
European Journal of Mechanics / B Fluids 67 (2018) 54–64

Contents lists available at ScienceDirect

European Journal of Mechanics / B Fluids

journal homepage: www.elsevier.com/locate/ejmflu

The effect of polydispersity in a turbulent channel flow laden with
finite-size particles
Walter Fornari a,*, Francesco Picano b, Luca Brandt a
a SeRC and Linné FLOW Centre, KTH Mechanics, SE-100 44 Stockholm, Sweden
b Department of Industrial Engineering, University of Padova, Via Venezia 1, 35131, Padova, Italy

a r t i c l e i n f o

Article history:
Received 27 January 2017
Received in revised form 19 June 2017
Accepted 2 August 2017
Available online 23 August 2017

Keywords:
Suspensions
Particle-laden flows
Particle/fluid flow

a b s t r a c t

We study turbulent channel flows of monodisperse and polydisperse suspensions of finite-size spheres
by means of Direct Numerical Simulations using an immersed boundary method to account for the
dispersed phase. Suspensions with 3 different Gaussian distributions of particle radii are considered
(i.e. 3 different standard deviations). The distributions are centered on the reference particle radius of
the monodisperse suspension. In the most extreme case, the radius of the largest particles is 4 times
that of the smaller particles. We consider two different solid volume fractions, 2% and 10%. We find that
for all polydisperse cases, both fluid and particles statistics are not substantially altered with respect to
those of the monodisperse case. Mean streamwise fluid and particle velocity profiles are almost perfectly
overlapping. Slightly larger differences are found for particle velocity fluctuations. These increase close
to the wall and decrease towards the centerline as the standard deviation of the distribution is increased.
Hence, the behavior of the suspension ismostly governedby excluded volumeeffects regardless of particle
size distribution (at least for the radii here studied). Due to turbulent mixing, particles are uniformly
distributed across the channel. However, smaller particles can penetrate more into the viscous and buffer
layer and velocity fluctuations are therein altered. Non trivial results are presented for particle-pair
statistics.

© 2017 Elsevier Masson SAS. All rights reserved.

1. Introduction

Particle laden flows are relevant in several industrial applica-
tions andmanynatural and environmental processes. Among these
we recall the sediment transport in rivers, avalanches and pyro-
clastic flows, plankton in seas, planetesimals in accretion disks, as
well as many oil industry and pharmaceutical processes. In most
cases the carrier phase is a turbulent flow due to the high flow
rates. However, due to the interaction between particles and vor-
tical structures of different sizes the turbulence properties can be
substantially altered and the flow may even be relaminarized. Ad-
ditionally, particles may differ in density, shape, size and stiffness.
The prediction of the suspension rheological behavior is hence a
complex task.

Interesting and peculiar rheological properties can be observed
already in the viscous and low-speed laminar regimes, and for
suspensions of monodispersed rigid spheres. Depending for ex-
ample on the shear rate and on particle concentration, suspen-
sions can exhibit shear thinning or thickening, jamming (at high
volume fractions), and the generation of high effective viscosities
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and normal stress differences [1–3]. More generally, due to the
dispersed solid phase, the fluid response to the local deformation
rate is altered and the resulting suspension effective viscosity
µe differs from that of the pure fluid µ [4–7]. In laminar flows,
when the particle Reynolds number Rea becomes non negligible,
the symmetry of the particle pair trajectories is broken and the
microstructure becomes anisotropic. This leads to macroscopical
behaviors such as shear-thickening and the occurrence of normal
stress differences [8–10]. Recently, itwas also shown that in simple
shear flows, the effective viscosity µe depends non-monotonically
on the system confinement (i.e. the gap size in a Couette flow).
In particular, minima of µe are observed when the gap size is
approximately an integer number of particle diameters, due to the
formation of stable particle layers with low momentum exchange
across layers [11]. Concerning plane Poiseuille flow in narrow
channels and in the Stokes regime, Yeo and Maxey [12] found that
the highest particle concentration is found at centerline. However,
a particle layer is also found at the walls. Finally, in the Bagnoldian
or highly inertial regime the effective viscosity µe increases lin-
early with shear rate due to augmented particle collisions [13].

When particles are dispersed in turbulent flows, the dynamics
of the fluid phase can be substantially modified. Already in the
transition from the laminar to the turbulent regime, the pres-
ence of the solid phase may either increase or reduce the critical
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Reynolds number above which the transition occurs. Different
groups [14,15] studied for example, the transition in a turbulent
pipe flow laden with a dense suspension of particles. They found
that transition depends upon the pipe to particle diameter ratio
and the volume fraction. For smaller neutrally-buoyant particles
they observed that the critical Reynolds number increases mono-
tonically with the solid volume fraction φ due to the raise in effec-
tive viscosity. On the other hand, for larger particles it was found
that transition shows a non-monotonic behavior which cannot be
solely explained in terms of an increase of the effective viscosity
µe. Concerning transition in dilute suspensions of finite-size par-
ticles in plane channels, it was shown that the critical Reynolds
number above which turbulence is sustained, is reduced [16,17].
At fixed Reynolds number and solid volume fraction, also the initial
arrangement of particles was observed to be important to trigger
the transition.

For channel flows laden with solid spheres, three different
regimes have been identified for a wide range of solid volume
fractions φ and bulk Reynolds numbers Reb [18]. These are lam-
inar,turbulent and inertial shear-thickening regimes and in each
case, the flow is dominated by different components of the total
stress: viscous, turbulent or particle stresses.

In the fully turbulent regime, most of the previous studies have
focused on dilute or very dilute suspensions of particles smaller
than the hydrodynamic scales and heavier than the fluid. In the
one-way coupling regime [19] (i.e. when the solid phase has a neg-
ligible effect on the fluid phase), it has been shown that particles
migrate from regions of high to low turbulence intensities [20].
This phenomenon is known as turbophoresis and it is stronger
when the turbulent near-wall characteristic time and the particle
inertial time scale are similar [21]. In these inhomogeneous flows,
Sardina et al. [22,23] also observed small-scale clustering that to-
getherwith turbophoresis leads to the formation of streakyparticle
patterns [22]. When the solid mass fraction is high and back-
influences the fluid phase (i.e. in the two-way coupling regime),
turbulence modulation has been observed [24,25]. The turbulent
near-wall fluctuations are reduced, their anisotropy increases and
eventually the total drag is decreased.

In the four-way coupling regime (i.e. dense suspensions for
which particle–particle interactions must be considered), it was
shown that finite-size particles slightly larger than the dissipative
length scale increase the turbulent intensities and the Reynolds
stresses [26]. Particles are also found to preferentially accumulate
in the near-wall low-speed streaks. This was also observed in open
channel flows laden with heavy finite-size particles [27].

On the contrary, for turbulent channel flows of denser suspen-
sions of larger particles (with radius of about 10 plus units), it was
found that the large-scale streamwise vortices are attenuated and
that the fluid streamwise velocity fluctuation is reduced [28,29].
The overall drag increases as the volume fraction is increased from
φ = 0% up to 20%. As φ is increased, turbulence is progressively
reduced (i.e. lower velocity fluctuation intensities and Reynolds
shear stresses). However, particle induced stresses show the op-
posite behavior with φ, and at the higher volume fraction they are
themain responsible for the overall increase in drag [29]. Recently,
Costa et al. [30] showed that if particles are larger than the small-
est turbulent scales, the suspension deviates from the continuum
limit. The effective viscosity alone is not sufficient to properly
describe the suspension dynamics which is instead altered by
the generation of a near-wall particle layer with significant slip
velocity.

As noted by Prosperetti [31], however, results obtained for solid
to fluid density ratios R = ρp/ρf = 1 and for spherical particles,
cannot be easily extrapolated to other cases (e.g. when R > 1).
This motivated researchers to investigate turbulent channel flows
with different types of particles. For example, in an idealized

scenario where gravity is neglected, we studied the effects of
varying independently the density ratio R at constant φ, or both
R and φ at constant mass fraction, on both the rheology and the
turbulence [32]. We found that the influence of the density ratio
R on the statistics of both phases is less important than that of an
increasing volume fraction φ. However, formoderately high values
of the density ratio (R ∼ 10)we observed an inertial shear-induced
migration of particles towards the core of the channel. Ardekani
et al. [33] studied instead a turbulent channel flow laden with
finite-size neutrally buoyant oblates. They showed that due to the
peculiar particle shape and orientation close to the channel walls,
there is clear drag reduction with respect to the unladen case.

In the present study we consider again finite-size neutrally
buoyant spheres and explore the effects of polydispersity. Typ-
ically, it is very difficult in experiments to have suspension of
precisely monodispersed spheres (i.e. with exactly the same di-
ameter). On the other hand, direct numerical simulations (DNS)
of particle laden flows are often limited to monodisperse suspen-
sions. Hence, we decide to study turbulent channel flows laden
with spheres of different diameters. Trying to mimic experiments,
we consider suspensions with Gaussian distributions of diameters.
We study 3 different distributions with σa/(2a) = 0.02, 0.06
and 0.1, being σa the standard deviation. For each case we have
a total of 7 different species and the solid volume fraction φ is
kept constant at 10% (for each case the total number of particles
is different). We then consider a more dilute case with φ = 2% and
σa/(2a) = 0.1. The reference spheres have radius of size a = h/18
where h is the half-channel height. The statistics for all σa/(2a) are
compared to those obtained for monodisperse suspensions with
same φ. For all φ, we find that even for the larger σa/(2a) = 0.1
the results do not differ substantially from those of the monodis-
perse case. Slightly larger variations are found for particle mean
and fluctuating velocity profiles. Therefore, rheological properties
and turbulence modulation depend strongly on the overall solid
volume fraction φ and less on the particle size distribution. We
then look at probability density functions of particle velocities and
mean-squared dispersions. For each species the curves are similar
and almost overlapped. However, we identify a trend depending
on the particle diameter. Finally, we study particle-pair statistics.
We find that collision kernels between particles of different sizes
(but equal concentration), resemble more closely those obtained
for equal particles of the smaller size.

2. Methodology

2.1. Numerical method

In the present study we perform direct numerical simulations
anduse an immersed boundarymethod to account for the presence
of the dispersed solid phase [34,35]. The Eulerian fluid phase is
evolved according to the incompressible Navier–Stokes equations,

∇· uf = 0 (1)

∂uf

∂t
+ uf · ∇uf = −

1
ρf

∇p + ν∇
2uf + f (2)

where uf , ρf , p and ν = µ/ρf are the fluid velocity, density,
pressure and kinematic viscosity respectively (µ is the dynamic
viscosity). The immersed boundary force f, models the boundary
conditions at the moving particle surface. The particles centroid
linear and angular velocities, up and ωp are instead governed by
the Newton–Euler Lagrangian equations,

ρpVp
dup

dt
=

∮
∂Vp

τ · n dS (3)

Ip
dωp

dt
=

∮
∂Vp

r × τ · n dS (4)
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Fig. 1. Fraction of particles with radius a′ , Na′/Ntot , for each Gaussian distribution.

where Vp = 4πa3/3 and Ip = 2ρpVpa2/5 are the particle volume
andmoment of inertia; τ = −pI+2µE is the fluid stress, with E =(
∇uf + ∇uT

f

)
/2 the deformation tensor; r is the distance vector

from the center of the sphere while n is the unity vector normal to
the particle surface ∂Vp. Dirichlet boundary conditions for the fluid
phase are enforced on the particle surfaces as uf |∂Vp = up+ωp×r.
The fluid phase is evolved in the whole computational domain
using a second order finite difference scheme on a staggeredmesh.
The time integration of both Navier–Stokes and Newton–Euler
equations is performed by a third order Runge–Kutta scheme. A
pressure-correction method is applied at each sub-step. Each par-
ticle surface is described by NL uniformly distributed Lagrangian
points. The force exchanged by fluid and the particles is imposed
on each lth Lagrangian point and is related to the Eulerian force
field f by the expression f(x) =

∑NL
l=1Flδd(x − Xl)1Vl. In the latter

1Vl represents the volume of the cell containing the lth Lagrangian
point while δd is the Dirac delta. This force field is calculated
through an iterative algorithm that ensures a second order global
accuracy in space.

Particle–particle interactions are also considered.When the gap
distance between two particles is smaller than twice themesh size,
lubrication models based on Brenner’s and Jeffrey’s asymptotic
solutions [36,37] are used to correctly reproduce the interaction
between the particles of different sizes. A soft-sphere collision
model is used to account for collisions between particles and
between particles and walls. An almost elastic rebound is ensured
with a restitution coefficient set at 0.97. These lubrication and
collision forces are added to theNewton–Euler equations. Formore
details and validations of the numerical code, the reader is referred
to previous publications [34,38,39].

2.2. Flow configuration

We consider a turbulent channel flow between two infinite
flat walls located at y = 0 and y = 2h, where y is the wall-
normal direction while x and z are the streamwise and spanwise
directions. The domain has size Lx = 6h, Ly = 2h and Lz = 3h
with periodic boundary conditions imposed in the streamwise and
spanwise directions. A mean pressure gradient is imposed in the
streamwise direction to ensure a fixed value of the bulk velocityU0.
The imposed bulk Reynolds number is equal to Reb = U02h/ν =

5600 and corresponds to a Reynolds number based on the friction
velocity Reτ = U∗h/ν = 180 for the unladen case. The friction
velocity is defined as U∗ =

√
τw/ρf , where τw is the stress at the

wall. A staggered mesh of 1296 ×432 ×649 grid points is used to
discretize the domain. All results will be reported either in non-
dimensional outer units (scaled byU0 and h) or in inner units (with
the superscript ‘+’, using U∗ and δ∗ = ν/U∗).

Table 1
Summary of the simulations performed (Np is the total number of particles). For
each case, the number of particles for each species is reported: Na′/a=1 is the num-
ber of reference particles (with the mean radius equal for all suspensions); N±σa ,
N±2σa and N±3σa are the number of particles of radius ±σa , ±2σa and ±3σa from
the mean radius.

φ(%) σa/(2a) Np Na′/a=1 N±σa N±2σa N±3σa

10 0 5012 5012 0 0 0
10 0.02 4985 1993 1206 269 21
10 0.06 4802 1920 1162 258 21
10 0.10 4474 1790 1082 241 19
2 0 1002 1002 0 0 0
2 0.10 896 358 217 48 4

Fig. 2. Instantaneous snapshot of the instantaneous streamwise velocity on three
orthogonal planes together with a fraction of particles for the case σa/(2a) = 0.1.

The solid phase consists of non-Brownian, neutrally buoyant
rigid spheres of different sizes. In particular we consider Gaussian
distributions of particle radiiwith standard deviations ofσa/(2a) =

0.02, 0.06 and 0.1. In Fig. 1 we show for each σa/(2a), the fraction
of particles with radius a′, Na′/Ntot (with Ntot the total number of
spheres). The number of particles of each species is also shown in
Table 1. For all cases, the reference spheres have a radius to channel
half-width ratio fixed to a/h = 1/18. The reference particles
are discretized with Nl = 1721 Lagrangian control points while
their radii are 12 Eulerian grid points long. In Fig. 2 we display
the instantaneous streamwise velocity on three orthogonal planes
together with a fraction of the particles dispersed in the domain
for σa/(2a) = 0.1. In this extreme case, the size of the smallest and
largest particles is a′/a = 0.4 and 1.6. These particles are hence
substantially smaller/larger than our reference spheres.

The simulations start from the laminar Poiseuille flow for the
fluid phase since we observe that the transition naturally occurs
at the present moderately high Reynolds number due to the noise
added by the particles. Particles are initially positioned randomly
with velocity equal to the local fluid velocity. Statistics are col-
lected after the initial transient phase. At first, we will compare
results obtained for denser suspensions with solid volume fraction
φ = 10% and different σa/(2a), with those of the monodisperse
case (σa/(2a) = 0). We will then discuss the statistics obtained for
φ = 2% and σa/(2a) = 0 and 0.1. The full set of simulations is
summarized in Table 1.

3. Results

3.1. Fluid and particle statistics

Weshow in Fig. 3(a) themean fluid streamwise velocity profiles
in outer units, U(y), for σa/(2a) = 0, 0.02, 0.06 and 0.1. We
find that the profiles obtained for monodisperse and polydisperse



W. Fornari et al. / European Journal of Mechanics / B Fluids 67 (2018) 54–64 57

Fig. 3. Mean fluid streamwise velocity profile (a) and fluid velocity fluctuations in the streamwise (b), wall-normal (c) and spanwise (d) directions for different standard
deviations σa/(2a) = 0, 0.02, 0.06, 0.1.

suspensions overlap almost perfectly. No differences are observed
even for the case with larger variance σa/(2a) = 0.1. In Fig. 3(b),
(c), (d) we then show the profiles of streamwise, wall-normal
and spanwise fluctuating fluid velocities,u′

f ,rms, v
′

f ,rms, w
′

f ,rms. These
profiles exhibit small variations andnoprecise trend (as function of
σa/(2a)) can be identified. The larger variations between the cases
are found close to the wall, y ∈ (0.1; 0.2), where the maximum
intensity of the velocity fluctuations is found, and at the centerline.
In the latter location,wenotice that fluctuations are always smaller
for σa/(2a) = 0.1. In this case, many particles are substantially
larger than the reference oneswith a′/a = 1. Around the centerline
thesemove almost undisturbed therefore inducing slightly smaller
fluid velocity fluctuations.

The mean particle streamwise velocity is reported in Fig. 4(a).
As for the fluid phase, no relevant difference is found in the pro-
files of Up(y) for the cases studied. Larger variations (also with
respect to fluid velocity fluctuations) are found in the profiles of
u′
p,rms, v

′
p,rms, w

′
p,rms, depicted in outer units in Fig. 4(b), (d), (f), and

in inner units in Fig. 4(c), (e), (g). From these we can identify two
different trends. Very close to the wall (in the viscous sublayer),
particle velocity fluctuations increase progressively as σa/(2a) is
increased, especially in the streamwise direction. This is probably
due to the fact that as σa/(2a) is increased, there are smaller
particles that can penetrate more into the viscous and buffer lay-
ers. However, being smaller and having smaller inertia, they are
more easily mixed in all directions due to turbulence structures,
and hence experience larger velocity fluctuations. Secondly, we
observe smaller velocity fluctuations around the centerline for
σa/(2a) = 0.1. As σa/(2a) increases, larger particles are preferen-
tially found at the centerline and move almost unperturbed in the
streamwise direction, hence the reduction in u′

p,rms, v
′
p,rms, w

′
p,rms.

Between the viscous sublayer and the centerline, due to turbulence
mixing it is difficult to identify an exact dependence on σa/(2a).

Concerning the solid phase, we show in Fig. 5 the particle con-
centration profiles φ(y) across the channel. From Fig. 5(a) we see
that the concentration profiles are similar for all σa/(2a). However,

as previouslymentionedwe notice that as σa/(2a) is increased, the
peak located at y ≃ 0.1 is smoothed, while the concentration at
the centerline is also increased. We then show in Fig. 5(b), (d) the
concentration profiles in logarithmic scale of the different species
for the cases with σa/(2a) = 0.02 and 0.1; the counterparts in
linear scales are shown in Fig. 5(c), (e), where the curves of the
species with larger and smaller diameters have been removed for
clarity. If we compare the different curves to the reference case
with a′/a = 1, we observe that the initial peakmoves closer to and
further from thewalls for decreasing and increasing a′/a. For larger
a′/a, the peak is also smoothed until it disappears for a′/a > 1.2 in
the most extreme case with σa/(2a) = 0.1. In the latter, for each
species with a′/a > 1 the concentration grows with y and reaches
themaximumvalue at the centerline. On the other hand, the initial
peak of the smallest particles is well inside the viscous sublayer.

We conclude this section by performing a stress analysis. In-
deed, the understanding of the momentum exchange between
fluid and solid phases in particle laden turbulent channel flows is
conveniently addressed by examining the streamwise momentum
or average stress budget. As in Picano et al. [29] we can write the
total stress budget (per unit density) as the sum of three terms:

τ = τV + τT + τP (5)

where τ = ν
dUf ,x
dy

⏐⏐⏐
w

(
1 −

y
h

)
is the total stress ( d

dy

⏐⏐⏐
w

denotes a

derivative taken at the wall), τV = ν(1−φ) dUf ,x
dy the viscous stress,

τT = −⟨u′
c,xu

′
c,y⟩ = −(1 − φ)⟨u′

f ,xu
′

f ,y⟩ − φ⟨u′
p,xu

′
p,y⟩ the turbulent

Reynolds shear stress of the combined phase, and τP = φ⟨σp,xy/ρf ⟩

the particle induced stress. Additionally, we define the particle
Reynolds stress τTp = −φ⟨u′

p,xu
′
p,y⟩. The total stress balance for

the monodisperse case is shown in Fig. 6(a) (the curves for the
polydisperse suspensions are not depicted being the differences
with the actual case negligible). The particle-induced stress is
obtained by difference through the total budget. We observe that
the major contribution to τ comes from the turbulent Reynolds
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Fig. 4. Mean particle streamwise velocity profile (a) and particle velocity fluctuations in outer and inner units, in the streamwise (b)–(c), wall-normal (d)–(e) and spanwise
(f)–(g) directions, for different standard deviations σa/(2a) = 0, 0.02, 0.06, 0.1.

stress term τT and in particular from the contribution of the fluid
phase (the particle Reynolds stress amounts to ∼ 10% of τT ).
The particle induced stress τP is important throughout the whole
channel (though sub-leading with respect to τT ) and especially
close to the wall. In Fig. 6(b), (c), (d) we finally compare τT , τTp
and τP for all σa/(2a). Although the profiles for τT are almost
perfectly overlapping, we observe that the maximum of τTp and τP
are slightly lower for σa/(2a) = 0.1. Closer to the centerline τP is
smaller for σ/(2a) = 0 and 0.1.

Next, we consider the friction Reynolds number Reτ = U∗h/ν,
for each case. For the monodisperse case we have Reτ = 196 while

for the polydisperse cases we obtain Reτ = 196, 195 and 194 for
σa/(2a) = 0.02, 0.06 and 0.1. The friction Reynolds number is
hence larger than that of the unladen case (Reτ = 180) due to an
enhanced turbulent activity close to thewall, and to the presence of
an additional dissipativemechanism introduced by the solid phase
(i.e. τP ) [29,30]. The fact that Reτ is smaller for σa/(2a) = 0.1 is
related to the fact that the contribution to the total stress from
both τTp and τP is slightly reduced with respect to all other cases
(see Fig. 6(c),(d)). The small discrepancy is however of the order of
the statistical error.
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Fig. 5. (a) Mean local volume fraction φ(y) in the wall-normal direction for different σa/(2a) = 0, 0.02, 0.06, 0.1. Mean local volume fraction for each particle species of the
case with σa/(2a) = 0.02: logarithmic (b) and linear (c). Mean local volume fraction for each particle species of the case with σa/(2a) = 0.1: logarithmic (d) and linear (e).

The results presented clearly show that in turbulent channel
flows laden with finite-size spheres, the key parameter in defining
both rheological properties and turbulence modulation is the solid
volume fraction φ. Even in the most extreme case, σa/(2a) = 0.1,
for which the smallest and largest particles have radii of 0.4 and
1.6 times that of the reference particles, both fluid and particle
statistics are similar to those of the monodisperse case. To gain
further insight, we also look at the Stokes number of the different
particles. The Stokes number Sta is the ratio between the typical
particle time scale and a characteristic flow time scale.We consider
the convective time as flow characteristic time Tf = h/U0 =

2h2/(Rebν) and introduce the particle relaxation time defined as
Tp = 4Ra2/(18ν). The effect of finite inertia (i.e. of a non negligible
Reynolds number) is taken into account using the correction to the
particle drag coefficient CD proposed by Schiller & Naumann [40]:

CD =
24
Rea

(
1 + 0.15Re0.687a

)
. (6)

Assuming particle acceleration to be balanced only by the non-
linear Stokes drag, and the Reynolds number to be roughly con-
stant, it can be found that V (t) ∼ exp

(
−t/T ′

p

)
, where T ′

p =

Tp/
(
1 + 0.15Re0.687a

)
. For sake of simplicity and in first approxima-

tion we define a shear-rate based particle Reynolds number Rea =

Reb(a/h)2. The final expression for the modified Stokes number is

St ′a =
Tp
Tf

1(
1 + 0.15Re0.687a

) =

(
2a
h

)2 1
36

RebR
1(

1 + 0.15Re0.687a

)
(7)

For the reference particles we obtain Rea = 17.3 and St ′a = 0.93.
For the smallest particles (a′/a = 0.4) we find Rea = 2.8 and
St ′a = 0.24, while for the largest (a′/a = 1.6) Rea = 44.2 and
St ′a = 1.63. Hence, when the radius of the largest particles is 4
times that of the smallest particles, there is an order of magnitude
difference in the Stokes number. It is also interesting to note that
albeit the use of a nonlinear drag correction, if we average the
Stokes numbers of largest and smallest particles we get that of the
reference case (St ′a = 0.93).

A more appropriate way of defining the particle Reynolds num-
ber that appears in Eq. (6) is by using the mean slip velocity, Rep =

⟨|Uf − Up|⟩(2a)/ν. Using this definition of Rep we find that St ′a =

0.95 for the reference particle, St ′a = 0.27 for a′/a = 0.4, and St ′a =

1.76 for a′/a = 1.6. These results are similar to those reported
above and as before, the average of St ′a for the largest and smallest
particles is similar to the mean Stokes number of the suspension
and to that of the monodisperse case. Hence, 30% of the particles
respond more slowly to fluid-induced velocity perturbations than
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Fig. 6. Shear-stress balance in the wall-normal direction (a). The overall stress τ is the sum of the viscous stress τV , the turbulent stress τT (i.e. the Reynolds stress), and
the particle-induced stress τP ; τTP is the particle Reynolds stress. Comparison of the turbulent stress (b), particle turbulent stress (c), particle-induced stress (d) for different
σa/(2a).

the reference particles, while other 30% respond more quickly.
On average, however, the suspension responds with a time scale
comparable to that of the monodisperse case, therefore behaving
similarly from a statistical perspective. A similar argument can be
made regarding the spatial filtering by the finite-size particles. In-
deed, for all caseswe have a constant volume fractionφ and results
clearly show that the excluded volume effects on the statistics are
similar for all σa. We expect this to be the case for all volume
fractions φ in this semi-dilute regime. This finding can be useful
for modeling the behavior of rigid-particle suspensions.

To check this, we performed 2 additional simulations with φ =

2% and σa/(2a) = 0 and 0.1. The fluid and particle velocity fluc-
tuations in the streamwise, wall-normal and spanwise directions
are shown in Fig. 7(a), (c), (e) and in Fig. 7(b), (d), (f). The mean
fluid and particle streamwise velocities are not reported since the
curves are again almost perfectly overlapping. Regarding the fluid
velocity fluctuation profiles, we see that the results of the mono
and polydisperse cases are almost identical. As for φ = 10%,
particle velocity fluctuation profiles exhibit larger variations with
respect to the monodisperse results. In particular, we notice that
the profiles vary in a similar way for both φ: smaller fluctuations
throughout the channel, except in the near-wall layer where the
maxima of streamwise and wall-normal fluctuations are found
(y ∈ (0.1; 0.2)). However, the largest relative difference between
the velocity fluctuation profiles of themono andpolydisperse cases
is only about 7%.

Finally, we also computed the friction Reynolds number and
found a similar behavior as for φ = 10%. Indeed, for both φ and
σa/(2a) = 0.1, the friction Reynolds number Reτ decreases by
about 1% with respect to the case with σa/(2a) = 0. For φ = 2%,
Reτ decreases from 186 to 183.

3.2. Single-point particle statistics

We wish to give further insight on the behavior of the solid
phase dynamics by examining the probability density functions,

pdf s, of particle velocities. In particular, we report the results
obtained for the polydisperse suspension with σa/(2a) = 0.1, as
this revealed to be themost interesting case in theprevious section.
The distributions of the streamwise and wall-normal components
of the particle velocity are calculated in thewhole channel (for each
particle species) and are depicted in Fig. 8(a) and (b). The pdf of the
spanwise component is not shown since it is qualitatively similar
to the wall-normal one. For both components, the pdf s of particles
with different radius a′ are similar around the modal value. The
larger differences are found in the tails of the pdf s and hence we
report them in logarithmic scale.

Concerning the pdf s of streamwise particle velocities, we see
that the variance σ 2

u increases as the particle radius is reduced,
while it decreases for increasing a′. In particular, the pdf s are
identical for velocities higher than themodal valuewhile the larger
differences are found in the low velocity tails. Smaller particles are
indeed able to closely approach the walls and hence translate with
lower velocities than larger particles. Having in mind the profile of
themean streamwise velocity in a channel flow, it is then clear that
larger particles whose centroids are more distant from the walls,
translate more quickly than smaller particles.

The pdf s of the wall-normal velocities show less differences
when varying a′. The variance is similar for all species. One can
however still notice that the variance slightly increases for smaller
particles (smaller a′) while it decreases for larger ones ( larger a′).
As discussed in the previous section, smaller particles have smaller
Stokes numbers (i.e. smaller inertia) and are perturbedmore easily
by turbulence structures thereby reaching higher velocities (with
higher probability) than larger particles.

Finally, we discuss the particles dispersion in the streamwise
and spanwise directions. Particlemotion is constrained in thewall-
normal direction by the presence of the walls and is therefore not
examined here. The dispersion is quantified as the variance of the
particle displacement as function of the separation time1t (i.e. the



W. Fornari et al. / European Journal of Mechanics / B Fluids 67 (2018) 54–64 61

Fig. 7. Fluid and particle velocity fluctuations in outer units, in the streamwise (a)–(b), wall-normal (c)–(d) and spanwise (e)–(f) directions, for σa/(2a) = 0 and 0.1.

Fig. 8. Probability density functions of particle streamwise (a) and wall-normal velocities (b), for σa/(2a) = 0.1.

mean-square displacement of particle trajectories)

⟨1x2⟩(1t) =

⟨[
xp(t̄ + 1t) − xp(t̄)

]2⟩
p,t̄

(8)

where ⟨·⟩p,t̄ denotes averaging over time t̄ and the number of
particles p.

The mean-square displacement in the streamwise direction is
shown in Fig. 9(a). From the subplot we see that initially, in the so-
called ballistic regime, particle dispersion ⟨1x2⟩ shows a quadratic
dependence on time. Only after 1t ∼ 100(2a)/U0 the curve starts
to approach the linear behavior typical of a diffusive motion. As
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Fig. 9. Mean-squared displacement of particles in the streamwise (a) and spanwise directions (b) for σa/(2a) = 0.1.

expected, we observe that smaller particles have a larger mean-
square displacement than larger particles in the ballistic regime.
However, the difference between ⟨1x2⟩ for the smallest and largest
particles (a′/a = 0.4 and 1.6) is limited.

Concerning the dispersion in the spanwise direction (Fig. 9(b)),
we clearly notice that ⟨1z2⟩ is 1 and 2 orders of magnitude smaller
than ⟨1x2⟩ in the ballistic and diffusive regimes. The latter is
also reached earlier than in the streamwise direction, due to the
absence of a mean flow. The discussion of the previous paragraph
on the effect of particle size on dispersion in the ballistic regime,
applies also in the present case. However, as the diffusive regime
is approached, the mean-squared displacements ⟨1z2⟩ of all a′/a
become more similar. For each a′/a we also find that the diffusion
coefficient, defined asDp,z ≃ ⟨1z2⟩/(21t), is approximately 0.085,
as also found by Lashgari et al. [41]. A remarkable and not yet
understood difference is found for a′/a = 1.4, for which Dp,z is
found to be 6% larger.

To conclude this section, we emphasize that particle related
statistics (probability density functions of velocities and mean-
square displacements) only slightly vary for different a′/a. In par-
ticular, the pdf s of particle velocities for smaller particles arewider
than those of the larger particles. Accordingly, the mean-squared
displacement ⟨1x2⟩ of particles with a′/a < 1 is larger than that
for particles with a′/a > 1, at least in the ballistic regime. Indeed,
in the spanwise directionwe find that the diffusion coefficients are
approximately similar for all species.

3.2.1. Particle collision rates
We then study particle-pair statistics. In particular we calcu-

late the radial distribution function g(r) and the averaged normal
relative velocity between two approaching particles, ⟨dv−

n (r)⟩, and
finally the collision kernel κ(r) [42].

The radial distribution function g(r) is an indicator of the radial
separation among particle pairs. In a reference framewith origin at
the centre of a particle, g(r) is the average number of particle cen-
ters located in the shell of radius r and thickness 1r , normalized
with the number of particles of a randomdistribution. Formally the
g(r) is defined as

g(r) =
1
4π

dNr

dr
1

r2n0
, (9)

where Nr is the number of particle pairs on a sphere of radius r ,
n0 = Np(Np − 1)/(2V ) is the density of particle pairs in the volume
V , with Np the number of particles. The value of g(r) at distances of
the order of the particle radius reveals the intensity of clustering;
g(r) tends to 1 as r → ∞, corresponding to a random (Poissonian)
distribution. Here, we calculate it for pairs of particles with equal
radii in the range a′/a ∈ [0.6; 1.4], and among particles of different
sizes (a′/a = 0.8 with a′/a = 1.2 and a′/a = 0.6 and a′/a =

1.4). For each case, the radial distance r is normalized by a′ or by

the average between the radii of two approaching spheres. The
radial distribution function is shown in Fig. 10(a). No appreciable
differences between each curve can be observed. The g(r) is found
to drop quickly to the value of the uniform distribution (i.e. 1) at
r ∼ 2.5a′.

The normal relative velocity of a particle pair is instead obtained
by projecting the relative velocity in the direction of the separation
vector between the particles

dvn(rij) = (ui − uj) ·
(ri − rj)
|(ri − rj)|

= (ui − uj) ·
rij
|rij|

(10)

(where i and j denote the two particles). This scalar quantity can be
either positive (when two particles depart form each other) or neg-
ative (when they approach). Hence, the averaged normal relative
velocity can be decomposed into ⟨dvn(r)⟩ = ⟨dv+

n (r)⟩ + ⟨dv−
n (r)⟩.

Here, we consider the absolute value of the mean negative nor-
mal relative velocity, shown in Fig. 10(b). We observe that larger
particles approach with a slightly larger relative velocity ⟨dv−

n (r)⟩
than smaller particles. This could be explained by looking at the
probability density functions of the streamwise particle velocities
shown in Fig. 8(a). From this we see indeed that smaller particles
can experience lower velocities with non-negligible probability, in
comparison to larger particles.

Finally, Fig. 10(c) reports the collision kernel κ(r) between
particle-pairs. This is calculated as the product of the radial dis-
tribution function g(r) and ⟨dv−

n (r)⟩ [42]. At large separations,
(i.e. r/a′ > 2.5), we see that κ(r) is fully dominated by the normal
relative velocity. Around contact (i.e. r/a′

≃ 2) we see clearly
that κ(r) is higher for larger particles, see inset of Fig. 10(c). The
interesting result is foundwhen looking at the collision kernels be-
tween particles of different sizes but equal concentration (within
the suspension). For the case with a′/a = 0.8 and a′/a = 1.2,
we see that κ(r) is closer to that obtained for equal spheres with
a′/a = 0.8. Also for the case with a′/a = 0.6 and a′/a = 1.4,
we see that κ(r) is similar to that obtained for equal spheres with
a′/a = 0.6. This leads to the conclusion that collision statistics are
dominated by the behavior of smaller particles.

From the average normal relative velocity of approaching
spheres, ⟨dv−

n ⟩, we can also calculate the impact Stokes number
Sti. This is defined as Sti = (2/9)R⟨dv−

n ⟩a′/ν and it is the ratio
between the particle relaxation time and a characteristic impact
time defined as a′/⟨dv−

n ⟩. For low Sti, the particles do not show
any rebound and there is a film drainage yielding enduring contact
between them. On the other hand, for Sti larger than a critical
value the particles show a reverse motion of bouncing. For dry
collisions with restitution coefficient of 0.97 (as in the present
simulations), the critical impact Stokes number is about 10 [43].
As we can see from Fig. 10(d) the impact Stokes number close to
contact (r/a′

≤ 3) is on average smaller than unity indicating
that bouncing motions are rare. For each species we have also



W. Fornari et al. / European Journal of Mechanics / B Fluids 67 (2018) 54–64 63

Fig. 10. Radial distribution function g(r) (a), average normal relative velocity ⟨dv−
n ⟩ (b), collision kernel κ(r) (c) and zoom of κ(r) at contact, impact Stokes number based on

the normal relative velocity of approaching spheres (d), for σa/(2a) = 0.1.

calculated the mean time over which two particles stay at a radial
distance of one particle radius. This time is found to be of the order
of 2.5h/U0, indicating that long times are needed before a particle-
pair breaks.

4. Final remarks

We study numerically the behavior of monodisperse and poly-
disperse suspensions of rigid spheres in a turbulent channel flow.
We consider suspensions with three different Gaussian distribu-
tions of particle radii (i.e. different standard deviations). The mean
particle radius is equal to the reference radius of themonodisperse
case. For the largest standard deviation, the ratio between largest
and smallest particle radius is equal to 4. We compare both fluid
and particle statistics obtained for each case at a constant solid
volume fraction φ = 10%, hence, the total number of particles
changes in each simulation.

Themain finding of thiswork is that fluid and solid phase statis-
tics for all polydisperse cases are similar to those obtained for the
monodisperse suspension. This suggests that the key parameter
in understanding the behavior of suspensions of rigid spheres in
turbulent channel flows is the solid volume fractionφ. Polydisperse
suspensions with Gaussian distributions of particle sizes behave
statistically in the same manner as a monodisperse suspension
with equal volume fraction. This is probably not true for highly
skewed size distributions.

Although results are similar, it is possible to observe small vari-
ations in the fluid and particle velocity fluctuations that are corre-
lated to changes in the standard deviation σa of the distribution.
Concerning fluid velocity fluctuations we see that by increasing
σa, these decrease at the centerline. The same is also found for
particle velocity fluctuations. As σa increases, larger particles are
more likely found at the centerline and move almost unperturbed
in the streamwise direction (hence also inducing smaller velocity
fluctuations in the fluid phase). Particle velocity fluctuations are on
the other hand found to increase with σa close to the wall (in the

viscous and buffer layers). This is probably related to the fact that
for larger σa smaller particles can penetrate more into this layer
hence experiencing larger velocity fluctuations. Similar trends are
observed for a smaller volume fraction of 2%.

Concerning the mean concentration of particles across the
channel, we observe that the typical peak in proximity of the
wall is smoothed for increasing σa. On the contrary, the mean
concentration increases at the centerline at larger σa. Looking at
the mean concentration profiles of each particle species (i.e. with
different a′), we observe that all particles are uniformly distributed.
For particles smaller than the reference ones, the near-wall peak
moves closer to the wall, while for larger particles the peak is
moved away from the wall and is smoothed for increasing a′.

We also calculated the Stokes number for each particles species.
For the most extreme case, we found that there is an order of
magnitude difference between St ′a of larger and smaller particles.
However, the mean Stokes number of the suspension is the same
as that of the reference particles (i.e. the same as well as that of
the monodisperse case). Hence, suspensions with same volume
fraction and mean Stokes number behave statistically in a similar
way. If a skewed distribution of particles was used, the mean
Stokes number would change and probably different results to the
monodisperse ones would be observed. This may have important
implications for the modeling of particulate flows in channels.

Then, we looked at probability density functions, pdf s, of par-
ticle velocities as well as particles mean-squared displacements
for each species for the most extreme case with σa/(2a) = 0.1.
Concerning the pdf s of streamwise velocity, we notice that smaller
particles can penetrate more in the layers closer to the walls and
hence also experience smaller velocities (wider left tail of the pdf ).
The opposite is of course found for particles with larger a′. The pdf
s of wall-normal velocities are found to be extremely similar for
all species, although the variance is just slightly increased for the
smaller particles. This may be related to the fact that their Stokes
number is smaller and hence they respondmore quickly to velocity
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perturbations induced by turbulent eddies, hence reaching slightly
larger velocities.

Themean-squared displacements of particles in the streamwise
and spanwise directions, are similar for all species. Although larger
particles are found to disperse less than smaller ones in the ballistic
regime, the final diffusion coefficients are similar for all species.
Finally, we studied particle-pair statistics by looking at the radial
distribution function g(r) and average normal relative velocity,
⟨dv−

n (r)⟩, of approaching particles, as well as the resulting collision
kernel, κ(r). We found the interesting result that for pairs of parti-
cles with different sizes, the collision kernel κ(r) is dominated by
the behavior of smaller particles. We have also looked at the mean
impact Stokes number between particle-pairs and we have found
that it is below the critical value that characterizes the transition
to a reverse motion of bouncing.

We have therefore shown that in turbulent channel flows, poly-
disperse suspensions with Gaussian distributions of sizes behave
similarly to monodisperse suspensions, provided that: the volume
fraction is constant; the mean Stokes number of the suspension is
the same as that of themonodispersed particles. On the other hand,
particles of different size lead to non trivial particle-pair statistics.
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