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a b s t r a c t 

We study the sedimentation of finite-size particles in quiescent wall-bounded Newtonian and shear- 

thinning fluids by interface resolved numerical simulations. The suspended phase consists of Non- 

Brownian rigid spherical particles with particle to fluid density ratio ρp /ρ f = 1 . 5 at three different solid 

volume fractions � = 1% , 5% and 20%. Firstly, to focus on the effect of shear-thinning on the particle dy- 

namics and interactions, the Archimedes number is increased for a single particle to have the same set- 

tling speed in the Newtonian fluid as in the shear-thinning fluid. Secondly, we consider fixed Archimedes 

and vary the shear-thinning properties of the fluid. Overall, we report a twofold effect of shear thinning. 

First and more important, the substantial increase of the particle sedimentation velocity in the shear- 

thinning case due to the increase of the shear rate around the particles, which reduces the local viscosity 

leading to a reduced particle drag. Secondly, the shear-thinning fluid reduces the level of particle interac- 

tions, causing a reduction of velocity fluctuations and resulting in particles sedimenting at approximately 

the same speed. Moreover, the mean settling velocities decrease with the particle concentration as a con- 

sequence of the hindering effect. Particles tend to sediment in the middle of the channel, preferentially 

positioning in the wake of neighbouring particles or aside them, resulting in lower levels of fluid velocity 

fluctuations in the gravity direction in the shear-thinning fluid. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

The understanding of the settling of particles by the action

f gravity through Newtonian and non-Newtonian carrier fluids

s extremely important in many applications. Typical applications

re found in environmental, biological and industrial applications

uch as studies of sand storm, pollutant transport in underground

ater, settling of micro-organisms such as plankton, as well as

iver sediment transport and the motion of drilling muds in bore-

oles. In these applications, the general problem of sedimenta-

ion of particles is a very complex one, due to the wide range

f parameters upon which it depends. Sedimentation usually in-

ludes a high number of particles settling in various kind of envi-

onments. The fluid in which the particles are suspended may be

uiescent or turbulent, wall-bounded or unbounded, Newtonian or

on-Newtonian. Moreover, the particles may differ in shape, size,

eformability or stiffness, density and particle concentrations, as
∗ Corresponding author. 
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ell as for the large variety of interactions among them such as

ydrodynamic, contact and interparticle forces. The interplay be-

ween these various parameters results in a wide range of spa-

ial and temporal scales involved, substantially altering the global

roperties of these suspensions from one case to another. Because

f these complexities and challenges, our general understanding

f the problem is still incomplete. In this work we employ fully

esolved direct numerical simulations, based on an efficient im-

ersed boundary method, to study the behavior of monodisperse

igid spheres settling in quiescent wall-bounded Newtonian and

hear-thinning fluids for different concentrations. 

The sedimentation of an isolated spherical and non-

pherical particle through Newtonian and non-Newtonian flu-

ds has been extensively examined in the past, see e.g. Refs.

lift et al. (2005) and Chhabra (2006) . The earliest investigations

f the sedimentation of a single rigid sphere in an unbounded

uiescent Newtonian fluid at zero Reynolds number focused on

he Stokes analysis, where the particle terminal velocity was linked

o the particle radius, the difference between the solid and fluid

ensity and the fluid viscosity. Since then, several studies extended

https://doi.org/10.1016/j.ijmultiphaseflow.2020.103291
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ijmulflow
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijmultiphaseflow.2020.103291&domain=pdf
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the Stokes law by investigating the effects of additional parameters

such as non-Newtonian media, particle shapes, nonzero Reynolds

number, interactions between particles, and the effect of walls

(e.g. Shah et al., 2007; Putz et al., 2008; Rajitha et al., 2006; Hsu

et al., 2005; Turton and Clark, 1987; Kelessidis, 2004; Becker et al.,

1996; Zhang et al., 2016 ). When the concentration of particles is

increased, the motion and the settling velocity of an individual

sedimenting object is affected by the existence of the others: this

leads to a decrease of the mean settling velocity of the suspension,

due to the so-called hindering effect ( Davis and Acrivos, 1985 ). The

hindering effect monotonically increases as a function of the solid

volume fraction �, hence, the mean settling velocity is monoton-

ically decreasing with �. One of the first experimental results for

quiescent sedimentation under Newtonian flow conditions were

those by Richardson and Zaki (1954) . These authors proposed

an empirical law relating the mean particle settling velocity of a

suspension to its solid concentration and to the terminal velocity

of a single particle. This formula is believed to be accurate also

for high concentrated suspensions and has been improved by

more recent experimental and numerical investigations in order

to be applied at finite Reynolds numbers regimes ( Garside and

Al-Dibouni, 1977; Di Felice, 1999; Yin and Koch, 2007 ). 

Efficient numerical methods and sufficient computational

power to extract the average properties and the micro-structure of

these particle suspensions have become available only recently and

different algorithms have been successfully used (e.g. Ladd, 1993;

Johnson and Tezduyar, 1996; Climent and Maxey, 2003; Yin and

Koch, 2007; Pignatel et al., 2011; Uhlmann and Doychev, 2014 ).

In particular, thanks to the immersed boundary method, it has

been possible to obtain new insight on the interactions among

the different phases and the resulting sedimenting suspension mi-

crostructure ( Uhlmann and Doychev, 2014; Fornari et al., 2016;

2018; 2019 ). Fornari et al. (2018) simulated and studied the effect

of the Galileo number (namely the ratio between gravitational and

viscous forces) and volume fraction on the microscopic and macro-

scopic properties of settling rigid oblates in a quiescent Newtonian

fluid at finite Reynolds number and for different solid volume frac-

tions ( � = 0 . 5% − 10% ). 

The behaviour of many particles settling in a complex fluid is

a less studied problem ( Izbassarov et al., 2018 ). Only a few experi-

mental and numerical studies have been devoted to the sedimenta-

tion of finite-size particle suspensions in quiescent non-Newtonian

fluids, and the topic remains therefore poorly understood. It was

observed in experimental investigations at low Reynolds number

that the settling particles cluster to form columns or chains and

cause the development of non-homogeneous structures during the

sedimentation in either a shear-thinning fluid ( Allen and Uhlherr,

1989; Bobroff and Phillips, 1998; Daugan et al., 2004 ) or a vis-

coelastic fluid ( Allen and Uhlherr, 1989; Joseph et al., 1994; Bobroff

and Phillips, 1998 ). In particular, the aggregation of the particles

has been numerically examined in a viscoelastic fluid ( Yu et al.,

2002 ) and in a thixotropic shear-thinning fluid (an inelastic shear-

thinning fluid with memory) ( Yu et al., 2006 ). 

Here, we investigate numerically the effect of a shear-thinning

fluid on the settling behaviour of suspensions in a quiescent wall-

bounded environment with finite particle Reynolds number for

three different solid volume fractions ( � = 1% , 5% , 20% ) and com-

pare the results with those obtained in a Newtonian fluid. In par-

ticular, we explore the mean particle settling and fluid velocities,

the standard deviation of the different velocities, wall effects and

microstructure of these complex suspensions. The present paper is

organised as follows: the governing equations, numerical method

and simulations setup are introduced in Section 2 ; the main re-

sults are discussed in Section 3 , and the final remarks summarised

in Section 4 . 

μ  
. Methodology 

.1. Governing equations 

We study the motion of finite-size rigid spheres settling in

ewtonian and shear-thinning carrier fluids. The generalised in-

ompressible Navier–Stokes equation with shear-dependent viscos-

ty and the continuity equation govern the motion of the fluid

hase, 

∂ u 

∂t 
+ u · ∇ u = − 1 

ˆ ρ f 

∇P + ∇ ·
[

ˆ ν( u ) 
(∇ u + ∇ u 

T 
)]

+ f , (1a)

 · u = 0 , (1b)

here u = (u, v , w ) is the velocity vector with components in the

 x, y, z ) coordinate directions (see Fig. 1 ). The pressure is denoted

y P while the fluid density and kinematic viscosity are indicated

y ˆ ρ f and ˆ ν = ˆ μ/ ̂  ρ f ( ̂  μ is the dynamic viscosity). The fluid viscos-

ty, ˆ ν, is a constant for the Newtonian fluid, whereas it varies as

 function of the local shear rate, ˙ γ ( u ) , following the rheological

arreau-law defined below. Finally the body force f indicates the

orcing from the dispersed phase on the carrier fluid. 

The motion of the rigid spherical particles is described by the

ewton-Euler equations, 

ˆ p V p 
d U 

p 
c 

dt 
= F p , (2a)

 p 
d ���p 

c 

dt 
= T p , (2b)

here U 

p 
c and ���p 

c are the translational and angular velocities of the

article p , while ˆ ρp , V p = 4 πa 3 / 3 and I p = 2 ̂  ρp V p a 
2 / 5 are the mass

ensity, volume and moment-of-inertia of a sphere with radius a .

 p and T p are the net force and momentum resulting from the hy-

rodynamic stresses on the particle surface, gravity and particle-

article interactions, 

 p = 

∮ 
∂S p 

[
−P I + ˆ μ( u ) 

(∇ u + ∇ u 

T 
)]

· n dA + 

(
ˆ ρp − ˆ ρ f 

)
V p g + F c , 

(3a)

 p = 

∮ 
∂S p 

r ×
{[

−P I + ˆ μ( u ) 
(∇ u + ∇ u 

T 
)]

· n 

}
dA + T c . (3b)

In these equations ∂S p represents the surface of the particles

ith outwards normal vector n and I the identity tensor, while g

enotes the gravitational acceleration. The radial distance from the

enter to the surface of each particle is indicated by r . The force

nd torque, F c and T c , act on the particle as a result of particle-

article or particle-wall contacts. The no-slip and no-penetration

oundary conditions on the surface of the particles are imposed

y forcing the fluid velocity at each point on the surface of the

article, X , to be equal to particle velocity at that point, u ( X ) =
 

p ( X ) = U 

p 
c + ���p 

c × r . This condition is not imposed directly in the

mmersed Boundary Method used in the current study, but instead

ncluded via the body force f on the right-hand side of Eq. (1) . 

.1.1. Viscosity model 

The Carreau model describes the inelastic behavior of fluids

ith shear dependent viscosity, so called pseudoplastic (shear-

hinning) fluids such as polymeric solutions. This model de-

cribes the viscosity well-enough for most engineering calcula-

ions ( Bird et al., 1987 ). The model presents an isotropic viscos-

ty proportional to some power of the local deformation rate ˙ γ
 Morrison, 2001 ), 

( u ) = 

ˆ μ∞ 

ˆ μ0 

+ 

(
1 − ˆ μ∞ 

ˆ μ0 

)[
1 + ( λ ˙ γ ) 

2 
]( n −1 ) / 2 

. (4)
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Fig. 1. Instantaneous visualisation of particle sedimentation for volume fraction � = 1% through a shear thinning fluid bounded by two parallel walls. The contour plot 

shows the different normalized viscosity values on different wall-normal planes and the different settling velocities of particles from a lower (white) to higher (black) value. 

L x , L y and L z represent the computational box size in the x, y and z directions; particle diameters are shown at their actual size.The particle diameter is equal to 2 h /18 with 

h the half channel width. The gravity is acting in the positive z direction. (For interpretation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.) 
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n the expression above μ( ̇ γ ) is the non-dimensional viscosity,

ormalized by ˆ μ0 , the zero shear-rate viscosity. ˆ μ∞ 

is the in-

nity shear rate viscosity and the ratio ˆ μ∞ 

/ ̂  μ0 is set to 0.001

n our calculations. The second invariant of the strain-rate ten-

or, ˙ γ , is determined by the dyadic product of the strain ten-

or, ˙ γ = ( 2 G : G ) 1 / 2 where G = 

(∇ u + ∇ u 

T 
)
/ 2 (see Ref. Bird et al.,

987 ). The power-index n indicates the non-Newtonian fluid be-

aviour: for n < 1 the fluid is shear-thinning and the fluid viscos-

ty decreases monotonically with the shear-rate, while the viscosity

ecomes independent of the shear-rate (i.e. Newtonian fluid) when

 = 1 and the non-dimensional viscosity takes the value μ = 1 . The

aterial time constant, λ, is a dimensionless time scaled by the

ettling time scale and represents the degree of shear-thinning. In

ost of the current work, the time constant and the power-index

re fixed to λ = 10 ( Haque et al., 2012; Alghalibi et al., 2018 ) and

 = 0 . 6 , and only in the last section of the work we will evaluate

he effect of changing λ. For a more detailed description of the pa-

ameters appearing in the Carreau model we refer the readers to

ef. Morrison (2001) . 

.2. Numerical method 

Several approaches have been proposed in recent years to

erform interface-resolved Direct Numerical Simulations (DNS) of

ultiphase flows. In the present study, the gravity-driven motion

f particles in a quiescent viscous fluid is simulated by means

f an efficient immersed boundary method (IBM) coupled with

 fluid phase solver for the generalised Navier-Stokes equations.

he original IBM was developed by Uhlmann (2005) to fully re-

olve finite size particle suspensions and later on modified by

reugem (2012) to ensure second-order spatial accuracy. The fluid

hase is computed by discretising the governing equations on a

taggered mesh using a second order central difference scheme,
here all the terms are treated explicitly. An equispaced ( 
x =
y = 
z) fixed and staggered Cartesian Eulerian mesh is used

or the fluid phase whereas an uniform distribution of Lagrangian

oints is attached on the moving surface of each particle. The

oints of the Eulerian and Lagrangian grids communicate to cal-

ulate the IBM force which models the no-slip and no-penetration

oundary conditions on the surface of the particles. The inter-

ctions between the particles or with a wall are taken into ac-

ount using a lubrication correction and a soft collision model

 Costa et al., 2015 ): when the thin gap distance between two ap-

roaching particles (or between particle and wall) becomes less

han a certain threshold, lubrication correction models based on

renner’s asymptotic solution ( Brenner, 1961 ) are employed to re-

roduce correctly the interaction between the particles; at smaller

aps the lubrication correction is kept constant to account for the

urface roughness and, finally, a soft-sphere collision model is ac-

ivated based on the relative velocity and the overlap between the

article-particle or particle-wall, where both the normal and tan-

ential component of the contact force are taken into account. One

ssue concerns the use of the lubrication correction as suggested

n the original IBM method of Breugem Breugem (2012) for New-

onian fluids in the case of shear-thinning fluids. To the best of

ur knowledge there is no good lubrication correction available for

hear-thinning fluid and thus, we decided to rely on the analyti-

al solution in Brenner (1961) anyway; to reduce its effect on the

esults, we limited the maximum volume fraction to 20% and to

xtend this model to shear-thinning fluids, we use in the asymp-

otic solution the local viscosity at the Eulerian point closest to

he midpoint of the line connecting the centers of two particles in

nteraction, with the viscosity calculated explicitly from the local

hear rate. For more details and validitions of the IBM code, the

eader is referred to previous publications ( Breugem, 2012; Lam-

ert et al., 2013; Picano et al., 2015; Fornari et al., 2016; Lashgari
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Table 1 

Summary of the simulations performed. N p indicates the total number of particles, 

D is the particle diameter while N x , N y and N z are the number of grid cells in each 

direction. The lowest volume fraction corresponds to a single particle in the com- 

putational domain. 

n �(%) N p Ar L x × L y × L z N x × N y × N z 

0.6 1 . 12 × 10 −5 1 36 36 D × 18 D × 72 D 576 × 288 × 1152 

1 891 

5 4455 

20 17821 

1 1 . 12 × 10 −5 1 97 

1 891 

5 4455 

20 17821 

Fig. 2. Time history of the settling velocity, 〈 V z 〉 p ( t ), for one representative run 

( � = 5% , shear-thinning fluid). The settling velocity is normalised by the settling 

velocity of a single particle V t , whereas time is scaled by (2 a )/ V t . (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 
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et al., 2016 ). Concerning the implementation of the viscosity model

in the solver, we have tested the code for an unladen channel flow

with shear-dependent viscosity fluid, and validated by comparing

the result with the analytical solution ( Nouar et al., 2007; Alghal-

ibi et al., 2018 ). 

2.3. Numerical setup 

In this study the gravity-driven motion of solid spheres is ex-

amined in Newtonian and shear-thinning fluids bounded by paral-

lel infinite flat walls located at y = 0 and y = 2 h with y the wall-

normal direction. Periodic boundary conditions are imposed in the

x and z directions, with gravity acting in the positive z direction.

A zero volume flux is considered in the simulations. The compu-

tational box has size L x = 4 h, L y = 2 h and L z = 8 h, where h is the

half-channel width, see Fig. 1 . The domain is discretised by a cubic

mesh of 576 × 288 × 1152 points in the x, y and z directions. The

ratio between the channel width, H = 2 h, and the particle diame-

ter, 2 a , is fixed to h/a = 18 . The number of Eulerian grid points per

particle diameter is 16 ( 
x = 1 / 16 ) whereas 746 Lagrangian grid

points are spread over the surface of each particle to resolve the

fluid-particle interactions. In all our simulations, the time-step is

chosen to ensure a CFL number equal to 0.75. The chosen time-

step is sufficient to ensure the independence of the results on its

value; we verified this by performing a simulation with a smaller

value of the CFL number (0.2) and found that the difference in both

the mean sedimentation velocity and its standard deviation is less

than 0.2%. 

Non-Brownian rigid spherical particles are considered with par-

ticle to fluid density ratio ρp /ρ f = 1 . 5 . The terminal settling veloc-

ity of the particles is not an input parameter to the simulations, as

the non-dimensional parameter governing the particles sediment-

ing in a still fluid is the Archimedes number Ar (or the Galileo

number Ga = 

√ 

Ar ). The Archimedes number quantifies the ratio

between gravitational and viscous forces acting on the particle, de-

fined as 

Ar = 

(
ρp 

ρ f 
− 1 

)
g(2 a ) 3 

ˆ ν2 
0 

, (5)

where ˆ ν0 is the zero shear-rate kinematic viscosity of the fluid.

In the present work, the Archimedes number is kept constant to

Ar = 36 for all shear-thinning fluid cases. Instead, for the simula-

tions with a Newtonian fluid the Archimedes number is changed

to Ar = 97 to reproduce almost the same terminal velocity of the

single particle, V t , calculated in the shear-thinning case (following

the procedure explained in section §3.1). 

In the current study we fix the rheological parameters as men-

tioned above and vary the solid volume fraction, �. Three different

particle volume fractions, � = 1% , 5% and 20%, are chosen; these

correspond to 891, 4455 and 17821 particles in the simulation do-

main. In all cases the particles are initialized randomly in the chan-

nel, with no overlap between each other, and with zero linear and

angular velocities. A summary of the simulated cases is given in

Table 1 . 

We display in Fig. 1 a snapshot of the spheres settling in shear-

thinning fluid for � = 1% . The instantaneous normalised fluid vis-

cosity values are shown on different wall-normal plans, while the

settling velocity is indicated by the different colours used for the

particles. The simulation results presented here are collected after

the sedimentation reached a statistically steady state. In Fig. 2 we

report the time history of the particles-averaged settling velocity,

〈 V z 〉 p ( t ), for one particular case ( � = 5% , shear-thinning fluid). The

settling velocity is normalised by the settling velocity of a single

particle V t whereas time is scaled by (2 a )/ V t . The statistics are col-

lected over the time interval indicated, after the initial transient
hase. To ensure the results are statistically converged, we repeat

he analysis using half the number of samples and compare the

tatistics with those from the entire number of samples: the dif-

erence between the two results is less than 1% for the first and

econd moments. The average of V z,p ( t ) over this statistically steady

tate is the mean settling velocity 〈 V z 〉 p , indicated by the horizon-

al blue line, while the fluctuations are used to calculate the stan-

ard deviation of the settling velocity, σV z,p 
. The 〈 . 〉 p bracket de-

otes the average of a quantity over the total number of particles

nd time. 

. Results 

In this work, we investigate and compare the behavior of sed-

menting rigid particles in Newtonian (N) and shear-thinning (ST)

uids initially at rest. The results focus on the bulk properties of

he suspension as well as its local behavior, e.g. particle settling

nd angular velocities, dispersions coefficients and particle local

oncentrations. 

.1. Sedimentation of an isolated particle 

An isolated spherical particle settling in a quiescent shear-

hinning fluid creates a local shear in the fluid surrounding it

nd the local viscosity seen by the particle decreases both around

he particle and as a function of the distance from the parti-

le surface Reynolds and Jones (1989) as shown in Fig. 1 . This

eads to a reduction of the drag on the particle Malhotra and

harma (2012) and a consequent increase in the particle terminal

elocity V t , as compared to the settling in Newtonian fluid. Hence,

o compare shear-thinning effects at the same values of V t in the
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Table 2 

Central moments of the probability density functions of V x,y,z,p and ω x,y,x,p normalized by the settling 

velocity of a single sphere V t and V t /(2 a ) respectively. σ , S and K are the standard deviation, skewness 

and kurtosis of the probability density function. Note that for the spanwise rotation rate we compute 

˜ ω = 〈 ω x · sign (y − h ) 〉 p , as this is antisymmetric with respect to the centreline and that we do not re- 

port those quantities that should be zero across the channel by symmetry. (These attain values of the 

order 10 −3 , assessing the convergence of the statistics). 

N ST N ST N ST 

φ = 1% φ = 1% φ = 5% φ = 5% φ = 20% φ = 20% 

〈 V z 〉 p / V t 0.8752 0.9644 0.6590 0.7887 0.3458 0.4677 

σV z,p 
/V t 0.1586 0.1536 0.2541 0.2196 0.3336 0.3018 

σV x,p 
/V t 0.0616 0.0539 0.1355 0.1055 0.1903 0.1967 

σV y,p 
/V t 0.0545 0.0514 0.1242 0.1018 0.1742 0.1823 

S V z,p 
0.2728 1.0099 0.1153 0.2004 −0 . 1950 −0 . 1343 

K V z,p 
3.1027 4.5124 2.9902 2.9748 3.3978 3.0211 

˜ ω p (2 a ) /V t −0 . 0103 −0 . 0028 −0 . 0086 −0 . 0032 0.0038 0.0025 

σω z,p 
(2 a ) /V t 0.0037 0.0038 0.0189 0.0189 0.0519 0.0709 

σω x,p 
(2 a ) /V t 0.0610 0.0574 0.1360 0.1067 0.1937 0.2125 

σω y,p 
(2 a ) /V t 0.0605 0.0546 0.1405 0.1094 0.1934 0.2162 
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ifferent carrier fluids, we increase the Archimedes number, Ar , in

he case of Newtonian fluid. 

We start by performing two simulations of isolated particles

ettling in the same computational domain used for all stud-

ed cases (see Table 1 ), in both shear-thinning and Newtonian

uiescent fluids. We determine the terminal settling velocity of

he isolated sphere V t in shear-thinning fluid and estimate the

rchimedes number, Ar , that would reproduce the same value of

he particle terminal velocity V t in the Newtonian fluid. In partic-

lar, we have simulated the shear-thinning case with Archimedes

umber Ar = 36 . By using the steady state settling velocity V t , we

efine the terminal Reynolds number 

e t = V t (2 a ) / ̂  ν0 , (6)

hich in the present case is Re t = 3 . 89 . This can be related by

mpirical relations to the Archimedes number, Ar , of an isolated

pherical particle settling in Newtonian quiescent fluid. Yin and

och (2007) , among others, used an empirical relation for the drag

oefficient of a single particle as a function of Re t when vary-

ng Ar , from which the relation between Ar and Re t can be found

 Fornari et al., 2016 ): 

r = 

{ 

18 Re t 
[
1 + 0 . 1315 Re 0 . 82 −0 . 05 log 10 Re t 

t 

]
, 0 . 01 < Re t ≤ 20 

[2 pt]18 Re t 
[
1 + 0 . 1935 Re 0 . 6305 

t 

]
, 20 < Re t < 260 

(7) 

he Archimedes number calculated from Eq. (7) is approximately

7 for Re t = 3 . 89 . We then perform the simulation of a single

phere setting in Newtonian fluid with Ar = 97 to check the valid-

ty of our approach. Indeed, the terminal Reynolds number Re t , (or

 t ), obtained with our simulation at Ar = 97 differs only by approx-

mately 2% from the prediction using Eq. (7) ( Re t = 3 . 81 , compared

o the predicted value of 3.89). 

.2. Particle suspension: single-point particle statistics 

In this section we investigate and compare the single-point par-

icle statistics for the two studied cases, i.e. Newtonian and shear

hinning carrier fluids, for different solid volume fractions � =
0 . 01 , 0 . 05 , 0 . 20] . The single-point particle statistics are calculated

y using quantities related to each individual particle, and taking a

hase-ensemble average over time and space. In Table 2 we sum-

arize the mean values extracted from these calculations. Note

hat for the spanwise rotation rate we compute 〈 ω x · sign (y − h ) 〉 p ,
s this is antisymmetric with respect to the centreline and that we

o not report those quantities that should be zero across the chan-

el by symmetry. These attain values of the order 10 −3 , assessing

he convergence of the statistics. In addition, we also compute the
ean and rms (linear and angular) velocities of the particles in the

rthogonal directions ( x, y, z ) and the local particle volume fraction

( y ), and velocities, as a function of the wall-normal coordinate y .

Independently of the suspending fluid and the particle con-

entration, the mean particle velocities in the spanwise and wall-

ormal directions, 〈 V x 〉 p and 〈 V y 〉 p , are zero due to symmetry. In

ig. 3 (a) we display the mean settling speed 〈 V z 〉 p as a function of

he solid volume fraction � for the cases under investigation. The

esults are normalised by the corresponding terminal settling ve-

ocity V t of an isolated particle in quiescent Newtonian and shear-

hinning fluids. These are computed from the simulations of sin-

le particles discussed in the previous section §3.1. In all stud-

ed cases, the mean settling velocities are less than V t and de-

rease monotonically by increasing the concentration of the dis-

ersed phase as a consequence of the hindering effect ( Nicolai

t al., 1995; Yin and Koch, 2007; Guazzelli and Morris, 2011 ). The

ean settling speed 〈 V z 〉 p is always larger in the shear thinning

uid than in the Newtonian one for the different volume fractions

investigated here. This is in agreement with the observations by

u et al. (2006) . The increase of 〈 V z 〉 p / V t with respect to the New-

onian cases is 10.2%, 19.7% and 35.3% for � = 1%, 5% and 20%,

espectively. We display the mean local fluid viscosity in the case

f a quiescent shear-thinning fluid in Fig. 3 (b); this decreases with

he solid volume fraction � as a consequence of the increment of

he local shear rate around the particles when the particle con-

entration � increases. To prove this, we consider the distribution

f the local shear rate, quantified by the second invariant of the

train-rate tensor, ˙ γlocal (x, y, z) , for all cases under investigation. In

articular, Fig. 4 shows the probability density function (PDF) of

˙ 2 
local 

(x, y, z) for all particle volume fractions � investigated in the

resent study, in the cases of Newtonian and shear-thinning sus-

ending fluids. As expected, we observe that the range of shear

ates increases significantly with the bulk concentration of the par-

icles � and is always larger in the shear-thinning fluid than in

he Newtonian one. In the shear-thinning fluid case, the increase

f sampled shear rates ultimately leads to the reduction of viscos-

ty reported in Fig. 3 (b). 

As mentioned before, the decrease of the mean viscosity of

he fluid leads to a lower drag force acting on the particles and

o an increase of the mean settling speed 〈 V z 〉 p with respect to

he Newtonian cases. It is worth noting that, for a single particle

here is a direct relation between the reduction of the viscosity

nd the increase in the terminal velocity. However, in a suspension

article-particle interactions play a role and a sort of collective be-

aviour can be observed preventing the velocity to linearly follow

he change of viscosity. We believe this is due to the tendency of

articles to fall side-by-side in a shear-thinning fluid as discussed
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Fig. 3. (a) Normalised mean settling velocity, 〈 V z 〉 p / V t , and (b) non-dimensional mean fluid viscosity, 〈 μ〉 , as a function of particle volume fraction � for both Newtonian, N , 

and shear-thinning, ST , cases. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 4. Profiles of the probability density function (PDF) of the square of the local 

shear rate, ˙ γ 2 
local 

(x, y, z) , for all studied cases as indicated in the legend. (For inter- 

pretation of the references to colour in this figure legend, the reader is referred to 

the web version of this article.) 
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later in section §3.6, related to the hindrance effect when increas-

ing particle concentration. 

The particle velocity fluctuations along the z direction are de-

picted in Fig. 5 (a) for all particle volume fractions � in the cases

of Newtonian and shear-thinning fluids. The velocity fluctuations

are scaled by V t , see also Table 2 . As shown in the figure, the stan-

dard deviations of the mean settling speed σV z,p 
changes slightly

with the type of carrier fluids. The fluctuations increase with the

volume fraction � and are lower in the shear-thinning fluid. The

reduced level of fluctuations in the shear-thinning fluid is also as-

sociated to larger mean value of velocity, overall suggesting that

particles feel approximately similar lower viscosity. On the other

hand, the results show that independently of the type of suspend-

ing fluid, the particle velocity fluctuation σV z,p 
increases substan-

tially with concentration (for � = 20% , σV z,p 
is nearly 2 times that

found for � = 1% , in agreement with the experimntal observations

by Nicolai et al. (1995) for a Newtonian fluid). Particles are closely

packed and the dynamics is dominated by excluded volume ef-

fects, also in a shear-thinning fluid. This induces frequent particle-

particle interactions, thus enhancing the velocity fluctuations. The

ratio between the standard deviations in the direction perpendic-

ular, σV j,p 
, and parallel to the gravity, σV z,p 

, which characterizes

the anisotropy of the particle velocity fluctuations, is reported in

Fig. 5 (b), where j = (x ; y ) indicates the coordinate directions. First,

we observe that the fluctuations are always slightly lower in the

y –direction than in the x –direction, σV y,p 
/σV z,p 

< σV x,p 
/σV z,p 

, due to

the wall confinement effects. In the shear-thinning cases (ST) the
atio σV j,p 
/σV z,p 

gradually increases with � up to � = 20% , while in

he Newtonian case σV j,p 
/σV z,p 

increases sharply up to � = 5% and

hen seems to saturate for higher volume fraction. It is also inter-

sting to notice that the anisotropy is larger in the Newtonian fluid

t lower �, whereas it is larger in the shear-thinning fluid at the

ighest volume fraction considered. At the lower �, the spheres

all faster, so tend to fall straight vertically with lower lateral fluc-

uations. However, at the highest volume fraction under investiga-

ion, the lateral fluctuations increase faster in the shear-thinning

uid than the deviation in the settling direction, indicating that

he effect of viscosity reduction on the standard deviation of the

article distribution is not isotropic. 

Next, we analyze the third and fourth moments of the velocity

n the gravity direction, i.e. the skewness S V z,p 
and kurtosis K V z,p 

. At

ow volume fractions �, the probability density function (PDF) of

he settling velocity is positively skewed ( S V z,p 
> 0 ) towards larger

elocities than the mean settling velocity value. This is due to the

act that the most likely interactions (drafting-kissing-tumbling),

aking place in the direction of gravity through the particle wakes,

nhance the probability of having particles settling faster than the

ean settling velocity 〈 V z 〉 p (therefore increasing the skewness).

t larger volume fractions �, the excluded volume effects become

ore important than these specific particle-pair interactions, and

he skewness S V z,p 
reduces, eventually becoming negative at the

argest volume fraction considered here due to the hindrance ef-

ect. Indeed, at large � the fluid moves in opposite direction to

uarantee the balance of zero mixture velocity ( Guazzelli and Mor-

is, 2011 ) as will be explained later on, the probability of find-

ng particles settling at lower speed than the mean increases, and

ence the skewness becomes negative. In the shear-thinning cases,

he skewness S V z,p 
is always larger than in Newtonian fluid: this is

ue to the low viscosity in the particle surroundings which makes

he nearby spheres fall with similar larger velocities, thus induc-

ng overall larger skewness than in the Newtonian case. The kur-

osis K V z,p 
is approximately equal to 3 in the Newtonian case (sim-

larly to a similar a Gaussian distribution) for all the volume frac-

ions. On the other hand, the kurtosis is large (4.5) at low � in

he shear-thinning fluid due to an increase of the intermittency

f the drafting-kissing-tumbling events in shear thinning fluids

 Fornari et al., 2016 ). K V z,p 
slightly decreases with the volume frac-

ions in the shear-thinning case, assuming a value approximately

qual to the Newtonian case ( ≈ 3) at the largest � considered

ere. 

All the previous results indicate that the particle dynamics are

ostly dominated by collisions and particle-particle interactions

nd the properties of the fluid become less important once the

acroscopic effect of change in the terminal velocity is suppressed.
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Fig. 5. (a) Standard deviations of the particle velocities parallel to gravity, σV z,p 
normalized by V t . (b) Anisotropy of the particle velocity fluctuations, σV j,p 

/σV z,p 
, as a function 

of the particle volume fraction � for all cases investigated here. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 

of this article.) 

Fig. 6. The mean local volume fractions φ( y ) versus the wall-normal coordinate y / H . (For interpretation of the references to colour in this figure legend, the reader is referred 

to the web version of this article.) 
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he main effect of the shear-thinning fluid in this case appears

o be a reduction of particle interactions, resulting in reduced

article-velocity fluctuations. 

.3. Wall-normal profiles 

We next analyse the particle behaviour across the channel. First,

e display in Fig. 6 (a,b) the wall-normal profiles of the mean local

article volume fraction, φ( y ). The particle concentration is approx-

mately constant in the middle of the channel and higher towards

he walls due to the wall confinement. The peak of φ( y ) moves to-

ard the wall and grows as the bulk particle volume fraction, �,

ncreases. At � = 0 . 01 , the maximum value of the mean local con-

entration is located around y/H = 0 . 15 , a value slightly larger than

.5 particle diameters ( H/ 2 a = 18 ), while it moves to y/H = 0 . 035 ,

pproximately at one particle radius from the walls for � = 0 . 2 .

n particular, we observe in Fig. 6 (a) that the distribution of φ( y )

hanges slightly with the carrier fluid for the two lowest volume

ractions, � = [0 . 01 , 0 . 05] , suggesting that the local solid concen-

ration is mainly controlled by confinement and geometry. How-

ver, panel 6 (b), shows that the viscosity effects become clearer for

he highest volume fraction under investigation ( � = 0 . 2 ), where

he mean particle concentration in the intermediate region of the

hannel is 5% larger and the peak of φ( y ) close to the wall is 18%

maller for the shear-thinning fluid. This is related to the wall-

ormal distribution of the fluid velocity in the settling direction

 ( y ), as will be shown later. 

Secondly, we report the wall-normal profiles of the normalised

ean settling velocity, V z,p ( y )/ V t , see Fig. 7 (a). We observe that the

pheres settle faster in the center of the channel than near the
ide walls in both carrier fluids at low particle concentrations � =
0 . 01 , 0 . 05] , suggesting that convection (so-called intrinsic convec-

ion) occurs in the channel in both the Newtonian and shear-

hinning suspending fluids ( Peysson and Guazzelli, 1998; Guazzelli

nd Morris, 2011 ). Interestingly, in the Newtonian case, the mean

article settling speed close to the wall is larger than that found

n the center of the channel at the highest volume fraction under

nvestigation ( � = 0 . 2 ), suggesting that the intrinsic convection oc-

urs in the opposite direction. This inverse global convection is less

vident in the ST case, and hence the variations of the mean set-

ling velocity across the channel are different. It is also notewor-

hy to mention that, for all �, the settling velocities in a New-

onian suspending fluid are always smaller than those in a shear-

hinning suspending fluid. This difference is mainly due to the local

ecrease of the fluid viscosity as discussed before. 

Thirdly, we present in Fig. 7 (b) the profiles of the mean span-

ise particle angular velocities, 〈 ω x · sign (y − h ) 〉 p , normalized by

he settling velocity of a single particle and its diameter V t /(2 a ). As

lear from the data, the spanwise particle rotation 〈 ω x · sign (y −
 ) 〉 p is maximum close to the wall and tends to vanish toward

he centre of the channel (0.3 ≤ y / H ≤ 0.5). At the highest vol-

me fraction considered, the angular velocity is positive in the mid

f the channel and changes sign just close to the wall, whereas

t remains positive in the shear-thinning fluid. Moreover, for all

he cases studied, 〈 ω x · sign (y − h ) 〉 p is lower in the shear-thinning

uid than in the Newtonian fluid near the wall. 

To further confirm the intrinsic convection phenomenon men-

ioned above, we examine the statistics of the fluid-phase velocity.

igure 8 reports the wall-normal variations of the mean fluid ve-
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Fig. 7. Wall-normal profiles of the mean settling velocities V z,p ( y ) (left) and the absolute value of the mean particle angular velocities, 〈 ω x · sign (y − h ) 〉 p (right), normalized 

by the settling velocity of a single sphere V t and V t /(2 a ) respectively, for all studied cases as indicated in the legend. (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 

Fig. 8. Wall-normal profiles of the mean fluid velocities in the settling direction, w ( y ) and the fluctuation of the fluid velocity components in the three directions for all the 

studied cases. The data are normalized by the mean settling velocity, 〈 V z 〉 p . (For interpretation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

i  

c  

o  

o  

i  

i  

�  

t  

I  

t  

i  

fl

 

fl  
locity in the settling direction and the root-mean-square (r.m.s.) of

the fluid velocity fluctuations in the three directions, normalized

by their mean settling velocity, 〈 V z 〉 p . The statistics pertaining the

fluid-phase velocity have been calculated neglecting the points lo-

cated inside the volume occupied by the solid phase in each field

(phase-ensemble average). 

At the lower particle concentrations, � = [0 . 01 , 0 . 05] , we see

in Fig. 8 (a) the formation of an upward flow (negative velocity is

opposite to gravity) in the particle-depleted layer close to the wall.

This tends to pull the bulk of the particle suspension up and hence

reduces the mean particle settling velocity, as mentioned previ-

ously when discussing Fig. 7 (a). It is interesting to notice that the

maximum of the normalized upward mean local fluid velocity is

higher in the Newtonian fluid than in the shear-thinning fluid and
ts location moves towards the wall with increasing particle con-

entration. At � = 0 . 01 , the near wall velocity peak reaches a value

f w max ≈ −0 . 2 〈 V z 〉 p at a distance from the wall slightly larger than

ne particle diameter ( y / H ≈ 0.064) in the Newtonian case, while

n the case of the shear-thinning fluid, w max decreases to approx-

mately −0 . 13 〈 V z 〉 p . When increasing the bulk volume fraction to

= 0 . 05 , w max grows to −0 . 4 〈 V z 〉 p at y/H ≈ 0 . 036 = 0 . 65(2 a ) in

he Newtonian fluid and to −0 . 33 〈 V z 〉 p in the shear-thinning fluid.

n the latter case, the decrease of the drag force acting on the set-

ling particles, due to the reduction of the mean local fluid viscos-

ty seen by them, leads to a decrease of the upward mean local

uid velocity. 

In the case of particles sedimenting in a wall-bounded fluid, the

uid flow is approximately parallel to the settling direction with
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ero net flow in the horizontal directions Bruneau et al. (1996) ;

uazzelli and Morris (2011) . To satisfy this condition, a small in-

erse pressure gradient is required to drive a return flow in the

ositive z direction in the middle of the channel, as shown in

ig. 8 (a) at the lower particle concentrations ( � = 0 . 01 , 0 . 05 ). This

roduces fluid flow on each half of the channel with ascending

negative z ) fluid velocity near the wall and descending (positive

 ) in the center; this leads to the intrinsic convection, by which

he settling particles and the fluid move together in the middle re-

ion and the particles fall faster in the center of the channel than

ear the walls. 

However, as the particle concentration is further increased ( � =
 . 2 ), due to the high local concentration of the particle near the

ide walls and the no-slip boundary condition, the spheres drag

he fluid with them in the settling direction. So the fluid velocity

s positive with a maximum value reaching w max = 0 . 3 〈 V z 〉 p at ap-

roximately one particle diameter from the wall ( y / H ≈ 0.054). The

irculation is completed by an upward return flux in the middle of

he channel with a maximum speed of about −0 . 42 〈 V z 〉 p , indicat-

ng a reversal of the global intrinsic convection at � = 0 . 2 . This op-

osite global convection contributes to increase the hindrance ef-

ect and therefore, the particles fall slower in the center than near

he walls at high volume fractions, see Fig. 7 (a). 

It is also noteworthy to mention that, due to the large differ-

nce between the mean fluid speed in the center of the channel

nd near the walls for high �, a strong opposite flow is formed

ith an ascending fluid velocity in the center and descending fluid

lose to the walls. This pushes more particles into the layer near

he wall and therefore promotes an increase of the local particle

oncentration �( y ) close the wall, as shown in Fig. 6 (b) for the

ewtonian case. Unlike the Newtonian case, the global convection

s less evident for the shear-thinning case at the same �, as shown

y the distribution of the mean local fluid velocity w ( y ) across the

hannel. The fluid moves upwards in two regions (nearby the wall

nd in the center of the channel) with maximum velocities ap-

roximately −0 . 25 〈 V z 〉 p and −0 . 27 〈 V z 〉 p , and the circulations are

ompleted by a downward return flow around one sphere diam-

ter from the wall ( y / H ≈ 0.055). This suggests that, two opposite

ows are forming on each channel half, which leads to a decrease

f the intrinsic convection of the suspension and hence to different

all-normal profiles of the particle settling speeds, as revealed in

ig. 7 (a). 

As regards the r.m.s of the fluid velocity field, see Fig. 8 (b-d),

hese are approximately constant in the middle of the channel and

harply decrease near the side walls. Nevertheless, a difference due

o the shear-thinning effects is evident, as the fluctuations are al-

ays smaller in the shear-thinning cases. Furthermore, regardless

f the type of carrier fluid, the fluctuations of the velocity are ap-

roximately 50% larger in the direction parallel to gravity due to

he long-range disturbance induced by the sphere wakes. Finally,

he increase of particle concentration � enhances the r.m.s. of the

elocity fluctuations in all directions, suggesting that the dynamics

s mainly determined by excluded volume effects in both phases.

t is worth noting that, the fluctuations in the fluid velocity are

elated to the particle velocity fluctuations, hence smaller fluid ve-

ocity fluctuations in the shear-thinning case are in line with the

lready observed (see Table 2 ) smaller particle velocity fluctua-

ions. 

.4. Particle velocity correlations 

To further understand the effect of a shear-dependent fluid vis-

osity on the sedimentation of spherical particles, we examine the

wo-time correlations of the particle velocity fluctuations. In this

tudy, the autocorrelation function is calculated only in the x and z

irections; the autocorrelation of the particle velocity fluctuations
s a function of the temporal separation, τ is defined as follows

 Fornari et al., 2016 ): 

 V i V i (τ ) = 

〈 V 

′ 
i,p 

(p, t) V 

′ 
i,p 

(p, t + τ ) 〉 
σ 2 

V i,p 

. (8) 

 V i V i 
(τ ) is often used to define an integral timescale, T i : 

 i = 

∫ ∞ 

0 

R V i V i (τ ) dτ , (9) 

here i = (x, z) is the coordinate directions and V ′ 
i,p 

(p, t) =
 i (p, t) − 〈 V i 〉 p is the fluctuation velocity with respect to the mean

elocity over the particle ensemble and time (for more details, the

eader is referred to Ref. Uhlmann and Doychev, 2014 ); note that

 V x 〉 p is equal to 0. T i gives an estimate of the time interval over

hich the particle velocity fluctuation component is correlated. 

Fig. 9 (a) and (b) show the autocorrelations R V z V z and R V x V x , for

oth Newtonian and shear-thinning fluids, as a function of the nor-

alized time τ . For all the cases, as expected, the particle velocity

utocorrelation decreases towards zero, which confirms that the

article velocities become uncorrelated for large τ . Moreover, as

 general trend, the decay of the correlation functions is always

aster in the shear-thinning fluid than in the Newtonian one at

he same volume fractions �. To better highlight these differences,

e provide in panel (c), the values of the correlation times; the

orrelation time strongly decreases from � = 1% to 5%, while for

he largest � it remains approximately constant for the Newtonian

uid and only slightly decreases for the shear-thinning one. Also,

he correlation time is always larger in the Newtonian cases than

n the shear-thinning cases. 

.5. Particle dispersions or hydrodynamic self-diffusion 

To further focus on the particle dynamics, we study the single-

article dispersion, i.e., the mean square displacement, for both

ype of fluids at various volume fractions. The long time uncorre-

ated particle velocity fluctuations induce a chaotic transport of the

ettling particles across the channel. This overall stochastic motion

s generally called hydrodynamic self-diffusion or particle disper-

ion. The particle dispersion dynamics are most conveniently cap-

ured by studying the particle lateral displacement, which results

rom hydrodynamic and particle-particle interactions. The disper-

ion is measured by the variance of the displacement of the parti-

le as function of the temporal separation, τ . We examine only the

ingle-point mean-square displacement of particles in the x direc-

ion, i.e., 〈 
x 2 p 〉 . Here, the mean square displacement of the particle

rajectories is defined by 


x 2 p (τ ) 
〉
= 〈 [ x p (t + τ ) − x p (t)] 2 〉 p,t , (10) 

here x p is the vector containing the x position of the particle

entres, τ is the time interval and 〈 . 〉 p,t denotes averaging over all

imes, t , and particles, p . The particle diffusion coefficients in the x

irection, D xx can then be computed by calculating the half of the

lope of the linear part (for large values of τ ) of the single-point

ean-square displacement, 

 xx = 

〈 
x 2 p (τ ) 〉 
2 τ

. (11) 

or more details about this topic we refer the readers to previ-

us works, see e.g. Refs. Da Cunha and Hinch (1996) , Sierou and

rady (2004) , Janoschek (2013) and Lashgari et al. (2016) . 

Fig. 10 (a) shows the particle mean square displacement, 〈 
x 2 p 〉 ,
s a function of the normalised time, τV t /(2 a ) while the diffu-

ion coefficient, D xx , is reported in panel (b) of the same figure

ersus the particle concentrations �. Note that the mean square

isplacement, 〈 
x 2 p 〉 , is normalised by (2 a ) 2 whereas the diffusion
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Fig. 9. (top) Time correlation profiles and (bottom) correlation time of the particle velocity fluctuation components for the different cases under consideration. (For inter- 

pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 10. (left) Profiles of the time evolution of the normalised mean square particle displacement along particle trajectories in the x direction for the all cases under 

investigation and (right) the correspondent mean-square displacement. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 
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coefficient, D xx , is expressed in units of V t (2 a ). For all the cases,

as expected, the particle trajectories are initially highly correlated

at small intervals and the mean-square dispersion profiles varies

quadratically in time, 〈 
x 2 p (τ ) 〉 ∝ τ 2 . Later on, after τ ~ 10(2 a )/ V t ,

the classical diffusive behaviour takes over: the particle trajectories

decorrelate due to the particle-particle and hydrodynamic interac-

tions and the mean square displacement varies linearly with time,

〈 
x 2 p (τ ) 〉 ∼ 2 D xx τ . 

The behaviour of the two fluids is quite similar, so to better

highlight the differences we provide in Fig. 10 (b), the normalised

value of the particle self-diffusion coefficient, D xx , computed as half

the slope of the linear growth rate of the particle mean-square dis-

placement 〈 
x 2 p 〉 . Clearly, the results show that, the particle diffu-

sion coefficient D xx is strongly dependent on the particle volume

fraction �; in particular, D xx increases monotonically with � as a
onsequence of the increasing hydrodynamic and particle-particle

nteractions. Furthermore, we observe that in the shear-thinning

uid, the diffusion coefficient is always smaller than in the Newto-

ian case by abound 50%, which we can relate to the reduced ve-

ocity fluctuations previously observed in the shear-thinning fluid. 

.6. Particle-pair statistics 

In this last section, we consider particle-pair statistics as a func-

ion of the distance between the centres of the particle pairs, r ,

o investigate the microstructure of the entire suspension. In par-

icular, we study the pair probability distribution function, P ( r ) ,

hich is used to describe how, on average, the spheres are ra-

ially packed around each other and to measure the level of

nisotropy in the particle suspensions Sierou (2002) ; Kulkarni and
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Fig. 11. Definitions of the polar angle ψ and the azimuthal angle θ in Cartesian 

coordinates. 
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orris (2008) . Mathematically, following Refs. Kulkarni and Mor-

is (2008) and Fornari et al. (2018) , the pair distribution function

n a spherical coordinate system is defined by 

 ( r ) = P (r, θ, ψ) = 

N(r, ψ, θ ) 

t s n 0 
Q s 
, (12) 

here ψ is the polar angle (measured from the positive z axis),

is the azimuthal angle (measured from the positive x axis) as

hown in Fig. 11 , t s is the total number of sampling points, N ( r,

, θ ) is the histogram of particle pairs that lie within a sampling

in shell element with a nominal radius r and a radial width 
r ,

Q s = r 2 
r sin ψ 
θ
ψ is the volume of the sampling bin shell

nd n 0 = 0 . 5 N p (N p − 1) /Q is the averaged particle pairs density in
ig. 12. Pair-distribution function P ( r, ψ) for the lowest and highest volume fractions con

ewtonian and shear-thinning fluids. (For interpretation of the references to colour in thi
he total volume Q , with N p the total number of particles. In our

onfiguration, the flow is asymmetric in the gravity direction. Nev-

rtheless, the pair distribution function is symmetric in the gravity

irection. This observable measures the relative position of parti-

le pairs, so one particle below the reference particle would corre-

pond to one above when this becomes the reference in the statis-

ics. We thus report P ( r ) as a function of two variables: the center-

o-center distance r (normalized by the diameter 2a), and the polar

ngle ψ , averaging over the angle θ . 

Fig. 12 (a-d) shows the pair distribution function P ( r ) for the

owest (a,b) and highest (c,d) volume fractions � in the cases

f Newtonian (a,c) and shear-thinning (b,d) fluids. Exploiting the

ymmetry discussed above, the function is displayed only in the

ange ψ in [0, π /2]. In the Newtonian case (left column), we ob-

erve that, at low volume fraction, the particles tend to be far

part, with a local peak of P ( r ) for ψ = 0 and r ≈ 6 a . As the vol-

me fraction increases, the particles mean distance reduces and its

istribution becomes more uniform in the polar direction ψ . In the

hear-thinning case, the situation is similar at high volume frac-

ion, where the effect of the packing is dominant, whereas differ-

nces are evident in the more dilute regimes. In particular, we note

hat particles tend to be on average close than in the Newtonian

ase, with strong peaks of P ( r ) both along ψ = 0 and π /2. This in-

icates that particles tend to form aggregates in a shear-thinning

uid, preferentially positioning in the wake of neighboring parti-

les or beside them, thus resulting in lower levels of fluctuation

n the gravity direction than in the Newtonian fluid as discussed

bove. This also suggests that in quiescent Newtonian fluid, parti-

les have a mean horizontal spacing of 6 radii. Now it is interesting

o note that in shear thinning fluids, the pair distribution function

ncreases not only in the gravity direction. Generally above the ref-

rence particle, we see a clear increase of P ( r ) above the reference
sidered, � = 0 . 01 and 0.2, respectively. The left and right columns are used for the 

s figure legend, the reader is referred to the web version of this article.) 
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Table 3 

Summary of the simulations performed at the same Archimedes number. 

n λ �(%) N p Ar L x × L y × L z N x × N y × N z 

0.6 10,20,40 1 891 36 36 D × 18 D × 72 D 576 × 288 × 1152 

1 0 1 891 36 

Fig. 13. (a) Normalised mean settling velocity, 〈 V z 〉 p / 〈 V z 〉 p ( N ), and (b) probability density function (PDF) of the local shear rate, ˙ γ 2 
local 

(x, y, z) , as a function of the shear- 

thinning time scale λ at the same volume fraction � = 1% and Archimedes number Ar = 36 . (For interpretation of the references to colour in this figure legend, the reader 

is referred to the web version of this article.) 
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particle. The extent of clustering increases due to shear thinning

in the particle surrounding that leads to stronger drafting-kissing-

tumbling effects/interactions, with the kissing phase lasting longer.

At the same time, the smaller viscosity around the reference parti-

cle induces a small scale lateral migration of neighboring particles

which approach the reference one; indeed, the peak values of P ( r )

for ψ = π/ 2 move from 6 a in the Newtonian fluid to around 4.5 a

in the shear-thinning one. In addition, the effect is strong and the

maximum value of P ( r ) at this location increases with respect to

the Newtonian case. It is therefore highly probable to find particles

falling side-by-side, at a distance of around 4 − 5 a . 

3.7. The effect of the shear-thinning fluid on suspensions at the same 

Archimedes number. 

Finally, in this last section we study the effect of the shear-

thinning time scale λ. The volume fraction of the particles �

is now fixed to 0.01 to better highlight the effect of the shear-

thinning fluid and reduce that of the particle packing. Furthermore,

we fix the Archimedes number, which results different terminal

velocities, in order to evaluate the total effect of the shear-thinning

fluid on the suspensions. The studied cases are reported in Table 3 .

First, Fig. 13 a reports the normalised mean settling velocity

〈 V z 〉 p as a function of the shear-thinning time scale λ. We observe

that the terminal velocity monotonically increases with λ and is

thus always larger in the shear-thinning fluid than in the Newto-

nian one. This is consistent with what previously observed in the

case of isolated particles Malhotra and Sharma (2012) . The increase

of sedimentation velocity is due to the modification of the local

viscosity around the particles; indeed, as reported in Fig. 13 b, the

local shear rate increases with the level of shear-thinning λ, re-

sulting in a reduced particle drag due to smaller values of local

viscosity. 

Next, we report in Fig. 14 the pair-distribution function P ( r, ψ)

for different values of λ. Although the overall behaviour is simi-

lar to what previously discussed, we now clearly observe that as

the shear-thinning effect increases the peak of P located at around

r ≈ 4 a progressively reduces, indicating a more uniform distribu-

tion of particles for large values of λ. 
The results presented in this section and those previously re-

orted are complementary: in the previous sections we were con-

idering cases with the same terminal velocity in the single parti-

le case and different Archimedes numbers, while now cases with

he same Archimedes number and different terminal velocities in

he single particle case. These two results together indicate that

he shear-thinning effect on the particle sedimentation is indeed

wofold: first, it modifies the particle sedimentation velocity due

o changes in the fluid viscosity; secondly, it modifies the level of

article interactions. 

. Conclusion and remarks 

We performed a series of simulations to study the settling be-

avior of finite-size heavy particles at finite terminal Reynolds

umber Re t in shear-thinning and Newtonian quiescent fluids in a

ertical channel. The problem is studied through direct numerical

imulations based on an efficient direct-forcing immersed bound-

ry method to capture the fluid-structure interactions. The Car-

eau model is employed to describe the rheological behavior of the

hear-thinning carrier fluid, where the fluid viscosity varies instan-

aneously with the local fluid shear rate, ˙ γ . We consider a suspen-

ion of monodisperse rigid spheres with fixed ratio between the

article diameter and channel width equal to 1/18 and vary the

otal volume fraction of the solid phase in the range 1 ≤ � ≤ 20%.

n the first set of simulations, the Archimedes number is set to

r = 36 for the shear-thinning fluid while it is increased to Ar = 97

or the Newtonian case to obtain almost the same value for the

ettling velocity of an isolated particle (same Re t ) as in the shear-

hinning case. By doing so, we aim to remove the first-order ef-

ect of the difference between the two fluids (a different mean

iscosity) and maintain only those due to particle-particle inter-

ctions and viscosity fluctuations. In this way, we find that, when

he macroscopic effect of the change in sedimentation velocity is

uppressed, the effect of shear-thinning is rather limited. 

We show that the mean settling velocity of a suspension

ecreases with the volume fraction and increase in the shear-

hinning fluid. This is the result of the competition between

wo opposite effects, related to different physical mechanisms: i)

he hindrance effect, which reduces the mean settling velocity
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Fig. 14. Pair-distribution function P ( r, ψ) for different values of λ at a fixed volume fraction � = 1% and Archimedes number Ar = 36 . (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this article.) 
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nd monotonically increases with �; ii) the shear-thinning effect,

hich also increases with � as a consequence of the reduction of

he local shear rate and, as a consequence, of the fluid viscosity

round the particles and leads to an increase of the mean settling

elocity. The velocity fluctuations in the gravity direction increase

ubstantially with the solid volume fraction in both fluids but is

ower in the shear-thinning fluid than in the Newtonian one. From

he probability density function of the settling velocity, we find

 high probability of particles settling faster than the mean set-

ling velocity at low concentrations, while the opposite trend is ob-

erved at high volume fractions. This effect is present in both flu-

ds, but it is strengthened in the shear-thinning fluid. We also find

 large value of the fourth-order moment in the shear-thinning

uid, indicating a highly intermittent behavior at low volume frac-

ions, which eventually vanishes for higher concentrations. 

The local profile of the solid volume fractions revealed the for-

ation of particle layers close to the walls for all cases. The distri-

ution of particles settling across the channel is mainly controlled

y geometry and confinement effects, with a weaker dependency

n the type of suspending fluid. We find that intrinsic convection

ccurs through the channel in both carrier fluids at low �, which

nduces an increase of the particles settling velocity in the channel

enter. On the contrary, this convection is reversed at the highest

olume fraction investigated, especially in the Newtonian fluid. The

article lateral dispersion strongly depends on the concentration of

he particles and it is always lower in a shear-thinning fluid than

n a Newtonian one. 

We computed the pair distribution functions to study the mi-

rostructure of the suspensions, and demonstrated that in both flu-

ds an almost uniform distribution is present at high volume frac-

ion � due to the reduction of the particles mean distance and

he high packing. On the other hand, the pair distribution func-

ions clearly shows the tendency to form aggregates in a shear-
hinning fluid, with particles preferentially positioning in the wake

r beside each other, which overall results in lower levels of ve-

ocity fluctuations in the gravity direction than in a Newtonian

uid. 

Finally, we studied the effect of the shear-thinning time scale λ
n the particle sedimentation. In this case we fix the Archimedes

umber Ar and let the terminal velocity vary freely. As expected,

e find that the terminal velocity strongly increases with the level

f shear-thinning, up to a factor 4 in the range of parameters inves-

igated. The progressive raise in terminal velocity with λ is related

o the reduction in the viscosity caused by increasing shear rates

ith λ. 

Overall, we find a twofold effect of shear thinning on the par-

icle sedimentation. First, the macroscopic effect of the shear-

hinning carrier fluid is the substantial modification of the par-

icle sedimentation velocity, which is always larger in the shear-

hinning case than in the Newtonian one. This is mainly due to in-

rease of shear rates around the particles accompanied by changes

n the local viscosity leading to a reduced particle drag. Secondly,

he shear-thinning fluid reduces the level of particle interactions,

ausing a reduction of velocity fluctuations resulting in particles

edimenting together at approximately the same speed. 

With this study we have evaluated the role of shear thinning

n the sedimentation of a suspension of inertial particles. Future

orks should extend the analysis to more complex non-Newtonian

uids, taking into account for example elasticity and yield stress. 
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