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Weakly nonlinear analysis of boundary layer receptivity
to free-stream disturbances
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The intent of the present paper is to study the receptivity of a zero pressure gradient boundary layer
to free-stream disturbances with the aim to isolate the essential features involved in the generation
of streamwise streaks. A weakly nonlinear formulation based on a perturbation expansion in the
amplitude of the disturbance truncated at second order is used. It is shown that the perturbation
model provide an efficient tool able to disentangle the sequence of events in the receptivity process.
Two types of solutions are investigated: the first case amounts to the receptivity to oblique waves
generated by a wave-like external forcing term oscillating in the free stream, the second the
receptivity to free-stream turbulence-like disturbances, represented as a superposition of modes of
the continuous spectrum of the Orr–Sommerfeld and Squire operators. A scaling property of the
governing equations with the Reynolds number is also shown to be valid. The relation between this
nonlinear receptivity process and previously investigated linear ones is also discussed. ©2002
American Institute of Physics.@DOI: 10.1063/1.1456062#
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I. INTRODUCTION

The objective of the present work is the study of t
stability and receptivity of the boundary layer subjected
free-stream disturbances. From a theoretical point of vi
boundary layer stability has traditionally been analyzed
terms of the eigensolutions of the Orr–Sommerfeld, Squ
equations that reduces the study to exponentially grow
disturbances. Experimental findings show that transition
to turbulence in the free stream is mainly characterized
the occurrence of streamwise elongated structures which
very different from the exponentially growing perturbation
These streamwise structures~or streaks! were first identified
by Klebanoff1 in terms of low frequency oscillations in ho
wire signals caused by low spanwise oscillations of
streaks~Kendall,2 Westinet al.3! and are commonly referre
to as Klebanoff modes.

Further analysis of the Orr–Sommerfeld, Squire eq
tions ~Gustavsson,4 Butler and Farell,5 Reddy and
Henningson,6 and Trefethenet al.7! have confirmed that dis
turbances other than exponentially growing perturbati
may lead to disturbance growth. From a mathematical p
of view this is due to the non-normality of the Orr
Sommerfeld, Squire operator. The physical mechanism
hind this linear mechanism is the lift-up induced by strea
wise vortices that interact with the boundary layer shear t
generating streaks in the streamwise velocity compon
Transition due to these types of disturbances is gener
called bypass transition.

a!Author to whom correspondence should be addressed. Electronic
henning@mech.kth.se
1421070-6631/2002/14(4)/1426/16/$19.00
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The understanding and prediction of transition requ
the knowledge of how a disturbance can enter and inte
with the boundary layer, commonly referred to as receptiv
of the boundary layer. The disturbances are often charac
ized as either acoustic or vortical disturbances convected
the free stream. Both types of disturbances have been in
tigated by asymptotic methods and a summary of the res
can be found in the reviews by Goldstein and Hultgren8 and
Kerschen.9 Bertolotti10 has assumed as initial disturbanc
vortical modes, solutions of the linearized Navier–Stok
equations in the free steam, which are waves periodic in
spanwise direction and decaying in the streamwise and
studied the boundary layer receptivity in a ‘‘linear region
excluding the leading edge. He has found receptivity
modes with zero streamwise wave number and has sh
that the growth is most likely connected to the theories
nonmodal growth. To answer the question of which dist
bance present at the leading edge gives the largest di
bance in the boundary layer at a certain downstream p
tion, Andersson, Berggren, and Henningson,11 and Luchini12

have used an optimization technique adapted from optim
control theory. The disturbances they found were a
streamwise vortices that caused the growth of streaks,
both the wall normal disturbance shape and growth ra
agreed well with the findings of Bertolotti10 and to experi-
mental results. Wundrow and Goldstein13 used asymptotic
expansions to study the effects of a small amplitude ste
streamwise vorticity field on the flow over a flat plate. The
results show how an initially linear perturbation of the u
stream flow leads to strong nonlinear shear layers far do
stream of the leading edge.

Berlin and Henningson14 have carried out numerical ex
il:
6 © 2002 American Institute of Physics
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periments on how simple vortical free-stream disturban
interact with a laminar boundary layer, and have identifie
linear and a new nonlinear receptivity mechanism. The n
linear one was found to force streaks inside the bound
layer similar to those found in experiments on free-stre
turbulence and it worked equally well for streamwise a
oblique free-stream disturbances. The boundary layer
sponse caused by the nonlinear mechanism was, depen
on the initial disturbance energy, comparable to that of
linear mechanism, which was only efficient for streamw
disturbances.

In the present work we develop a theoretical analy
with the aim to isolate the features involved in the generat
of streamwise streaks in flows subjected to free-stream
bulence. We consider a weakly nonlinear model based o
perturbation expansion in terms of the amplitude of the d
turbance, truncated at second order. The model, origin
developed in a previous work for Poiseuille flow~Ponziani15

and Ponzianiet al.16!, is here extended to boundary lay
flows. This implies the inclusion of the continuous spectru
eigenfunctions in the representation of the first and the s
ond order solutions. To validate the model we first inves
gate a receptivity mechanisms in a boundary layer impos
a localized disturbance both in the boundary layer and in
free stream. In particular, we study the long time respons
the system to a couple of oblique modes oscillating with
given frequencyv. For this case the linearized stabilit
equations are driven at first order by the external disturba
and at second order by the quadratic interactions betw
first order terms. For the type of disturbance considered,
presence of oblique waves generates streamwise vor
which, in turn, induce the formation of streaks inside t
boundary layer. The oblique modes are associated toa,
6b) wave numbers and their quadratic interactions prod
(0, 2b) wave numbers that correspond, in physical terms
an elongated vortical structure, i.e., streamwise coun
rotating vortices. The results show that the generation
streamwise vorticity, which is a nonlinear mechanism, and
subsequent lift-up can indeed be recovered through
weakly nonlinear formulation. The theory is validate
through comparison of the results obtained in this case w
direct numerical simulations.

The model is then applied to investigate the respons
the boundary layer to continuous spectrum modes. The la
are fundamental for the understanding of the interaction
tween free-stream vortical eddies and the boundary la
since they reduce to simple sines and cosines in the
stream and can easily be used to represent a free-stream
bulence spectrum. By using continuous modes, which
solutions of the linear problem, the model reduces to solv
second order equation where the forcing is given by
weakly nonlinear interactions between continuous modes
extensive parametric study is carried out to analyze the
teraction between Orr–Sommerfeld as well as Squire mo
in particular considering the effect of the disturbance wa
numbers. A scaling property of the resolvent of the Or
Sommerfeld and Squire problem with the Reynolds num
is shown to be valid for the results obtained.
Downloaded 15 Nov 2007 to 130.237.233.41. Redistribution subject to AI
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II. THE PERTURBATION MODEL

In the following we define the streamwise, wall norm
and spanwise directions asx, y, and z, respectively, with
velocity perturbationu5(u,v,w). All variables are made di-
mensionless with respect to the constant displacement th
nessd0* and the free-stream velocityU` ~time is made non-
dimensional with respect tod0* /U`). The perturbation
equations are derived directly from the Navier–Stokes eq
tions where we have superimposed a perturbation field to
base flow, namely the Blasius profile. We consider no-s
boundary conditions at the wall, solenoidal initial conditio
and in order to impose periodic boundary conditions in
directions parallel to the wall we assume a parallel base fl
Although the parallel flow assumption is questionable in
limit of low streamwise wave numbers (a→0), its use is
supported by the works of Berlin and Henningson14 and
Tumin and Reshokto,17 among others. They show in fac
that the generation of streamwise streaks is due to the s
physical mechanism and that the transient growth of stre
wise independent optimal disturbances is similar for the p
allel and nonparallel case.

We study the evolution of a disturbance in a bounda
layer over a flat plate via perturbation theory by expand
the relevant variables in terms of the amplitude of the dist
bancee

u5u(0)1eu(1)1e2u(2)1 • • • ,
~1!

p5p(0)1ep(1)1e2p(2)1 • • • ,

whereu(0),p(0) is the given base flow, while remaining term
are unknowns to be determined by the perturbation analy
We consider a general case in which the perturbation eq
tions are forced by an external forcing

F~x,y,z,t !5eF (1)~x,y,z,t !,

with a given initial condition.
Substituting the expansion~1!, truncated at second orde

into the Navier–Stokes equations and collecting terms of
powers ine, one obtains the governing equations for the fi
and the second order. These equations can be rewritten in
normal velocityv ( j ), normal vorticityh ( j )( j 51, 2) formula-
tion, thus obtaining the following Orr–Sommerfeld, Squi
system

F S ]

]t
1u(0)

]

]xDD2D2u(0)
]

]x
2

1

Re
D2Gv ( j )5Nv

( j )1Fv
( j ) , ~2!

F ]

]t
1u(0)

]

]x
2

1

Re
D Gh ( j )1Du(0)

]v ( j )

]z
5Nh

( j )1Fh
( j ) , ~3!

where

Nv
( j )52F S ]2

]x2
1

]2

]z2D S2
( j )2

]2

]x]y
S1

( j )2
]2

]y]z
S3

( j )G , ~4!

Nh
( j )52S ]

]z
S1

( j )2
]

]x
S3

( j )D ~5!

with
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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S1
( j )5

]

]x
u( j 21)u( j 21)1

]

]y
u( j 21)v ( j 21)

1
]

]z
u( j 21)w( j 21), ~6!

S2
( j )5

]

]x
u( j 21)v ( j 21)1

]

]y
v ( j 21)v ( j 21)

1
]

]z
v ( j 21)w( j 21), ~7!

S3
( j )5

]

]x
u( j 21)w( j 21)1

]

]y
v ( j 21)w( j 21)

1
]

]z
w( j 21)w( j 21). ~8!

The first and second order equations have constant co
cients with respect to the streamwise and spanwise di
tions, hence we consider the Fourier transform in the (x,z)
plane by making the following form assumption for the s
lution q( j )5(v ( j ),h ( j ))T:

q( j )~x,y,z,t !5(
m

(
n

q̂mn
( j ) ~y,t !ei (amx1bnz)

and likewise for the external forcing. The wave numbers
defined as follows:

am5m2p/Lx , ~9!

bn5n2p/Lz , ~10!

kmn
2 5am

2 1bn
2 , ~11!

whereLx andLz are, respectively, the streamwise and sp
wise lengths of the periodic domain. Hereafter, for read
convenience, the subscriptm andn are omitted and we refe
to the equations for the individual wave number (am ,bn) as
(a,b). The resulting equations in matrix form read

S ]

]t
M̂2L̂ D q̂(1)5 P̂F̂, ~12!

S ]

]t
M̂2L̂ D q̂(2)5 P̂ (

k1p5m
(

l 1q5n
@N̂~ û kl

(1)û pq
(1)T!#T, ~13!

where

L̂5S LOS 0

C LSQ
D , M̂5S k22D2 0

0 1D ,

N̂5S ia

D

ib
D , P̂5S 2 iaD k2 2 ibD

2 ib 0 ia D .

L̂ is the linear operator that defines the classical O
Sommerfeld, Squire problem
Downloaded 15 Nov 2007 to 130.237.233.41. Redistribution subject to AI
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LOS5 iau(0)~D22k2!2 iaD2u(0)2
1

Re
~D22k2!2,

C52 ibDu(0), ~14!

LSQ52 iau(0)1
1

Re
~D22k2!.

We introduce the inner product and the correspond
energy norm associated to the kinetic energy of the dis
bance velocity according to

E5E
0

`

q̂HM̂ q̂ dy5~M̂ q̂,q̂!5i q̂iE . ~15!

In this investigation we consider two different types
solutions. In the first case the system of equations at
order is forced by an external force that we assume pulsa
with a given frequencyv,

F̂ (1)5 f̂ ~y!eivt1 f̂ * ~y!e2 ivt,

where the* indicates the complex conjugate. At second
der, the problem is forced by the nonlinear interactions
first order terms

T̂5 P̂ (
k1p5m̄

(
l 1q5n̄

@N~ û kl
(1)û pq

(1)T!#T. ~16!

In the second case, we assume that the solution for the
order is given by a continuous spectrum mode represe
tion, and we solve only the second order problem.

The initial conditions are

q̂( j )~ t50!5q̂0 , j 51, 2. ~17!

With regard to the boundary conditions we enforce no-s
conditions

v̂ ( j )5D v̂ ( j )5ĥ ( j )50 ~18!

while we assume boundedness in the free stream. The
maining velocities are recovered by

û( j )5
i

k2
~aD v̂ ( j )2bĥ ( j )!, ~19!

ŵ( j )5
i

k2
~bD v̂ ( j )1aĥ ( j )!. ~20!

A. The solution to the forced problem

We consider here the harmonically forced problem d
scribed by the system of Eqs.~12! and ~13! whose solution
can be split into two parts~see Ponzianiet al.16!: one repre-
senting the long time asymptotic solutionq̂( j )L

and the other
describing the initial transient behaviorq̂( j )T

,

q̂( j )5q̂( j )T
1q̂( j )L

, j 51, 2. ~21!

First we consider the equations for the long time behavio
first order
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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1429Phys. Fluids, Vol. 14, No. 4, April 2002 Weakly nonlinear analysis of boundary layer
~6 ivM̂2L̂ !q̂(1)L5 P̂F̂,
~22!

v̂ (1)L5D v̂ (1)L5ĥ (1)L50, y50, y5y`

whose long time response to the harmonic forcing is giv
by

q̂6v
(1)L5~6 ivM̂2L̂ !21P̂ f̂ ~y!e6 ivt. ~23!

The equations that describe the transient at first order
given by

]

]t
M̂ q̂(1)T5L̂q̂(1)T,

q̂(1)T52q̂(1)L, t50, ~24!

v̂ (1)T5D v̂ (1)T5h (1)T50, y50, y5y` ,

where we have assumed zero initial conditions,q̂050. Equa-
tions ~22! and ~24! provide a complete description of th
harmonic forced linear problem; the solution of Eq.~24! is
obtained as described in a later section.

With regard to the second order solution, the structure
the quadratic interaction term implies that several freque
components are excited at second order. As for the first o
problem we can split the governing equations into two pa
that describe the long time and the transient behavior. W
regard to the former, we point out that at first order t
asymptotic solution in time is characterized by given f
quencies6v, which implies that only the zero and 2v fre-
quency components are excited at second order. Howeve
demonstrated by Trefethenet al.,7 the maximum response o
a system occurs fora50 andv50; hence we reduce ou
analysis to the most effective part, that is the one associ
to zero frequency and zero streamwise wave number

2L̂q̂0
(2)L5T̂0

L ~25!

with solution given by

q̂0
(2)L5~2L̂ !21T̂0

L . ~26!

Here the termsT̂0
L represent the convolution sum in~16!

where only the contribution with zero frequency is cons
ered. Observe that this procedure can also be applied to
solution corresponding to the continuous spectrum mod
Indeed, if a first order solution is represented as a continu
spectrum mode, it is still characterized by a given freque
that corresponds to the real part of the associated eigenv

The equations that describe the transient behavior at
ond order accounts for different forcing terms that arise fr
the self-interactions between first order transient soluti
and the quadratic interactions between the transient solu
and the long time solutions.

B. Scaling of forced solution

It is possible to show a Reynolds number dependence
the norm of the resolvent of the forced problems defined
Eqs.~23! and~26!. Let us introduce a new set of variables
rescale the Orr–Sommerfeld, Squire problem
Gustavsson,4 Reddy and Henningson,6 and Kreisset al.,18
Downloaded 15 Nov 2007 to 130.237.233.41. Redistribution subject to AI
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t* 5t/Re, iv* 5 iv Re, v̂* 5 v̂/b Re, ĥ* 5ĥ;
~27!

with the new scaling we can rewrite~14! as

LOS* 5 ia Reu(0)~D22k2!2 ia ReD2u(0)2~D22k2!2,

C* 52 iDu (0), ~28!

LSQ* 52 ia Reu(0)1~D22k2!.

The scaled equations exhibit a dependency only on the
parameters,a Re andk2, rather thana,b,Re as in the origi-
nal Orr–Sommerfeld, Squire equations. In the new variab
the resolvent can be written as

i~ ivM̂2L̂ !21iE5Rei~ iv* M̂2L̂* !21iE* , ~29!

whereE is the energy norm with respect to the original va
ables andE* is the energy norm with respect to the scal
ones. It is possible to show, see Kreisset al.,18 that for
a Re50 ~that corresponds to the maximum response of
system! the norm of the resolventi( iv* M̂2L̂* )21iE*
scales as the Reynolds number as Re→`. Hence, Eq.~29!

implies that the norm of the original resolventi( ivM̂

2L̂)21iE scales as the square of the Reynolds number.
Further, it is possible to show~see, e.g., Ref. 18! that if

we consider Reynolds number independent forcing the
plitude of the response in the original unscaled problem
given at leading order,O(Re2), by the wall normal vorticity
h. In fact, for streamwise independent modes the norm
the resolvent of the individual Orr–Sommerfeld and Squ
operators isO(Re). The factor Re2 is then due to the re-
sponse of the Squire operator forced by theO(Re) wall nor-
mal velocity v, via the coupling term of the system. Th
implies that the induced streamwise vorticity, given by t
solution of the Orr–Sommerfeld equation, isO(Re), while
the streamwise velocity, obtained from the Squire equat
is O(Re2).

C. The initial value problem

In accounting for the transient solution it is worth ma
ing some observations. Since the eigenfunctions of the eig
value problem associated to the Orr–Sommerfeld, Sq
system form a complete set, see DiPrima and Habetler19 and
Salwen and Grosch,20 we can expand the perturbation sol
tion q̂( i )T

( i 51, 2) as a superposition of modes. For Blas
boundary layer flow, the domain is semibounded and
spectrum has a continuous and a discrete part, see Gr
and Salwen.21 These authors have shown that in this case
solution can be expanded in a sum over the discrete mo
and in an integration over the continuous spectrum. T
analysis can be simplified using a discrete representatio
the continuous spectrum by cutting the upper unbounded
main at a giveny` . Although the eigenvalues differ from th
exact representation of the continuous spectrum, particul
as the decay rate increases~see Fig. 2!, their sum has been
found to describe correctly the solution to the initial val
problem, see Butler and Farrel.5 Observe that formally, it is
possible to expand the solution using integrals over the c
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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tinuous spectrum. However, the added computational c
plexity, without any significant gain in accuracy, justifies t
use of the present simpler formulation.

With regard to the selection of a set of functions that
orthogonal to the set of Orr–Sommerfeld, Squire eigenfu
tions, we exploit the orthogonality relation between t
eigenfunctions of the Orr–Sommerfeld, Squire systemq̃)
and those of the adjoint Orr–Sommerfeld, Squire probl
(q̃1). From the definition of adjoint, it is easy to show th
the eigenvalues of the adjoint are the complex conjugat
the eigenvalue of the Orr–Sommerfeld, Squire system. T
leads to the orthogonality condition

~M̂ q̃j ,q̃k
1!5Cd jk , ~30!

where d jk is the Kronecker symbol andC a constant that
normalizes the eigenfunctions and that needs to be de
mined. Hence, for the initial value problem, we can expl
the completeness of the Orr–Sommerfeld, Squire eig
modes for bounded flows to recoverq̂( i )T

,

S v̂ ( i )T

ĥ ( i )TD 5(
l

KlS ṽ l

h̃ l
PD e2 il l

OSt

1(
j

Bj S 0

h̃ j
D e2 il j

Sqt, ~31!

where (l l
OS,ṽ l) and (l j

Sq,h̃ j ), respectively, are the eigenva
ues and eigenvectors of the non-normalLOS operator, and the
homogeneousLSQ operator andh̃ l

P is the solution of the
Squire problem forced by the Orr–Sommerfeld eigenfu
tions. The coefficientKl andBj are determined from a give
initial condition (v̂0 ,ĥ0) according to~30!,

Kl5
1

2k2E0

y`S j̃ l

0
D HS k22D2 0

0 1D S v̂0

ĥ0
D dy, ~32!

Bj5
1

2k2E0

y`S j̃ j
P

z̃ j
D HS k22D2 0

0 1D S v̂0

ĥ0
D dy, ~33!

where

S j̃

0
D , S j̃P

z̃
D ~34!

are the modes of the adjoint system, see Schmid
Henningson.22

D. Continuous spectrum modes

The Orr–Sommerfeld eigenvalue problem in a sem
bounded domain is characterized by a continuous and a
crete spectrum. The discrete modes decay exponentially
the distance from the wall, while the modes of the contin
ous spectrum are nearly sinusoidal, whereby the free-str
disturbances can be expanded as a superposition of con
ous modes. Since they are associated to stable eigenva
they are not relevant for the classical linear stability analy
however they are fundamental for the understanding of
interaction between free-stream vortical eddies and
Downloaded 15 Nov 2007 to 130.237.233.41. Redistribution subject to AI
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boundary layer. In order to determine the eigenfunctions
the continuous spectrum we consider first the Or
Sommerfeld equations for a small three-dimensional~3D!
disturbance with no-slip boundary conditions at the w

ṽ(0)5D ṽ(0)50 and boundedness aty→`. In particular in
the free stream the mean flow is constant~i.e., u(0)51 as
y/d* .3) and the Orr–Sommerfeld equation reduces to

~D22k2!2ṽ2 ia Re$~12c!~D22k2!%ṽ50, ~35!

wherec is the phase velocity. The above equation admits
following solution, see Grosch and Salwen:21

ṽ5Aeigy1Be2 igy1Ce2ky, y→`, ~36!

where

k21g21 ia Re~12c!50.

From this, an analytical expression for the eigenvalues
derived

c512 i S 11
g2

k2 D k2

a Re
, ~37!

whereg represents the wave number in the wall-normal
rection and assumes any positive real value.

From a numerical point of view the crucial point is t
enforce the boundedness of the eigenfunctions aty→`. We
follow the method introduced by Jacobs and Durbin23 to re-
cover the correct behavior of the solution in the free stre
solving the equation as a two-point boundary value probl
using the spectral collocation method based on Chebys
polynomial.

We need a total of four boundary conditions: the fi
two are the no slip at the wall. The arbitrary normalization

ṽ(y`)51, wherey` is the maximum value ofy in the wall-
normal direction. The condition of boundedness asy→` is
converted to a numerical condition at two specific values
y. In fact Eq.~36! implies

D2ṽ1g2ṽ5C~k21g2!e2ky ~38!

in the free stream. The missing boundary condition is deriv
evaluating relation~38! at two different points in the free
streamy1 ,y2 ,

~D2ṽ1g2ṽ !y1

~D2ṽ1g2ṽ !y2

5ek(y22y1). ~39!

A similar procedure is used to determine the continuo
modes of the Squire equation. However in this case the f
stream behavior of the solution is given only by the tw
complex exponentials. Hence, from a numerical point
view it suffices to enforce the arbitrary normalization con
tion h̃(y`)51.

E. The numerical method

The temporal eigenvalue systems and the forced pr
lems derived in the preceding sections are solved num
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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cally using a spectral collocation method based on Che
shev polynomials. In particular, we consider the trunca
Chebyshev expansion

f~h!5 (
n50

N

f̄nTn~h!,

where

Tn~h!5cos~n arccos~h!! ~40!

is the Chebyshev polynomial of degreen defined in the in-
terval 21<h<1, and the discretization points are th
Gauss–Lobatto collocation points,

h j5cos
p j

N
, j 50,1,... ,N,

that is, the extrema of theNth-order Chebyshev polynomia
TN plus the endpoints of the interval. The calculations
performed using at least 301 Chebyshev collocation point
y. The wall-normal domain varies in the range (0,y`), with
y` well outside the boundary layer~typically y`550). The
Chebyshev interval21<h<1 is transformed into the com
putational domain 0<y<y` by the use of the mapping

y5y`

12h

2
. ~41!

The unknown functionsq̂5q̂(y) are then approximated
by

q̂N~y!5 (
n50

N

q̄nTn~h!.

The Chebyshev coefficientsq̄n, n50, . . . ,N are determined
by requiring the different equations derived from~12! and
~13! to hold for q̂N at the collocation pointsyj , j 5p, . . . ,
N2p, with p52 for the fourth order Orr–Sommerfeld equ
tion and p51 for the second order Squire equation. T
boundary conditions are enforced by adding the equation

(
n50

N

q̄nTn~0!5 (
n50

N

q̄nTn~y`!50,

and the two additional conditions for the Orr–Sommerfe
problem

(
n50

N

q̄n DTn~0!5 (
n50

N

q̄n DTn~y`!50,

where DTn denotes they derivative of thenth Chebyshev
polynomial.

III. RECEPTIVITY TO LOCALIZED FORCING

A. Disturbance generation and parameter settings

To validate the model, we test the analytical results v
sus direct numerical simulations of the type presented
Berlin and Henningson.14 In order to trigger the formation o
streamwise streaks in the boundary layer we consider
response of the system to a couple of oblique waves. Th
similar to the investigations reported in Ref. 14, althou
here we are able to understand the mechanism in more d
Downloaded 15 Nov 2007 to 130.237.233.41. Redistribution subject to AI
y-
d

e
in

r-
y

e
is

tail

since we use an analytical formulation. The oblique wav
are generated by a harmonic localized wall-normal volu
force given by

F5 f ~y!cos~ax!cos~bz!eivt ~42!

with

f ~y!5
1

A2ps
e2 @(y2y0)2/2s2#.

In our computations we choose Re5400, and (a,6b)
5(0.2,60.2). We analyze two cases: for the first one t
forcing is in the boundary layer (y052.2), for the second the
forcing is in the free stream (y058). The results presente
here correspond to the latter case withs50.5.

The formation of streamwise streaks in the bound
layer is initiated by two oblique waves characterized
wave numbers (a,6b)5(0.2,60.2). In the linear long time
response of the system to the external forcing, there is
evidence of streaks generation. However, if one accounts
the second order interactions@in particular those that force
the wave number (0, 2b)# it is easy to observe that the se
ond order correction corresponds to a system of str
streamwise longitudinal vortices in the boundary layer. Th
results are in agreement with the work of Berlin a
Henningson14 where the generation of streaks in the boun
ary layer is triggered by the nonlinear evolution of two o
lique waves.

B. Comparison to DNS data: Linear and nonlinear
case

In order to validate the perturbation model and its ca
bility to select the most effective interactions as a seco
order correction, we compare our results with direct nume
cal simulations of the forced evolution problem and an init
value problem. The DNS code, reported in Lundbla
et al.,24 is used to solve the temporal problem for a para
Blasius base flow. For a quantitative comparison we anal
the DNS results in terms of an amplitude expansion, so a
isolate the linear, quadratic, and cubic part of the soluti
see Henningsonet al.25 We in fact run the same case wit
three different small amplitude disturbances. Different Fo
rier modes are then extracted and compared with the res
obtained using the perturbation model.

We first consider the velocity field at early times, whe
the problem is governed by Eq.~24! and the initial value
problem is solved as a superposition of the discretized eig
modes. Comparisons of the three velocity component for
Fourier mode (a,b)5(0.2, 0.2) are shown in Fig. 1 at tim
t5100. The good agreement confirms the validity of t
discrete representation of the continuous spectrum. An eig
value map for the Orr–Sommerfeld operator, obtained us
N5301 Chebyshev polynomials, is shown in Fig. 2 togeth
with the exact analytical solution of Eq.~37!. The 150 least
damped eigenfunctions are taken into account in the exp
sion presented in Fig. 1. We re-emphasize here that this
proximation is able to correctly describe the evolution
disturbances localized in the free stream.
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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FIG. 1. Velocity components of the
linear perturbation velocity for the ob-
lique wave with (a,b)5(0.2,0.2).
Forced problem for Re5400, y`

520, y058, s50.5, v50.2, and t
5100. DNS result:1, real part,v,
imaginary part. Perturbation mode
- - -, real part; —, imaginary part.
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With regards to the asymptotic time behavior, the n
merical simulations are run to timet550 000 and the re-
sponse is compared with the perturbation results. Figur
depicts the velocity components associated to the m
(a,b)5(0.2, 0.2). The small differences observed in the fi
ures are probably due to the accumulation of truncation
rors in the DNS after such a long time integration. For t
same problem, the second order correction with (0, 2b) and
v50 is displayed in Fig. 4. The formation of streamwi
streaks in the longitudinal component is clearly seen. A si
lar result~not reported! is observed in the case of localize
forcing inside the boundary layer (y052.2, s50.4). How-
ever, in the latter case, the streaks exhibit an amplit
smaller than the previous case~about one third!.

Let us consider the transient part of the solution. T
time evolution of the energy of the response of the forc
problems corresponding to two different wave numb
@(0.2, 0.2), (1,1)# and for the same values ofy0 ands (y0

(y058, s50.5) is shown in Fig. 5. The figure shows that t
energy of the high wave number disturbances attains
asymptotic value on a scale that is one order of magnit
less than the one associated to the short wave number~both
for the first and the second order corrections!.

IV. ROLE OF CONTINUOUS SPECTRA IN THE
RECEPTIVITY MECHANISM

A. Reynolds number scaling

As shown in Sec. II B, it is possible to prove that th
resolvent, which governs the solution to the forced O
Sommerfeld, Squire system, isO(Re2). For the second prob
lem we address, the forcing is given by nonlinear inter
tions between continuous spectrum modes, and we ana
the forced solution at different values of the Reynolds nu
Downloaded 15 Nov 2007 to 130.237.233.41. Redistribution subject to AI
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ber. In Fig. 6 we compare the continuous spectrum mode
the Orr–Sommerfeld operator fora51, b50.2 and g
50.628 at two different Reynolds numbers (Re5300 and
Re5500). We observe that the modes differ only at the ed
of the boundary layer and these differences are small. He
we assume that the forcing term is Re independent. T
assumption is confirmed for large Reynolds number by
findings of Jacobs and Durbin,23 who have shown that the
penetration depth of the modes is proportional to (a Re)20.13

which implies that for large values of Re this depth becom
smaller and smaller.

In Fig. 7 we report the plot of the maximum of th
streamwise second order velocity~normalized by the first

FIG. 2. Numerically obtained Orr–Sommerfeld spectrum:N5301 Cheby-
shev modes, Re5400, (a,b)5(0.2, 0.2), andymax520. The solid line dis-
plays the exact continuous spectrum.
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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FIG. 3. Velocity components of the
linear perturbation velocity for the ob-
lique wave with (a,b)5(0.2, 0.2).
Forced problem for Re5400, y`

525, y058, s50.5, v50.2, and t
550 000. DNS result: - - -, real part;
—, imaginary part~thick lines!. Per-
turbation model: - - -, real part; —,
imaginary part~thin lines!.
e
it
t

th
th

e
val-

lds
rary
order energy and by the square of Re! as a function of the
streamwise and spanwise wave numbers for a given valu
g, note that the second order distribution is displayed w
reference to the (a, b) values of the corresponding firs
order terms. The figure clearly confirms the scaling in
energy norm found in Sec. II B. The results show that
maximum amplitude is obtained fora'2 andb'0.15. Fur-
Downloaded 15 Nov 2007 to 130.237.233.41. Redistribution subject to AI
of
h

e
e

ther computations~not reported! verify the validity of the
scaling down to Re'100. However, for lower values of th
Reynolds number the maximum response is obtained for
ues ofb less than the one associated to Re.100. Thus, it
suffices to investigate the forced results only at one Reyno
number, since they can be subsequently scaled to arbit
Re.100.
r

FIG. 4. Velocity components of the
second order perturbation velocity fo
(a,b)5(0, 0.4). Forced problem for
Re5400, y`525, y058, s50.5, and
t550 000. DNS result: - - -, real part;
—, imaginary part~thick lines!. Per-
turbation model: - - -, real part; —,
imaginary part~thin lines!.
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B. Nonlinear interaction and linear forcing

In a previous work it has been demonstrated that non
earities play a fundamental role in boundary layer recep
ity, see Berlin and Henningson.14 In the present work we us
a model based on a perturbation expansion in the ampli
of the disturbance truncated at second order to single ou
mechanisms at work during the generation of streamw
streaks in flat plate boundary layers subject to free-stre
turbulence.

Since it is possible to rather well represent free-stre
turbulence as a superposition of modes associated to the
tinuous spectrum, see, for example, Jacobs and Durbin,26 we
simplify the problem analyzing the weakly nonlinear r
sponse of the system to a single pair of oblique continu
spectrum modes.

First we analyze the problem associated to the O
Sommerfeld continuous spectrum modes. The first order

FIG. 5. Time evolution of the energy normalized with respect to
asymptotic value.~a! First order correction;~b!, second order correction; —
(a,b)5(1,1); - - -, (a,b)5(0.2, 0.2).

FIG. 6. Distribution of the Orr–Sommerfeld eigenfunction vsy for a51,

b50.2: —, i ṽi for Re5500; - - -, i ṽi for Re5300; •••, Re(ṽ) for Re

5300; • - •, Im(ṽ) for Re5300.
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lution corresponds to two eigenmodes of the continuo
spectrum with wave numbers (a,b,g) and (a,2b,g)
whose damping rate is set to zero. At second order we
count for the quadratic interactions between the two conti
ous spectrum modes and we focus our attention on
(0, 2b) contribution. The transient part of the solution
neglected and the asymptotic time response is analyzed
observe that the second order forcing to the (0, 2b) modes
induces strong streamwise vorticity, that in turn forces
formation of streaks inside the boundary layer by the lin
lift-up mechanism. This two-step process, first the nonlin
generation of streamwise vortices and then the linear forc
of the streamwise streaks, is completely captured by
weakly nonlinear model. Figure 8 shows that the nonlin
forcing of the Orr–Sommerfeld, Squire system@T0

L , shown
in Fig. 8~a!# induces second order spanwise and norma
wall velocities@see Fig. 8~b!#. As a consequence, streamwi
vorticity is produced which then creates streamwise stre
@see Fig. 8~c!# through the forcing of the Squire equation du
to the coupling term@which is approximately 10 times large
than the corresponding second order forcing, compare F
8~a! and 8~d!#. Further, Fig. 8~b! shows that the second orde

correction inv̂ (2),ŵ(2) is O(Re) (uv̂ (2)u,uŵ(2)u'600), while

Fig. 8~c! that the streamwise velocity isO(Re2) (uû(2)u
'17 000), confirming the scaling property of the resolve
of the Orr–Sommerfeld and Squire problems discussed a
end of Sec. II B.

The same analysis has been carried out also conside
the second order forcing induced by Squire continuous sp
trum modes. The results show that the same physical me
nism is induced and the amplitude of the generated strea
comparable for the two different classes of modes.

FIG. 7. Forcing induced by Orr–Sommerfeld continuous spectrum mo
for g50.27. Contour levels of the maximum of the streamwise second o
velocity ~normalized by the first order energy and Re2). Note that the second
order distribution is displayed with reference to the (a,b) values of the
corresponding first order terms. Maximum value 0.1056, contour spa
0.011.
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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FIG. 8. Second order solution corre
sponding to the nonlinear interaction
of a couple of oblique Orr–
Sommerfeld modes associated to th
wave numbers (0.5,60.2, 0.628), at
Re5500: ~a! forcing to the Orr–
Sommerfeld equation~—! and to the
Squire equation~- - -!; ~b! normal to
wall ~—! and spanwise component o
velocity ~- - -!; ~c! streamwise compo-
nent of velocity; ~d! forcing to the
Squire equation associated to the co
pling term2 ibU8v (2).
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C. Parametric study

In order to find the most effective interactions betwe
continuous spectrum modes we carried out a parame
study varying the wave numbers in the range 0.1,a
,2,0.05,b,1, and 0.25,g,20.9 at a given Reynolds
number. In Figs. 9 and 10 we report, respectively, the res
corresponding to forcing induced by Orr–Sommerfeld a
Squire continuous spectrum modes. The figures depict
maximum amplifications of the streamwise velocity comp
nent normalized with respect to the energy densityE of the
nonlinearly interacting modes. In particular, we plot

A~a,b!5maxg

u(2)~a,b,g!

E
,

B~a,g!5maxb

u(2)~a,b,g!

E
,

C~b,g!5maxa

u(2)~a,b,g!

E
.

The results show that the maximum amplification is attain
for a'2 and b'0.15 ~thus implying that the streaks ar
associated to spanwise wave numberb'0.3) independently
of the type of forcing modes. The results also indicate t
the maximum response is associated to low values ofg (g
'0.25), i.e., structures of large wall normal extent. We o
serve that in the case the forcing is given by the O
Sommerfeld modes we find a lower maximum fora'0.1,
b'0.2, andg'1.25.

One should also note that these figures tend to bias
wave numbers, since they are in practice more damped
low ones. Recall in fact that for simplicity we have put th
Downloaded 15 Nov 2007 to 130.237.233.41. Redistribution subject to AI
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damping rate of the continuous spectrum modes to zero. T
implies, for example, that the increasing amplification f
higher values ofa in Figs. 9~a!, 9~b!, 10~a!, and 10~b! would
be damped for sufficiently high values of the streamw
wave number. However this does not present a problem
applying the results to a real free-stream turbulence c
since realistic free-stream turbulence spectra have little
ergy content in these higher wave numbers. This will
discussed in the next section.

D. Filtering with turbulent energy spectrum and
streak spacing

In the results presented so far we assumed unit energ
each Fourier component of the free-stream disturbance
order to predict which length scales may be important in
real transition initiated by free-stream turbulence, we ass
ate each mode with a coefficient proportional to the ene
spectrum of typical homogeneous and isotropic turbulen
We use here the von Ka´rmán spectrum, which is proportiona
to k4 for large scales and matches the Kolmogoro
(5/3)-law for small scales. It has the form

Ẽ3D~a,b,g!5
E3D~k3D!

4pk3D
2

5
2

3

1

4pk3D
2

1.606~k3DL !4

~1.351~k3DL !2!17/6
Lq, ~43!

wherek3D5a21b21g2, L is an integral length scale andq
is the total turbulent kinetic energy, defined as the integ
over all k ’s of the spectrum. It is possible to show that th
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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1436 Phys. Fluids, Vol. 14, No. 4, April 2002 Brandt, Henningson, and Ponziani
integral length scaleL11'0.65L and that the length scale o
the eddies with the maximum energy isLmax'3.5L. We note
that this spectrum, given in Tennekes and Lumley27 is a good
approximation to homogeneous turbulence. The filtered
sults are reported in Figs. 11 and 12 forL53, q51; the
figures show that the filtering moves the more effectivea ’s

FIG. 9. Boundary layer response to forcing induced by nonlinear inte
tions of Orr–Sommerfeld modes. Contour levels of the maximum amp
cation of the streamwise component of velocity at Re5300, y`550: ~a!
A(a,b) for 0.25,g,20.9; ~b! B(a,g) for 0.05,b,1; ~c! C(b,g) for
0.1,a,2. The maximum is 10 145 and occurs ata52, b50.15, g
50.25. Maximum contour level is 9500 and contour spacing 1000.
Downloaded 15 Nov 2007 to 130.237.233.41. Redistribution subject to AI
e-

andg ’s to smaller values, while theb ’s are less affected. The
maximum amplification is attained fora'0.3, b'0.1 for
the case the forcing is given by the Orr–Sommerfeld mo
anda'0.3, b'0.15 for the Squire case; the correspondi
values ofg is 0.25 independently of the type of the forcin

c-
-FIG. 10. Boundary layer response to forcing induced by nonlinear inte
tions of Squire modes. Contour levels of the maximum amplification of
streamwise component of velocity at Re5300, y`550: ~a! A(a,b) for
0.25,g,20.9;~b! B(a,g) for 0.05,b,1; ~c! C(b,g) for 0.1,a,2. The
maximum is 10 586 and occurs ata52, b50.15,g50.25. Maximum con-
tour level is 10 000 and contour spacing 1000.
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modes. We note also that in the case the forcing is given
the Orr–Sommerfeld modes, a lower local maximum is s
present ata'0.1, b'0.15, andg'0.33. Similar results
were obtained for different choices of the integral leng
scaleL.

FIG. 11. Boundary layer response to forcing induced by nonlinear inte
tions of Orr–Sommerfeld modes filtered by turbulent kinetic energy sp
trum. Contour levels of the maximum amplification of the streamwise co
ponent of velocity at Re5300, y`550: ~a! A(a,b) for 0.25,g,20.9; ~b!
B(a,g) for 0.05,b,1; ~c! C(b,g) for 0.1,a,2. The maximum is 1106
and occurs ata50.3, b50.1, g50.25. Maximum contour level is 1050
and contour spacing 100.
Downloaded 15 Nov 2007 to 130.237.233.41. Redistribution subject to AI
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One of the objectives of the present work is to find t
wave numbers associated to free-steam disturbances w
are most effective in the generations of streamwise vortic
Matsubara and Alfredsson28 in their experimental work ob-
served that the spanwise distance to the first minimum of

c-
-
-

FIG. 12. Boundary layer response to forcing induced by nonlinear inte
tions of Squire modes filtered by turbulent kinetic energy spectrum. Con
levels of the maximum amplification of the streamwise component of
locity at Re5300, y`550: ~a! A(a,b) for 0.25,g,20.9; ~b! B(a,g) for
0.05,b,1; ~c! C(b,g) for 0.1,a,2. The maximum is 1485 and occur
at a50.3, b50.15, g50.25. Maximum contour level is 1450 and contou
spacing 100.
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point velocity correlations, which closely corresponds to h
the streak spacing, stays almost constant in the downstr
direction. This suggests that the boundary layer growth d
not affect the streak development. When scaling these re
with the local displacement thickness the characteri
length scale close to the leading edge is approximativ
20d* 610d* , i.e., centered around a spanwise wave num
b'0.3. This is close to theb ’s for which our simplified
temporal model predicts the largest response. In the exp
ments of Matsubara and Alfredsson28 the growth of the
boundary layer implies a variation of the spanwise scale w
the respect to the local displacement thickness. In our mo
we do not account for the growth of the boundary layer,
we are still able to predict the first step of the receptiv
process, i.e., the formation of streamwise vortices.

E. Linear vs nonlinear receptivity

A linear mechanism for streak generation caused by
diffusion of a free-stream streamwise vortex into the bou
ary layer has been studied by Anderssonet al.11 and
Luchini,12 using the boundary layer equations and by Wu
drdow and Goldstein13 by means of asymptotic expansion
These studies assume the presence of the vortex at the
ing edge. Bertolotti10 used a different method to calculate th
initial streamwise vortices, but still studied a linear mech
nism. Here we propose a nonlinear model for receptiv
originating from oblique modes in the free stream, with fo
ing at ordere2, and in this section we want to discuss t
relevance of the proposed mechanism in comparison with
stronger direct forcing at ordere presented in the works cite
above.10–13

Our results show that modes in a wide range of wa
numbersa, b, g are almost equally effective in inducin
rg
d

t
e

r 4
e
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streamwise streaks~see Figs. 9 and 10!. On the other hand
for the linear mechanism to work, only streamwise or alm
independent modes, with a definite spanwise modulation,
be considered. Therefore in a real case of free-stream tu
lence, it is plausible to assume that larger total forcing
involved in the nonlinear process than in the linear one.
quantify, we consider the turbulent kinetic energy spectr
for homogeneous and isotropic turbulence defined by
~43!. Frequency spectra of the free-stream turbulence
usually reported from laboratory measurements. By Tay
hypothesis they can be related to one-dimensional spectr
the streamwise wave numbera. Formally the one-
dimensional spectrumE1D is obtained fromE3D by

E1D~k1D!5E
k1D

` E3D

k3D
S 12

k1D
2

k3D
2 D dk3D ,

see Hinze;29 it represents the energy in all the Fourier com
ponents with wave numberk1D , corresponding toa, b or g
~since the turbulence is assumed to be isotropic!. The one-
dimensional spectrum derived from the expression in
~43! can be written as

E1D~k1D!5
18

55

1.606

~1.351~k1DL !2!5/6
Lq.

Here instead, we want to look at the energy in each pl
wave characterized by wave number (a,b). A two-
dimensional energy spectrum can be defined according

Ẽ2D~a,b!5E
2`

`

Ẽ3Ddg5
E2D~k2D!

2pk2D
,

with k2D
2 5a21b2, which yields in our case
E2D~k2D!52pk2D

3

1.606L1/3S L2

1.351L2k2D
2 D 1/3

~4.05111L2k2D
2 !G~1/3!

165Ap~1.351L2k2D
2 !2G~5/6!

Lq,
n-
f

the

ve

at
t

where G represents the gamma function. The three ene
spectra versus the respective wave vector are displaye
Fig. 13 for L53 and the total energyq51. We can now
estimate the amount of energy involved in the linear,ẼL ,
and in the nonlinear mechanism,ẼNL . Values of the span-
wise wave numberb of the generated streaks are assumed
be in the rangebP@b0 ,b1#. In the linear scenario, only th
contribution from waves with low values ofa is considered,
such that

ẼL54E
0

a0
daE

b0

b1
Ẽ2D db,

wherea andb assume only positive values and the facto
in front of the integral is justified by the symmetry of th
y
in

o

function Ẽ2D. In the nonlinear case oblique waves are co
sidered: the integral is now evaluated for larger values oa
and the corresponding range ofb,

ẼNL54E
a0

a1
daE

b0/2

b1
Ẽ2D db.

The ratio between the two energies is then a function of
integral length scaleL and of the integration limits,
ẼNL /ẼL 5 (ẼNL /ẼL) (a0 ,a1 ,b0 ,b1 ,L). We can letb1 ,a1

→`, since the energy spectrum is decaying for large wa
numbers. We also assume for simplicitya05b0 , such
that ẼNL /ẼL 5 (ẼNL /ẼL) (a0 ,L). Contour levels of
log10(ẼNL /ẼL) are displayed in Fig. 14. One can note th
the largest value (ẼNL /ẼL 57331) is attained for the lowes
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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values ofL and a0 considered~1 and 0.0005, respectively!
and the ratio decreases for increasing values of the pa
eters. In Kendall’s experiments,30 with a free-stream velocity
U`511 m/s, theurms, representing the streak’s profile, wa
obtained by filtering at values of 4 and 6 Hz. Using Tay
hypothesis, these values can be transformed to nondim
sional values ofa0'0.001, 0.0015 for Red* 5300. In this
range, the energy in modes responsible for the linear re
tivity process is about 500 times lower than the energy
volved in the nonlinear process.

We have shown that the nonlinear receptivity mechan
can be seen as a two-step process: first the generatio
streamwise vortices and then the formation of streaks
lift-up effect. As seen in Fig. 8~b!, a strong,O(Re), amplifi-
cation is associated to the generation of streamwise vort
from nonlinear interaction of oblique modes. The success
formation of streaks is a linear process, present in both

FIG. 13. Turbulent kinetic energy spectra in homogeneous isotropic tu
lence. —,E1D(k1D); -•-•, E2D(k2D); - - -, E3D(k3D).

FIG. 14. Isocontours of log10(ẼNL /ẼL) as function ofL anda0 . Maximum

contour level is 3.5 and contour spacing 0.25. The maximum ofẼNL /ẼL is
7331.21 and occurs atL51, a050.0005~lower left-hand corner!.
Downloaded 15 Nov 2007 to 130.237.233.41. Redistribution subject to AI
m-

r
n-

p-
-

of
ia

es
e
e

linear and the nonlinear scenario, induced by streamw
vortices of ordere ande2, respectively. We can then assum
that the strong amplification of streamwise vortices can p
tially compensate the ordere difference between the two
yielding streaks of similar amplitudes. Evidence for this c
be found considering the results of the direct numeri
simulations presented in Berlin and Henningson,14 where
streaks of the same order of magnitude are generated by
linear and the nonlinear mechanism for an initial energy c
responding to av rms of about 1%.

Numerical evidence of the proposed nonlinear recep
ity can be found in the simulations of bypass transition in
boundary layer subject to free-stream turbulence perform
by Jacobs and Durbin.26 They used modes of the continuou
spectrum to represent homogeneous isotropic turbulenc
the inflow of the computational domain (Red*5274). The
free-stream turbulent intensity was chosen to corresp
with the experiment by Roach and Brierly31 and ensemble-
averaged numerical data are in good agreement with lab
tory measurements. Jacobs and Durbin have also shown
the lowest frequency in the synthesized inlet spectrum is
higher than the dominant ones in the region of lamin
streaks, i.e., zero energy initially in the zero or almost f
quency modes, so that a linear receptivity mechanism ca
excluded. Frequencies below those introduced at the i
can only be generated by nonlinear interactions; hence
nonlinear receptivity mechanism is clearly capable of ind
ing strong streaks. On the other hand, we have to cons
also the work of Bertolotti and Kendall30 which represents
the opposite extreme, i.e., when only low frequency strea
wise vortices are introduced in the free stream. In this ca
experiments under controlled conditions provided a vali
tion of the linear model presented in Bertolotti.10 In actual
free-stream turbulence induced transition, both types of
turbances are present and it would depend on the amou
energy in low frequency disturbances whether the linear
the nonlinear mechanism dominates. The two mechani
could interact and cooperate, with the linear one may
dominating at the leading edge and the nonlinear forc
more active further downstream. This is still an open qu
tion and the object of future investigations.

V. DISCUSSION AND CONCLUSION

In the present work we have investigated how fre
stream disturbances affect a laminar boundary layer. In
ticular, we have analyzed the receptivity to oblique waves
the free stream and to continuous spectrum modes. In b
cases, we observe that the formation of streaks is the do
nant feature. The underlying mechanism can be reduced
two-step process, first the generation of streamwise vorti
and then the formation of streaks.

Previous investigators10–13have considered the influenc
of streamwise vortices present in the free stream and h
shown that the subsequent formation of streaks in the bou
ary layer can be explained in terms of linear theory by
lift-up mechanism. The most important feature of the proc
we have investigated is that the same streamwise vort
undergoing algebraic growth, are nonlinearly generated s

u-
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ing from wave-like disturbances in the free stream. As d
cussed in Sec. IV E, linear and nonlinear receptivity mec
nisms are both capable of generation of streaks. In the
case, streamwise independent vortices of small amplitude,
already present in the free-stream disturbance, are ab
penetrate the boundary layer, mainly close to the lead
edge. In the second, the streamwise vorticity is induced
order e2 by nonlinear interactions of free-stream distu
bances also downstream of the leading edge. Which of
two is dominating in a real case, will depend on the ene
content in low frequency modes of the free-stream tur
lence.

The nonlinear mechanism has already been observe
the numerical experiments of Berlin and Henningson.14 They
isolated the different order interactions to show that
streamwise independent modes are the most excited. H
we have used a perturbation expansion which has b
shown to provide an efficient theoretical tool to isolate t
two-step process, see also Ponzianiet al.16 Formally the
present model is valid for small amplitudese of the pertur-
bation. As in all asymptotic expansions, the actual value
the small parametere that can be used, can only be dete
mined empirically. In this case, considering the works
Berlin and Henningson14 and Jacobs and Durbin,26 it seems
that a turbulence level of 3% is small enough for the mo
to apply. Further, in Ponzianiet al.,16 good agreement be
tween DNS and the nonlinear model is obtained for pla
Poiseuille flow for a value ofe50.05. For larger values o
free-stream turbulence we expect the nonlinear scenari
become even more important, but it cannot be correctly c
tured by an amplitude expansion like the one we conside

The model has been validated by comparisons with D
data for the case the forcing is given by a couple of obliq
waves. In order to apply the model to study the bound
layer receptivity to free-stream turbulence, we have explo
the fact that continuous spectrum modes can be used to
resent the free-stream turbulence spectrum.26 This assump-
tion has allowed us to further simplify the study accounti
only for the response of the boundary layer to couples
continuous spectrum modes. An extensive parametric s
has been carried out to isolate the most effective modes
varying the wave numbers (a,b,g).

We have concluded that the formation of streaks is d
to the second order correction induced by the coupling te
in the Orr–Sommerfeld, Squire system and the receptivit
independent of the type of forcing modes. This indicates t
disturbances containing normal velocity in the free-strea
are not more likely to force streamwise vorticity in th
boundary layer, compared to disturbances not containingv.
On the other hand, Berlin and Henningson14 draw the con-
clusion that the normal velocity in the free stream is mo
effective than other components. However, their conclus
was based on a type of disturbance which grew in size in
normal direction as the normal velocity increased. Thus th
results are also consistent with the present ones which s
that this increase in amplification is rather a result of incre
in normal scale~or decrease ing).

The large eddy simulations of Yang and Voke32 also in-
dicated the key influence of the wall normal component
Downloaded 15 Nov 2007 to 130.237.233.41. Redistribution subject to AI
-
-
st

to
g
at

e
y
-

in

e
re,
en

f
-
f

l

e

to
p-
d.
S
e
y
d
p-

f
dy
by

e
m
is
at
,

e
n
e
ir
w
e

f

the free-stream turbulence intensity in provoking transitio
Their results show in fact that the transition process beg
with the production of the Reynolds stresses due to the o
lapping of regions of nonzero fluctuating velocityv and
mean shear]U/]y. From our analysis we find that the com
ponents with streamwise wave number approximately z
are the ones crucial in generating disturbances inside
boundary layer, and that can be induced from nonlinear
teractions of either Orr–Sommerfeld or Squire modes. T
capability of modes with frequency and streamwise wa
number approximately zero to penetrate the shear layer
been demonstrated by different authors,3,23,28,33and we may
thus conclude thatv components active in generating Re
nolds stresses are the ones associated with nearly zero
quency and that they are the ones associated with the se
order solution in our model.

The results also show that the second order forcing d
not depend on the Reynolds number, thus recovering
O(Re2) scaling of the forced response described by strea
wise independent disturbances governed by the O
Sommerfeld, Squire system. We may speculate on the im
cation of this scaling on the Reynolds number dependenc
the forced response in the spatial problem. In a numbe
experiments it has been seen that the growth of the st
amplitude in boundary layers subjected to free-stream tur
lence is proportional to Re, or equivalently that the ene
growth is proportional to Rex'Re2 or downstream distance
If we assume that the Reynolds number dependence in
spatial case would be the same as in the temporal cas
vestigated here, downstream growth of the streak amplit
predicted would be proportional to Re2, i.e., over predicted
by a factor of Re. However, the result found here assume
continuous deterministic forcing. Real turbulence would b
ter be described by a stochastic forcing in a number of w
numbers. Bamieh and Dahleh34 have shown that a stochast
forcing reduces the scaling of the maximum response of
temporal problem from Re2 to Re3/2. This is still a factor
Re1/2 too large. However, the growth in a realistic fre
stream turbulence case would probably further be reduce
the fact that free-stream turbulence decays with downstre
distance. In our model this would correspond to a forci
which decreases with Re, thus further reducing the growth
the streak amplitude.
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