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Receptivity, disturbance growth and transition to turbulence of the three-dimensional
boundary layer developing on a swept flat plate are studied by means of numerical sim-
ulations. The flow is subject to a favorable pressure gradient and represents a model for
swept-wing flow downstream of the leading edge and upstream of the pressure minimum
of the wing. The boundary layer is perturbed by free-stream turbulence and localized
surface roughness with random distribution in spanwise direction. The intensity of the
turbulent free-stream fluctuations ranges from conditions typical for free flight to higher
levels usually encountered in turbo-machinery applications. The free-stream turbulence
initially excites non-modal streak-like disturbances as in two-dimensional boundary lay-
ers, soon evolving into modal instabilities in the form of unsteady cross-flow modes. The
latter grow faster and dominate the downstream disturbance environment in the layer.
The results show that the receptivity mechanism is linear for the disturbance amplitudes
under consideration, while the subsequent growth of the primary disturbances rapidly
becomes affected by nonlinear saturation in particular for free-stream fluctuations with
high intensity. Transition to turbulence occurs in the form of localized turbulent spots
randomly appearing in the flow. The main features of the breakdown are presented for
the case of travelling cross-flow vortices induced by free-stream turbulence. The flow
is also receptive to localized roughness strips, exciting stationary cross-flow modes. The
mode with most efficient receptivity dominates the downstream disturbance environment.
When both free-stream fluctuations and wall roughness act on the boundary layer at the
same time, transition is dominated by steady cross-flow waves unless the incoming tur-
bulence intensity is larger than about 0.5% for roughness amplitudes of about one tenth
of the boundary-layer displacement thickness. The results show that a correct prediction
of the disturbance behavior can be obtained considering the receptivity and evolution of
individual modes. In addition, we provide an estimate for the amplitudes of the external
disturbance sources above which a fully nonlinear receptivity analysis is necessary.

1. Introduction

Receptivity, disturbance growth and breakdown – these are the fundamental stages
through which laminar flow becomes turbulent. Numerous issues are involved in the
transition process, e.g. how external perturbations enter the boundary layer and excite
internal disturbances (receptivity), how the latter grow (instability), and when and where
the flow first becomes turbulent (breakdown). The relevance of these issues is closely
related to applications, where for instance drag reduction on aircraft wings by suppression
or downstream delay of transition is of interest (flow control).
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1.1. Transition in two-dimensional boundary layers

The classical transition scenario in two-dimensional boundary layers originates from ex-
ponentially growing Tollmien-Schlichting (T-S) waves and is observed in flows with low
background disturbance levels. When these primary waves grow above a threshold am-
plitude, the flow becomes susceptible to secondary instability which is three-dimensional
in nature and characterized by the occurrence of lambda-shaped vortices (cf. the reviews
by Herbert 1988; Kachanov 1994). Several experiments (see e.g. Taylor 1939; Klebanoff
1971; Westin et al. 1994) reveal, however, that transition in boundary-layer flows exposed
to free-stream turbulence with intensity ! 1% of the free-stream velocity is initiated by
the growth of perturbations elongated in the streamwise direction rather than by T-S
waves. These take the form of streaks with high and low streamwise velocity alternat-
ing in the spanwise direction. The streamwise velocity perturbations of the streaks are
due to the wall-normal displacement of fluid particles in shear flows by weak pairs of
counter-rotating streamwise vortices (lift-up mechanism). The lift-up is promoted by
low-frequency oscillations of the turbulent free stream, whereas the high-frequency com-
ponents are highly damped inside the shear layer (Jacobs & Durbin 1998; Zaki & Saha
2009). As the streaks grow downstream, they become susceptive to high-frequency sec-
ondary instability triggered by free-stream turbulence (Zaki & Durbin 2005; Hœpffner
& Brandt 2008) or by streak interactions (Brandt & de Lange 2008), and breakdown to
turbulent spots is initiated. These spots appear at random locations, grow in size and
number and merge with each other, until the flow is fully turbulent (bypass transition).
Detailed numerical analysis of bypass transition under free-stream turbulence can be
found in Jacobs & Durbin (2001); Brandt et al. (2004).

1.2. Transition in three-dimensional boundary layers

Boundary layers on swept wings, plates and wedges, on cones or on rotating disks are
three-dimensional, and the transition mechanisms differ from those in two-dimensional
flow owing to the existence of different instability types. Saric et al. (2003) list four
kinds of instability, relevant in different regions of the boundary layer: attachment-line,
Görtler, streamwise (T-S waves) and cross-flow instability. The focus is here on the latter
instability type in accelerated swept-plate flow. Cross-flow instability is related to the
inflectional velocity profile of the cross component of the mean flow. The base flow is
therefore susceptive to strong inviscid instability which can be both steady and unsteady
(see also the review article by Bippes 1999). Cross-flow disturbances are intensified in the
forward part of a wing by the favorable pressure gradient, whereas growth of T-S waves
is suppressed in this region. These become instead relevant in the decelerating flow in
the rear portion of the wing.

Whether steady or unsteady cross-flow waves lead to transition of swept flow is a
relevant issue for the correlation between wind-tunnel experiments and free-flight tests
with significantly lower levels of external vortical disturbances. Experiments by Deyhle
& Bippes (1996) and White et al. (2001) and numerical studies by e.g. Crouch (1993),
Choudhari (1994) and Schrader et al. (2009) suggest that steady cross-flow modes induced
by wall roughness dominate in an environment of low-amplitude free-stream disturbances
(at free-flight conditions), whereas travelling modes become dominant at higher intensi-
ties of the background disturbance (in turbo-machines or some wind-tunnel tests). As the
cross-flow waves grow downstream in amplitude they distort the chordwise mean-velocity
profiles in spanwise direction such that the flow becomes susceptive to high-frequency
secondary instability. Results on secondary instability of swept-wing flow based on the
Parabolized Stability Equations (PSE) are available in Malik et al. (1999) and Haynes
& Reed (2000); findings from Direct Numerical Simulation (DNS) are presented in Win-
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Swept-plate boundary-layer transition under free-stream turbulence 3

tergerste & Kleiser (1997) for the temporal framework and in Högberg & Henningson
(1998) and Wassermann & Kloker (2002, 2003) for spatially evolving flows. Flow con-
trol in swept-wing boundary layers has been addressed experimentally by Saric et al.
(1998). These authors used arrays of distributed roughness elements with different span-
wise spacing near the leading edge of a swept wing. They show that the most amplifying
steady cross-flow mode can be suppressed if the spacing between the roughness elements
is smaller than the most unstable spanwise wavelength. Under these conditions, a less
unstable, “useful” cross-flow mode becomes dominant, and transistion to turbulence oc-
curs further downstream than in the uncontrolled scenario. Wassermann & Kloker (2002)
confirmed this passive control strategy by means of DNS.

The purpose of the present work is to study receptivity, growth and breakdown of cross-
flow instability in swept-plate flow under free-stream turbulence, surface roughness and
the combination of both by means of nonlinear LES and DNS. This type of simulations
is presented here for the first time. In a previous investigation, Schrader et al. (2009)
analyzed linear receptivity mechanisms in swept boundary layers. These authors isolated
the effect of different components of free-stream disturbances, modeled by single free-
stream Orr-Sommerfeld modes, and demonstrated that travelling cross-flow modes can
be forced by vortical disturbances in the free stream via a scale-conversion process. In
addition, scattering of free-stream modes on chordwise localized surface roughness with
spanwise periodicity was examined and shown to become relevant only for high levels of
free-stream turbulence.

However, in three-dimensional boundary layers, the interaction between exponentially
growing modes may continuously induce waves with large amplification and quickly create
a disturbed boundary-layer flow. To better analyze this scenario, full nonlinear simula-
tions are needed and presented here. We employ a more complex model for free-stream
vorticity by considering the superposition of a large number of Orr-Sommerfeld/Squire
modes with a turbulent energy spectrum. Localized roughness with spanwise random
amplitude is modelled through a sum of Fourier modes. These disturbance sources will
bring nonlinear effects into play and provide a more complete picture of receptivity
and transition in three-dimensional boundary layers. Moreover, we investigate herein the
breakdown of the three-dimensional boundary layer. The first part of the results is meant
to illustrate the disturbance features inside the shear layer during growth, saturation and
breakdown of the primary instabilities induced by free-stream turbulence. In the second
part, the focus is on the early receptivity process, where receptivity of unsteady and
steady cross-flow instability is compared with the linear results in Schrader et al. (2009).

2. Flow configuration and numerical approach

2.1. Base flow

Boundary-layer flow over a swept flat plate is herein considered. The mean flow is ob-
tained by solving the Navier-Stokes equations with Falkner-Skan-Cooke velocity pro-
files as initial condition. This configuration often serves as a prototype for swept-wing
boundary-layer flow, including many of its characteristics such as chordwise pressure gra-
dient, streamline curvature and cross flow, while leading edge and surface curvature are
not taken into account. The stream- and cross-wise velocity profiles of swept-plate flow
are depicted in figure 1(a), where the coordinate system adopted is also shown. The ba-
sic flow is completely described by the Reynolds number, the Hartree parameter and the
sweep angle. These are chosen in correspondence with the values in Schrader et al. (2009).
This set of parameters defines conditions similar to those of the airfoil experiments at
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Figure 1. (a) Wall-normal profiles of streamwise and cross-flow velocity for Falkner-Skan-Cooke
boundary-layer flow. (b) Reynolds number based on displacement thickness (black) and down-
stream location (grey) versus chord coordinate. (c) Angle of external streamline along chordwise
coordinate.

Arizona State University reported in Reibert et al. (1996). The chordwise pressure gradi-
ent is quantified by the Hartree parameter βH , chosen to be βH = 0.333. This establishes
a favorable pressure-gradient boundary layer with chordwise flow acceleration,

U∗

∞
(x∗) = U∗

∞,0

(

x∗ + x∗

0

x∗

0

)

βH
2−βH

and W ∗

∞
= U∗

∞,0 tanφ0 , (2.1)

where U and W indicate chord- and spanwise mean velocity and the star denotes di-
mensional quantities. The sweep angle φ0 = 45◦ is defined at a reference station x∗

0,
which corresponds to the inflow plane of the computational domain. Sweep together
with chordwise flow acceleration causes curved streamlines and a force imbalance inside
the boundary layer, driving a secondary mean-flow component in the cross-stream direc-
tion, the cross flow. The sweep angle under investigation is characterized by significant
cross flow and thus by strong cross-flow instability.

Lengths are normalized by the chordwise boundary-layer displacement thickness δ∗0 ≡
δ∗(x0) at the reference location x0 and velocities by the chordwise free-stream veloc-
ity U∞,0 ≡ U∞(x0). Reference length and velocity define the Reynolds number at the
computational inlet,

Reδ∗
0

=
U∞,0δ∗0
ν

, (2.2)

where ν is the kinematic viscosity. The local Reynolds number Reδ∗ is obtained by
replacing δ∗0 and U∞,0 in (2.2) by their local values. The inflow Reynolds number is
fixed at Reδ∗

0
= 220. The Reynolds number Rex based on the chordwise location is also

common in literature, related to Reδ∗
0

via

Rex = [x0U∞,0 + xU∞(x)]Reδ∗
0

. (2.3)

Figure 1(b) shows the Reynolds numbers Reδ∗ and Rex and (c) the local angle φ of the
external streamline versus the chordwise coordinate x for the configuration adopted here.

2.2. Numerical method

The present results are obtained using a spectral method to solve the three-dimensional
time-dependent incompressible Navier-Stokes equations, see Chevalier et al. (2007). The
simulation code builds on a Fourier representation along the chord- and spanwise coor-
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Figure 2. (a) N -factor for energy and (b) growth rate of the steady cross-flow mode with
spanwise wavenumber β = −0.19, initialized at Reδ∗

0
= 220. Comparison between results from

the present spectral code (black), a spectral element method (SEM; black diamonds) and a PSE
calculation (grey circles).

dinates x and z and on Chebyshev polynomials in wall-normal direction y, along with a
pseudo-spectral treatment of the nonlinear terms. A zero-slip condition is imposed along
the wall for the base flow and the perturbed flow (base flow plus disturbances). For the
simulations with free-stream turbulence von-Neumann conditions are applied in Fourier
space at the far-field boundary above the plate. To reduce the computational effort the
top boundary for the simulations with surface roughness has been placed nearer the plate,
achieved by using the asymptotic conditions first proposed by Malik et al. (1985). Periodic
boundary conditions are enforced in the spanwise and chordwise directions z and x. The
swept-plate flow develops along x: the boundary layer grows and the streamlines change
continuously direction. To obtain nonetheless the chordwise periodicity required by a
Fourier representation, a ”fringe region” is used at the downstream end of the computa-
tional domain, as described by Nordström et al. (1999). In this region the velocity field
is forced to the desired inflow velocity profiles; they consist of the Falkner-Skan-Cooke
similarity profiles in the present case with/without incoming free-stream disturbances.

To validate the present implementation we show in figure 2 the chordwise evolution of
a steady cross-flow mode as obtained with two different spectral methods. The mode is
computed for Reδ∗

0
= 220, inserted in the fringe region of the present spectral code and

prescribed as an inflow condition of a simulation using a spectral element method. The
spectral element code (see Tufo & Fischer 1999) builds on an inflow-outflow formulation
rather than a fringe technique. Good agreement of the modal N -factor and the growth
rate σ is obtained for the two spectral methods. As we will later show results from PSE
calculations we also validate the PSE code in figure 2: the PSE results compare well
with the numerical solutions of the Navier–Stokes equations (see also Tempelmann et al.
2009).

2.3. Sub-grid scale modelling

The present study requires a computational domain of rather large spanwise and wall-
normal size to accommodate a free-stream turbulence field with a wide enough range of
length scales. The resolution of all scales would, however, result in prohibitively large
computational costs such that the simulations are only affordable by employing a Large-
Eddy Simulation (LES) model. The ADM-RT subgrid-scale model by Schlatter et al.
(2004) is used for the present simulations, building on the Approximate Deconvolution
Model (ADM). This model has been successfully applied in incompressible transitional
and turbulent flow (see e.g. the recent work by Monokrousos et al. 2008). The main
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Figure 3. (a) Turbulent free-stream fluctuations at the inflow plane of the computational do-
main for a turbulence intensity of 2.53% of U∞,0. (b) Chord- and spanwise contour of the wall
roughness. The rms-amplitude is 0.15 (grey ----).

ingredient of the ADM-RT model is the so-called relaxation term (RT) used as a closure
for the subgrid-scale stresses τij ,

∂τij
∂xj

= χHN ∗ ūi with HN = (I − G)N+1 . (2.4)

ūi indicates the velocity field implicitly filtered by the reduced resolution of the LES grid.
HN denotes a three-dimensional high-pass filter of high order derived from the low-order
low-pass filter G in Stolz et al. (2001), and the star stands for convolution in physical
space. Here, HN is characterized by the exponent N = 5 and the cut-off wavenumber
κc = 2π/3 of the filter G. Numerical stability is ensured by a model coefficient χ in
the range 0 " χ " 1/∆t. Here we chose χ = 0.2, as in Schlatter et al. (2006, 2007);
Monokrousos et al. (2008). The role of the RT term in (2.4) is to drain kinetic energy from
the resolved fluctuations at the smallest represented length scale and thereby to model
the impact of the unresolved motion on the resolved structures. Note that all simulations
were performed adding the sub-grid scale stresses. However, the computations focusing on
the boundary-layer receptivity consider only the initial phase of the disturbance growth.
In these cases, the extra relaxation term is practically zero and the computations can be
considered as DNS.

2.4. Disturbance generation

Two different disturbance sources are considered, a vortical perturbation in the free
stream and a roughness element on the wall near the inflow plane of the computational
domain. These two types of disturbances are listed in the review article by Saric et al.
(2003) as particularly relevant in swept boundary layers. The free-stream turbulence at
the inflow plane and the roughness element are shown in figure 3(a) and (b), and their
numerical generation is described below.

2.4.1. Free-stream turbulence

The turbulent inflow disturbances are numerically generated as in Jacobs & Durbin
(2001) and Brandt et al. (2004), i.e. by the superposition of eigenmodes from the con-
tinuous spectrum of the Orr-Sommerfeld and Squire operator – however, modified here
for the Falkner-Skan-Cooke base flow. A wave vector is associated to each free-stream
mode, where the complex chordwise wavenumber α is the eigenvalue of the correspond-
ing Orr-Sommerfeld and Squire problem and the wall-normal wave-number γ determines
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Swept-plate boundary-layer transition under free-stream turbulence 7

the position along the continuous spectrum (see e.g. Schmid & Henningson 2001). After
choosing spanwise and wall-normal wavenumber β and γ and angular frequency ω, the
eigenvalue α of the continuous-spectrum modes can be obtained from analytical expres-
sions (see Schrader et al. 2009, for swept boundary layers). The velocity profiles pertaining
to each eigenfunction are computed numerically, whereas the free-stream behavior can
also be obtained analytically.

An isotropic perturbation field is obtained in Fourier space by considering 20 concentric
spherical shells of radius κ spanning the range of wave vectors of length κl " κ " κu.
The limits κl and κu depend on the size and resolution of the computational domain and
are chosen to be κl = 0.05 and κu = 1.1. The frequency range covered by the turbulence
model is 1.5·10−4 " |ω| " 1.1. Forty points are distributed with constant spacing on each
shell: these define the wave vectors and continuous-spectrum eigenmodes to be included
in the expansion for the free-stream disturbance,

.uFST =
20
∑

k=1

ak

40
∑

l=1

.̂ukl(y; γ)ei(αklx+βklz−ωklt). (2.5)

.̂ukl denotes the wall-normal disturbance-velocity profiles of the free-stream mode and
contains the wall-normal oscillations. The randomness inherent in turbulent fields is
obtained through a random rotation of the shells, provided by random phase angles
of the complex coefficients ak in (2.5) as well as by the random phase in the complex

function .̂ukl. The energy density pertaining to the wavenumber κk of the k-th shell is
equally distributed among all modes on the shell, and the energy distribution across the
wavenumbers included is approximated by the von-Kármán spectrum. Details on the
spectrum can be found in Brandt et al. (2004). The relevant measure for the disturbance

amplitude is the turbulence intensity Tu, defined as Tu =
√

1
3 (u2 + v2 + w2). The wall-

normal distribution of the free-stream fluctuations at the inlet is depicted in figure 3(a).
We conclude by noting that the quantitative results on the boundary-layer response

will depend on the turbulence model spectrum chosen; the relevant physics, on the other
hand, will be independent of the spectrum if the receptivity process is linear and if there
is no significant nonlinear interaction in the free stream. In that case, the amplitude of
the boundary-layer disturbances will be proportional to the amplitude of the free-stream
modes, with the turbulence intensity Tu0 being the factor of proportionality. We will
show below that this holds for most of the Tu0 values studied. The random phases used
for the combination of the continuous modes does not correctly reproduce the energy
transfer in a natural turbulent flow. However, these effects appear to be relevant only for
the largest Tu0 examined, as shown below; moreover, the synthetic inflow will adjust to
the mean-flow conditions further downstream.

2.4.2. Surface roughness

The surface roughness is modelled through non-homogeneous boundary conditions for
the disturbance velocities u and w at the wall,





u
v
w





wall

=



























−h(x, z)∂U
∂y

0
−h(x, z)∂W

∂y





wall

, hstart " x " hend

.0 , elsewhere .

(2.6)
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Table 1. Parameters of the surface-roughness shape.
εh hstart hend hrise hfall

0.0375, 0.075, 0.15 6 34 12 12

−50 0 500

0.2

0.4

z

h,
−u

Figure 4. Validation of the roughness model for the highest roughness (εh = 0.15, dotted line).
Comparison between the specified shape h(xr, z) at the roughness station xr (—-) with the
no-slip contour u = 0 (grey ----). −u(xr, y = 0) is plotted as well for comparison (—– thin).

In the expression above, h(x, z) is the shape of the roughness bump,

h(x, z) = εhhx(x)hz(z) , (2.7)

with the amplitude εh and the functions hx(x) and hz(z) along the chord- and spanwise
coordinate respectively. hx(x) builds on a smooth, localized step function (cf. Schrader
et al. 2009), rising from x = hstart along the flank hrise, falling till x = hend along hfall

and centered at the location xr = (hstart + hend)/2, the nominal roughness station (see
figure 2(b) and table 1). This particular shape is characterized by a broad spectrum
of chordwise wavenumbers, giving rise to a broadband disturbance including unstable
modes. hz(z) is obtained through an expansion in sinusoidal functions with 16 different
spanwise wavenumbers and random phases,

hz(z) =
16
∑

n=1

sin (nβ0z + φrand
n ) , (2.8)

where the fundamental spanwise wavenumber β0 = 2π/Lz is defined by the spanwise
width Lz of the computational domain and φrand

n are random angles. The characteristic
roughness height εh in equation (2.7) is

εh =
√

h2
z

∣

∣

∣

∣

xr

, (2.9)

i.e. the rms of the random spanwise hump contour at the roughness station xr. Figure
4 gives a validation of the roughness model for the highest roughness (εh = 0.15): good
agreement is found when comparing the prescribed shape h(xr, z) at the roughness station
xr with the no-slip contour u = 0.

The present roughness model is linear in εh; this assumption is valid only for small
enough roughness elements. Figure 8 in Schrader et al. (2009) gives the range of εh for
which roughness receptivity is linear in εh. The present roughness elements – similar to
shape I in that reference – are in the linear range of that figure. Moreover, the individual
amplitudes of the 16 modes included in (2.8) are smaller than εh; the present bumps can
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Table 2. Size and resolution of the computational domains ”L” and ”S”, length of the fringe
region and inflow Reynolds number.

Box Reδ∗,0 Lx × Ly × Lz Nx × Ny × Nz Lfringe

L 220 1500 × 90 × 200 768 × 121 × 128 135
S 220 750 × 90 × 200 384 × 121 × 128 80

0 400 800 1200
2

4

6

x 10−3

(a)

x

cf

0 400 800 12000

0.1

0.2

(b)

x

max
y

p

u2

Figure 5. Boundary-layer response to free-stream turbulence with Tu0 = 3.73% and L = 10.
Study of the influence of chordwise resolution ∆x of the computational domain on (a) the
skin-friction coefficient (dots: Falkner-Skan-Cooke solution) and (b) the evolution of the wal-
l-normal maximum of urms. ∆x = 5.86 (Nx = 256) (—-); 3.91 (Nx = 384) (grey ----); 2.93
(Nx = 512) (-·-·-) and 1.95 (Nx = 768) (grey —–).

therefore be considered as low-amplitude roughness. The use of a linear roughness model
is hence justified for the values of εh considered.

2.5. Computational domain

Two computational domains with different chordwise length are used: a long one, ”L”,
to capture the breakdown of the boundary layer and a short one labelled ”S” for the
receptivity study. The size Lx ×Ly ×Lz, resolution Nx ×Ny ×Nz and length Lfringe of
the fringe region of the boxes L and S are listed in table 2 together with the Reynolds
number Reδ∗,0 defining the location of the inflow plane.

2.5.1. Domain size and resolution study

The resolution in wall-normal direction y is finer than in the wall-parallel planes, see
table 2, in particular inside the boundary layer due to the clustering of the Chebyshev
points near the wall. The normal resolution is in fact comparable to that in Brandt et al.
(2004), where no sub-grid scale model was used. Since the flow is swept at 45◦, the resolu-
tion requirements in x and z direction are expected to be similar. The laminar structures
preceding the breakdown – the cross-flow modes – can thus be fully resolved, while the
SGS model will compensate mainly for unresolved small wall-parallel scales occurring at
and after the turbulent breakdown. Owing to a wall-normal resolution typical for DNS,
the resolution study is restricted to the chord- and spanwise direction. Figure 5 shows
the influence of the chordwise resolution in (a) on the skin-friction coefficient and in
(b) on the chordwise fluctuation amplitude in terms of the maximum of the rms. The
transition location, identified by the rapid increase of the skin-friction, moves drastically
upstream as the chordwise resolution is refined from ∆x = 5.86 to 3.91. This trend be-
comes slower at a further increase in resolution, and the transition location is observed
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Figure 6. Study of the influence of resolution and size of the computational domain. Bound-
ary-layer response to free-stream turbulence with L = 10. (a) Tu0 = 2.53%. Variation of chord-
and spanwise resolution of box S, see table 2. Nx×Ny×Nz = 384×121×128 (—–); 512×121×128
(----); 384 × 121 × 192 (-·-·-). (b) Tu0 = 3.73%. Variation of spanwise size of box S. Lz = 200
(—–); Lz = 300 (----).

at nearly the same downstream location when the numerical resolution is further refined
from ∆x = 2.93 to 1.95. Figure 5(b) shows that, while the early transient and linear
growth phase is captured with similar accuracy in the different cases, the subsequent
rapid amplification observed around x ≈ 600 is under-predicted on the coarser domains.
Small structures responsible for the excitation of the secondary instability need to be rep-
resented on the grid for the correct prediction of the transition location. This requirement
is met on the fine meshes, and a further refinement below ∆x = 1.95 will only weakly
affect the results while significantly increasing the computational costs. The differences
in the maximum levels of cf and urms observed in the regime after transition are due
to the different range of resolved scales, and uncertainties in the turbulent fluctuations
associated with resolution may therefore be relevant for x ! 700 when Tu0 = 3.73%.
However, we do not investigate the turbulent regime here; the main focus of the paper
is on the receptivity phase and the structures at the breakdown stage. The SGS model
is not designed to effect the physics of transition but to prevent unphysical parasitic
upstream influences from the highly fluctuating turbulent region further downstream for
simulations where transition occurs (see also Schlatter et al. 2006).

On the short domain S, on the other hand, a finer resolution is computationally feasible.
Two modifications of box S in table 2 are considered, first a refinement in the streamwise
direction, from ∆x = 1.95 to 1.46, and second a higher resolution (1.5 times) in the
z direction. The vortical perturbation prescribed at the inlet of the original and the
modified domains is composed of modes with wavenumbers between κl = 0.05 and κu =
1.1 with a turbulence intensity of Tu0 = 2.53% and a characteristic length of L = 10.
It becomes clear from figure 6(a) that the receptivity and the subsequent growth of the
instability obtained on the coarsest grid do not differ from the results on the two refined
meshes.

Next, the influence of the width Lz of the numerical domain on the boundary-layer
response is examined. This is investigated by considering the shorter box S with Lz =
300 and Nz = 192, i.e. the spanwise resolution is kept fixed. For a fair comparison,
the parameters defining the free-stream turbulence are left unchanged: the turbulence
intensity considered is Tu0 = 3.73% and the integral length L = 10. Figure 6(b) shows
the downstream evolution of the excited boundary-layer disturbance in the wider domain
as well as in box S. The initial transient disturbance growth is slightly enhanced in the
wider domain whereas the disturbance growth rate further downstream is hardly affected.
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Figure 7. Downstream decay of free-stream turbulence with inflow turbulence intensity of
Tu0 = 3.73% and integral length L = 10. (a) Downstream evolution of Tu0 measured at
three levels above the plate, y = 30 (—–); 35 (----) and 45 (-·-·-). Comparison with energy
decay characteristic for grid turbulence (-∗-∗-), see Fransson et al. (2005). Here, C = 1.73 and
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This difference can be explained by the nonlinear interactions occurring between wider
structures at the initial receptivity phase. The spanwise scale of the disturbance is not
changed by the increased domain size as shown by the identical growth rates downstream.
Note, however, that the results are obtained for the second highest free-stream turbulence
intensity studied, Tu0 = 3.73%, and the agreement between the curves is expected to
improve at lower Tu0. In light of the rather small influence of Lz on the boundary-layer
response and for the sake of the computational costs the subsequent simulations are
performed on the default domain in table 2 with Lz = 200.

2.6. Characterization of the free-stream turbulence

Due to the distribution of the modal wavenumbers defining the free-stream turbulence on
concentric spherical shells the resulting disturbance field is homogeneous and isotropic.
In swept-plate flow with favorable pressure gradient, however, the mean flow is subject
to chordwise acceleration (∂U

∂x
> 0). This gives rise to non-zero production terms in

the Reynolds-stress transport equation (see for instance Pope 2001). Figure 7 displays
the behavior of the artificial turbulence field in the free stream. In (a), the downstream
decay of the total turbulence intensity at three different levels above the plate is plotted.
The turbulent inflow conditions are Tu0 = 3.73% with L = 10. It is apparent that the
turbulence intensity decays at a rate similar to that in homogeneous isotropic turbulence,
where the energy decay obeys a power law. In Fransson et al. (2005) the exponent of
this law has been experimentally determined as −0.6 for grid-generated turbulence, while
the parameters C and xr depend on the turbulence grid. Here, the curve fit has been
done with C = 1.73 and xr = −600. The plot also shows that the decay rate depends
only weakly on the wall-normal level and hence that homogeneity is maintained across
the free stream. However, figure 7(b) reveals that the turbulent kinetic energy is not
equally distributed among the fluctuation components, and their individual decay differs.
The adjustment to the free-stream conditions occurs already in the fringe region and in
the region near the inflow plane where ∂U

∂x
and the streamline curvature are maximum.

The wall-normal fluctuations are larger than their chordwise counterpart. This can be
explained by considering the production terms in the Reynolds-stress transport equation
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Table 3. Amplitude of the forcing disturbance. Turbulence intensity of the free-stream
turbulence at the inflow plane and rms-height of the surface-roughness strip.

Disturbance source Amplitude

Free-stream turbulence Tu0 · 102 0.17; 0.42; 0.84; 1.26; 1.69; 2.11; 2.53; 2.95; 3.73; 5.06
Surface roughness εh · 102 3.75; 7.5; 15

for the chordwise u and wall-normal v fluctuations in accelerating flows,

P11 = −2u2
∂U

∂x
(2.10a)

P22 = −2v2
∂V

∂y
= 2v2

∂U

∂x
. (2.10b)

A negative production term is seen in the first equation, whereas positive production of
wall-normal fluctuations is caused by the flow acceleration, where the continuity equation
has been used to relate the mean-flow gradients. Energy is drained from the u-component
of the free-stream turbulence into the v-component by the chordwise acceleration of the
underlying mean flow. The spanwise velocity fluctuations, initially strong, decay rapidly
until they reach amplitudes similar to those pertaining to u. The relative enhancement of
the wall-normal fluctuations can also be related to the stretching of chordwise vorticity,
as observed e.g. in the convergent section of a wind tunnel, while the drop of u and w is
associated with the decrease of wall-normal vorticity induced by the negative ∂V

∂y
.

3. Results

The response of the three-dimensional swept-plate boundary layer to free-stream tur-
bulence and surface roughness is studied. The disturbance amplitude is expressed in
terms of the turbulence intensity for the free-stream disturbance and the rms-height for
the roughness. The values considered are compiled in table 3. The statistics presented
in the following are obtained by averaging in time and in the spanwise direction. Note
that the rms-values are indicative of the total disturbance energy, sum of the energy in
the modes with different wavenumbers. The phase relation between the individual com-
ponents, however, determines the local distortion. rms-values can therefore mask large
localized distortions, origin of secondary instabilities.

3.1. Part I: Laminar-turbulent transition

Results on the transition under a high-amplitude disturbance environment are pre-
sented first. The skin-friction coefficient provides a good indication of the transition
location. This is shown in figure 8(a) for free-stream turbulence with inflow intensities
of Tu0 = 2.53% and 3.73%. The completion of transition is observed further upstream
when increasing the level of the external disturbance. Bonfigli (2006) pointed out that
the skin friction does not exhibit an overshoot before approaching the value for fully
turbulent flow, in contrast to the case of Blasius flow (cf. Monokrousos et al. 2008, for
instance), and this observation is confirmed here. In figure 8(c) and (d) the boundary
layer is characterized in terms of displacement and momentum-loss thickness as well as
shape factor. These quantities are computed both from the chord- and the spanwise
mean flow. A substantial rise of the thicknesses and drop of the shape factor is observed
around x ≈ 700 and x ≈ 900 respectively, indicating the region of laminar-turbulent
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Figure 8. Visualization of breakdown to turbulence of swept-plate flow exposed to free-stream
turbulence with inflow turbulence intensity of Tu0 = 2.53% (grey) and 3.73% (black) through
(a) skin-friction coefficient and (b) downstream evolution of the rms of chordwise (—–), vertical
(----) and spanwise disturbance velocity (-·-·-·-). (c) Evolution of displacement (—–) and mo-
mentum-loss thickness (----) and (d) shape factor, based on chord- (top) and spanwise mean
velocity (bottom). The laminar solution (thin grey) and the theoretical curves for Falkner-Skan–
Cooke flow (dots) are given as well.

transition. In agreement with experimental and numerical findings for bypass transition
in two-dimensional boundary layers (Matsubara & Alfredsson 2001; Brandt et al. 2004),
the displacement thickness is seen to decrease slightly below the laminar values in the
transitional region, and then to increase faster in the turbulent flow. The momentum
loss is, on the contrary, always larger than in the laminar case owing to the increase of
skin friction caused by the occurrence of the turbulent spots. Note in figure 8(d) that the
shape factor computed from the chordwise mean velocity slightly increases in the lami-
nar region rather than being constant. This shows that the chordwise base-flow profiles,
solution to the Navier-Stokes equations, are not exactly self-similar, in contrast to the
initial Falkner-Skan profiles.

The wall-normal maximum of the chordwise, wall normal and spanwise velocity fluctu-
ations is reported in figure 8(b). Upstream of x ≈ 200 the v component is weak while the
horizontal components rapidly grow. This indicates that the boundary layer is initially
subject to non-modal instability, as typically observed in two-dimensional boundary lay-
ers. In Blasius flow, only the streamwise velocity component grows at the initial stages
of the transition while the cross-stream components decay (Brandt et al. 2004). In three-
dimensional boundary layers, in contrast, the basic flow is characterized by wall-normal
shear both in the chordwise and spanwise directions; therefore the lift-up effect induces
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the growth of both components, as observed in the figure. Upstream transient growth is
thus found to be a precursor of downstream cross-flow modes, providing the latter with
initial energy. After the initial phase of primary growth, a fast increase in amplification
rate is observed in 8(b) first for the case with Tu0 = 3.73%, x ≈ 600, and later for the
lower intensity Tu0 = 2.53%, x ≈ 800. This is associated to the rapid rise in skin fric-
tion coefficient in figure 8(a) and is due to the appearance of high-frequency secondary
instabilities and turbulent spots in the flow. The weak overshoot in the curves for the ve-
locity fluctuations can be related to the maximum values of skin friction. The maximum
amplitude prior to breakdown is slightly larger for Tu0 = 2.53% than for Tu0 = 3.73%,
i.e. the breakdown is not initiated at the same disturbance level inside the shear layer.
This suggests that the transition location can only approximately be predicted from a
certain threshold amplitude of the primary cross-flow mode alone. At the end of the
computational domain the level of velocity fluctuations is almost the same for the two
cases: the flow has reached an equilibrium turbulent state.

It is worth pointing out the difference between the disturbance evolution depicted in
figure 8(b) and, for instance, the data in figure 10(a) of Fransson et al. (2005) pertaining
to nonmodal growth of streaks in two-dimensional boundary-layer flow: In that reference,
a strong overshoot in the curves for the streamwise fluctuation energy, intensifying with
increasing Tu, is reported before the energy level sets to a constant value in the fully
turbulent boundary layer. This behavior suggests a pronounced region of intermittency
in two-dimensional flow, which is not observed here in the swept boundary layer. This
discrepancy can be explained with the different dominating instability types prior to
transition: the cross-flow vortices in swept flow are destabilized much faster by secondary
instability than the streaks in two-dimensional flow. Therefore, the amplitude of the cross-
flow modes (upon nonlinear saturating effects) and the average transition location may
be closer correlated in three-dimensional boundary layers than in their two-dimensional
counterpart.

An overall picture of the transition in swept boundary layers exposed to free-stream
turbulence is provided in figure 9. This figure displays a time series of snapshots of the
flow in a wall-parallel plane inside the boundary layer, y = 2, together with a view of
the free-stream fluctuations in a plane located at y = 40 well above the boundary layer,
figure 9(a). The results are obtained with inflow turbulence of intensity Tu0 = 3.73%
and length scale L = 10, and the snapshots are taken after the flow field has reached a
statistically converged state. The flow is swept from left to right and bottom to top in
the figure. As seen in (a), the finer length scales of the external disturbance disappear
further downstream, indicating decay of the free-stream turbulence. Plots (b) through
(g) show that instabilities in the laminar region of the boundary layer appear in the
form of long structures, tilted about 45◦ with respect to the chord of the plate. Around
x = 500 these structures have reached a threshold amplitude such that the boundary
layer becomes susceptive to secondary instabilities: high-frequency modes are triggered
at random locations and grow rapidly in amplitude. Instabilities are most likely triggered
by high-frequency components of the free-stream turbulence. An alternative mechanism
may be the nonlinear interaction between low-frequency modes already in the boundary
layer (see also Brandt & de Lange 2008, for two-dimensional flow).

Patches of irregular motion are seen to appear further downstream, forming local re-
gions of turbulence called spots. The spot seen in figure 9(b) grows in size with time; a
second spot occurs in plot (c) and both become wider and longer as they travel down-
stream. At time t = 6230, figure 9(e), a third spot can be identified in the lower part
of the domain, and later, image (g), the three turbulent spots have almost merged to
form one large region of turbulent motion. Downstream of x = 700 the boundary layer
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Figure 9. Free-stream turbulence with intensity Tu0 = 3.73% and integral length L = 10
and the response of the swept-plate boundary layer to it. The flow is from left to right. (a)
Downstream evolution of the chordwise fluctuation u in the free stream at y = 40. (b)-(g)
Boundary-layer response in terms of the chordwise fluctuation u at y = 2 at different instants
of time.

is fully turbulent, and the turbulent region is constantly fed by merging spots incident
from the upstream laminar part of the layer. It becomes apparent that the dominant
disturbance structures in the fully turbulent boundary layer are still elongated and tilted
in the free-stream direction (Schlatter & Brandt 2008). Note finally that all spots in
figure 9 form in a rather limited chordwise region. This provides further indication for a
less pronounced intermittency phase of this transition scenario as compared with bypass
transition in two-dimensional flow, as discussed above.

Figure 10 characterizes the wall-normal and spanwise length scales of the disturbance
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Figure 10. Boundary-layer response to free-stream turbulence with intensity Tu0 = 3.73% and
integral length L = 10. y-z planes showing contour lines of instantaneous chordwise velocity
in the boundary layer for time t = 6270 (compare with figure 5(f)) at four chordwise stations
upstream of the breakdown location. (a) x = 300, (b) x = 400, (c) x = 500 and (d) x = 600.
The contour lines show levels between 0.05 and 1.25 (from black to grey) with spacing 0.15.
Note that the y axis is enlarged by a factor of 1.67.

structures inside the boundary layer by showing contour lines of instantaneous chordwise
velocity in lateral planes at four downstream locations. At x = 300, plot (a), the deforma-
tion of the mean flow is still moderate, and the smallest observed spanwise length scale
is about 10, i.e. comparable to the integral length scale of the free-stream turbulence.
Further downstream, at x = 400 and 500, contour lines typical for cross-flow modes are
identified, the gradients in instantaneous chordwise velocity have become steeper and the
structures have grown in size in wall-normal direction with the boundary layer. Their
spanwise size has in contrast decreased relative to the layer thickness, see plots (b) and
(c). Owing to the noisy environment and random superposition of different modes, the
mean flow deformation does not resemble that usually observed under controlled dis-
turbance generation. Cross-flow modes of different amplitude, spanwise and wall-normal
scale appear side by side in an unpredictable fashion. However, the formation of strong
shear layers supporting rapid secondary instabilities is clearly observed. In figure 10(d)
regions of strong flow deformation, steep velocity gradients and fine spanwise scales are
identified near the edges of the depicted domain, while the flow field in the neighborhood
is smoother. These highly perturbed regions are referred to as turbulent spots (cf. figure
9(f)) and indicate where the boundary layer first approaches the turbulent state. Note
that these turbulence patches are located closer to the wall than the original cross-flow
modes. As in two-dimensional boundary layers, the late-stage high-frequency instability
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Figure 11. Instantaneous flow field upstream of the transition location (t = 6270,
Tu0 = 3.73%). (a) y-z plane (x = 600) showing contour lines of chordwise velocity with levels
between 0.08 and 1.28 and spacing of 0.08. The shaded areas identify regions of high-intensity
secondary disturbances (chordwise component). (b) Contours of positive and negative chordwise
disturbance velocity (grey: u = 0.12; black: u = −0.12 and of λ2 (light grey: λ2 = −1.4 · 10−3).

moves from the upper part of the boundary layer towards the wall (Jacobs & Durbin
2001; Brandt et al. 2004; Zaki & Durbin 2005).

Next, the disturbance structures caused by the secondary instabilities shortly upstream
of the transition location are examined. Secondary instability of cross-flow modes has
been considered both theoretically (Malik et al. 1999), experimentally (White & Saric
2005, more recently) and numerically (Bonfigli & Kloker 2007, for a comparison with
stability analysis). These instabilities are of inviscid inflectional type and associated with
strong shear layers of the mean flow induced by saturated cross-flow modes. Following
Malik et al. (1999), three different classes of modes are identified, (i) mode I or ’z’,
associated with the minimum of the spanwise gradient of the streamwise velocity and
characterized by high-frequency oscillations; (ii) mode II or ’y’, associated with the max-
imum of the wall-normal gradient, also characterized by high-frequency oscillations; (iii)
mode III, associated with the maximum of the spanwise gradient, characterized by lower
frequencies and located closer to the wall. These modes have been clearly identified when
considering secondary modal stability of saturated steady cross-flow modes, whereas a
less clear-cut distinction has been observed for travelling waves, which are more relevant
for the transition scenario in the presence of free-stream turbulence. A combination of
modes ’z’ and ’y’ seems to appear in the experiments reported in Bippes (1999) under
natural conditions.

To identify the relevant flow structures of the spot precursors, numerous velocity fields
have been examined in detail. Note that the identification of the various secondary insta-
bility modes of travelling cross-flow vortices presented in Wassermann & Kloker (2003)
required a spanwise Galileian transformation to travel with the primary wave and an
adapted temporal-spanwise Fourier decomposition of the disturbance (see reference above
for details). Such an analysis is impossible in the case of disturbances randomly induced
by free-stream turbulence. The primary cross-flow modes are neither periodic in time nor
in space; they appear as elongated structures of finite length. Similarly, the high-frequency
perturbations leading to formation of turbulent spots appear as localized, rapidly ampli-
fying wave-packets. As a consequence, visual analysis is adopted to characterize the late
stages of the laminar-turbulent breakdown.
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An example of typical pre-transitional disturbance structures is provided in figure 11.
Plot (a) is a close-up view from figure 10(d) displaying contour lines of instantaneous
chordwise velocity typical for a saturated cross-flow vortex. In addition, regions of the
most intense secondary perturbation riding on top of the cross-flow vortex are shown
as shaded areas. These are obtained by following the primary instability mode over
a short downstream distance and correlating the instantaneous chordwise velocity at
two locations .x1 and .x2, u(.x1)u(.x2)/u2(.x1). The perturbation determined in this way
represents streamwise fluctuations of the chordwise velocity component along the cross-
flow vortex. The fluctuations will inevitably contain also the streamwise variation of the
underlying primary mode due to nonparallel effects and inhomogeneities; however this
contribution turns out negligible when considering only the regions of largest disturbance.

In the figure, two regions are identified where the chordwise component of the secondary
disturbance velocity is larger than 50% of the maximum. These two areas can be related
(i) to strong shear at the updraught side of the primary vortex in what appears as a
combination of modes ’z’ and ’y’ and (ii) to the region of positive spanwise gradient
located closer to the wall, as typically observed for mode III. The first type of high-
frequency perturbation is observed to appear more frequently and to dominate during the
breakdown. This can be explained by the fact that the secondary instability is most likely
triggered by high-frequency disturbances in the free stream: modes located in the upper
part of the boundary layer are thus most easily excited. Note in addition that largest
growth rates are obtained for modes ’z’ and ’y’ when examining the linear instability of
individual steady cross-flow modes or packets of them (Wassermann & Kloker 2002).

Finally, vortical structures typical of spot precursors are displayed in figure 11(b).
These are identified by the λ2 criterion (Jeong & Hussain 1995). Finger vortices lo-
cated on the updraught side of the primary vortex are clearly visible, in agreement with
previous numerical studies with controlled disturbances (Wintergerste & Kleiser 1997;
Wassermann & Kloker 2002, 2003). Typically, packets of two to three vortices are ob-
served in our simulations.

3.2. Part II: Receptivity

First, synthetic turbulence with different intensities is prescribed at the inflow plane of
the computational domain, from where it is convected by the free stream while decaying.
This disturbance source will occupy the entire free stream and therefore act non-locally
on the boundary layer. Secondly, a thin roughness strip with a step-like contour in x-
and a random shape in z direction is placed parallel to the leading edge near the inflow
plane of the domain. This disturbance is confined to a small downstream region and
hence interacts locally with the boundary layer. Finally, we combine both disturbance
sources to determine whether steady or unsteady modes dominate the boundary-layer
response. The following results are obtained on the short domain, box S, sufficiently long
to include receptivity, primary disturbance growth and nonlinear interaction even for the
lowest amplitudes of the forcing disturbance.

3.2.1. Response to free-stream turbulence

Figure 12 depicts the downstream evolution of the boundary-layer disturbance forced
by free-stream turbulence with different intensities in the range Tu0 ∈ [0.17, 5.06]%.
Tu0 is defined by its value at the inflow plane. In figure 12(a) and (b) the wall-normal
maximum of the rms of the chordwise fluctuation u is shown versus x for increasing
inflow turbulence intensities. The results pertaining to the lower turbulence intensities
are reported in (a) and those for the higher free-stream turbulence levels in (b) with the
curve obtained at lowest Tu0 repeated for comparison. Initially, x # 100, the instability
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Figure 12. Boundary-layer response to free-stream turbulence with integral length L = 10 and
different intensities: (a) Tu0 = 0.17% (black —–); 0.42% (black ----); 0.84% (black -·-·-); 1.26%
(grey —–); 1.69% (grey ----) and 2.11% (grey -·-·-). (b) Tu0 = 0.17% (repeated for comparison;
black —–); 2.53% (black ----); 2.95% (black -·-·-); 3.73% (grey —–) and 5.06% (grey ----). (c)
shows the data from (a) scaled with the inlet turbulence intensity Tu0 and (d) the curves from
(b) scaled by Tu0.

growth is dominated by transient behavior, followed by a region of exponential growth.
The linear regime extends nearly throughout the whole domain for weak free-stream
perturbations with Tu0 = 0.17% and Tu0 = 0.42%, whereas the curves obtained in a
disturbance environment of higher intensity start to bend off for x > 400. This indicates
that nonlinear interaction becomes relevant for Tu0 > 0.42%, causing saturation of the
primary disturbances. At the highest inflow turbulence levels of Tu0 = 3.73% and 5.06%,
secondary instabilities occur already within the short computational domain, as apparent
through the upward bending growth curves for x ! 600 (Tu0 = 3.73%) and x ! 400
(Tu0 = 5.06%). Moreover, breakdown of the laminar boundary layer is observed for
Tu0 = 5.06% at x ≈ 550. The extent of the linear growth region and the onset of
nonlinear behavior becomes more distinct in figures 12(c) and (d), where the curves
of plots (a) and (b) are shown after re-scaling the disturbance amplitudes with the
inflow turbulence intensity. Clearly, the initial disturbance amplitude and the incipient
transient growth scale with Tu0 for all intensities under investigation, indicating that the
receptivity process is linear. In particular, the first data point at x = 0 can be interpreted
as receptivity coefficient based on Tu0: here, a value of about 0.2 is obtained. At the
lower intensities in figure 12(c), the primary instability growth depends linearly on Tu0

in the region x # 450 , while saturation of the amplitude sets in further downstream. The
present results also suggest that the individual instability modes evolve independently for
turbulence intensities Tu0 # 2%. Figure 12(d) reveals that the curves obtained at higher
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intensities (Tu0 $ 2.53%) do not collapse as well with the data for Tu0 = 0.17%, showing
that the dependence of the primary instability evolution on the incoming turbulence
intensity becomes nonlinear at the highest levels of Tu0. The larger amplification observed
is most likely due to nonlinear forcing among unsteady low-frequency modes with different
spanwise scales rather than to a different behavior of the free-stream turbulence when
Tu0 is large (e.g. nonlinear interaction in the free stream).

The receptivity mechanism to free-stream turbulence can be summarized as follows:
The upstream disturbance, undergoing nonmodal growth due to the excitation and inter-
action of a vast number of scales, soon evolves into an exponential disturbance composed
of unstable cross-flow modes. This suggests that the receptivity mechanism is active
in the upstream part of the boundary layer; further downstream the cross-flow modes
develop rather independently from the free stream until the onset of secondary insta-
bility. Schrader et al. (2009) demonstrate in fact that receptivity to free-stream vortical
disturbances like those used here is in particular relevant near the leading edge where
the length scales of the unstable cross-flow modes are most efficiently generated by a
scale-conversion mechanism; thus, the receptivity depends on the inflow location of the
simulation. This points to the need of including the leading-edge region in order to ex-
actly capture the receptivity of the shear layer to free-stream turbulence, which is beyond
the scope of this work.

The existance of different spanwise wavenumbers β and angular frequencies ω in the
free stream leads to the excitation and competition between unstable cross-flow modes
with different β and ω, growing at different rates and becoming dominant at different
downstream locations. Therefore, the curves for the evolution of the boundary-layer in-
stabilities in figure 12 do not exhibit a clean exponential behavior; instead, they represent
the envelope for the evolution of individual unstable cross-flow waves. Figure 13(a) pro-
vides data for the downstream development of the amplitude of a number of unstable
modes with ω = −0.01 and with various spanwise wavenumbers β. Note that β and
ω of the most unstable cross-flow modes take negative values for the reference system
and modal ansatz function adopted, while the streamwise wavenumber α is positive. The
curves are obtained through the solution of the Parabolized Stability Equations (PSE).
As the receptivity is not included in the PSE framework, the evolution curves need to be
weighted with the corresponding receptivity coefficients. Here, the coefficients for vorti-
cal free-stream disturbances from Schrader et al. (2009) (inset of figure 13(a)) are used.
To obtain the total amplitude of the boundary-layer disturbance, the envelope of the
weighted amplitude-evolution curves is computed and compared with the present results
from the full nonlinear simulation, see figure 13(b). Although the envelope curve only
includes cross-flow modes with frequency ω = −0.01 it provides a good approximation of
the actual disturbance growth observed in the simulations. This demonstrates on the one
hand that low frequencies like ω = −0.01 play a major role during the receptivity pro-
cess and on the other hand that the receptivity coefficients computed in Schrader et al.
(2009) for vortical free-stream disturbances of single wavelength also describe receptivity
to free-stream turbulence properly. Note that larger growth rates downstream may be
obtained when including modes with lower frequency.

The characteristic size and spacing of the boundary-layer instability structures is in-
vestigated next. In figure 14 the spacing ∆z between the disturbance structures in the
region of primary instability growth is displayed versus the chordwise coordinate. ∆z
is determined by computing the spanwise two-point correlations u(z)u(z +∆z)/u2(z)
for the chordwise fluctuation u and is defined as twice the location ∆zmin of the first
minimum of the obtained correlation curve, ∆z(x) = 2∆zmin(x). It can be interpreted
as the spanwise spacing between two adjacent instability structures with a disturbance

Page 20 of 28



Swept-plate boundary-layer transition under free-stream turbulence 21

200 400 600 800

10
−3

10
−2

−0.3 −0.2 −0.1

0.3

0.4

0.5

(a)

x

max
y

p

u2

β

CV

0 200 400 600

10−3

10−2 (b)

x

max
y

p

u2

Figure 13. Boundary-layer response to forcing with free-stream turbulence of Tu0 = 0.17%. (a)
Growth of cross-flow modes with angular frequency ω = −0.01 and various spanwise wavenum-
bers in the range (-0.27,-0.09) obtained through the PSE method (—–, thin). The curves are
weighted with the corresponding receptivity coefficients (insertion from Schrader et al. 2009).
The envelope curve is also shown (—–, thin). (b) Boundary-layer response for Tu0 = 0.17%
(—–) in comparison with the envelope curve from (a) (----).
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Figure 14. Characteristic spanwise spacing between the disturbance structures excited by
free-stream turbulence at various intensities. (a) Tu0 = 0.17% (—–); 0.42% (----); 0.84% (-·-·-);
1.26% (-◦–◦-); 1.69% (—–, thin) and 2.11% (----, thin). (b) Tu0 = 0.17% (—–); 2.53% (----);
2.95% (-·-·-); 3.73% (-◦–◦-) and 5.06% (—–, thin). (c) and (d) show the same data as (a) and
(b), respectively, but ∆z is normalized by the local instead of the inflow displacement thickness.

velocity in the same direction, for instance two contiguous cross-flow modes or two high-
speed streaks. Figure 14(a) shows the characteristic spacing obtained under turbulence
with Tu0 " 1.69%, revealing that ∆z is independent of Tu0 in this range and that it
slowly drops downstream. In (b) a slightly faster decrease of the spacing is observed
for the more intense free-stream fluctuations, in particular for the two largest values of
Tu0 = 3.73% and 5.06%. This is in line with the experimental findings in Matsubara &
Alfredsson (2001) for the two-dimensional boundary layer exposed to turbulence from
grid B, where the downstream decrease in spacing has been reported to be slower under
free-stream turbulence of low intensity than in high-level turbulence. The rapid drop in
∆z for Tu0 = 5.06% downstream of x = 500 reveals that breakdown to turbulence is ob-
served within the domain for this case: the disturbance structures rapidly break up into
smaller scales in this region. Upstream of the breakdown location, ∆z increases some-
what before it finally drops. This increase is also seen at the second highest turbulence
intensity of Tu0 = 3.73%, indicating imminent transition. In plots 14(c) and (d) the data
from (a) and (b) are re-scaled with the local displacement thickness instead of its inflow
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Figure 15. Boundary-layer response to forcing through a random surface-roughness strip.
(a) Growth of steady cross-flow modes with various spanwise wavenumbers in the range
(-0.47,-0.097) (—–, thin). The curves are from Schrader et al. (2009) and weighted with the
corresponding receptivity coefficients from the same reference (insertion). The envelope curve
is also shown (—–, thick). (b) Boundary-layer response for εh = 0.0375 (—–), εh = 0.075 (----)
and εh = 0.15 (-·-·-) in comparison with the envelope curve from (a) (grey).

value. These figures demonstrate that the characteristic size of the primary instability
decreases relative to the local size of the boundary layer for all values of Tu0.

3.2.2. Response to surface roughness

Steady surface roughness provides an efficient receptivity mechanism for station-
ary cross-flow vortices (e.g. Crouch 1993; Choudhari 1994). Here, a chordwise local-
ized spanwise surface-roughness strip with the shape shown in figure 3(b) is placed on
the plate near the inflow plane of the computational domain, while the free stream
is now disturbance-free. Roughness elements with different rms-heights are considered,
εh = 0.0375, 0.075 and 0.15. The total perturbation induced by the roughness strip will
be distributed among the 16 spanwise wavenumbers included in the bump shape such
that the individual modal amplitudes are lower. The present roughness elements can
be considered as low-amplitude roughness. Due to the forcing at various wavelengths,
different cross-flow waves will appear and compete with each other. Figure 15 shows
the response of the shear layer to the roughness. In figure 15(a) the growth of various
steady cross-flow modes with spanwise wavenumbers included in the lateral contour of
the roughness strip is depicted. The curves are weighted with the receptivity coefficients
from Schrader et al. (2009) and their envelope is compared with the downstream evolu-
tion of the disturbance amplitude from the present nonlinear simulations (figure 15b).
The envelope is dominated by the cross-flow mode β = −0.22, the mode of strongest
receptivity among those forced in the simulation. The agreement between the envelope
and the evolution curve for the layer disturbance is good for εh = 0.0375 and 0.075,
revealing that the receptivity coefficients computed within the linear approximation and
for the simplified roughness model in Schrader et al. (2009) are also valid for receptivity
to the random roughness strip considered here. Nonlinear interaction between the forced
cross-flow waves is not significant, and the disturbance growth exhibits a rather clean
exponential behavior. It is concluded that both roughness receptivity and the subsequent
disturbance growth are linear for the two lower values of εh: the solid curve (εh = 0.0375)
in figure 15(b) collapses with the dashed line (εh = 0.075) when multiplied by 2. If the
height of the roughness strip is further increased to εh = 0.15, nonlinear effects become
visible downstream of the roughness. The disturbance amplitude just downstream of the
bump becomes larger than twice that for εh = 0.075. Since it has been shown in Schrader
et al. (2009) that receptivity is still linear in εh for εh = 0.15, we ascribe the behavior
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Figure 16. Swept-plate boundary layer exposed to turbulent fluctuations of (a) Tu0 = 0.42%
and (b) Tu0 = 0.84% and to a localized wall-roughness strip with rms-amplitude εh = 0.075.
The thin black curves represent the unsteady (----) and the steady disturbance evolution (—–)
due to turbulence and roughness alone. Their sum (thick grey —–) is compared with the total
disturbance (black ----) observed in the simulations with combined perturbation sources.

seen in figure 15(b) to the downstream nonlinear interaction of linearly excited modes.
Finally, the disturbance amplitude bends downward for x ! 500, indicating saturation
due to nonlinearity.

3.2.3. Response to free-stream turbulence with surface roughness

It is of interest to determine which type of disturbance – steady or unsteady cross-
flow vortices – dominates inside the layer and causes the breakdown to turbulence. This
issue has so far been addressed only through wind-tunnel experiments, see the review
by Saric et al. (2003). In Schrader et al. (2009), a numerical analysis involving the com-
bination of simplified models for free-stream vorticity and roughness is presented. The
threshold in turbulence intensity, above which travelling cross-flow instability dominates
over stationary disturbance waves has been estimated to Tu0 = 0.5%. Here, we use more
complex representations for free-stream turbulence and surface roughness and examine
the response of the swept boundary layer to different combinations of the amplitudes
Tu0 and εh of free-stream turbulence and roughness. Tu0 is varied while the roughness
height is kept fixed at εh = 0.075. This value is larger than those in the experiments
by Reibert et al. (1996) (εh ≈ 0.025), where the roughness has, however, a dominant
spanwise length scale. Note that the threshold beyond which the predominant cross-flow
waves are unsteady is dependent on the roughness height chosen.

The results from two simulations differing in the inflow intensity Tu0 of the turbulent
free-stream fluctuations are shown in figure 16: Tu0 = 0.42% in (a) and 0.84% in (b). The
amplitude of the roughness strip is identical in both cases (εh = 0.075). The evolution
of the boundary-layer disturbance obtained in the presence of both perturbation sources
is displayed together with the development of the perturbation induced by free-stream
fluctuations and wall roughness alone. In figure 16(a) steady cross-flow modes dominate
over travelling waves, while the situation is vice versa at larger free-stream turbulence
intensity as shown in (b). It can thus be concluded that the threshold, above which
unsteady modes become significant is passed in the region 0.42% < Tu0 < 0.84%, when
the roughness height is εh = 0.075. The estimate from Schrader et al. (2009) is within this
range. Figure 16 further reveals that the total shear-layer disturbance in the simulations
with combined perturbation sources can be correctly estimated by summing the unsteady
and the steady contribution. This observation holds in the steady-wave dominated case
in (a) as well as in the travelling-mode dominated situation in (b). Interaction between
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the travelling and the stationary disturbance appears to be negligible for the present
configuration and an accurate prediction of the boundary layer response can be obtained
by considering both disturbance sources independently.

4. Discussion and Conclusions

Receptivity, disturbance growth and breakdown in three-dimensional boundary-layer
flow developing on a swept plate under a favorable pressure gradient have been investi-
gated. The flow has been perturbed by free-stream turbulence, a roughness strip with
spanwise random amplitude and the combination of both. Under the conditions studied
both disturbance sources efficiently excite cross-flow vortices.

In the first part of the paper the route of laminar-turbulent transition is illustrated by
describing the disturbance structures dominating during the different stages of transi-
tion. While there exist publications on wind-tunnel experiments of swept-plate flow (e.g.
Bippes 1999) the present work is to our knowledge the first presenting a numerical simu-
lation of cross-flow mode dominated transition in swept-plate flow with free-stream tur-
bulence. Numerical studies on transition initiated by controlled wall disturbances are, in
contrast, already available for both steady and travelling cross-flow instabilities (Wasser-
mann & Kloker 2002, 2003). Our study reveals that, owing to their large amplification
rate, the cross-flow modes dominate the disturbance environment of the boundary layer
prior to the breakdown. This is in contrast to two-dimensional boundary layers, where
T-S waves are irrelevant compared to non-modal streaks already for moderate levels of
external turbulence. However, we speculate that non-modal disturbances become more
relevant in three-dimensional boundary layers when decreasing the sweep angle and the
free-stream acceleration. With only roughness the dominant pre-transitional structures
are steady cross-flow vortices. Though transient behavior is observed in the vicinity of
the roughness, non-modal disturbances do not play any significant role in this case.

Unlike the breakdown of streamwise streaks in two-dimensional boundary layers
(Fransson et al. 2005), transition in three-dimensional laminar flow is characterized by a
low intermittency between laminar and turbulent flow. Analysis of instantaneous veloc-
ity fields confirms that turbulent spots indeed originate in a narrower streamwise region
than in Blasius flow. In addition, simulations with different external perturbations show
that transition occurs when the level of velocity fluctuations inside the boundary layer
reaches similar threshold values. These facts indicate that breakdown is triggered by
rapid secondary instability of the cross-flow modes and that transition-prediction models
may be based on a critical threshold amplitude of the primary disturbance, as suggested
by Poll (1984) (see also Wassermann & Kloker 2002). The former author suggests to cor-
relate the onset of secondary instabilities to a local Reynolds number variation related
to the local mean flow deceleration and the wall distance of the location of the max-
imum negative spanwise gradient. A critical value for this Reynolds number variation
has, however, so far not been established for the case of travelling modes (Wassermann
& Kloker 2003). To predict where the critical threshold amplitude of the cross-flow modes
is reached, computations will have to include also nonlinear saturating effects, the PSE
method probably being the most suited candidate. Such calculations will not be useful,
though, unless a correct initial amplitude for the instability mode is provided. This is
the aim of the receptivity analysis discussed next.

The second part of the paper focuses on receptivity and the early stages of primary
disturbance growth in the swept-plate boundary layer. The results indicate that the
initial amplitude of the instability modes scales linearly with the free-stream turbulence
intensity. Larger downstream amplification induced by nonlinear forcing among unsteady
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modes of low frequency and different spanwise scales is observed for free-stream turbu-
lence intensities Tu0 ! 2%. Above this level, the amplitude of the shear-layer perturba-
tion cannot be correctly estimated only by considering the evolution of individual modes.
Further, the receptivity coefficients from Schrader et al. (2009) for simplified vortical dis-
turbances have been applied here and compared with the amplification observed in the
present, fully nonlinear simulations. This is in practice done by weighting the evolution
of the various excited unstable modes with their individual receptivity coefficients and
computing the envelope curve. Although the linear receptivity model in Schrader et al.
(2009) accounts for one – however, dominant – angular frequency only, good agreement
between the amplification from the present simulations and the envelope has been found
for the case of free-stream turbulence. This confirms that the receptivity mechanisms for
the different excited unsteady modes are independent of each other for moderate turbu-
lence levels and that linear receptivity models are valid also for receptivity to complex
free-stream turbulence fields. This conclusion can also be drawn for receptivity to lo-
calized roughness with spanwise random amplitude. Whereas the receptivity mechanism
has been found to be linear even for the highest considered roughness (15% of the local
displacement thickness), nonlinear interaction between the excited steady modes soon
sets in downstream of the highest roughness. It is concluded that the onset of nonlinear
interaction of the triggered modes is found for roughness heights between 7.5% and 15%
of the boundary-layer displacement thickness.

Finally, the co-existence of unsteady and steady cross-flow vortices has been stud-
ied, when free-stream turbulence acts on the boundary layer over a wall with localized
roughness. Stationary cross-flow vortices dominate the pre-transitional boundary layer
when the intensity of the free-stream turbulence is low (see also Saric et al. 2003): for
low-amplitude roughness (7.5% of the local displacement thickness) and a turbulence
intensity of 0.42% the total boundary-layer disturbance is dominated by the steady con-
tribution due to roughness, while at a turbulence level of 0.84% unsteady cross-flow
instability is more energetic than the steady modes. Even in the presence of two distinct
disturbance sources where nonlinear interaction may be expected, a correct prediction
of the evolution of the boundary-layer perturbations can be obtained by investigating
the development of individual cross-flow modes. This conclusion holds for amplitudes
at which the changeover between steady- and travelling-mode dominated transition is
identified. However, the experimental investigations reviewed in Bippes (1999) suggest
that the simultaneous presence of different cross-flow modes may affect the late stages
of breakdown. This remains an open issue worthy of further analysis.

In summary, our results suggest that receptivity coefficients from simplified models like
those proposed in Schrader et al. (2009) can be combined with established transition-
prediction tools such as the eN -method or more advanced approaches based on a critical
threshold amplitude of the primary instability. This presumes the exact knowledge of
the receptivity coefficients for the disturbances relevant in the flow of interest. Simplified
approaches, for instance the method based on Finite-Reynolds Number Theory (FRNT;
e.g. Crouch 1992; Choudhari 1994), may for many flow types prove accurate enough to
establish receptivity coefficients for different disturbance conditions. However, a counter-
example is given in Collis & Lele (1999), where receptivity to roughness close to the
leading edge of a parabolic body is investigated through DNS. The results show that
receptivity is enhanced by convex surface curvature and suppressed by non-parallelism –
effects that are not captured by FRNT. Comparing the receptivity coefficients from
DNS with those from theoretical approaches, these authors conclude that the prediction
of cross-flow instability receptivity near a leading edge must account for the strongly
non-parallel flow around the upstream neutral point. Unfortunately, stability predictions
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using a perturbation approach for non-parallel effects proved inadequate for the most
dangerous cross-flow mode at the conditions studied in that work. A similar indication
for the relevance of the leading-edge region is seen in the results by Schrader et al. (2009)
when analyzing receptivity to free-stream vortical modes.

To conclude, the good news is that receptivity coefficients obtained for single modes
appear to be sufficient in order to predict the disturbance behavior in swept boundary
layers even in the presence of free-stream turbulence of moderate amplitude. On the other
hand, simple perturbation approaches for theoretical non-parallel receptivity prediction
may prove inadequate. Further research is in fact needed to verify this claim.
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