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Abstract A theoretical model to determine the effect of the size of the interro-8

gation window in Particle Image Velocimetry measurements of turbulent flows is9

presented. The error introduced by the window size in two-point velocity statistics,10

including velocity autocovariance and structure functions, is derived for flows that11

are homogeneous within a 2D plane or 3D volume. This error model is more gen-12

eral than those previously discussed in the literature, and provides a more direct13

method of correcting biases in experimental data. Within this model framework,14

simple polynomial approximations are proposed to provide a quick estimation of15

the effect of the averaging on these statistics. The error model and its polynomial16

approximation are validated using statistics of homogeneous isotropic turbulence17

obtained in a physical experiment and in a direct numerical simulation. The re-18

sults demonstrate that the present formulation is able to correctly estimate the19

turbulence statistics, even in the case of strong smoothing due to a large interro-20

gation window. We discuss how to use these results to correct experimental data21

and to aid the comparison of numerical results with laboratory data.22

Keywords Isotropic turbulence · PIV · Spatial resolution23

1 Introduction24

Particle Image Velocimetry (PIV) is a measurement technique that allows the char-25

acterization of a velocity field in space and time by calculating the displacement of26

groups of tracer particles in “interrogation areas”, which are discrete sub-regions of27

the measurement area (Raffel et al, 2001; Adrian, 2005). From a theoretical point28

of view, the PIV algorithm can be seen as a spatio-temporal filter (see Westerweel,29

1997) of the velocity field, whose cut-off frequency and wavelength depends mainly30
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on the interval between two subsequent images, ∆t, and the size of the interroga-31

tion area, L, respectively. The first can be made very small thanks to double-cavity32

lasers, which can shoot two pulses at arbitrarily small intervals, and efficient sub-33

pixel interpolation schemes that can precisely resolve small displacements caused34

by small∆t values (Chen and Katz, 2005; Nobach et al, 2005). The frequency reso-35

lution is also increasing due to improved cameras and algorithms (see Scarano and36

Moore, 2012). Spatial resolution of PIV has also been improved by new algorithms,37

e.g. those with iterative window offset and deformation (Westerweel et al, 1997;38

Scarano and Riethmuller, 2000; Scarano, 2002). However, PIV spatial resolution39

is always limited by the fundamental trade-off between interrogation area size and40

signal strength. That is, reducing the size of the interrogation area reduces the41

number of tracer particles used in the velocity calculation, having a negative effect42

on the signal-to-noise ratio (see Westerweel, 1997; Foucaut et al, 2004). This con-43

straint leads to a minimum size of the interrogation area, given the practical limits44

of tracer particle density (Kähler et al, 2012; Poelma et al, 2006) and limits the45

spatial resolution capability of PIV. According to the latest comparative tests, it is46

very difficult in practice to use an interrogation window smaller than 16×16 pix-47

els (Stanislas et al, 2008). In physical space, this corresponds to a window size48

that ranges between 0.5×0.5 mm2 and 2×2 mm2 for common optical setups (e.g.,49

camera resolution 1024×1024 pixels and 50×50 mm2 or 100×100 mm2-wide image50

areas). These values can be significantly higher than the smallest turbulent scales51

at high-Reynolds number, thus the effect of the unresolved scales must be taken52

into account.53

Typical PIV data analyses use the velocity fields to compute quantities such54

as the spatial distribution of turbulent kinetic energy (TKE), vorticity, dissipation55

rate and two-point correlations. It is well known that the estimation of such quan-56

tities is strongly affected by spatial resolution (Saarenrinne et al, 2001). Ad hoc57

correction schemes can account for insufficient resolution for some specific quan-58

tities, such as the velocity variance (Saarenrinne and Piirto, 2000; Tanaka and59

Eaton, 2007; Scharnowski et al, 2012).60

One-dimensional filtering effects can occur in more traditional measurement61

techniques, for instance in hot-wire anemometry, due to the finite length of the62

sensor. This problem was first addressed by Dryden et al (1937) and further in-63

vestigated by Frenkiel (1949), Wyngaard (1968) and Segalini et al (2011a) among64

others, which proposed several correction schemes for hot-wire measurements. In65

particular Wyngaard (1968) provided an elegant analysis in Fourier space of the66

effect of spatial resolution in single- or X-wire measurements in isotropic turbu-67

lence.68

Several papers address spatial resolution issues for PIV (see for example Scarano,69

2003; Lavoie et al, 2007; Giordano and Astarita, 2009; Kähler et al, 2012). In par-70

ticular, Lavoie et al (2007) extended the methodology of Wyngaard (1968) to71

estimate 2D filtering effects in PIV data of grid turbulence, assuming a flow field72

that is statistically homogeneous and isotropic.73

In this paper, similarly to the work of Lavoie et al (2007), we derive a rigorous74

analytical model of the 2D-filtering effects for flows that are homogeneous within75

a 2D plane, but we do so in physical space, rather than in wavenumber space. The76

advantage of this approach is that it relates filtering effects to physical quantities77

like the Taylor length scale, and it is easily implemented in experimental data.78

Furthermore, the assumptions of homogeneity and isotropy are slightly relaxed, as79
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only planar homogeneity is required for a general correction. The analytical model80

is validated against well-resolved experimental and numerical velocity fields of81

Homogeneous Isotropic Turbulence (HIT), which are then filtered with increasingly82

larger averaging windows to simulate the effect of a coarser PIV grid. The variation83

of statistical quantities (variance, correlation curves, and structure functions) with84

resolution is then compared to the prediction of the theoretical model.85

The paper is structured as follows: The theoretical model is described in sec-86

tion 2. Sections 3 and 4 report the details of the numerical simulations and of87

the laboratory experiment, respectively, while section 5 shows the comparison of88

the proposed theory with the data. Finally, some discussions regarding the pro-89

posed methodology and its application in the experimental practice (including the90

numerical-experimental comparison) are presented in section 6.91

2 Analytical model92

As justified in the appendix, we begin with the simple postulate that the measured
(or filtered) velocity, V m, is given by the spatial average of the velocity field over
a planar domain D of size L× L together with some small measurement noise

V m (X0) =
1

L2

∫

D
V (x, t) dx+ǫ (X0) , (1)

where X0 is the center of D, V (x, t) : {v1, v2, v3} is the unfiltered velocity field,
x : {x1, x2} is the planar domain (in which D lies), and t is time. The first
consequence of equation (1) is that the measured mean velocity is also given by
the integral average of the mean velocity field, namely

〈V 〉m (X0) =
1

L2

∫

D
〈V (x, t)〉 dx+ 〈ǫ (X0)〉 , (2)

where the brackets 〈·〉 indicate the time average operator. If the field is homo-93

geneous, or varying on a length scale much larger than L, the spatial resolution94

has no effect on the measured mean velocity, but the averaged noise might have95

some effects. However, here and in the followings it will be assumed that the96

measurement-noise in the ith velocity component, ǫi (X0), is white noise, namely97

that it is uncorrelated in space and time with mean 〈ǫi (X0)〉 = 0 and variance98
〈

ǫ2i (X0)
〉

= σ2
ǫ , independently of the position X0 and velocity component. Fur-99

thermore, it will be assumed that the measurement noise is uncorrelated with the100

instantaneous velocity field.101

By introducing the Reynolds decomposition, v = V −〈V 〉, we can now express
the measured covariance matrix (Reynolds stresses) as

〈vivj〉m (X0) =
1

L4

∫

D

∫

D
〈vi (x, t) vj (x

′, t)〉 dxdx′+ 〈ǫi (X0) ǫj (X0)〉 . (3)

Unlike mean quantities, the measured value of the covariance (as well as the102

statistical moments of higher order) is attenuated by the spatial filtering even103

when the flow is statistically homogeneous, while the effect of the measurement104

noise is important only for the velocity variances, since the cross correlation105
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〈ǫi (X0) ǫj (X0)〉 = 0 if i 6= j by hypothesis. We will now compute this atten-106

uation as a function of the window size and of a characteristic length scale of the107

flow.108

Consider the measured two-point velocity correlation

〈vi (a) vj (b)〉m =
1

L4

∫

Da

∫

Db

〈vi (a+ x, t) vj (b+ x′, t)〉 dxdx′ + 〈ǫi (a) ǫj (b)〉 ,

(4)
where Da and Db indicate the interrogation windows centered in the points a and
b, respectively. If we define the unfiltered two-point correlation tensor Rij as

Rij (p, q) =
〈vi (p, t) vj (q, t)〉

[

〈

v2i (0)
〉〈

v2j (0)
〉

]1/2
, (5)

where 0 is an arbitrary origin point used to normalize the velocity correlations,109

we can express equation (4) as110

〈vi (a) vj (b)〉m =

[〈

v2i (0)
〉 〈

v2j (0)
〉]1/2

L4

∫

Da

∫

Db

Rij (a+ x, b+ x′) dxdx′ +

+ 〈ǫi (a) ǫj (b)〉 . (6)

Equation (6) is general and can be applied to non-homogeneous PIV measurement111

conditions, once the two-point correlationRij is known, measured or extrapolated.112

A change of variables can now be introduced as (x,x′) → (ξ, r) = (x,x′ − x).113

Assuming that the flow field is statistically homogeneous in the image plane (a114

local homogeneity suffices) allows us to rewrite equation (6) in terms of separation115

vectors, namely r ≡ q−p and s ≡ b−a. Local planar homogeneity indicates that116

Rij (r) = Rji (−r), and allows us to simplify equation (6) to117

〈vi (0) vj (s)〉m =

[〈

v2i
〉 〈

v2j
〉]1/2

L4

{

[
∫ L

0

(L− r1) +

∫ 0

−L
(L+ r1)

]

[
∫ L

0

(L− r2) +

∫ 0

−L
(L+ r2)

]

Rij (s+ r) dr1dr2

}

+σ2
ǫ δijH (|s|) , (7)

where subscripts 1 and 2 indicate the two in-plane components of separation vector118

r, δij is the Kronecker delta and H (s) = 1 if s = 0 and zero otherwise. Equation119

(7) indicates that, for a given flow, the effect of spatial filtering on the measured120

〈vi (0) vj (s)〉 depends on the unfiltered two-point correlation tensor Rij (r), while121

the noise effect will be perceived only in the variances when s = 0. Equation (7)122

is the most general statement of PIV’s filter effect on two-point covariance in the123

special case of homogeneous flow, expressed for the first time in physical space.124

Once the two-point correlation is known, equation (7) can be integrated providing125

all the needed information about the spatial averaging effects.126

In the special case of homogeneous isotropic turbulence Rij can be expressed
as (Batchelor, 1953)

Rij (r) = g (r) δij + [f (r)− g (r)]
rirj
r2

, (8)
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where r =
(

r21 + r22 + r23
)1/2

and f (r) and g (r), for incompressible flows, are
functions related by the identity

g (r) = f (r) +
r

2

df

dr
. (9)

With this assumption, in the special case of s = 0 and i = j = 1, equation
(7) becomes similar to the expression reported by Dryden et al (1937) to quantify
spatial filtering effects for hot-wire anemometry (although here generalized for a
two-dimensional domain)

〈

v21
〉

m
=

4
〈

v21
〉

L4

∫ L

0

∫ L

0

(L− r1) (L− r2)R11 (r) dr1dr2+σ2
ǫ . (10)

We now use a polynomial approximation for f (r) in the limit r ≪ λf , where λf

is the longitudinal Taylor microscale defined by λ−2

f = −d2f/dr2 (0) /2 (Batchelor,
1953)

f (r) = 1−
r2

λ2
f

−→ g (r) = 1−
2r2

λ2
f

−→ Rij (r) = δij +
rirj − 2δijr

2

λ2
f

. (11)

By substituting equation (11) into (7) we obtain

〈v1 (0) v1 (s)〉m
〈v21〉

≈ 1−
2s21 + 4s22 + L2

2λ2
f

+
σ2
ǫ

〈v21〉
H (|s|) , (12)

and
〈v1 (0) v2 (s)〉m

〈v21〉
≈

s1s2
λ2
f

, (13)

where s1 and s2 indicate the magnitude of the components of s in the directions127

1 and 2 belonging to the image plane (namely s = (s1, s2)).128

Equation (12) demonstrates that the two-point correlation 〈v1 (0) v1 (s)〉m is
indeed affected by the spatial resolution used in the experiment, while the off-
diagonal term 〈v1 (0) v2 (s)〉m is not, at least for small L and s. It follows from
equation (13) that in isotropic conditions, the measured Reynolds stress is still
zero. More interestingly, the ratio between the measured and the actual variance
is

〈

v21
〉

m

〈v21〉
≈ 1−

L2

2λ2
f

+
σ2
ǫ

〈v21〉
. (14)

Equation (14) provides a straightforward estimate of the attenuation of the mea-129

sured variance compared to the real one as a function of the window size, L,130

compared to the Taylor microscale, λf . However, if L/λf ≥ O(1) (for instance131

when characterizing wall-parallel planes in a turbulent boundary layer) equation132

(14) is not accurate due to the failure of the polynomial approximation, and equa-133

tion (10) should be preferred together with an opportune ansatz of the two-point134

correlation.135

We then examine the effect of the spatial resolution on the second-order struc-136

ture functions defined as137

Dij,m (s) = 〈[vi (s)− vi (0)] [vj (s)− vj (0)]〉m =

= 2 〈vivj〉m − 〈vi (0) vj (s)〉m − 〈vi (0) vj (−s)〉m . (15)
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According to equations (12) and (13), the attenuation of the longitudinal and
transverse structure functions becomes

D11,m

〈v21〉
≈

2s21 + 4s22
λ2
f

+2
σ2
ǫ

〈v21〉
[1−H (|s|)] and

D12,m

〈v21〉
≈ −

2s1s2
λ2
f

, (16)

namely they are unaffected by spatial resolution, at least in the limit of s ≪ λf138

and L ≪ λf .139

All of these results are only valid in the limit of small L/λf , but this does140

not diminish their utility, as PIV measurements typically have L/λf ≪ 1. The141

range of applicability of equation (7) can also be extended by adopting alternative142

analytical expressions for the correlation tensor Rij (r) (in homogeneous flows)143

or of the correlation function f(r) only (in homogeneous and isotropic flows).144

However, these expressions are typically more complex than equation (11) and145

seldom allow for an analytical solution. As a consequence, the integral (7) should146

be computed numerically as discussed in section 5.147

3 Numerical methodology148

A numerical data set has been obtained from Direct Numerical Simulation (DNS)149

by using a classical pseudo-spectral method. The Navier-Stokes equations have150

been integrated in a triperiodic domain of length LD = 2π using a Fourier spec-151

tral method with the nonlinear terms de-aliased by the 3/2 rule. The time integra-152

tion is performed with a third-order low-storage Runge-Kutta method (Lundbladh153

et al, 1992). The nonlinear terms are computed using an Adam-Bashforth approx-154

imation while the diffusive terms are integrated analytically (Rogallo, 1981). A155

random forcing is applied isotropically to the first shell of wave vectors, with fixed156

amplitude f̂0, constant in time and uniformly distributed in phase and directions157

(Vincent and Meneguzzi, 1991). A resolution of 192×192×192 Fourier modes in the158

three directions, that corresponds to a grid size in physical space of 288×288×288159

collocation points due to de-aliasing, is used. The Taylor Reynolds number of the160

present simulations is Reλ =
√

2k/3λ/ν = 150, where k is the turbulent kinetic161

energy and λ is the Taylor microscale. The ratio between the highest resolved wave162

number κmax and the Kolmogorov wave number κη is κmax/κη = 1.73, which is163

within the usual accepted range to ensure stability and sufficient resolution to164

simulate dynamics accurately (Pope, 2000). For the statistics, about 80 indepen-165

dent and identically distributed velocity fields are used (one is stored each eddy166

turn-over time t0).167

The time history of the turbulent kinetic energy, k, and of the turbulent dissi-168

pation, ǫ, integrated over the whole domain, is shown in the left panel of figure 1.169

These characteristic observables of homogeneous isotropic turbulence are known to170

be subject to strong fluctuations around their mean value. The data in the figure171

illustrate that the simulation was run long enough to capture these characteristic172

cycles, especially for the observables that are most sensitive to large-scale motions,173

such as the turbulent kinetic energy. The right panel of figure 1 shows the power174

spectral density of the turbulent kinetic energy from the DNS. The wave numbers175

have been normalized with the Kolmogorov scale η = (ν3/ǫ)1/4, where ν is the176

kinematic viscosity of the flow. The spectrum in figure 1 shows also an inertial sub-177

range with a power-law slope over about one wavenumber decade, as expected for178
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Fig. 1 Left panel: Time history of the turbulent kinetic energy k (solid line) and turbulent
dissipation ǫ (dashed line). Right panel: spectra of the turbulent kinetic energy versus wave
number normalized with the Kolmogorov length scale, η. The dashed line is proportional to
the Kolmogorov spectral law, E ∝ κ−5/3.

Turbulent kinetic energy k = (u2
rms + v2rms + w2

rms)/2 4.45 [×10−4 m2s−2]

ut =
√

2k/3 1.72 [×10−2 ms−1]
Longitudinal integral length scale Λx 31.0 [×10−3 m]
Taylor microscale λx 8.86 [×10−3 m]
Eddy turnover time T = Λx/ut 1.8 [s]
Dissipation rate (from λx) ǫ = 15ν u2

t /λ
2
x 4.6 [×10−5 m2s−3]

Kolmogorov time scale τη = (ν/ǫ)1/2 0.14 [s]
Kolmogorov length scale η = (ν3/ǫ)1/4 0.38 [×10−3 m]
Reynolds number (based on Λx) ReL = (Λxut)/ν 534
Reynolds number (based on λx) Reλ = (λxut)/ν 153

Table 1 Flow statistics from the Direct Numerical Simulation.

this Reynolds number (Pope, 2000). A summary of the main turbulent statistics179

extracted from the simulation is given in table 1. The numerical value are obtained180

by matching the dissipation and the kinematic viscosity between the simulation181

and the experiment described in section 4.182

In order to replicate the PIV filtering effect (and the corresponding effect on
the turbulence statistics), the flow field has been filtered following the definition of
the filter given in equation (1). For simplicity, we only report here the expression
for the one-dimensional case. The filtered velocity in the point i can be written in
terms of grid parameters as

Vm(xi) =
1

Lx

∫ xi+0.5N∆x

xi−0.5N∆x
V (x)dx , (17)

where ∆x is the grid spacing and N is the (even) number of grid points in the
filter domain. We then perform the numerical integration with the trapezoidal
rule, defined as

Vm(xi) =
V (xi − 0.5N∆x) + V (xi + 0.5N∆x)

2N
+

N/2−1
∑

j=−N/2+1

V (xi + j∆x)

N
. (18)

In the two-dimensional case, the trapezoidal rule is applied two times in both183

of the two directions that define the observation plane.184
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Turbulent kinetic energy k = (u2
rms + v2rms +w2

rms)/2 6.07 ± 0.6 [×10−4 m2s−2]

ut =
√

2k/3 2.01 ± 0.1 [×10−2 ms−1]
Longitudinal integral length scale Λx 95.0 ± 0.5 [×10−3 m]
Taylor microscale λx 11.4 ± 0.5 [×10−3 m]
Eddy turnover time T = Λx/ut 4.7 ± 0.2 [s]
Dissipation rate (from λx) ǫ = 15ν u2

t/λ
2
x 4.6 ± 0.5 [×10−5 m2s−3]

Kolmogorov time scale τη = (ν/ǫ)1/2 0.14 ± 0.01 [s]

Kolmogorov length scale η = (ν3/ǫ)1/4 0.38 ± 0.01 [×10−3 m]
Reynolds number (based on Λx) ReL = (Λxut)/ν 1977 ± 100
Reynolds number (based on λx) Reλ = (λxut)/ν 237 ± 25

Table 2 Flow statistics from single-phase measurements (the uncertainties correspond to the
95% confidence intervals). The integral length scale and the Taylor microscale are computed
from the longitudinal two-point correlation; the dissipation rate and the Kolmogorov scales
are computed from λx using the definitions given in Pope (2000).

4 Experimental setup185

Laboratory experiments are performed in a stirred tank of dimensions 800×800×186

3600 mm3. The tank is filled with tap water, which is initially filtered to 5 µm187

and purified by a flow-through ultraviolet filter when experiments are not being188

run. Stirring is provided by two jet arrays symmetrically located with respect to189

the vertical center-plane of the tank, at a distance of ±810 mm from the center.190

Each array is made of 8×8 synthetic jets, which are actuated following a stochas-191

tic algorithm. The algorithm is designed to maximize turbulent production while192

minimizing the mean flow in the tank, as described by Variano and Cowen (2008).193

Due to the symmetric configuration of the jet arrays, the resulting flow is ho-194

mogeneous and isotropic in a large (about 3 integral length-scales) region at the195

center of the tank (see Bellani and Variano, 2014, for a detailed report on the flow196

quality). The integral length-scale of the present experimental data, Λx, is 95 mm197

while the Taylor length scale, λx, is 11.4 mm. The Reynolds number based on the198

Taylor length scale is Reλ = 237 (see table 2).199

Measurements are performed in the homogeneous and isotropic region using200

2D-PIV. We use one 12-bit CCD camera with an 1600×1200 array of 7.4 µm pixels201

(Imager PRO-X), and fitted with a 105 mm lens (Nikkor). The laser light sheet202

(frequency-doubled Nd-YAG) is 1 mm thick, with tracer particles of size 10 µm203

(silver coated glass spheres). The measurement plane is vertical and oriented along204

the longest dimension of the tank. In this plane, we focus on a 35×47 mm2 area205

centered at the tank center. To compute the velocity fields, we use the commercial206

software Davis 7.2 from LaVision GmbH, which implements continuous window207

deformation and reduction (for a detailed report on algorithm performance see208

Stanislas et al, 2005). We report the main PIV operating parameters in table 3.209

The final size of the interrogation window is 32×32 pixels with 50% overlap and210

a square weighting function. This gives a vector spacing of 0.44 mm in physical211

space, and a physical size of the interrogation area of 0.88 mm, which is about212

twice the Kolmogorov length scale for this flow. Thus the resolution is fine enough213

to resolve more than 99% of the turbulent kinetic energy (Saarenrinne et al, 2001).214

Particular care was taken to minimize the noise level, which can greatly affect215

the measurements of turbulent quantities like Taylor microscale. For this reason,216

we removed (but not replaced) outliers using a 3 × 3 median test. The number217
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Interrogation area IA [pixels × pixels] 32 × 32
Interrogation area IA [mm × mm] 0.88 × 0.88
Vector spacing dx, dy [mm] 0.44

Time between laser pulses dt [×10−1 s] 0.15
Average displacement utdt [×10−3 m] 0.26

Table 3 Summary of present PIV settings.

of outliers was below 5% of the total number of vectors. The amount of residual218

noise is estimated using the methodology proposed by Poelma et al (2006), and219

found it to be below 1% of ut.220

To provide the coarse-resolution datasets, we filtered the original, well-resolved221

data according to the definition (1) with windows of varying size. The integral in222

equation (1) is solved numerically using the trapezoid rule described by equation223

(18). One and two-point statistics are then computed from the filtered datasets.224

The velocity covariance 〈v1v2〉m was calculated from the experimental data and225

it was found to be nearly zero (less than 0.03 when normalized by the velocity226

variance) with a negligible variation with L. All statistics are computed from 1700227

independent and identically distributed PIV snapshots.228

5 Results229

As discussed in section 2, under HIT conditions the two-point correlation tensor,
Rij (r), is completely defined by the longitudinal correlation function, f(r). Once
f(r) is known, we can compute the effect of the spatial resolution on the measured
variance,

〈

v21
〉

m
, and on the structure functions,Dij,m (s), using equations (7) and

(15). Here and in the following it will be assumed that the effect of measurement-
noise has been removed from the autocorrelation function, for instance by following
the approach of Poelma et al (2006). Figure 2 shows the longitudinal correlation
function, f (r̂), where r̂ = r/λf , from the experimental and numerical datasets.
Here and in the following figures the Taylor microscale is determined by using
equation (20) with the highest resolution data. Both datasets agree for small r̂
with the polynomial approximation f(r̂) ≈ 1 − r̂2, but they deviate significantly
from it already at r̂ ≈ 0.4. Therefore, an empirical function was used to fit the
correlation functions as

f (r̂) = exp

(

−
r̂2

1 +Ar̂B

)

, (19)

where the constants A and B are determined by fitting the longitudinal correlation230

function with (19). Equation (19) is consistent with the polynomial approximation231

in the limit of small r̂ and therefore has been preferred to other expressions found232

in literature (see Pope, 2000, for instance). Due to differences in Reynolds number233

and large-scale forcing, the experimental and numerical datasets show different234

correlation function shapes. Hence we obtain two sets of fitting parameters, namely235

A = 4.46 and B = 1.31 for the experimental data and A = 2.58 and B = 1.47 for236

the numerical data. The two empirical curves in figure 2 fit the data reasonably237

well, and thus we use them to calculate the two-point correlation tensor (8), and238

subsequently the integrals in equations (7) and (10).239
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Fig. 2 Comparison between the numerical/experimental longitudinal correlation function,
f (r̂), with the used ansazt (19) (solid line) and the polynomial formula f (r̂) = 1−r̂2 commonly
used to approximate it at small r-values (dashed line). Numerical and experimental datasets
are shown on left and right panel, respectively.
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Fig. 3 Comparison between the numerical and experimental velocity variance attenuation for
different filter sizes L/λf . The solid line is the attenuation predicted by the integration of
equation (10) with the ansazt (19), while the dashed line is equation (14), namely the simple
polynomial model valid for L ≪ λf .

5.1 Attenuation of two-point statistics240

Figure 3 shows the attenuation of the measured variance as function of L/λf . It241

is possible to see that the theory is able to capture the effects of spatial filtering,242

provided that we use the appropriate form of the correlation function. For L/λf <243

0.1, which is representative of many PIV applications, spatial filtering effects are244

well described by the polynomial approximation we propose in equation (14). In245

this range, the attenuation is relatively weak (< 5%) but stronger than in the246

corresponding 1-D case (for instance in hot-wire anemometry, as discussed by247

Segalini et al, 2011b). In some applications (e.g. high-Reynolds number flows)248

L/λf can become quite large (> 1) as λf becomes smaller. In this range, the249

attenuation becomes more severe (e.g. exceeding 10%). In this case, correction250

schemes based on the empirical fit are essential.251
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Fig. 4 Comparison between longitudinal (a) and transverse (b) structure functions.
(△) L/λf ≈ 0, (+) L/λf ≈ 0.21, (©) L/λf ≈ 0.38, (▽) L/λf ≈ 0.78. The solid lines are
the theoretical attenuations (computed by means of equations (7), (15) and (19)) while the
dashed lines are obtained from equation (16).

The longitudinal and transverse structure functions are reported in figure 4252

for different separation distances and filter scales. As shown in the figure, our253

proposed polynomial approximation (16) is able to describe the evolution of the254

structure functions for small separations (s/λf < 0.2) and very small filter sizes255

(L/λf < 0.15). The deviation from it increases with s/λf and L/λf and a better256

approximation is provided by the theory described in section 2 with the correlation257

function described by (19), as shown in the figure.258

Second order structure functions are often used in experiments to estimate259

the turbulent kinetic energy dissipation rate, ε, according to the Kolomogorov260

hypothesis (Sreenivasan, 1984; Saddoughi and Veeravalli, 1994; Gibert et al, 2010;261

Bellani et al, 2012). For separation distances, s = (s, 0), belonging to the inertial262

subrange, Kolmogorov (1941) predicted the scaling D11 (s) = C (εs)2/3, where263

C is believed to be a universal constant (Sreenivasan, 1995). Figure 5 shows the264

longitudinal structure function scaled according to Kolmogorov hypothesis. The265

figure demonstrates that the structure function reaches a plateau for s/λf > 1266

(this is especially evident in the experimental dataset, as the Reynolds number267

is higher than in the DNS case). Figure 5 also shows that spatial filtering effects268

have a strong influence on the height of this plateau. In particular, we see that the269
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Fig. 5 Longitudinal structure functions scaled according to Kolmogorov hypothesis.
(△) L/λf ≈ 0, (+) L/λf ≈ 0.21, (©) L/λf ≈ 0.38, (▽) L/λf ≈ 0.78. The solid lines are
estimated as in figure 4.

dissipation rate is under-estimated for increasing filter size. Strategies to correct270

this bias using the error models are discussed below.271

5.2 Measured Taylor microscale272

As noted in the previous section, the ratio L/λf plays a crucial role in the atten-
uation of the velocity variance. However, since this length scale is also estimated
from the available filtered data, it is expected that it will suffer from the spatial
resolution error of the PIV images. Therefore, it is interesting to see how the mea-
sured λf,m varies with the filter scale L. From a theoretical point of view, the value
λf,m can be obtained in two steps: i) computing the filtered correlation functions
by integrating equation (7) with the ansazt (19); ii) taking the second derivative
of the filtered autocorrelation function at the origin

λ−2

f,m = −
1

2 〈v21〉m

d2

ds2
〈v1 (0) v1 (se1)〉m =

1

4 〈v21〉m

d2

ds2
[D11,m (se1)] . (20)

Figure 6 shows the comparison between the theoretical values and the ones mea-273

sured from the numerical and experimental datasets. The data and theory indicate274

a nearly linear growth of λf,m with increasing L/λf owing to the increased corre-275

lation at large scales in the filtered field.276

Finally, we look at the structure functions normalized with the measured Taylor277

microscale, λf,m, and the measured variance,
〈

v21
〉

m
, as shown in figure 7. This278

figure is interesting as in a real experiment, λf and
〈

v21
〉

are initially unknown. This279

normalization forces the structure functions to collapse near the origin (following280

from the definition of λf,m, derived by fitting a parabola through f). However, for281

s > 0.3λf,m the deviations induced by the filter become evident and the structure282

functions increase when increasing the filter width, unlike the case in figure 4,283

where a decrease was evident under the same conditions. The difference between284
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Fig. 6 Comparison between the numerical and experimental Taylor microscale for different
filter scales L/λf estimated by means of equation (20). The solid lines show the theoretical
curved obtained by the integration of equation (7) with the ansazt (19).

the structure functions obtained with different filter widths, L, are anyway smaller285

that those shown in figure 4. This suggests that scaling the structure functions with286

the measured variance and Taylor microscale better compensates for a limited287

spatial resolution, analogously to what observed for the velocity flatness measured288

with hot-wire anemometry (Talamelli et al, 2013).289

5.3 Estimation of the corrected velocity variance and Taylor microscale290

In the previous section, we have described the effect of the finite size of the PIV291

interrogation window. It is of interest now to understand whether or not this can292

be used to correct the measured two-point statistics. This can be accomplished by293

following the idea proposed by Segalini et al (2011b), who used the data measured294

by two hot-wire anemometers of different lengths to improve the accuracy of the295

measured velocity variance and to estimate the Taylor microscale. Similarly, two296

interrogation windows can be used to analyze the PIV data (with window size L1297

and L2) and two different velocity statistics can be obtained (named
〈

v21
〉

m1
and298

〈

v21
〉

m2
, respectively).299

This is checked here by the following procedure: two datasets are chosen with
different interrogation-window sizes (with L1 < L2) and the longitudinal correla-
tion function, f(r), for the first data set is calculated. This allows the determination
of the constants A and B in equation (19). Consequently, the two-point correla-
tion is known from equation (8) and equation (10) providing an estimate of the
variance attenuation of the form

〈

v21
〉

m
=
〈

v21
〉

F (L/λf ). The unfiltered velocity
variance and the Taylor microscale can be determined by solving the nonlinear
system

{

〈

v21
〉

m1
=
〈

v21
〉

F (L1/λf )
〈

v21
〉

m2
=
〈

v21
〉

F (L2/λf )
. (21)

Figure 8 shows the relative error obtained using the available data. The relative300

error is defined as the difference between the estimated value and the real value301

(measured for the smallest window size) normalized by the real value. Consider302
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Fig. 7 Comparison between the numerical (left) and experimental (right) longitudinal (a) and
transverse (b) structure functions normalized with the measured Taylor microscale, λf,m, and

measured variance,
〈

v21
〉

m
. (△) L/λf ≈ 0, (+) L/λf ≈ 0.21, (©) L/λf ≈ 0.38, (▽) L/λf ≈

0.78. The dashed lines are obtained from the polynomial expression (16).

first that, according to figures 3 and 6, the measured velocity variance and Taylor303

microscale can change by 10% and 150%, with respect to the case with L ≈ 0304

for L ≈ λf . The figure indicates that the present methodology is beneficial as it305

reduces the effects of spatial averaging significantly. The results depend on the306

particular combination of L1 and L2 but, as long as a realistic L1 is used, any307

L2-filtered data set can be adopted to improve the measured statistics. This is308

particularly evident for the velocity variance, while the Taylor microscale is less309

robust, similarly to what was noticed by Segalini et al (2011b).310

6 Conclusions311

In this work a theoretical framework to estimate 2-D filtering effects on the statis-312

tics of a homogenous turbulent flow field is proposed. This methodology can be313

used to evaluate the effect of limited resolution on second-order statistical quanti-314

ties measured by Particle Image Velocimetry (where two-dimensional spatial filter-315

ing of the velocity field is introduced by the finite size of the interrogation area); it316

can be easily extended providing a consistent mathematical framework to correct317

turbulence statistics measured with insufficient resolution, similarly to what done318
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Fig. 8 Comparison of the percentual relative error in the estimated velocity variance (lower
corner) and Taylor microscale (upper corner) from two measurements with different window
size (L1 and L2). (a) Numerical data and (b) experimental data.

by Segalini et al (2011b) and Talamelli et al (2013) in hot-wire anemometry. The319

present theory is based on the idea of an analogous linear spatial filter, which is jus-320

tified in the appendix. For the special case of homogeneous isotropic flows, simple321

relationships between the averaged and non-averaged two-point correlations can322

be obtained, providing an estimation of the effect of window size in the measured323

statistics.324

It is demonstrated that spatial-filtering effects in the second-order statistics325

are strictly related to properties of the two-point correlation tensor, and to the326

ratio L/λf , where L is the filter scale and λf is the Taylor length scale. The knowl-327

edge of the two-point correlation function allows the correction of the second-order328

statistics in flows that are homogeneous in the image plane, for instance turbulent329

boundary layers with image planes parallel to the wall. In order to validate the330

theory, experimental and numerical two-point velocity statistics of homogeneous331

and isotropic turbulence have been used. It has been observed that for small L/λf332

(L/λf < 0.3) the velocity variance attenuation is less than 5% and a straightfor-333

ward correction scheme can be obtained from the polynomial approximation of334

the two-point correlation that accounts only for the Taylor microscale. For larger335

separation distances, the use of an exponential function to model the unfiltered336

two-point correlation improves the agreement between the theory and the datasets,337

demonstrating that the model based on the exponential function (and the theoret-338

ical framework in general) is able to capture the attenuation of velocity variance339

as well as the change of the second-order structure functions.340

The correction scheme proposed here can be used in at least two ways. The first341

(direct) way allows the determination of the measured statistics starting from the342

true ones. This is useful for instance in the validation of numerical schemes (that343

may or may not suffer the spatial resolution problem) against filtered experimental344

data, allowing for a fair comparison of the two. The second (inverse) way to use our345

results is to identify, model, and remove the spatial resolution error in experimental346

data. Doing so may require an iterative approach, given that the estimation of the347

model input (Taylor length scale) is itself dependent on the model output. An348

alternative correction strategy follows the idea of Segalini et al (2011b). By using349
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the measured statistics from the same flow filtered with two different spatial filters,350

one can determine the corrected velocity variance and Taylor microscale. In a351

practical situation one could use the most resolved field and another field obtained352

by doubling the interrogation window size: known the two interrogation window353

sizes and the relationship
〈

v2
〉

m
=
〈

v2
〉

G (L/λf ) it is indeed possible to obtain an354

unfiltered estimate of
〈

v2
〉

and λf . This approach has been applied to demonstrate355

an improved estimation of the velocity variance, whereas the estimation of the356

Taylor microscale turns out to be not as robust as the correction of the variance.357

A Relationship between interrogation window and measured velocity358

To quantify the effect of the interrogation window on the measured velocity, let us consider two
PIV images taken at two different instants t0 and t1 = t0+∆t. It is expected that these images
will be black (zero light intensity) almost everywhere, with the exception of some points where
the laser light reflected by the particles is detected. We assume now a square interrogation area,
I0, of size L where N particles are located in the first image, and another interrogation area in
the second image, I1, of the same size as I0 but translated with a convection velocity V m, for
the moment undefined. The location of the illuminated points can be labelled as x0,i in I0 and
x1,i = x0,i +(V i − V m)∆t in I1 with i ∈ {1, 2, ...,N}, where V i denotes the average velocity

of the ith-particle between t0 and t1. It is assumed that there are only a negligible number of
particles leaving the domain determined by the interrogation area, so that the present analysis
has general validity. The light intensity distribution over the two interrogations areas can be
expressed as

I0 (x) =
N
∑

i=1

ρ (x− x0,i) and I1 (x) =
N
∑

i=1

ρ [x− x0,i − (V i − V m)∆t] , (22)

where ρ (x) is a function that represents the light intensity around a particle located at the359

origin. For the sake of simplicity it will be assumed to be a rapidly decaying Gaussian.360

The cross correlation operator between the two images can now be introduced as

R (τ ) =

∫

D
I0 (x) I1 (x+ τ ) dx , (23)

where D is a square domain of size L that includes the interrogation area. The cross-correlation,
together with equation (22), becomes

R (τ ) =
N
∑

i=1

N
∑

j=1

∫

D
ρ (x− x0,i) ρ [x+ τ − x0,j − (V j − V m)∆t] dx . (24)

The maximum of the cross-correlation function identifies the optimal interrogation window
displacement, τ , that ensures the highest correlation. Therefore V m can be seen as the con-
vective velocity maximizing R (0). The maximum of the cross-correlation is readily obtained
by imposing that the gradient must be zero at τ = 0 so that

∂R

∂xk
=

N
∑

i=1

N
∑

j=1

∫

D
ρ (x− x0,i)

∂ρ

∂xk
[x− x0,j − (V j − V m)∆t] dx = 0 . (25)

To proceed further it is possible to assume that the term (V j − V m)∆t in equation (25)361

is small, so that a simple Taylor expansion can be used362

∂R

∂xk
=

N
∑

i=1

N
∑

j=1

∫

D
ρ (x− x0,i)

∂ρ

∂xk
(x− x0,j) dx−

− (V j − V m)n ∆t

∫

D
ρ (x− x0,i)

∂2ρ

∂xk∂xn
(x− x0,j) dx = 0 . (26)
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The first integral is zero for i = j since the function ρ is assumed to be isotropic, while
for i 6= j is approximately zero since it is assumed that no particles lie near the boundaries.
The second integral is non-zero if i = j and becomes negligible otherwise (since ρ is rapidly
decaying). Therefore equation (26) can be approximated by considering only the second integral
when i = j, and by noting that ρ is assumed to be the same for all particles

∫

D
ρ (x− x0,1)

∂2ρ

∂xk∂xn
(x− x0,1) dx

N
∑

i=1

(V i − V m)n = 0 → V m =
1

N

N
∑

i=1

V i . (27)

The measured velocity is therefore the arithmetic mean of the average velocity (within ∆t) of363

the N particles inside the interrogation area D.364

Since the particles are assumed to be embedded in a velocity field V (x, t) that is homo-
geneous in the image plane, they are uniformly distributed in space. The expected velocity of
the generic ith-particle inside D is statistically equal to the average flow velocity, assuming
ideal particles with no inertia, therefore

V i =
1

L2

∫

D
V (x, t) dx , (28)

and the measured velocity can be expressed using equation (27) as

V m =
1

L2

∫

D
V (x, t) dx . (29)

In conclusion, the measured velocity is approximately equal to the integral average of the365

velocity field inside the interrogation area.366
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