational Physics 448 (2022) 110730
Fig. 10. Solution of the water liquid-vapour filled tube with a superheated region at t = 0.006 s. Solid black lines correspond to the present results while 
dashed red lines correspond to the reference solution.

Table 5
EOS parameters adopted for the three-dimensional study of nucleate boiling in water.

γ η η̃ p∞ b κv

liquid (1) 1.187 −1.177788 × 106 0 7.028 × 108 6.61 × 10−4 3610
vapour (2) 1.467 2.077616 × 106 1.4317 × 104 0 0 955

boundaries are considered solid walls, therefore no-slip boundary conditions are applied for the velocity field. The vertical 
and the top walls are considered adiabatic ( �∇T |w · n̂w =0), while a time-varying temperature is applied on the bottom wall, 
in the form,

T (t, x, y, z = 0) =
{

Tsat + ( t
0.15

)
ΔT t ≤ 0.15 s

Tsat + ΔT t > 0.15 s,
(39)

where Tsat = 372.74 K is the saturation temperature at z = 0 and ΔT = 15 K. In this way, the bottom wall is slowly heated 
beyond the saturation temperature of the surrounding liquid, without causing too strong pressure waves. In addition to the 
three-dimensional representation, a more accurate EOS is used here in accordance to the NASG framework, as shown in 
Table 5.

The acceleration of gravity is set to |�g| = 9.81 m s−2, the surface tension coefficient σ = 0.073 N m−1 while the thermal 
conductivity in each phase λc,1 = 0.6788 W m−1 K−1 and λc,2 = 0.0249 W m−1 K−1. Similarly to [30], the effects of 
17
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Fig. 11. Schematic representation of the closed cuboid cavity used for the three-dimensional nucleate boiling in water. The dimensions of the cavity are 
Lx × L y × Lz = 7 × 7 × 12 cm, where the bottom half is filled with 99.99% liquid and the upper half with 99.99% vapour.

viscosity are not considered. Initially, the two-phase mixture is stagnant and the pressure in the cavity is 101325 Pa. The 
temperature is equal to the saturation value based on the local value of pressure. A uniform grid of Nx × N y × Nz =
256 × 256 × 512 is used (approximately 33.6 million grid points), while the time step is dynamically adjusted in accordance 
to Eq. (26), with CΔt = 0.5.

At the very early stages of the flow development a vapour film starts forming at the bottom wall, which soon becomes 
unstable and breaks up. Instantaneous snapshots of a1 = 0.5 iso-surfaces after the initial vapour film breakup are shown 
in Fig. 12. The film gives way to a torus-like structure centred around the vertical axis at the centre of the cavity. In 
addition, bubbles are formed at the four bottom corners of the cavity and other smaller structures along the bottom edges 
of the cavity. As the flow develops further, the torus structure breaks up into four large bubbles along the x − y diagonals. 
Eventually, bubbles of different sizes reach the interface and release their vapour content to the vapour-filled top half of 
the cavity. Overlooking the complexity of the three-dimensional structures, this phenomenological description is similar to 
what was reported in the reference two-dimensional study [30], where the initial vapour film breaks up in an elongated 
bubble at the centre of the cavity and two smaller bubbles at the two bottom corners.

Even though an in-depth investigation of this specific nucleate boiling case is outside the scope of the present study, it 
is evident that the proposed method can provide reliable results for such a challenging physical phenomenon. Furthermore, 
the current implementation is efficient enough to solve problems on high-resolution numerical grids over long integration 
times. More specifically, the simulation presented in this section was carried out on 1024 processors on a system based on 
Intel Xeon Gold 6130 CPU’s for ten days, consuming approximately 0.25 million core hours.

6. Future improvements

In this section, a list of future modifications is compiled and motivated, with the potential to improve different aspects 
of the proposed methodology. The following improvements can help to enrich the physical description of the adopted 
model:

• Wall treatment: During nucleate boiling next to a heated surface, a number of physical mechanisms are responsible 
for transferring energy to the forming bubble. Depending on the conditions in which boiling takes place, energy can 
be transferred to a growing bubble through the micro-layer (thin liquid layer trapped between the bubble and the 
wall) and the three-phase contact line, amongst other mechanisms [85]. Both these mechanisms act on scales that are 
orders of magnitude smaller than the resolution requirements for the other physical mechanisms that affect the flow. 
Therefore, the appropriate modelling of these mechanisms (e.g.using the models presented in [86–89]) is very important 
for the accurate representation of flows involving bubble nucleation close to a wall.

• Realistic EOS: Simple EOS are very convenient because they can be easily manipulated and included in the numerical 
method in an analytical form. On the other hand, realistic EOS for industrial applications such as the IAPWS Industrial 
Formulation for Water and Steam [90] are very complex and their use presents significant challenges, both in terms 
of thermodynamical consistency of the numerical method and computational efficiency. For such complex equations of 
state the presented numerical model could be coupled to a table-look up method as proposed for instance in [91,92] to 
achieve fast and accurate thermodynamic calculations.
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Fig. 12. Instantaneous snapshots of a1 = 0.5 iso-surfaces, coloured using the temperature field for the three-dimensional nucleate boiling in water. The first 
snapshot is at t ≈ 0.262 s, and each subsequent snapshot at intervals Δt ≈ 0.046 s.

Furthermore, additional numerical techniques can be incorporated to improve the accuracy and efficiency of the compu-
tational methodology:

• Managing interface thickness: Even though the thermodynamic consistency is retained on the vapour-liquid interface, 
the interface typically becomes thicker with time in DI simulations. This inherent drawback of diffuse interface methods 
hinders the detachment of small bubbles from larger structures, as discussed in Section 4.3. To treat this issue, two 
main approaches exist: (i) use of interface compression techniques, where carefully constructed source terms (also called 
regularization terms) are introduced into the equations (e.g. [24,25]), and (ii) construct a sharper colour function from 
the more diffused mass or volume fractions and use this sharper function to calculate interface terms such as surface 
tension (e.g. [30]). Employing either approach can help retain the thickness of the interface at an appropriate size.

• Improved RK3 method: The solution of the Helmholtz equation carries the biggest computational cost compared to 
the other algorithmic tasks. In its present form, the proposed methodology invokes the Helmholtz solver every RK3 
sub-step, i.e. three times per time step. By attempting to extend the treatment of [93] and [94] to the pressure-based 
formulation of the present study, the Helmholtz problem will be solved only once per time step, reducing the overall 
computational cost of the numerical solution significantly.
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7. Conclusions

In this study, a novel pressure-based methodology has been presented for the solution of a four-equation two-phase 
diffuse interface model, capable of solving low-Mach flows with mass transfer processes. The four-equation model results 
from the kinetic, mechanical and thermal relaxation of the general seven-equation Baer–Nunziato model, with the addition 
of extra terms to account for the effects of viscosity, surface tension, thermal conductivity and gravity. Mass transfer is 
modelled as a Gibbs free energy relaxation term.

The key characteristic that makes the proposed methodology stand out from the current state of the art is its pressure-
based nature, which results in the solution of a Helmholtz equation for the pressure. This feature allows the utilisation of 
scalable and efficient solvers, able to exploit the full potential of high performance computing systems. With such capa-
bilities, complex cases can be simulated with unprecedented resolution, giving a new insight into the underlying physical 
mechanisms.

The methodology was verified in a number of different cases, involving single- and two-phase configurations with large 
density ratios, under both compressible and incompressible conditions, with and without mass transfer. In addition to a 
very good agreement reached with relevant reference data, a second-order accurate solution was demonstrated in a range 
of Mach numbers. Moreover, the ability of the method to conserve mass and energy was demonstrated numerically in 
different scenarios.

Finally, the potential of the proposed methodology to simulate challenging compressible two-phase flows with mass 
transfer was demonstrated with the three-dimensional nucleate boiling simulation in water. Initially, a vapour film was 
developed at the bottom heated wall, which in time broke up into a torus-like structure at the centre and other smaller 
structures along the edges of the bottom wall. Eventually the torus structure generated four large bubbles, before releasing 
their vapour content to the top of the cavity.
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Appendix A. Derivation of the relaxed pressure and temperature equilibrium model

In the limit of instantaneous velocity, pressure, and temperature equilibrium, the 7–equation of Baer–Nunziato model 
[15] is reduced to a 4–equation model. This relaxation procedure is presented here, following the asymptotic technique 
used by Murrone and Guillard [22] (see also [95]) to derive the 5–equation Kapila et al. model [20] from the 7–equation 
model. The notation followed is the same as the main body of the manuscript, except from symbols μ, ϕ and τ which are 
redefined in the context of this Appendix. First, we write the Baer–Nunziato system in the variant of Saurel–Abgrall [13] in 
terms of the vector of primitive variables w ∈R7 specified below as,

∂t w + A(w)∂x w = 1
Ψ (w) + Φ(w), (A.1a)
τ
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w =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1

T1

T2

u1

u2

p1

p2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, A(w) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

uI 0 0 0 0 0 0

−
[

ϕ1
C p1

(p1 − pI ) − Γ1 T1
α1

]
(u1 − uI ) u1 0 Γ1T1 0 0 0[

ϕ2
C p2

(p2 − pI ) − Γ2 T2
α2

]
(u2 − uI ) 0 u2 0 Γ2T2 0 0

p1−pI
α1ρ1

0 0 u1 0 1
ρ1

0

− p2−pI
α1ρ1

0 0 0 u2 0 1
ρ2

− ξ1
α1

(u1 − uI ) 0 0 ρ1c2
1 0 u1 0

ξ2
α2

(u2 − uI ) 0 0 0 ρ2c2
2 0 u2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (A.1b)

Ψ (w) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

μ̃(p1 − p2)

−
[

ϕ1
C p1

(p1 − pI ) − Γ1 T1
α1

]
μ̃(p1 − p2) + ϕ1

C p1
λ̃(uI − u1)(u2 − u1) + ϕ1

C p1
θ̃ (T2 − T1)[

ϕ2
C p2

(p2 − pI ) − Γ2 T2
α2

]
μ̃(p1 − p2) − ϕ2

C p2
λ̃(uI − u2)(u2 − u1) − ϕ2

C p2
θ̃ (T2 − T1)

λ̃
α1ρ1

(u2 − u1)

− λ̃
α2ρ2

(u2 − u1)

ξ1
α1

μ̃(p1 − p2) + Γ1
α1

λ̃(uI − u1)(u2 − u1) + Γ1
α1

θ̃ (T2 − T1)

− ξ2
α2

μ̃(p1 − p2) − Γ2
α2

λ̃(uI − u2)(u2 − u1) − Γ1
α1

θ̃ (T2 − T1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (A.1c)

where

ϕk = 1 + Γ 2
k

κpk Tk

c2
k

= 1 + Γ 2
k

C pk Tk

αkρkc2
k

, ξk = Γk(pk − pI ) − ρkc2
k . (A.1d)

Here, pI and uI are the interface pressure and velocity. Vector Ψ (w) contains all the relaxation source terms describing 
transfer processes that we consider in the limit of instantaneous equilibrium: the velocity relaxation term λ(u2 − u1), the 
pressure relaxation term μ(p1 − p2), and the thermal relaxation term θ(T2 − T1). The relaxation parameters are redefined as 
λ = λ̃

τ , μ = μ̃
τ and θ = θ̃

τ . Vector Φ(w) contains all the other source terms (e.g. gravity). The focus is on the behaviour of the 
solutions of Eq. (A.1) in the limit τ → 0+ . It is expected that these solutions are close to the set U = {w ∈ R7; Ψ (w) = 0}. 
Furthermore, it is assumed that the set of equations Ψ (w) = 0 defines a smooth manifold of dimension 4 and that for any 
w ∈ U, a parameterization Ξ (the Maxwellian) is known from an open subset Ω of R4 on a neighbourhood of w in U. 
For any v ∈ Ω ⊂ R4 the Jacobian matrix dΞv is a full rank matrix, moreover, the column vectors of dΞv form a basis of 
ker(Ψ ′(Ξ(v))) [22].

Based on the above, matrix C ∈R7×7 can now be defined as,

C = [dΞ1
v . . .dΞ4

v V 1 V 2 V 3], (A.2)

where dΞ1
v , . . . , dΞ4

v are the column vectors of dΞv and {V 1, V 2, V 3} is a basis of the range of Ψ ′(Ξ(v)). Based on the 
observations above, the matrix C is invertible. Another 4 × 7 matrix P can be defined, comprising of the first 4 rows of the 
inverse C−1. With the use of matrix P the following results can be obtained (see [22]),

P dΞv = I4 and P Ψ ′(Ξ(v)) = 0, (A.3)

where I4 denotes the 4 × 4 identity matrix. In order to obtain a reduced velocity, pressure and temperature equilibrium 
model, solutions in the form w = Ξ(v) + τ z are pursued, where z is a small perturbation around the equilibrium state 
Ξ(v). Using this form into the system (A.1) one obtains,

∂t(Ξ(v)) + A(Ξ(v))∂x(Ξ(v)) − Ψ ′(Ξ(v)) z = Φ(Ξ(v)) +O(τ ). (A.4)

By multiplying the above equation by P , using (A.3), and neglecting terms of order τ , the following reduced model system 
is obtained,

∂t v + P A(Ξ(v))dΞv∂x v = PΦ(Ξ(v)), (A.5)

where v ∈ R4 and Ar(v) ≡ P A(Ξ(v))dΞv ∈ R4×4. In the limit of instantaneous velocity, pressure and temperature relax-
ation, u1 = u2 = uI = u, p1 = p2 = pI = p, T1 = T2 = T , the vector of the variables of the reduced pressure-relaxed model 
can be expressed as,
21



A.D. Demou, N. Scapin, M. Pelanti et al. Journal of Computational Physics 448 (2022) 110730
v = [α1, T , u, p]T ∈R4. (A.6)

The equilibrium state Ξ(v) is defined by,

Ξ : v → Ξ(v) = [α1, T , T , u, u, p, p]T ∈R7. (A.7)

The Jacobian dΞv ∈R7×7 of the Maxwellian is expressed as,

dΞv =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (A.8)

A basis {V 1, V 2, V 3}, V k ∈ R7, k = 1, 2, 3, for the range of Ψ ′(Ξ(v)) ∈R7×7 is found as,

V 1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
ϕ1
C p1

− ϕ2
C p2

0

0
Γ1
α1

−Γ2
α2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, V 2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0
1

α1ρ1

− 1
α2ρ2

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, V 3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

−Γ1 T1
α1

Γ2 T2
α2

0

0
ξ1
α1

− ξ2
α2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A.9)

The matrix C ∈ R7×7 (A.2) can then be constructed, inverted, and matrix P ∈ R4×7 can be obtained by taking the first 4
rows of C−1. Finally, the reduced limit 4–equation model is obtained from (A.5) by calculating the new matrix Ar(v) ≡
P A(Ξ(v))dΞv ∈ R4×4 and the new source term Φr(v) = PΦ(Ξ(v)) ∈ R4. Note that A(w) and Φ(w) are evaluated in 
the equilibrium state Ξ(v) in (A.7). Following this procedure, the reduced limit 4–equation model takes the form (here 
assuming Φ = 0),

∂ta1 + �∇ · (a1�u)+ (S(3)
a − a1

) �∇ · �u = 0, (A.10a)

∂t T + �∇ · (T �u)+ (S(3)
T − T

) �∇ · �u = 0, (A.10b)

∂t
(
ρ�u)+ �∇ · (ρ�u ⊗ �u)+ �∇p = 0, (A.10c)

∂t p + �u · �∇p + ρc2 �∇ · �u = 0, (A.10d)

where,

S(3)
a = ρc2

[(
a1a2

ρ2c2
2

− a1a2

ρ1c2
1

)
+ T C p1C p2

C p1 + C p2

(
Γ2

ρ2c2
2

− Γ1

ρ1c2
1

)(
a1Γ2

ρ2c2
2

+ a2Γ1

ρ1c2
1

)]
, (A.11a)

S(3)
T = ρc2T

C p1 + C p2

(
C p1Γ1

ρ1c2
1

+ C p2Γ2

ρ2c2
2

)
, (A.11b)

1

c2
= ρ

(
a1

ρ1c2
1

+ a2

ρ2c2
2

)
+ ρT C p1C p2

C p1 + C p2

(
Γ2

ρ2c2
2

− Γ1

ρ1c2
1

)2

. (A.11c)

Appendix B. Source terms for the enriched physical description

The effects of viscosity, thermal conductivity and mass transfer are described by source terms in the governing equations. 
The formulation of the four-equation model with this enriched physical description in terms of the conserved variables is 
given by Eq. (1). Here we show how to derive from (1) the expressions the source terms in the formulation (10). Based on 
(1), we can write:
22
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∂t(a1ρ1) + �∇ · (a1ρ1) = M (B.1)

∂t(a2ρ2) + �∇ · (a2ρ2) = −M (B.2)

∂t(E) + �∇ · (E �u) + p �∇ · �u = DE + K , (B.3)

where M , DE , K are defined in Eqs. (3), (8) and (9) respectively. The corresponding source terms in the volume fraction, 
temperature and pressure equations, are determined after the transformation from equations for q̃ to w , defined as,

q̃ =
⎡
⎣ a1ρ1

a2ρ2
E

⎤
⎦ , and w =

⎡
⎣ a1

T
p

⎤
⎦ , (B.4)

with a transformation matrix,

∂q̃

∂ w
=
⎡
⎢⎣

ρ1 a1φ1 a1ζ1

−ρ2 a2φ2 a2ζ2

E1 − E2 CEp CET

⎤
⎥⎦ , (B.5)

where φk and ζk are defined in Eqs. (13f) and (13g) respectively and,

CEp = a1

(
∂E1

∂T

)
p
+ a2

(
∂E2

∂T

)
p
, (B.6)

CET = a1

(
∂E1

∂ p

)
T

+ a2

(
∂E2

∂ p

)
T
. (B.7)

Therefore, the source terms of w (RHS(w)) are determined as,

RHS(w) =
(

dq̃

dw

)−1
⎡
⎣ M

−M
DE + K

⎤
⎦=

⎡
⎢⎣

S(1)
a M + S(2)

a (DE + K )

S(1)
T M + S(2)

T (DE + K )

S(1)
p M + S(2)

p (DE + K )

⎤
⎥⎦ . (B.8)

Taking into account the expressions for the derivatives of Ek ,(
∂Ek

∂T

)
p

= −χk

Γk
φk, and

(
∂Ek

∂ p

)
T

= 1

Γk
(1 − χkζk), (B.9)

along with E1 − E2 = ρ1h1 − ρ2h2 and hk = (c2
k − χk)/Γk , the coefficients of the source terms are obtained as,

S(1)
a = 1

D̄

[(
χ1

Γ1
− χ2

Γ2

)
(φζ )T +

(
a1

Γ1
+ a2

Γ2

)
φv

]
, (B.10a)

S(1)
T = 1

D̄

[(
χ2

Γ2
− χ1

Γ1

)
(ζρ)T +

(
ρ1c2

1

Γ1
− ρ2c2

2

Γ2

)
ζv +

(
a1

Γ1
+ a2

Γ2

)
Δρ

]
, (B.10b)

S(1)
p = 1

D̄

[(
χ1

Γ1
− χ2

Γ2

)
(φρ)T +

(
ρ2c2

2

Γ2
− ρ1c2

1

Γ1

)
φv

]
, (B.10c)

S(2)
a = 1

D̄
(φζ )T , (B.10d)

S(2)
T = − 1

D̄
(ζρ)T , (B.10e)

S(2)
p = 1

D̄
(φρ)T , (B.10f)

where,

(φρ)T = a1φ1ρ2 + a2φ2ρ1, φv = a1φ1 + a2φ2, (B.11a)

(ζρ)T = a1ζ1ρ2 + a2ζ2ρ1, ζv = a1ζ1 + a2ζ2, (B.11b)

(φζ )T = a1a2(φ1ζ2 − φ2ζ1), Δρ = ρ2 − ρ1, (B.11c)

D̄ =
(

ρ1c2
1

Γ1
− ρ2c2

2

Γ2

)
(φζ )T +

(
a1

Γ1
+ a2

Γ2

)
(φρ)T , (B.11d)
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χk =
(

∂ P

∂ρk

)
Ek

= c2
k − Γkhk. (B.11e)

Note that the same results could be obtained by writing the source appropriate term Φ in the Baer–Nunziato equations 
before the asymptotic procedure described in the previous Appendix.
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