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The intent of the present paper is to study the receptivity of a zero pressure gradient boundary layer
to free-stream disturbances with the aim to isolate the essential features involved in the generation
of streamwise streaks. A weakly nonlinear formulation based on a perturbation expansion in the
amplitude of the disturbance truncated at second order is used. It is shown that the perturbation
model provide an efficient tool able to disentangle the sequence of events in the receptivity process.
Two types of solutions are investigated: the first case amounts to the receptivity to oblique waves
generated by a wave-like external forcing term oscillating in the free stream, the second the
receptivity to free-stream turbulence-like disturbances, represented as a superposition of modes of
the continuous spectrum of the Orr—Sommerfeld and Squire operators. A scaling property of the
governing equations with the Reynolds number is also shown to be valid. The relation between this
nonlinear receptivity process and previously investigated linear ones is also discuss2802©
American Institute of Physics[DOI: 10.1063/1.1456062

I. INTRODUCTION The understanding and prediction of transition require
the knowledge of how a disturbance can enter and interact
The objective of the present work is the study of thewith the boundary layer, commonly referred to as receptivity
stability and receptivity of the boundary layer subjected toof the boundary layer. The disturbances are often character-
free-stream disturbances. From a theoretical point of viewjzed as either acoustic or vortical disturbances convected by
boundary layer stability has traditionally been analyzed inthe free stream. Both types of disturbances have been inves-
terms of the eigensolutions of the Orr—Sommerfeld, Squirgigated by asymptotic methods and a summary of the results
equations that reduces the study to exponentially growingan be found in the reviews by Goldstein and Hult§rand
disturbances. Experimental findings show that transition dug&erscher?. Bertolotti® has assumed as initial disturbances
to turbulence in the free stream is mainly characterized byortical modes, solutions of the linearized Navier—Stokes
the occurrence of streamwise elongated structures which aeguations in the free steam, which are waves periodic in the
very different from the exponentially growing perturbations. spanwise direction and decaying in the streamwise and has
These streamwise structur@s streakg were first identified  studied the boundary layer receptivity in a “linear region”
by Klebanoff in terms of low frequency oscillations in hot excluding the leading edge. He has found receptivity to
wire signals caused by low spanwise oscillations of themodes with zero streamwise wave number and has shown
streaks(Kendall? Westinet al®) and are commonly referred that the growth is most likely connected to the theories of
to as Klebanoff modes. nonmodal growth. To answer the question of which distur-
Further analysis of the Orr—Sommerfeld, Squire equabance present at the leading edge gives the largest distur-
tions (Gustavssofi, Butler and Farelf, Reddy and bance in the boundary layer at a certain downstream posi-
Henningsorf, and Trefetheret al.’) have confirmed that dis- tion, Andersson, Berggren, and Henningsband Luchint?
turbances other than exponentially growing perturbationsiave used an optimization technique adapted from optimal-
may lead to disturbance growth. From a mathematical poingontrol theory. The disturbances they found were also
of view this is due to the non-normality of the Orr— streamwise vortices that caused the growth of streaks, and
Sommerfeld, Squire operator. The physical mechanism bepoth the wall normal disturbance shape and growth rates
hind this linear mechanism is the lift-up induced by stream-agreed well with the findings of Bertolotfiand to experi-
wise vortices that interact with the boundary layer shear thugnental results. Wundrow and Goldstkirused asymptotic
generating streaks in the streamwise velocity componenkxpansions to study the effects of a small amplitude steady
Transition due to these types of disturbances is generallgtreamwise vorticity field on the flow over a flat plate. Their
called bypass transition. results show how an initially linear perturbation of the up-
stream flow leads to strong nonlinear shear layers far down-

aAuthor to whom correspondence should be addressed. Electronic maiftréam Qf the Ieading edge. ' _
henning@mech.kth.se Berlin and Henningsd# have carried out numerical ex-
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periments on how simple vortical free-stream disturbanced. THE PERTURBATION MODEL
interact with a laminar boundary layer, and have identified a he followi define th ) I |
linear and a new nonlinear receptivity mechanism. The non- !N the following we define the streamwise, wall norma

linear one was found to force streaks inside the boundarg‘nd spanwise directions as y, andz, respectively, with

layer similar to those found in experiments on free-stream eIOC|_ty ﬁ)erturp?ﬁlorg=(ut,lt),v¥r)]. All vatrlakilg_s alre madetdtlr;_ K
turbulence and it worked equally well for streamwise and'€nstoniess with respect 1o the constant displacement thick-

: ; nessdy and the free-stream velocity.., (time is made non-
oblique free-stream disturbances. The boundary layer re-. . . )
. . dimensional with respect toS;/U.). The perturbation
sponse caused by the nonlinear mechanism was, dependin . . ) .
- . equations are derived directly from the Navier—Stokes equa-

on the initial disturbance energy, comparable to that of the; . S
linear mechanism, which was only efficient for streamwise, lons where we have superimposed a perturbation field to the

' y base flow, namely the Blasius profile. We consider no-slip

d|stl|er?hnces. N K devel h ical vsi boundary conditions at the wall, solenoidal initial conditions
n the present work we develop a theoretical analysis, .,y iy orger to impose periodic boundary conditions in the

with the aim to isolate the features involved in the generatiorhirections parallel to the wall we assume a parallel base flow.

of streamwise stre_.aks in flows subje_cted to free-stream turAIthough the parallel flow assumption is questionable in the
bulence. We consider a weakly nonlinear model based on @it of |ow streamwise wave numbersx(-0), its use is

perturbation expansion in terms of the amplitude of the dis'supported by the works of Berlin and Henning¥and
turbance, truncated at second order. The model, originallyf,min and Reshoktd’ among others. They show in fact
developed in a previous work for Poiseuille fldRonziant® 4t the generation of streamwise streaks is due to the same
and Ponzianiet al.™), is here extended to boundary layer physical mechanism and that the transient growth of stream-
flows. This implies the inclusion of the continuous spectrumyise independent optimal disturbances is similar for the par-
eigenfunctions in the representation of the first and the seggjle| and nonparallel case.

ond order solutions. To validate the model we first investi- We study the evolution of a disturbance in a boundary
gate a receptivity mechanisms in a boundary layer imposingayer over a flat plate via perturbation theory by expanding

a localized disturbance both in the boundary layer and in théne relevant variables in terms of the amplitude of the distur-
free stream. In particular, we study the long time response dfancee

the system to a couple of obliqgue modes oscillating with a
given frequencyw. For this case the linearized stability u=u@+eu®+eu®+ ...
equations are driven at first order by the external disturbance
and at second order by the quadratic interactions between
first order terms. For the type of disturbance considered, thehereu®,p(© is the given base flow, while remaining terms
presence of obligue waves generates streamwise vorticese unknowns to be determined by the perturbation analysis.
which, in turn, induce the formation of streaks inside theWe consider a general case in which the perturbation equa-
boundary layer. The oblique modes are associatedato ( tions are forced by an external forcing
+ B) wave numbers and their quadratic interactions produce
(0, 2B) wave numbers that correspond, in physical terms, to
an elongated vortical structure, i.e., streamwise countekyith a given initial condition.
rotating vortices. The results show that the generation of  Substituting the expansiat), truncated at second order,
streamwise vorticity, which is a nonlinear mechanism, and itsnto the Navier—Stokes equations and collecting terms of like
subsequent lift-up can indeed be recovered through thgowers ine, one obtains the governing equations for the first
weakly nonlinear formulation. The theory is validated and the second order. These equations can be rewritten in the
through comparison of the results obtained in this case withormal velocityv!), normal vorticity ) (j = 1, 2) formula-
direct numerical simulations. tion, thus obtaining the following Orr—Sommerfeld, Squire
The model is then applied to investigate the response ofystem
the boundary layer to continuous spectrum modes. The Iattgr

p: p(0)+ Ep(1)+ Ezp(2)+ e e, (l)

F(x,y,z,t)=eFD(x,y,z1),

ot oX

are fundamental for the understanding of the interaction be-
tween free-stream vortical eddies and the boundary layer
since they reduce to simple sines and cosines in the fre s 1 PO
stream and can easily be used to represent a free-stream tEJ‘i Ty — — —A} 70+ Du©@ N LD 3)
bulence spectrum. By using continuous modes, which aredt dx Re 72
solutions of the linear problem, the model reduces to solve § 1 qre
second order equation where the forcing is given by the

weakly nonlinear interactions between continuous modes. An ,
extensive parametric study is carried out to analyze the in- NI(;J): -
teraction between Orr—Sommerfeld as well as Squire modes,

in particular considering the effect of the disturbance wave _ g 9 .

numbers. A scaling property of the resolvent of the Orr— N(,j)= _(Es(lj)_ 5%”) 6)
Sommerfeld and Squire problem with the Reynolds number

is shown to be valid for the results obtained. with

0 1 I
_p2y©@ L = a2] ()= ND 4 )
)A D2 — — = A2y W=ND+FD, (2

32 32

5(31')
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9 . P . 1
N — (-1)G-1)2 —,(-1),(-1) —iu0)(D2—K2)—i 20— pD2_K2)2
s U™t +ayu v Los=iau®(D?—k?)—iaD?u® - = (D2~ k??,
J . ) — (0)
n Eu(J ~Dyli-1), ©6) C=—ipDu'™, (14)

1
= —iou@®+ —(D2—-k2
A 9 ' ‘ 9 . . ‘CSQ lau‘™’+ Re(D k )
SP=—yl-Dy-D4 (-1, (-1
X % We introduce the inner product and the corresponding

J o a energy norm associated to the kinetic energy of the distur-
+ EU(]_ w(=1), (7)  bance velocity according to
= w’\H "w = "w O = q
S§)=%u(jl)w(jl)+%v(i”W“l) E fo g"Mady=(Mq,q)=|ale. (15)

P In this investigation we consider two different types of
4+ wi=Dyl-1), (8)  solutions. In the first case the system of equations at first
9z order is forced by an external force that we assume pulsating

W|th a given frequency,
The first and second order equations have constant coe 9 a o

cients with respect to the streamwise and spanwise d|rec- FO=F(y)el i+ F*(y)eie,

tions, hence we consider the Fourier transform in the)(

plane by making the following form assumption for the so-where thex indicates the complex conjugate. At second or-

lution g = (v @, 5 T: der, the problem is forced by the nonlinear interactions of
first order terms

=P > X IN@RIRHTT (16)

k+p=m I+g=n

aP(xy,20=2 X ai(y,Dellem b

and likewise for the external forcing. The wave numbers ar

defined as follows: ?n the second case, we assume that the solution for the first

order is given by a continuous spectrum mode representa-
agn=m2m/L,, (99  tion, and we solve only the second order problem.
The initial conditions are

qi(t=0)=qy, j=1,2. (17)

With regard to the boundary conditions we enforce no-slip

whereL, andL, are, respectively, the streamwise and span-C onditions

wise lengths of the periodic domain. Hereafter, for reading () —p, ()=} 7M=0 (18)
convenience, the subscriptandn are omitted and we refer
to the equations for the individual wave number,(,8,) as  while we assume boundedness in the free stream. The re-

Bo=n2mlL,, (10)

K2,= a2+ B2, (12)

(a,B). The resulting equations in matrix form read maining velocities are recovered by
d~ A\ . ay . .
(EM —L)q(l)zPF, (12 u= F(aDv(')—Bn(J)), (19
(—M L)q<2>—P S 3 REREEHT @ 0= D30+ ay). (20
k+p=m I+q=n k

where A. The solution to the forced problem

Los O - k?~D? 0 We consider here the harmonically forced problem de-
C Lso’ - 0 1)’ scribed by the system of Egél2) and (13) whose solution
can be split into two partésee Ponzianét al%): one repre-

ia _ , . senting the long time asymptotic solutigf’" and the other
. . (—iaD k= —iBD o I . T
N=| D P= 5 0 _ _ describing the initial transient behavigf? ",

_ —i ia S
1B =g +qi", j=1,2. (21)

L is the linear operator that defines the classical Orr—First we consider the equations for the long time behavior at
Sommerfeld, Squire problem first order
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(+ioM—L)q®"=PE, *=t/Re, iw*=iwRe, 0*=v/BRe, 7*=7;
(22) (27)

with the new scaling we can rewrité¢4) as

whose long time response to the harmonic forcing is given . .
by ts=iaReu®(D2-k?)—ia ReD?u®—(D2-k?)?,

W =ppW-=5M =0, y=0, y=y.

O =(+iwN—L) 1Pi(y)eiat, (23) c*=—ibu(®, (28)

The equations that describe the transient at first order are £§Q:—iaReu(°)+(D2—k2).
given by ] o
The scaled equations exhibit a dependency only on the two
il\?l d<”T= E&(”T parameterse Re andk?, rat.her tharq,B,Re as in the origi-
at ' nal Orr—Sommerfeld, Squire equations. In the new variables
T e the resolvent can be written as
q =—-q®", t=0, (24) N S
H _ — — HP k) .
lA)(l)TzDzS(l)T: 7](1)T=0, y=0, Y=Y, H(”UM Y ”E Rd|(lw ML ”E , 29
R whereE is the energy norm with respect to the original vari-
where we have assumed zero initial conditianss 0. Equa-  ables ancE* is the energy norm with respect to the scaled
tions (22) and (24) provide a complete description of the ones. It is possible to show, see Kreissal,'® that for
harmonic forced linear problem; the solution of E84) is o Re=0 (that corresponds to the maximum response of the

obtained as described in a later section. systery the norm of the resolvent(iw*M—L*) Y|c
With regard to the second order solution, the structure okcgles as the Reynolds number as-Re Hence, Eq.(29)

the quadratic interaction term implies that several frequencYmplies that the norm of the original resolveti(iwM

components are excited at second order. As for the first orde_rI: -1 | h f the R Id b
problem we can split the governing equations into two parts ) e scales as the square ot the Reynolds number.
Further, it is possible to shovgee, e.g., Ref. 2&hat if

that describe the long time and the transient behavior. With . ) :
we consider Reynolds number independent forcing the am-

regard to the former, we point out that at first order the’ . . .
plitude of the response in the original unscaled problem is

asymptotic solution in time is characterized by given fre-". . I
guenciest w, which implies that only the zero ands2fre- given at leading ordeQ(Re), by the wall normal vorticity
' In fact, for streamwise independent modes the norm of

guency components are excited at second order. However, §s

demonstrated by Trefethest al,” the maximum response of € retsolvggéo; the_||_rr:d|vf|dutal %%Ts?r:n m%rfeldt ar:ﬁ Squire
a system occurs for=0 and w=0; hence we reduce our operators iSO(Re). The factor IS then due 1o the re-

analysis to the most effective part, that is the one associatet?0"'s¢ of the Squire operator forced by @éRe) wall nor-

to zero frequency and zero streamwise wave number mal velocity v, via the coupling term of the system. This
implies that the induced streamwise vorticity, given by the

—I:dgz)L=?B (25) solution of the Orr—Sommerfeld equation, @& Re), while
. ) . the streamwise velocity, obtained from the Squire equation,
with solution given by is O(R&).
A~ (oL A an
P =(—0)7*15. (26

C. The initial value problem

Al ,
Here the termd ; represent the convolution sum (&6) In accounting for the transient solution it is worth mak-
where only the contribution with zero frequency is consid-ing some observations. Since the eigenfunctions of the eigen-
ered. Observe that this procedure can also be applied to tRgyye problem associated to the Orr—Sommerfeld, Squire
solution corresponding to the continuous spectrum modesystem form a complete set, see DiPrima and HaB&terd
Indeed, if a first order solution is represented as a continuou§ajwen and Grosch, we can expand the perturbation solu-
spectrum mode, it is still characterized by a given frequenc;fion a(i)T (i=1, 2) as a superposition of modes. For Blasius
that corresponds to the real part of the associated eigenvalu.[(;oundary Iayér flow. the domain is semibounded and the
The equations that describe the transient behavior at Seg'pectrum has a con,tinuous and a discrete part, see Grosch
ond order accounts for different forcing terms that arise fromand Salwer?! These authors have shown that in this case the

the self-interactions between first order transient SOIUtioniolution can be expanded in a sum over the discrete modes
and the quadratic interactions between the transient solutiognd in an integration over the continuous spectrum. This

and the long time solutions. analysis can be simplified using a discrete representation of
the continuous spectrum by cutting the upper unbounded do-
main at a givery.. . Although the eigenvalues differ from the

It is possible to show a Reynolds number dependence fogxact representation of the continuous spectrum, particularly
the norm of the resolvent of the forced problems defined byas the decay rate increas@®e Fig. 2, their sum has been
Egs.(23) and(26). Let us introduce a new set of variables to found to describe correctly the solution to the initial value
rescale the Orr—Sommerfeld, Squire problem asproblem, see Butler and FarreDbserve that formally, it is
Gustavssoft,Reddy and Henningsdhand Kreisset al, 8 possible to expand the solution using integrals over the con-

B. Scaling of forced solution
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tinuous spectrum. However, the added computational comboundary layer. In order to determine the eigenfunctions of

plexity, without any significant gain in accuracy, justifies thethe continuous spectrum we consider first the Orr—

use of the present simpler formulation. Sommerfeld equations for a small three-dimensiof&i)
With regard to the selection of a set of functions that aredisturbance with no-slip boundary conditions at the wall

orthogonal to the set of Orr—Sommerfeld, Squire eigenfuncy (0)=Dv(0)=0 and boundedness @t In particular in

tions, we exploit the orthogonality relation between thethe free stream the mean flow is constéirg., u‘®¥=1 as

eigenfunctions of the Orr—Sommerfeld, Squire systaph ( y/&* >3) and the Orr—Sommerfeld equation reduces to

and those of the adjoint Orr—Sommerfeld, Squire problem _ _

(9"). From the definition of adjoint, it is easy to show that (D*~Kk)%—iaRe{(1—c)(D*~Kk*)}v=0, (39

the e?genvalues of the adjoint are the comp!ex conjugate F%herec is the phase velocity. The above equation admits the

the eigenvalue of the er—Som_merfeId, Squire system. Th|§0”0ng solution, see Grosch and Salw&n:

leads to the orthogonality condition

(M3 G)=C5 (30 v=Ae"+Be W+Ce W, yowx, (36)
jrHk ) — jk

where 3, is the Kronecker symbol an@ a constant that where

normalizes the eigenfunctions and that needs to be deter- k2+y2+iaRe(1—c)=0.

mined. Hence, for the initial value problem, we can exploit

the completeness of the Orr—Sommerfeld, Squire eigenFrom this, an analytical expression for the eigenvalues is

modes for bounded flows to recovaf)", derived

_ —ix 1
T —zl: K, o e M c=1—i

0 s where y represents the wave number in the wall-normal di-
+> Bj(~ )e'xi Y, (31)  rection and assumes any positive real value.
: i From a numerical point of view the crucial point is to
where (}\IOS,',}l) and ()\J.Sq,’;h.), respectively, are the eigenval- enforce the boundedness of the eigenfunctions-ate. We
ues and eigenvectors of the non-normgk operator, and the  follow the method introduced by Jacobs and Dufbiw re-
homogeneous s, operator and?;lp is the solution of the COVer the correct.behawor of the. solution in the free stream
Squire problem forced by the Orr—Sommerfeld eigenfuncSC!Ving the equation as a two-point boundary value problem
tions. The coefficienk| andB; are determined from a given using the spectral collocation method based on Chebyshev

2
Y
1+

k2

: (37)

a Re

_ e~ . polynomial.
initial condition (v, 7o) according to(30), We need a total of four boundary conditions: the first
1 (v-[F Hik2—Dp2 0o Vo Ewo are the no slip at the wall. The arbitrary normalization is
Ki= >2)o 1o 0 11~ ]ay (32 3(y.)=1, wherey., is the maximum value of in the wall-
770 normal direction. The condition of boundednessyas~ is
1 fy. ~§,P He—p2 o lA)o converted to a nu'merilcal condition at two specific values of
Bj=—; " . |dy, (33 y. In fact Eq.(36) implies
2k2 0 gl' 0 1 Mo
e 2 2 2\ a—ky
where D+ yv=C(k“+y)e (39
~ s in the free stream. The missing boundary condition is derived
(5), > (34) evaluating relation(38) at two different points in the free
0 l streamyq,y,,

are the modes of the adjoint system, see Schmid and D%+ %
; 2 (Dv+vy7 )yl
Henningsort: T T aklyzyy), (39)
(D% + yZE)YZ

D. Continuous spectrum modes

A similar procedure is used to determine the continuous
modes of the Squire equation. However in this case the free-
tream behavior of the solution is given only by the two

omplex exponentials. Hence, from a numerical point of

The Orr—Sommerfeld eigenvalue problem in a semi-
bounded domain is characterized by a continuous and a di
crete spectrum. The discrete modes decay exponentially wit
the distance from the waII,. wh|lg the modes of the continu- ey it suffices to enforce the arbitrary normalization condi-
ous spectrum are nearly sinusoidal, whereby the free-stream ~
disturbances can be expanded as a superposition of contintio" 7(y=)=1.
ous modes. Since they are associated to stable eigenvalu%s,_l_he numerical method
they are not relevant for the classical linear stability analysis;™
however they are fundamental for the understanding of the The temporal eigenvalue systems and the forced prob-
interaction between free-stream vortical eddies and théems derived in the preceding sections are solved numeri-
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cally using a spectral collocation method based on Chebysince we use an analytical formulation. The oblique waves
shev polynomials. In particular, we consider the truncatedare generated by a harmonic localized wall-normal volume

Chebyshev expansion force given by
N .
— F=f(y)coq ax)coq Bz)e'" 42
¢(7]):n§=:0 ¢"Tn(n), F=f(y)cog ax)cog Bz) (42)
with

where

Tn(7)=cognarccog7)) (40) f(y)= o [y-yo) %207
is the Chebyshev polynomial of degraedefined in the in- o

terval —1=x=<1, and the discretization points are the

. . In our computations we choose R400, and (,=*+
Gauss—Lobatto collocation points, P €.~ B)

=(0.2:0.2). We analyze two cases: for the first one the
| ) forcing is in the boundary layeg=2.2), for the second the
mi=cosy, J=01... N, forcing is in the free streamyf=8). The results presented
) _ here correspond to the latter case with0.5.
that is, the extrema of theth-order Chebyshev polynomial The formation of streamwise streaks in the boundary
Ty plus the endpoints of the interval. The calculations arfayer is initiated by two oblique waves characterized by
performed using at least 301 Chebyshev collocation p.oints iQave numbersd, + 8)=(0.2,-0.2). In the linear long time
y- The wall-normal domain varies in the rangey), with  regnonse of the system to the external forcing, there is no
y- well outside the boundary layétypically y..=50). The  gyidence of streaks generation. However, if one accounts for
Chebyshev intervat-1< 7=<1 is transformed into the com- {he second order interactiofis) particular those that force
putational domain &y=y., by the use of the mapping the wave number (0, 2)] it is easy to observe that the sec-
1-79 ond order correction corresponds to a system of strong
Y=Yom5—- (41) streamwise longitudinal vortices in the boundary layer. These
results are in agreement with the work of Berlin and
The unknown functionsj=q(y) are then approximated Henningsofi* where the generation of streaks in the bound-
by ary layer is triggered by the nonlinear evolution of two ob-
lique waves.

N
AN — AN

= T .
) nZO aTo(m) B. Comparison to DNS data: Linear and nonlinear

— case
The Chebyshev coefficient$', n=0, ...,N are determined _ . _

by requiring the different equations derived frait2) and ~ In order to validate the perturbation model and its capa-
(13) to hold for " at the collocation pointy; , j=p, bility to select the most effective interactions as a second

N—p, with p=2 for the fourth order Orr—SommerfeIdlé(q’ua- order correction, we compare our results with direct numeri-
tion and p=1 for the second order Squire equation. Thet@l simulations of the forced evolution problem and an initial
boundary conditions are enforced by adding the equations YalUe problem. The DNS code, reported in Lundbladh
N \ et al:, is used to solve the ter_nppral problem for a parallel
— _ — B Blasius base flow. For a quantitative comparison we analyze
nzo q Tn(O)—nZO 9 Tn(y=)=0, the DNS results in terms of an amplitude expansion, so as to

N N isolate the linear, quadratic, and cubic part of the solution,
and the two additional conditions for the Orr—Sommerfeldsee Henningsoet al2®> We in fact run the same case with

problem three different small amplitude disturbances. Different Fou-
N N rier modes are then extracted and compared with the results
"DT,(0)= "DT,(Y.)=0, obtained using the perturbation model.
q n q 8%
n=0 n=0

We first consider the velocity field at early times, where
where DT,, denotes they derivative of thenth Chebyshev the problem is governed by E@24) and the initial value

polynomial. problem is solved as a superposition of the discretized eigen-
modes. Comparisons of the three velocity component for the
11l. RECEPTIVITY TO LOCALIZED FORCING Fourier mode &,8)=(0.2, 0.2) are shown in Fig. 1 at time

t=100. The good agreement confirms the validity of the
discrete representation of the continuous spectrum. An eigen-

To validate the model, we test the analytical results vervalue map for the Orr—Sommerfeld operator, obtained using
sus direct numerical simulations of the type presented byN=301 Chebyshev polynomials, is shown in Fig. 2 together
Berlin and Henningsot In order to trigger the formation of with the exact analytical solution of E¢37). The 150 least
streamwise streaks in the boundary layer we consider thdamped eigenfunctions are taken into account in the expan-
response of the system to a couple of oblique waves. This ision presented in Fig. 1. We re-emphasize here that this ap-
similar to the investigations reported in Ref. 14, althoughproximation is able to correctly describe the evolution of
here we are able to understand the mechanism in more detalisturbances localized in the free stream.

A. Disturbance generation and parameter settings
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FIG. 1. Velocity components of the
linear perturbation velocity for the ob-
ligue wave with @,8)=(0.2,0.2).
Forced problem for Re400, vy,
=20, yo=8, 0=0.5, »=0.2, andt
=100. DNS result:+, real part, <,
imaginary part. Perturbation model:
- - -, real part; —, imaginary part.

With regards to the asymptotic time behavior, the nu-ber. In Fig. 6 we compare the continuous spectrum modes of
merical simulations are run to time=50000 and the re- the Orr—Sommerfeld operator fow=1, 3=0.2 and vy
sponse is compared with the perturbation results. Figure 3=0.628 at two different Reynolds numbers R800 and
depicts the velocity components associated to the modRe=500). We observe that the modes differ only at the edge
(a,8)=(0.2,0.2). The small differences observed in the fig-of the boundary layer and these differences are small. Hence,
ures are probably due to the accumulation of truncation erwe assume that the forcing term is Re independent. This
rors in the DNS after such a long time integration. For theassumption is confirmed for large Reynolds number by the
same problem, the second order correction with 8), @and  findings of Jacobs and Durbffi,who have shown that the
w=0 is displayed in Fig. 4. The formation of streamwise penetration depth of the modes is proportional adRe) °**
streaks in the longitudinal component is clearly seen. A simiwhich implies that for large values of Re this depth becomes
lar result(not reported is observed in the case of localized smaller and smaller.
forcing inside the boundary layey{=2.2, 0=0.4). How- In Fig. 7 we report the plot of the maximum of the
ever, in the latter case, the streaks exhibit an amplitudstreamwise second order velocifgormalized by the first

smaller than the previous ca&bout one thiril
Let us consider the transient part of the solution. The

time evolution of the energy of the response of the forced
problems corresponding to two different wave numbers
[(0.2,0.2), (1,1) and for the same values gf, and o (y, o}
(yo=8, 0=0.5) is shown in Fig. 5. The figure shows that the sl
energy of the high wave number disturbances attains its
asymptotic value on a scale that is one order of magnitude

less than the one associated to the short wave nutboén °
for the first and the second order correctipns Ci el

of
[e]

(o]

DOOOOOOOOOOOOOO..-..ooicoo.uu..
OO

IV. ROLE OF CONTINUOUS SPECTRA IN THE il
RECEPTIVITY MECHANISM '

A. Reynolds number scaling
-0.9F
As shown in Sec. IIB, it is possible to prove that the
; . . . .
08

resolvent, which governs the solution to the forced Orr— o 02 04 06
Sommerfeld, Squire system, & Re?). For the second prob- Cr

l_em we address, th_e forcmg IS given by nonlinear Ir]terac-FlG. 2. Numerically obtained Orr—Sommerfeld spectriiisz 301 Cheby-
tions between continuous spectrum modes, and we analyzZ§ey modes, Re400, (@, 8)=(0.2, 0.2), and/;a=20. The solid line dis-

the forced solution at different values of the Reynolds num-plays the exact continuous spectrum.
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_20 1 1 1 L
5 10 15 20 25
10 T T T T
~(1 - FIG. 3. Velocity components of the
v ~ - - linear perturbation velocity for the ob-
-10f A - - lique wave with ,B)=(0.2,0.2).
s a7 Forced problem for Re400, vy,
201 “ao - 1 =25, y,=8, =05, »=0.2, andt
30 . == . . =50000. DNS resuit- - -, real rt;
0 5 10 15 20 25 —, imaginary part(thick lines. Per-
10 turbation model - - -, real part; —,
T 1 T T

imaginary part(thin lines.

order energy and by the square of)Res a function of the ther computationgnot reported verify the validity of the
streamwise and spanwise wave numbers for a given value atcaling down to Ree100. However, for lower values of the

v, note that the second order distribution is displayed withReynolds number the maximum response is obtained for val-
reference to the ¢, B) values of the corresponding first ues of 8 less than the one associated to>R®0. Thus, it
order terms. The figure clearly confirms the scaling in thesuffices to investigate the forced results only at one Reynolds
energy norm found in Sec. Il B. The results show that thenumber, since they can be subsequently scaled to arbitrary
maximum amplitude is obtained far~2 andB~0.15. Fur- Re>100.

x 10
6 T T T T
PR
9 4r " N\\ 1
'U/( ) 2t ¢ o i
14 \\\____
0 —
_2 J. 1 Il 1
0 5 10 15 20 25
x10°
' ' ' ' FIG. 4. Velocity components of the
~ (2) second order perturbation velocity for
v 2r ’4"“"‘*&“ 7 (a,B)=(0,0.4). Forced problem for
’/ \‘\-.____ Re=400,y.=25, y,=8, 0=0.5, and
0 = > == t=50 000. DNS result- - -, real part;
oo 77 —, imaginary part(thick lines. Per-
2 il i I 1 turbation model - - -, real part; —,
0 5 10 15 20 25 imaginary part(thin lines.
x10°
4 T T T T
-2 L I 1 L
[} 5 10 15 20 25

Downloaded 15 Nov 2007 to 130.237.233.41. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



1434 Phys. Fluids, Vol. 14, No. 4, April 2002 Brandt, Henningson, and Ponziani

a) . . . . . i . . 1 T T T T T T T T T
/,—/"—4-__ 09F .
Elef) osf 4
Eoo(aﬂ) 1
- 071 4
06 08 1 1:2 1%4 1‘6 1.8 2
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t
FIG. 5. Time evolution of the energy normalized with respect to its o
asymptotic value(a) First order correction(b), second order correction; —, . .
(1.1 - - - =(0.2.0.2 FIG. 7. Forcing induced by Orr—Sommerfeld continuous spectrum modes
(a,8)=(1,1); - - -, (a,8)=(0.2,0.2). 7 ! -
for y=0.27. Contour levels of the maximum of the streamwise second order
velocity (normalized by the first order energy and?Ré\ote that the second
) ) ) ) ) order distribution is displayed with reference to the, 8) values of the
B. Nonlinear interaction and linear forcing corresponding first order terms. Maximum value 0.1056, contour spacing

. . . 0.011.
In a previous work it has been demonstrated that nonllnp 0

earities play a fundamental role in boundary layer receptiv-
ity, see Berlin and Henningsdfi.n the present work we use
a model based on a perturbation expansion in the amplitude
of the disturbance truncated at second order to single out thation corresponds to two eigenmodes of the continuous
mechanisms at work during the generation of streamwisgpectrum with wave numbersa(B,y) and (a,—j,7)
streaks in flat plate boundary layers subject to free-streafyhose damping rate is set to zero. At second order we ac-
turbulence. count for the quadratic interactions between the two continu-
Since it is possible to rather well represent free-streany ;g spectrum modes and we focus our attention on the
t_urbulence as a superposition of modes associated to _the Cofb, 28) contribution. The transient part of the solution is
tinuous spectrum, see, for example, Jacobs and D_G?lwa neglected and the asymptotic time response is analyzed. We
simplify the problem analyzing the weakly nonlinear re- ,psore that the second order forcing to the (8) Znodes
sponse of the system to a single pair of oblique ContinUOUR, 4 ces strong streamwise vorticity, that in turn forces the
spect.rum modes. . formation of streaks inside the boundary layer by the linear
First we ana_lyze the problem associated FO the Orr_Iift-up mechanism. This two-step process, first the nonlinear
Sommerfeld continuous spectrum modes. The first order so- . . . . .
generation of streamwise vortices and then the linear forcing
of the streamwise streaks, is completely captured by the
15 , : : : : : : : : weakly nonlinear model. Figure 8 shows that the nonlinear
forcing of the Orr—Sommerfeld, Squire systé?ﬁg, shown
in Fig. 8@)] induces second order spanwise and normal to
wall velocities[see Fig. &)]. As a consequence, streamwise
vorticity is produced which then creates streamwise streaks
[see Fig. &)] through the forcing of the Squire equation due
to the coupling ternjwhich is approximately 10 times larger
than the corresponding second order forcing, compare Figs.
8(a) and 8d)]. Further, Fig. 8) shows that the second order
correction ino® w? is O(Re) (v‘?|,|w?|~600), while
- - o - . Fig. 8c) that the streamwise velocity i©(Re?) (|u®)|
ab L I : P ~17000), confirming the scaling property of the resolvent
L B L L C of the Orr—Sommerfeld and Squire problems discussed at the
end of Sec. Il B.

-5 ' X L 1 L L 1 L L
4]

R The same analysis has been carried out also considering

Y the second order forcing induced by Squire continuous spec-

FIG. 6. Distribution of the Orr—Sommerfeld eigenfunctionw$or a=1, trum modes. The results show that the same physical mecha-

B=0.2: —, |[v]| for Re=500; - - -, |[v| for Re=300; - - -, Rep) for Re  Nism is induced and the amplitude of the generated streaks is
=300; - - -, Im(v) for Re=300. comparable for the two different classes of modes.
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Ty
FIG. 8. Second order solution corre-
sponding to the nonlinear interactions
of a couple of obliqgue Orr-
15 : 800 ) Sommerfeld modes associated to the
~o 10 20 30 40 50 0 10 20 30 40 50 wave numbers (0.5£0.2,0.628), at
Y Yy Re=500: (a) forcing to the Orr—
' Sommerfeld equatiort—) and to the
(c) 18000 (d) 5 Squire equatior(- - -); (b) normal to
wall (—) and spanwise component of
velocity (- - -); (c) streamwise compo-
0 nent of velocity; (d) forcing to the
12000 Squire equation associated to the cou-
~ . ~ i —i 14,(2)
u(z) lﬂU/,U(z)-s pling term —i U v'%).
-10
6000
-15
0 -20
0 5 10 15 20 0 5 10 15 20
) ()
C. Parametric study damping rate of the continuous spectrum modes to zero. This

implies, for example, that the increasing amplification for

Qigher values ofr in Figs. 9a), 9(b), 10(a), and 1@b) would

be damped for sufficiently high values of the streamwise
wave number. However this does not present a problem in
gpplying the results to a real free-stream turbulence case
ince realistic free-stream turbulence spectra have little en-
rgy content in these higher wave numbers. This will be
iscussed in the next section.

In order to find the most effective interactions between
continuous spectrum modes we carried out a parametri
study varying the wave numbers in the range <Odl
<2,0.05<B<1, and 0.25y<20.9 at a given Reynolds
number. In Figs. 9 and 10 we report, respectively, the result
corresponding to forcing induced by Orr—Sommerfeld and®
Squire continuous spectrum modes. The figures depict th
maximum amplifications of the streamwise velocity compo-
nent normalized with respect to the energy denEityf the

nonlinearly interacting modes. In particular, we plot D. Filtering with turbulent energy spectrum and

streak spacing

2

Ala,B)= maxyw In the results presented so far we assumed unit energy in
E each Fourier component of the free-stream disturbance. In
u®(a,B,7) order to pr_edi(_:t _v_vhich length scales may be important in a
B(a,y)= maxg———F real transition initiated by free-stream turbulence, we associ-
ate each mode with a coefficient proportional to the energy
u®(a,B,y) spectrum of typical homogeneous and isotropic turbulence.

C(By)=max,——F— We use here the von Kaan spectrum, which is proportional

to «* for large scales and matches the Kolmogorov-
The results show that the maximum amplification is attaineq5/3)-law for small scales. It has the form

for a~2 and B~0.15 (thus implying that the streaks are

associated to spanwise wave numper0.3) independently ~ E3(k3p)

of the type of forcing modes. The results also indicate that  E3P(«,B,v)= >

the maximum response is associated to low valuesg ¢¥ AmK3p

~0.25), i.e., structures of large wall normal extent. We ob- 4

serve that in the case the forcing is given by the Orr— :g ! 1.606 x5l ) —Lq, (43

Sommerfeld modes we find a lower maximum fer0.1, Amk3p (1.35+ (k3pl)?)
B~0.2, andy~1.25.

One should also note that these figures tend to bias higivherex;p=a?+ B2+ 72, L is an integral length scale and
wave numbers, since they are in practice more damped thas the total turbulent kinetic energy, defined as the integral

low ones. Recall in fact that for simplicity we have put the over all k’'s of the spectrum. It is possible to show that the

Downloaded 15 Nov 2007 to 130.237.233.41. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



1436 Phys. Fluids, Vol. 14, No. 4, April 2002

a)

0.8

0.6

04r

f L A r T L L L
0.2 0.4 06 08 1 12 1.4 16 18 2

(67

5

=2
° ° o °
2 & 5 2

o
w

T
T T T
/\ L L n ' .

0.2 03 0. 06 07 0.8 0.9 1

o1

Brandt, Henningson, and Ponziani

0.8

06

0.4

0.9

0.8

07}

0.5H

0.4

D-sﬂ

A fl s L
0.1 0.2 03 0.4 05 06 0.7 o8 0.9 1

B

FIG. 9. Boundary layer response to forcing induced by nonlinear interac-

tions of Orr—Sommerfeld modes. Contour levels of the maximum amplifi-
cation of the streamwise component of velocity at=R3€0, y..=50: (a)
A(a,B) for 0.25<y<20.9; (b) B(a,y) for 0.05<B<1; (c) C(B,y) for
0.1<a<2. The maximum is 10145 and occurs at=2, 8=0.15, y
=0.25. Maximum contour level is 9500 and contour spacing 1000.

integral length scalé 11~0.69_ and that the length scale of
the eddies with the maximum energylis,.~3.5L. We note
that this spectrum, given in Tennekes and Lurfiféy a good

FIG. 10. Boundary layer response to forcing induced by nonlinear interac-
tions of Squire modes. Contour levels of the maximum amplification of the
streamwise component of velocity at R800, y,.=50: (a) A(«a,B) for
0.25< y<<20.9;(b) B(«, ) for 0.05<8<1;(c) C(B,y) for 0.1<a<2. The
maximum is 10 586 and occurs at=2, 8=0.15, y=0.25. Maximum con-
tour level is 10 000 and contour spacing 1000.

andvy’'s to smaller values, while thg's are less affected. The
maximum amplification is attained fak~0.3, f~0.1 for

approximation to homogeneous turbulence. The filtered rethe case the forcing is given by the Orr—Sommerfeld modes

sults are reported in Figs. 11 and 12 fo=3, q=1; the
figures show that the filtering moves the more effective

and «~0.3, B~0.15 for the Squire case; the corresponding
values ofy is 0.25 independently of the type of the forcing
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FIG. 11. Boundary layer response to forcing induced by nonlinear interac- dary | forcing induced b i .
tions of Orr—Sommerfeld modes filtered by turbulent kinetic energy spec—_IG' 12. Bo_un ary layer response to orcing induced by nonlinear interac-
trum. Contour levels of the maximum amplification of the streamwise com-tions of Squire modes filtered by turbulent kinetic energy spectrum. Contour
ponent of velocity at Re300, y..=50: (8) A(a,8) for 0.25< y<20.9; (b) levels of the maximum amplification of the streamwise component of ve-
B(a,y) for 0.05< B<1: (¢) C(B.7) for 0.1<a<2. The maximum is 1106 OCIty at Re=300,y..=50: (&) A(a,p) for 0.25<y=20.9; (b) B(«,y) for
and occurs aw=0.3, 8=0.1, y=0.25. Maximum contour level is 1050 0.05< <1 (¢) C(B,9) for 0.1<a<2. The maximum is 1485 and occurs
and contour spacing, 100 ' at«=0.3, §=0.15, y=0.25. Maximum contour level is 1450 and contour

' spacing 100.

modes. We note also that in the case the forcing is given by  One of the objectives of the present work is to find the
the Orr—Sommerfeld modes, a lower local maximum is stillwave numbers associated to free-steam disturbances which
present ata~0.1, B~0.15, andy~0.33. Similar results are most effective in the generations of streamwise vortices.
were obtained for different choices of the integral lengthMatsubara and Alfredsséhin their experimental work ob-
scaleL. served that the spanwise distance to the first minimum of two
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point velocity correlations, which closely corresponds to halfstreamwise streaksee Figs. 9 and 200n the other hand,
the streak spacing, stays almost constant in the downstreafor the linear mechanism to work, only streamwise or almost
direction. This suggests that the boundary layer growth doesmdependent modes, with a definite spanwise modulation, can
not affect the streak development. When scaling these resulte considered. Therefore in a real case of free-stream turbu-
with the local displacement thickness the characteristidence, it is plausible to assume that larger total forcing is
length scale close to the leading edge is approximativelynvolved in the nonlinear process than in the linear one. To
206* +106*, i.e., centered around a spanwise wave numbequantify, we consider the turbulent kinetic energy spectrum
B~0.3. This is close to thes’s for which our simplified for homogeneous and isotropic turbulence defined by Eg.
temporal model predicts the largest response. In the experi43). Frequency spectra of the free-stream turbulence are
ments of Matsubara and Alfreds€Brthe growth of the usually reported from laboratory measurements. By Taylor
boundary layer implies a variation of the spanwise scale witthypothesis they can be related to one-dimensional spectra for
the respect to the local displacement thickness. In our modethe streamwise wave numbew. Formally the one-

we do not account for the growth of the boundary layer, butdimensional spectrurg® is obtained fromE3P by

we are still able to predict the first step of the receptivity

. . . . » E3D 2
process, i.e., the formation of streamwise vortices. 1D E Kip
E(kip)=| ——|1——|d«ap,
KlDK3D K3D

E. Linear vs nonlinear receptivity

. 9 . . . _
A linear mechanism for streak generation caused by thg®® Hinzé? it represents the energy in all the Fourier com

diffusion of a free-stream streamwise vortex into the bound-po.nents with wave ”“mb‘”w’ corresponc_img ta, g ory
ary layer has been studied by Anderssehalll and (since the turbulence is assumed to be isotiopibe one-

Luchini.2 using the boundary layer equations and by Wun_d|menS|onaI spectrum derived from the expression in Eq.
. ) . (43) can be written as
drdow and Goldsteif by means of asymptotic expansions.

These studies assume the presence of the vortex at the lead- 18 1.606
ing edge. Bertolottf used a different method to calculate the EP(kip)= o5 PNTLE
initial streamwise vortices, but still studied a linear mecha- (1.35+ (k1pl)?)

nism. Here we propose a nonlinear model for receptivity,
originating from oblique modes in the free stream, with forc-\, -\« haracterized by wave numbem,B). A two-

. 2 . . B .
ing at ordere, and in this section we want to discuss the yinengional energy spectrum can be defined according to
relevance of the proposed mechanism in comparison with the

i i i i o 2D
strongl%r_(lj;rect forcing at orderpresented in the works cited 20 _ E30— E“"(k2p)
above? (@.8)=| VS ks

Our results show that modes in a wide range of wave
numbersa, B, y are almost equally effective in inducing with K§D= a®+ B2, which yields in our case

Here instead, we want to look at the energy in each plane

E?P(kyp)=27k2p

2 1/3

1.606_1’3(m) (4.05+ 11L2k3,)T(1/3)
' 2D

X Lq,
165\/7(1.35+ L2k2,)T(5/6) a

whereI" represents the gamma function. The three energjunction EZ2P. In the nonlinear case oblique waves are con-
spectra versus the respective wave vector are displayed Bidered: the integral is now evaluated for larger values of
Fig. 13 for L=3 and the total energg=1. We can now and the corresponding range Bf
estimate the amount of energy involved in the lind&y,, B @y (B

) : = Ey =4[ da E2Pdp.
and in the nonlinear mechanisigy, . Values of the span- NL w Bol2

wise wave numbeg of the generated streaks are assumed to ) o )
be in the rang@ e[ By, B,]. In the linear scenario, only the The ratio between the two energies is then a function of the

contribution from waves with low values of is considered, ntégral length scaleL and of the integration limits,

such that Enu/EL = (EnL/EL) (@p,@1,B0,B1,L). We can letBy,a;
a0 B, —o0, since the energy spectrum is decaying for large wave
EL=4J daf E?Pdp, numbers. We also assume for simplicityo=8,, such
0 BO

that Ey /E. = (EnL/EL) (@,L). Contour levels of

wherea and 8 assume only positive values and the factor 41001(Eni /Ey) are displayed in Fig. 14. One can note that
in front of the integral is justified by the symmetry of the the largest valueE,, /E, =7331) is attained for the lowest
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10 . - ‘ linear and the nonlinear scenario, induced by streamwise
vortices of ordere ande?, respectively. We can then assume
that the strong amplification of streamwise vortices can par-
tially compensate the order difference between the two,
yielding streaks of similar amplitudes. Evidence for this can
be found considering the results of the direct numerical
simulations presented in Berlin and Henningsbnyhere
streaks of the same order of magnitude are generated by the
linear and the nonlinear mechanism for an initial energy cor-
responding to a s of about 1%.

Numerical evidence of the proposed nonlinear receptiv-
ity can be found in the simulations of bypass transition in a
boundary layer subject to free-stream turbulence performed
by Jacobs and Durbif. They used modes of the continuous
spectrum to represent homogeneous isotropic turbulence at
the inflow of the computational domain (Re=274). The
free-stream turbulent intensity was chosen to correspond
FIG. 13. Turbulent kinetic energy spectra in homogeneous isotropic turbuyith the experiment by Roach and Briéﬂ)and ensemble-
lence. — E*(k1p); - E*(kz0); - - - E*Xkap). averaged numerical data are in good agreement with labora-
tory measurements. Jacobs and Durbin have also shown that
the lowest frequency in the synthesized inlet spectrum is far
nl']l_igher than the dominant ones in the region of laminar
streaks, i.e., zero energy initially in the zero or almost fre-
quency modes, so that a linear receptivity mechanism can be

obtained by filtering at values of 4 and 6 Hz. Using TayloreXCIUded' Frequencies below those introduced at the inlet

hypothesis, these values can be transformed to nondimeff&"! only be generated by nonlinear interactions; hence the
sional valu,es ofay~0.001, 0.0015 for Rg =300. In this nonlinear receptivity mechanism is clearly capable of induc-

range, the energy in modes responsible for the linear rece|5rJg strong streaks. On the other hand, we have to consider

fivity process is about 500 times lower than the energy :-also the work of Bertolotti and Kendafl which represents

volved in the nonlinear process. the opposite extreme, i.e., when only low frequency stream-

We have shown that the nonlinear receptivity mechanisrﬁ(\'ise vortices are introduced in the free stream. In this case,
can be seen as a two-step process: first the generation 8}<periments under controlled conditions provided a valida-

streamwise vortices and then the formation of streaks vi%Ion of the linear modell presented n Bertol&&nn actual .
lift-up effect. As seen in Fig. ®), a strongO(Re), amplifi- ree-stream turbulence induced transition, both types of dis-

cation is associated to the generation of streamwise vortice%'rbancgs are present and.'t would depend on the am ount of
nergy in low frequency disturbances whether the linear or

from nonlinear interaction of oblique modes. The successive

formation of streaks is a linear process, present in both thg1e norlllnear mechanism dommqtes. Thg two mechanisms
could interact and cooperate, with the linear one maybe

dominating at the leading edge and the nonlinear forcing
more active further downstream. This is still an open ques-
tion and the object of future investigations.

values ofL and a considered1 and 0.0005, respectively
and the ratio decreases for increasing values of the para
eters. In Kendall's experiment8with a free-stream velocity
U, =11 m/s, theu,,s, representing the streak’s profile, was

45

V. DISCUSSION AND CONCLUSION

In the present work we have investigated how free-
stream disturbances affect a laminar boundary layer. In par-
ticular, we have analyzed the receptivity to oblique waves in
the free stream and to continuous spectrum modes. In both
cases, we observe that the formation of streaks is the domi-
nant feature. The underlying mechanism can be reduced to a
two-step process, first the generation of streamwise vorticity
and then the formation of streaks.

Previous investigatot$*3have considered the influence
of streamwise vortices present in the free stream and have
shown that the subsequent formation of streaks in the bound-
ary layer can be explained in terms of linear theory by the
FIG. 14. Isocontours of lag(Ey, /E,) as function ofL andao. Maximum  lift-up mechanism. The most important feature of the process
contour level is 3.5 and contour spacing 0.25. The maximuf/E_ is ~ We have investigated is that the same streamwise vortices
7331.21 and occurs &t=1, ay=0.0005(lower left-hand corner undergoing algebraic growth, are nonlinearly generated start-

3.5

25F

L h L ! £ 1 L L
0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

Qg
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ing from wave-like disturbances in the free stream. As disthe free-stream turbulence intensity in provoking transition.
cussed in Sec. IV E, linear and nonlinear receptivity mechaTheir results show in fact that the transition process begins
nisms are both capable of generation of streaks. In the firswith the production of the Reynolds stresses due to the over-
case, streamwise independent vortices of small amplitude lapping of regions of nonzero fluctuating velocity and
already present in the free-stream disturbance, are able toean sheafU/dy. From our analysis we find that the com-
penetrate the boundary layer, mainly close to the leadingponents with streamwise wave number approximately zero
edge. In the second, the streamwise vorticity is induced aare the ones crucial in generating disturbances inside the
order €% by nonlinear interactions of free-stream distur- boundary layer, and that can be induced from nonlinear in-
bances also downstream of the leading edge. Which of thteractions of either Orr—Sommerfeld or Squire modes. The
two is dominating in a real case, will depend on the energycapability of modes with frequency and streamwise wave
content in low frequency modes of the free-stream turbunumber approximately zero to penetrate the shear layer has
lence. been demonstrated by different authdfd?333and we may
The nonlinear mechanism has already been observed ihus conclude thag components active in generating Rey-
the numerical experiments of Berlin and Henning$bfihey  nolds stresses are the ones associated with nearly zero fre-
isolated the different order interactions to show that thequency and that they are the ones associated with the second
streamwise independent modes are the most excited. Hererder solution in our model.
we have used a perturbation expansion which has been The results also show that the second order forcing does
shown to provide an efficient theoretical tool to isolate thenot depend on the Reynolds number, thus recovering the
two-step process, see also Ponziatiall® Formally the O(R#) scaling of the forced response described by stream-
present model is valid for small amplitudesof the pertur- wise independent disturbances governed by the Orr—
bation. As in all asymptotic expansions, the actual value ofSommerfeld, Squire system. We may speculate on the impli-
the small parametet that can be used, can only be deter-cation of this scaling on the Reynolds number dependence of
mined empirically. In this case, considering the works ofthe forced response in the spatial problem. In a number of
Berlin and Henningsdﬁ and Jacobs and Durbffiit seems experiments it has been seen that the growth of the streak
that a turbulence level of 3% is small enough for the modebmplitude in boundary layers subjected to free-stream turbu-
to apply. Further, in Ponziargt al,*® good agreement be- lence is proportional to Re, or equivalently that the energy
tween DNS and the nonlinear model is obtained for planegrowth is proportional to Re-Re? or downstream distance.
Poisedille flow for a value o&=0.05. For larger values of If we assume that the Reynolds number dependence in the
free-stream turbulence we expect the nonlinear scenario tgpatial case would be the same as in the temporal case in-
become even more important, but it cannot be correctly capvestigated here, downstream growth of the streak amplitude
tured by an amplitude expansion like the one we consideredredicted would be proportional to Re.e., over predicted
The model has been validated by comparisons with DNy a factor of Re. However, the result found here assumes a
data for the case the forcing is given by a couple of obliquecontinuous deterministic forcing. Real turbulence would bet-
waves. In order to apply the model to study the boundaryter be described by a stochastic forcing in a number of wave
layer receptivity to free-stream turbulence, we have exploitediumbers. Bamieh and Dahféthave shown that a stochastic
the fact that continuous spectrum modes can be used to refprcing reduces the scaling of the maximum response of the
resent the free-stream turbulence spectfifihis assump- temporal problem from Reto Re’? This is still a factor
tion has allowed us to further simplify the study accountingRe"? too large. However, the growth in a realistic free-
only for the response of the boundary layer to couples oftream turbulence case would probably further be reduced by
continuous spectrum modes. An extensive parametric studine fact that free-stream turbulence decays with downstream
has been carried out to isolate the most effective modes bgiistance. In our model this would correspond to a forcing
varying the wave numbersy(,7). which decreases with Re, thus further reducing the growth of
We have concluded that the formation of streaks is dudhe streak amplitude.
to the second order correction induced by the coupling term
in the Orr—Sommerfeld, Squire system and the receptivity i
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