
PHYSICAL REVIEW E 86, 056314 (2012)

Statistics of polymer extensions in turbulent channel flow
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We present direct numerical simulations of turbulent channel flow with passive Lagrangian polymers. To
understand the polymer behavior we investigate the behavior of infinitesimal line elements and calculate the
probability distribution function (PDF) of finite-time Lyapunov exponents and from them the corresponding
Cramer’s function for the channel flow. We study the statistics of polymer elongation for both the Oldroyd-B
model (for Weissenberg number Wi < 1) and the FENE model. We use the location of the minima of the Cramer’s
function to define the Weissenberg number precisely such that we observe coil-stretch transition at Wi ≈ 1. We
find agreement with earlier analytical predictions for PDF of polymer extensions made by Balkovsky, Fouxon,
and Lebedev [Phys. Rev. Lett. 84, 4765 (2000)] for linear polymers (Oldroyd-B model) with Wi < 1 and by
Chertkov [Phys. Rev. Lett. 84, 4761 (2000)] for nonlinear FENE-P model of polymers. For Wi > 1 (FENE
model) the polymer are significantly more stretched near the wall than at the center of the channel where the flow
is closer to homogenous isotropic turbulence. Furthermore near the wall the polymers show a strong tendency
to orient along the streamwise direction of the flow, but near the center line the statistics of orientation of the
polymers is consistent with analogous results obtained recently in homogeneous and isotropic flows.
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I. INTRODUCTION

Turbulent flows with polymer additives have been an active
field of interest since the discovery [1] of the phenomenon of
drag reduction on the addition of small amounts (few parts per
million) of long-chained polymers to turbulent wall-bounded
flows. Polymers are long-chained complex molecules which
have roughly spherical equilibrium configurations, known as
the “coiled” state. In the simplest models of polymers, the
relaxation of the polymers to the coiled state can be described
by a single time scale τpoly. If such a polymer is then placed
in a straining flow, where the strain can be characterized by
inverse of a time scale τfluid, the polymer can go from its coiled
state to a stretched state if the ratio of the two time scales,
the Weissenberg number Wi > 1 [2]. Thus in turbulent flows
with strong strain the polymers can go through coil-stretch
transition; the stretched polymers can then make a significant
contribution to the Reynolds stresses, and this can result in
drag reduction [3,4]. Hence to understand drag-reduction we
must first understand the mechanism of coil-stretch transition.
Also note that the back-reaction of the polymers to the flow
becomes significant only when the polymers have undergone
coil-stretch transition; thus to study coil-stretch transition
itself, it may be safe to consider passive polymers.

There has been a large volume of work on coil-stretch
transition of polymers in various kinds of flows. These
works can be divided in four classes depending on the
properties of the flow: (1) Individual polymer molecules
advected by synthetic flows. In this class we first mention
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analytical works where the flows are either assumed to
be random, smooth and white-in-time, Batchelor-Kraichnan
flows (see, e.g., Refs. [5–10]), or to have simple prescribed
time dependence (e.g., Refs. [3,11,12]). For Wi < 1 the
analytical works in Batchelor-Kraichnan flows have predicted
that the probability distribution function (PDF) of polymer
extension exhibits a power-law tail. Next are numerical
works where the PDF of polymer extension and polymer
tumbling times are calculated for polymers in various synthetic
flows, including Batchelor-Kraichnan flows superimposed on
uniform shearing background [13,14] and models of a tur-
bulent buffer layer (e.g., Ref. [15]). (2) Lagrangian polymers
advected by solutions of the Navier–Stokes equation (see, e.g.,
Refs. [11,16–18]). (3) Numerical simulations where the equa-
tions of polymers and fluids are solved simultaneously in two
[19,20] and three (see, e.g., Refs. [21–23]) spatial dimensions.
(4) And finally numerical simulations of Lagrangian polymers
in solutions of Navier-Stokes equations, in which the back-
reaction from the polymers to the fluid is attempted to be
incorporated [24–26].

The simplest analytically tractable model is that of class
1 above. In this model the polymer is described by a simple
bead-spring model:

∂tRα(t) = σαβRβ + f (R), (1)

where R is the end-to-end vector of a polymer
(macro)molecule, σαβ is a model for the velocity gradient
matrix of the flow, f (R) is the restoring force of the (entropic)
spring in the bead-spring model, e.g.,f (R) = −R/τpoly for a
harmonic overdamped spring (Oldroyd-B model), and τpoly the
characteristic relaxation time of the polymer. The phenomenon
of polymer stretching in flows is best understood by, for a
moment, ignoring the restoring force in (1). The resulting
equation is then the same equation as the one that describes
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the evolution of the infinitismal separation (δx) between two
fluid particles, i.e.,

∂t δxα = σαβδxβ. (2)

How two infinitesimally separated Lagrangian particles di-
verge in a turbulent flow has been a central topic in turbulence
research for a long time. See, e.g., Ref. [27] for a recent review.
Below we reproduce the essential points needed to apply such
ideas to stretching of polymers in turbulence.

The growth (or decay) of the distance between two
Lagrangian particles up to a time T is described by the
finite-time-Lyapunov-exponents (FTLEs) defined by

μT = 1

T
ln

[ |δx(t)|
|δx(t − T )|

]
. (3)

For large T , T → ∞, the PDF of FTLEs is conjectured to
have a large deviation form [6,28,29]:

P (μT ) ∼ exp[−T S(μT )], (4)

where S(μT ) is called the Cramer’s function or the entropy
function. The simplest form of the entropy function is a
parabola, of the form S(μ) = (μ − μ̄)2/�, in which case (for
each time T ) the PDF of the FTLEs is a Gaussian distribution.
The mean value of this Gaussian (μ̄) is an inverse time scale,
μ̄ = 1/τfluid. For a turbulent (or random) flow the Weissenberg
number is best defined by the ratio of τpoly/τfluid. The analytical
work of Ref. [6] calculated the the PDF of polymer extensions
in a random homogeneous flows with short correlation time.
They found that for Wi < 1 the PDF has power-law tail with
an exponent α. This exponent α can be obtained from the
Cramer’s function S(μ) by solving the following set of coupled
equations:

α = S ′
(

β + 1

τpoly
− μ̄

)
, (5)

S

(
β + 1

τpoly
− μ̄

)
− βS ′

(
β + 1

τpoly
− μ̄

)
= 0. (6)

Had the Cramer’s function been well approximated by a
parabola of the form S(μ) = (μ − μ̄)2/�, Eq. (5) would
simplify to α = (2/�)(1/τpoly − μ̄). Let us state here ex-
plicitly the assumptions that goes behind the derivation of
Eqs. (5) and (6). The velocity gradient matrix is assumed to
be short correlated in time, smooth in space, and invariant
under three-dimensional rotation. In addition it is assumed
that the PDF of FTLEs having a large deviation form holds
true. Our numerical work, presented below, shows that both
of these assumptions can be made for a three-dimensional
channel flow.

In this paper we calculate the PDF of finite-time-Lyapunov
exponents, for both short and large times, in turbulent channel
flow by direct numerical simulation (DNS). We then show that
at large time the PDF of FTLEs does satisfy a large deviation
form with a Cramer’s function that can be approximated by a
fourth-order polynomial. We further solve for the Oldroyd-B
model of Lagrangian polymers in this flow. We use the location
of the minima of the Cramer’s function μ̄ as the inverse
characteristic time scale of the fluid to define our Weissenberg
number as

Wi ≡ μ̄τpoly. (7)

Our simulations show a coil-stretch transition for Wi � 1. For
Wi < 1, the PDF of polymer extension shows a power-law
tail with scaling exponent α. We find that the range of
scaling shown by the PDF of polymer extensions depends
on the wall-normal coordinate, but the scaling exponent α is
independent of the wall-normal coordinate. We further show
that the exponent α satisfies (5) and (6).

For Wi > 1 it is not possible to obtain a stationary PDF
for the Oldroyd-B model. In this regime we use the nonlinear
finitely extendable nonlinear elastic (FENE) model. For this
model, analytical work [7] has found that〈

R

Rmax

〉
= − 1

μ̄
f (〈R〉). (8)

Our numerical simulations confirm this result. In addition we
also find that the PDF of polymer extensions depends on
the wall-normal coordinate, namely, the polymers are more
stretched near the wall than at the center of the flow. We
further study the orientation of the polymers with respect to
the channel geometry and the local velocity gradient tensor.
Our results show that the orientation of the polymers is pre-
dominantly determined by the inhomogeneity of the flow, i.e.,
by the wall-normal coordinate as opposed to the local strain
tensor. However, for polymers near the center of the channel
we find that the orientation is also influenced by the principal
directions of the rate-of-strain tensor, as has been seen in DNS
of polymers in homogeneous isotropic flows [18,30].

The rest of the paper is organized as follows. In Sec. II
we describe the equations we solve and the details of the
numerical algorithm we use. Our results follow in Sec. III,
which is divided into three parts. The PDF of the finite-time-
Lyapunov-exponents (FTLEs) are reported in Sec. III A. The
results described in this section are therefore independent of
the polymer equation. The statistics of polymer extensions for
the two models considered are presented in Secs. III B and
III C. The polymer orientation is characterized by calculating
the correlations between the polymer end-to-end vector and
fluid vorticity and the rate of strain tensor (Sec. III D). The
main conclusions of the study are summarized in Sec. IV.

II. EQUATIONS AND NUMERICAL METHODS

The fluid is described by the Navier–Stokes equations,

∂t u + u · ∇u = ν∇2u + ∇p, (9)

with the incompressibility constraint

∇ · u = 0. (10)

Here u is the fluid velocity, ν the kinematic viscosity, and p the
pressure. We use a no-slip boundary condition at the walls and
periodic boundary condition at all other boundaries. We have
chosen our units such that the constant density ρ = 1. The x

axis of our coordinate system is taken along the streamwise
direction, the y axis along the wall-normal direction and z axis
along the spanwise direction. For brevity, we shall often use
the common notation, U ≡ ux , V ≡ uy , and W ≡ uz. The x,
y, and z dimensions of our channel are Lx × Ly × Lz = 4π ×
2π × 2π , with resolution Nx × Ny × Nz = 128 × 129 × 128.

The turbulent Reynolds number Reτ = U∗L/ν = 180 is
defined by the friction velocity U∗ = √

σw and L ≡ Ly/2, the
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FIG. 1. (Color online) (a) Visualization of vortical structures in
our simulation. The structures are identified by negative values of the
second largest eigenvalue of the matrix SikSkj + �ik�kj where Sij and
�ij and the symmetric an antisymmetric part of the velocity gradient
matrix [36]. The vortical structures are located close to the walls.
(b) Normalized mean streamwise velocity 〈U+〉 versus the wall-
normal coordinate y+ plotted for one-half of the channel.

half-channel width, where

σw ≡ ν
∂U

∂y

∣∣∣∣
wall

(11)

is the shear stress at the wall [31]. In the following we nondi-
mensionalize velocity and distance by U+ ≡ U/U∗ and y+ ≡
y/y∗, respectively, using the friction length y∗ = ν/U∗. Time
will also be measured in the unit of the large-eddy turnover
time τL ≡ (U center/L)−1, where U center is average streamwise
velocity at the center of the channel. The large-scale Reynolds
number defined by Re = U0L/ν = 4200 where U0 is the
center line streamwise velocity for the laminar flow of same
mass flux.

We solve Eqs. (9) and (10) by using the SIMSON [32] code,
which uses a pseudospectral method in space (Chebychev-
Fourier). For time integration a third-order Runge-Kutta
method is used for the advection term and the uniform pressure
gradient term. The viscous term is discretized using a Crank-
Nicolson method [33]. In Fig. 1(a) we show a visualization
of the vortical structures from a typical snapshot of our
simulation. In Fig. 1(b) we plot 〈U+〉 as a function of y+
at the stationary state of our simulations, where 〈·〉 denotes
averaging over the coordinate directions x and z and over
time. Further details about the code validation can be found in
Refs. [34,35].

We use a Lagrangian model for the polymers where we
solve one stochastic differential equation (SDE) for each
polymer molecule. This model uses several approximations,
which are as follows [37,38]: (1) The center-of-mass of a
polymer molecule follows the path of a Lagrangian particle.
(2) Even when fully stretched the polymer molecule is very

small compared to the smallest scales of turbulence. This
approximation is well justified [4]. (3) A polymer molecule is
modeled by two beads separated by a vector which represents
the end-to-end distance of the polymer molecule. (4) The
forces acting on the beads are Stokes drag, restoring force
of an overdamped spring with time scale τpoly, and thermal
noise. To be specific, we track Np = 2.16 × 105 Lagrangian
passive tracers in the flow by solving

∂t r j
(
t |t0,rj

0

) = vj
(
t |t0,rj

0

)
, (12)

where r j(t |t0,rj

0) is the position of the j th Lagrangian particle,
which was at position r j

0 at time t0 and vj(t |t0,rj

0) is its
velocity with j = 1, . . . ,Np. The Lagrangian velocity of a
particle, which is generally at an off-grid point, is obtained by
trilinear interpolation from Eulerian velocity at the neighbor-
ing grid points. Equation (12) is integrated by a third-order
Runge-Kutta scheme. Each of these Lagrangian particles
represent a polymer molecule. For a j th Lagrangian particle
the vector representing the end-to-end distance is denoted by
Rj and obeys the following dynamical equation:

∂tR
j
α(t) = σ

j
αβR

j
β + f (Rj) +

√
2R2

0

3τpoly
B j

α. (13)

Here σ
j
αβ = ∂βvj(t |t0,rj

0)α , f (Rj) is the restoring force of
the polymer, τpoly is the characteristic decay time of the
polymer, and Bj is a Gaussian random noise with 〈Bα〉 = 0
and 〈Bα(t)Bβ(t ′)〉 = δαβδ(t − t ′). The prefactor of the random
noise is chosen such that in the absence of external flow, i.e.,
σ

j
αβ = 0, the polymer attains thermal equilibrium, 〈Rj

αR
j
β〉 =

R2
0δαβ/3. Here 〈·〉 denotes averaging over the noise B. For

the linear Oldroyd-B model f (R) = −R/τpoly. For the FENE
model f (R) = −R/τpoly{1 − (R/Rmax)2}. Equation (13) is
also solved by a third-order Runge-Kutta scheme except for the
noise, which is integrated by an Euler-Maruyama method [39].

To compare with the analytical theory of Ref. [6] we also
need to calculate the PDF of finite-time Lyapunov exponents of
Lagrangian particles in this flow. For this we need to calculate
the rate at which two infinitismally separated Lagrangian
particles diverge as time progresses. For this purpose we
also calculate the evolution of an infinitesimal vector in our
turbulent flow, given by the equation

∂tδx
j
α = σ

j
α,βδx

j
β, (14)

where δxj is a vector carried by the j th Lagrangian particle.
This is, of course, the same equation obeyed by a Lagrangian
polymer [Eq. (13)] if the restoring force of the polymer and
the Brownian noise are omitted.

The correspondence between our Lagrangian description
and the Eulerian description of polymeric fluids is that in
the latter the dynamical variable for the polymers is the
symmetric positive definite (SPD) tensor Cαβ ≡ 〈RαRβ〉.
A DNS of the Eulerian description has certain difficulties
[21,22,40,41]. First, the numerical schemes used must preserve
the symmetric and positive-definite (SPD) nature of Cαβ .
Second, for high Weissenberg numbers large gradients of
Cαβ can develop, which can lead to numerical instabilities.
Stability can generally be restored by employing either shock-
capturing schemes [22,23,41,42] or by introducing dissipation
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in the Eulerian description of the polymer [43,44]. Lagrangian
methods [24,25] are generally able to avoid such numerical
pitfalls and can attain a higher Weissenberg number. On
the other hand, it is quite straightforward to incorporate the
back-reaction of the polymer into the flow in the Eulerian
model but is tricky in the Lagrangian model [25,26]. Note
finally that more complicated Lagrangian models have also
been employed where a single polymer is represented by a
chain of beads connected by springs [18,30].

III. RESULTS

A. Finite-time Lyapunov exponents

To calculate the PDF of FTLEs we integrate Eq. (14) for
each Lagrangian particle over a finite time interval T and
compute the the finite-time Lyapunov exponent (FTLE) as

μ
j
T = 1

T
ln

[ |δxj(t)|
|δxj(t − T )|

]
. (15)

Below we present the analysis of the PDF of FTLEs for channel
flows.

Since the channel flow is not homogeneous in the wall-
normal direction, the statistics can, in principle, depend on y+.
Hence we label our particles by their wall-normal coordinate
(y+) at the final position, i.e., at time T . While integrating the
equations for δxj [Eq. (14)] we store the evolution of δxj and
use this to calculate μ

j
T for each of δxj. To calculate the PDF of

μT we gather statistics in two different ways. First, we calculate
the PDF of μT for all particles at a fixed y+. Furthermore
we run our simulations over several T and after each
time interval T the particles are redistributed uniformly across
the channel and their initial separation vector δxj(t = 0)
oriented randomly. By definition then we generate a P (μT,y+)
which depends on y+. The PDFs for two different values of
y+, one close to the wall, and one near the center line, are
respectively plotted in Figs. 2(a) and 2(b) for several time
intervals T . The peak and mean of the PDFs are always
positive, showing that it is more probable for |δxj| to increase
exponentially as a function of time. For small T the PDFs
near the center and the PDF near the wall are very different
from each other. Significantly larger elongation is found for
those elements that are located closer to the wall. However, the
two PDFs approach each other for large T . This can also be
seen by plotting the mean value of the PDFs for three different
y+ as a function of time (Fig. 3). The peak value also shows a
similar trend; see the inset in Fig. 3. Hence an unique Cramer’s
function independent of y+ can be defined for the channel
flow for only very large time when the PDFs for different y+
merge with one another. In a channel flow the stress tensor σαβ

depends strongly on the wall-normal coordinate. Thus for short
T we can expect that the PDF of μT depend of y+. Conversely,
when T becomes much larger than the typical time it takes for
a particle to travel from a position near the wall to a position
near the center line, we expect μT to be independent of y+.
Let us call this typical time the exit time Texit. Surprisingly
we observe from our data that we need to have Texit � 80τL

for μT to be independent of T . An estimate of the time it
takes for a particle to travel from the wall to the center of
the channel can be given by the ratio of the half-width of the

FIG. 2. (Color online) (a) PDF of μT near the wall (y+ ≈ 6) for
several values of T : T = 1 (�), 3 (•), 5 (�), 35 (♦), and 100 (−).
(b) PDF of μT near the center line (y+ ≈ 180) for several values
of T : T = 1 (�), 3 (•), 5 (�), 35 (♦), and 100 (−). Plots at other
intermediate values of T are consistent with this plot, but are not
shown here for clarity. All times are measured in units of τL.

channel to the friction velocity, Tfriction ≡ (Ly/2)/U∗ ≈ 15 in
our simulations. In units of this time Texit � 5Tfriction, which
provides a better estimate than τL.

From the PDF of μT for large T we calculate the Cramer’s
function using Eq. (4). We normalize P (μT) such that its
integral over the range of μT is unity. For T > Texit the
Cramer’s function S(μ) calculated at different times T is found
to be independent of T as it should be. This is shown by the
collapse of the Cramer’s function calculated at different times

FIG. 3. (Color online) Mean FTLE 〈μT〉 versus T for three
different positions, in the channel, near the wall (•), near center line
(◦), and at y+ = 84 (�). All times are measured in units of τL.
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FIG. 4. (Color online) The collapse of the Cramer’s functions
S(μ) versus μ at y+ = 62 for different times T : T = 35 (+),
45 (◦),55 (�),70 (�), and 100 (). All times are measured in the
units of τL. The continuous line is the polynomial fit as given in
Eq. (16) with μ̄ = 0.105[0.088 0.13] and a2 = 3.55[3.09 4.35],
a3 = −12.60[−27.48 − 4.29], and a4 = 39.64[3.84 90.07]. We
have used the same polynomial form to fit S(μ) obtained for individual
y+. The maximum and minimum values of the fitting parameters are
given in square brackets.

for a fixed y+ = 62 in Fig. 4. This proves that the conjecture
in Eq. (4) hold true. Furthermore, the Cramer’s function
thus found is independent of y+. The Cramer’s function has
earlier been calculated from DNS of two- [19] and three- [45]
dimensional homogenous isotropic turbulence, turbulence in
the presence of homogeneous shear [16], and hydromagnetic
convection [46]. Here it has been calculated for a channel flow.

The connection between the Cramer’s function and the
PDF of end-to-end polymer distance was shown in Ref. [6]
for linear polymers and in Ref. [7] for nonlinear polymers.
We discuss such relations in the next section, where it will
turn out to be useful to have an algebraic expression for the
Cramer’s function. In the simplest case the Cramer’s function is
a parabola, which implies that the PDF of FTLEs is a Gaussian
distribution. It is clear from Fig. 4 that in our case S(μ) is
not well approximated by a parabola except for μ ≈ μ̄. The
departure from Gaussianity is characterized by higher (than
second) power of μ in a polynomial expansion of S(μ). The
next level of approximation would be to use a fourth-order
polynomial for the following two reasons: (1) The function
S(μ) in Fig. 4 is clearly not symmetric about its axis; hence
we need an odd power of μ to approximate it. (2) The function
S(μ) must be convex; hence the highest power of μ appearing
in S(μ) must be even. Hence we use fit the fourth-order
polynomial,

S(μ) = a2(μ − μ̄)2 + a3(μ − μ̄)3 + a4(μ − μ̄)4, (16)

to our numerical data for S(μ) averaged over all values of y+
and extract the coefficients a2,a3, and a4 above. To estimate
the errors in the coefficients ak we use the same fit to S(μ)
obtained for individual y+ and quote the range of ak obtained
from such fits as the error in ak . The best fit is also plotted in
Fig. 4. The coefficients corresponding to the best fit and their
errors are given in the caption of Fig. 4.

B. Statistics of polymer extensions: Oldroyd-B model

Before we present detailed results on statistics of polymer
extension, let us precisely define the Weissenberg number Wi.
In simulations the Weissenberg number is defined as the ratio
of the characteristic time scale of the polymer τpoly over a
characteristic time scale of the fluid. Different definitions of the
characteristic time scale for fluid has been used in literature to
define the Weissenberg number. References [18,21,30] use the
Kolmogorov time scale τη to define the Weissenberg number.
We denote this Weissenberg number by Wiη = τpoly/τη, where
τη is the Kolmogorov time scale. In this paper we principally
use the following definition for the Weissenberg number:

Wi ≡ μ̄τpoly, (17)

where μ̄ is the location of the minima of the Cramer’s
function S(μ). Our choice has two principal advantages.
First, in channel flows the Kolmogorov scale depends on the
wall-normal coordinate and hence is not unique. Second, and
more importantly, a proper choice of Weissenberg number
gives the coil-stretch transition of the polymer at Wi ≈ 1,
which is exactly what we obtain. To compare with earlier
simulations, which were all done in homogeneous flows,
we also calculate Wiwall

η and Wicenter
η , where we use the

Kolmogorov time scale at the wall and at the center of
the flow, respectively. We typically obtain, Wiwall

η ≈ 30Wi
and Wicenter

η ≈ 5Wi. The different values of Wi that we use
are given below; in parentheses we give the corresponding
values of Wicenter

η for easy comparison with earlier simu-
lations of homogeneous and isotropic turbulence. For the
Oldroyd-B model, Wi(Wicenter

η ) = 0.1(0.5), 0.2(1), 0.3(1.5),
and 0.5(2.5) and Wi(Wicenter

η ) = 0.1(0.5), 0.3(1.5), 0.5(2.5),
1.5(7.5), 2.5(12.5), 3.5(17.5), 4.5(22.5), 5.5(27.5), 7(35), and
10(50) for the FENE model. We use R0 = 10−7, 10−8, and
Rmax/R0 = 100 and 1000 for the FENE model.

Let us first present the results for the Oldyroyd-B model.
Here we expect to see a power-law behavior for the PDF of
polymer extensions, Q(R) ∼ R−α−1 [6] for large R. In general,
the calculation of PDFs from numerical data is plagued by
errors originating from the binning of the data to make
histograms. Thus it is often a difficult task to extract exponents
such as α from such PDFs. A reliable estimate of such an
exponent can be obtained by using the rank-order method
[47] to calculate the corresponding cumulative probability
distribution function:

Qc(R) ≡
∫ R

0
Q(ξ ) d ξ. (18)

If the PDF has a scaling range, the cumulative PDF also shows
scaling, i.e., Qc(R) ∼ R−α . These cumulative PDFs are plotted
in Fig. 5 for different values of Wi at fixed wall distance y+ =
74 The cleanest power law is seen for Wi = 0.5. So we choose
this Weissenberg number for further detailed investigation.
First, we show that the exponent of the power law (Wi = 0.5)
α = 0.81 ± 0.02 does not depend on the y+, although the
range over which scaling is obtained does (Fig. 6). The
exponent α is obtained by fitting a power law for five different
values of y+. The mean is reported as the exponent above,
and the standard deviation from the mean is reported as the
error.

056314-5



BAGHERI, MITRA, PERLEKAR, AND BRANDT PHYSICAL REVIEW E 86, 056314 (2012)

FIG. 5. (Color online) Log-log plot of the cumuliative PDF Qc(R)
of the polymer extensions R as a function of R for different values
of Wi: Wi = 0.05 (•),0.1 (◦),0.2 (�),0.3 (�), and 0.5 (♦).

This exponent α can be obtained from the Cramer’s function
S(μ) using the set of couple equations (5) and (6) [6], which
we rewrite as

α = S ′
(

β + 1

τpoly
− μ̄

)
, (19)

where β must be obtained by solving the differential equation

S

(
β + 1

τpoly
− μ̄

)
− βS ′

(
β + 1

τpoly
− μ̄

)
= 0. (20)

Had the Cramer’s function been well approximate by a
parabola of the form S(μ) = (μ − μ̄)2/�, Eq. (5) would
simplify to α = (2/�)(1/τpoly − μ̄). We have checked that
this quadratic approximation does not give accurate result for
α in our case. Using the algebraic expression for S given in
Eq. (16), we numerically solve Eqs. (5) and (6). This gives
α = 0.9 ± 0.29, which agrees with the results obtained from
the cumulative PDF of polymers within error bars. We note
here that the α we calculate using the Cramer’s function has a
large margin of error because the α depends sensitively on the
coefficients ak in Eq. (16). To find these coefficients accurately
we need to know the Cramer’s function accurately for a large

FIG. 6. (Color online) Log-log plot of the cumuliative PDF Qc(R)
of the polymer extensions R as a function of R for different y+:
y+ = 8 (◦),74 (�), and 180 (�). We fit a straight line to the data
between the two dashed vertical lines to calculate α. This fit is shown
as the black line.

FIG. 7. (Color online) The cumulative PDF Qc(R) of the polymer
extensions R as a function of R for the Oldroyd-B model (◦),
Oldroyd-B model with all polymers with R/Rmax > Rcutoff removed
with Rcutoff = 104 (•) and Rcutoff = 100 (�), FENE model with
Rmax/R0 = 103 (�) and with Rmax/R0 = 102 (�).

range of its argument, not just the location of its minima.
Numerically this is a difficult task and would require collecting
data over very long times.

Finally let us comment on the possible experimental
determination of the exponent α. In practice no polymers
are linear, and in most cases the ratio of Rmax (maximum
possible extension of the polymer) to R0 (the equilibrium
length) ranges between 100 and 1000. To see the effect of
a maximum extension, we first select one of the cumulative
PDFs plotted in Fig. 6, say, for y+ = 74. From this cumulative
PDF we remove all the polymers for which R is so large
that R/R0 > Rcutoff where we choose Rcutoff = 100 and 1000.
The resultant cumulative PDFs are plotted in Fig. 7 where
the original cumulative PDF is also plotted for comparison.
It can be seen that the scaling behavior, although present,
is valid over a much smaller range. In the same figure we
have also plotted the cumulative PDF for the FENE model
with Rmax/R0 = 1000. This also shows scaling with a reduced
range. Thus we expect that in experiments similarities to this
scaling law should be visible, although it may be difficult to
detect because of a reduced range of scaling.

C. Statistics of polymer extensions: FENE model

So far we have described the polymer statistics for Wi �
0.5. As we increase the Wi and make it close to unity no
stationary statistics of the polymers is obtained. We interpret
this by noting that we are close to the coil-stretch transition.
A stationary state can be obtained either by including the
feedback from the polymers into the fluid or by using nonlinear
polymers e.g., the FENE model. We choose the second option.
In the FENE model we have used Rmax/R0 = 100 and 1000.
Our results as reported below do not depend on this parameter.

Let us first consider the mean extensions of the polymers av-
eraged over the whole channel as a function of the Weissenberg
number. Using a saddle point approximation Chertkov [7] has
shown that for Wi > 1 the mean polymer extension obeys the
implicit relation 〈

R

Rmax

〉
= − 1

μ̄
f (〈R〉), (21)
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FIG. 8. (Color online) The mean of normalized polymer exten-
sions 〈R/Rmax〉 as a function of Weissenberg number Wi. The mean
is calculated over the whole channel, and the standard deviation is
shown as error bar. The continuous line is the right-hand side of
Eq. (21) calculated for Wi > 1.

where f is the FENE force. In Fig. 8 we show that we
obtain reasonable agreement between between this analytical
prediction and our numerical results for different values of the
Wisenberg number. The error bars in this plot are the variance
of the polymer extension calculated over the channel.

Let us now consider the full PDF of the polymer extension.
In Fig. 9 we plot the PDF for three different values of the
Weissenburg number, Wi = 0.5, 1.5, and 10. The coil-stretch
transition is clearly demonstrated in this figure. For Wi = 0.5
the PDF is peaked near zero, which corresponds to the coiled
state. For Wi = 1.5 the peak of the PDF is still close to zero,
but the PDF is well spread over the whole range. At Wi = 10
the PDF has a peak near Rmax; this is the stretched state of
the polymer. In this figure we have plotted the PDFs for
y+ = 74. The PDF at other wall-normal coordinates in the

FIG. 9. (Color online) The PDF of polymer extensions Q(R) as a
function of R for different Wi showing the coil-stretch transition. The
line with (×) symbols is for Wi = 0.5 (τpoly = 5), the continuous line
is for Wi = 10 (τpoly = 100), and the inset is for Wi = 1.5 (τpoly = 15).
The PDF for Wi = 10 is multiplied by 2 to make it clear in the
same scale. The dashed line shows power-law scaling with exponent
α = 1.48.

FIG. 10. (Color online) Log-log plot of the PDF of polymer
extensions for Wi = 3.5 (�),4.5 (�),5.5 (+),7 (◦),10 (•). The
straight line is a fit to the PDF for Wi = 10. Similar fits yield the
exponents ζ , which are plotted as a function of Wi in the inset.

channel shows the same qualitative nature. Similar plots of
the PDF of polymer extensions but for a simple model of
polymers in uniform shear has been obtained in Ref. [14]. A
more careful scrutiny, however, reveals differences between
our results and that of Ref. [14] for Wi = 10. In particular, we
do not observe the plateau in the PDF seen in Fig. 2 of Ref. [14].
However, it is possible to observe a power-law behavior of the
left-tail of the PDF as shown in Fig. 10. Plots of the PDF
of polymer extensions have also been recently obtained in
experiments [48]. For strong shear the experiments results have
qualitative agreement with the results of Ref. [14] including
the presence of the plateau, although quantitative agreement
is still lacking. The disagreements of our results with that of
Ref. [14] might be due to spatial inhomogeneity of channel
flow compared to the case of uniform shear.

The effects of spatial inhomogeneity is also seen in
Fig. 11, where we show how the mean polymer extension
〈R〉xz, where the averaging is over the streamwise and the
span-wise direction, changes with Wi across the channel for

FIG. 11. (Color online) The average polymer extensions 〈R〉xz as
a function of the wall-normal coordinate y+ for different Weissenberg
numbers: Wi = 1.5 (),2.5 (�),3.5 (�),4.5 (�),5.5 (�),7 (•),10 (◦).
The maximum occurs at y+ ≈ 10.
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FIG. 12. (Color online) The maxima of the average polymer
extensions 〈R〉xz across the channel as a function of Wi in semilog
scale.

Rmax/R0 = 100. For a given Wi the average polymer extension
is small near the wall, increases to a maximum around y+ ≈ 10
(this corresponds to the region of maximum strain), and then
decreases towards the center of the domain where the flow is
close to homogeneous turbulence. A similar trend is also seen
for Rmax/R0 = 1000. This trend has been seen in earlier DNS
of polymeric turbulence in channel flows (see, e.g., Ref. [49]
and references therein). Note, however, that for larger values
of Wi the average polymer extension becomes almost uniform
across the channel (except very near the wall where it is
always small). This is because the polymers that are stretched
close to the wall on reaching the center line are not able to
relax fast enough because the polymer relaxation time scales
are much larger than the fluid time scales. The maximum
extension increases as a function of Weisenberg number for
small Weisenberg numbers and saturates for higher values,
see Fig. 12.

D. Statistics of polymer orientation

In this section we present the results related to the
orientation of the polymers. First, let us discuss the orientation
of the polymers with respect to the geometry of the channel.
Let us denote the unit vector along R to be e. The PDF of
the three components of e, ex , ey , and ez (i.e., three direction
cosines of R) are plotted in Fig. 13(a) for polymers close to the
wall (y+ ≈ 7) and for three different values of Wi. For Wi < 1,
i.e., below the coil-stretch transition, the polymers are almost
equally probable to point in any direction, or in other words, as
the polymers are coiled as a sphere, no preferential direction
is selected. Above the coil-stretch transition polymers close to
the wall have a high probability of being oriented along the x

axis, which is the streamwise direction. This trend has been
observed earlier in Ref. [17]. A similar plot for polymers close
to the center line (y+ ≈ 180) is given in Fig. 13(b). For small
Wi all directions are equally probable. But as Wi increases
here too the polymers get preferentially oriented along the
streamwise direction, although the trend is much weaker than
near the wall.

We have also investigated the orientation of the polymers
with respect to the three principal directions of the rate of

FIG. 13. (Color online) PDF of the three direction cosines of
polymer end-to-end separation vector R (a) for polymers near the
wall and (b) for polymers at the center of the channel. Three different
values of Wi are used, namely, Wi = 0.1 (◦),1.5 (�),4.5 (�). The
data for Wi = 1.5 and 4.5 coincide with each other. The PDFs of ex

and ey are, respectively, plotted using a continuous line with symbols
(Px) and dashed lines with symbols (Py). The inset shows the PDF
of ez, Pz.

strain tensor. For this purpose we first determine the three real
eigenvalues of the symmetric rate of strain tensor and order
them such that λ1 > λ2 > λ3. We denote the components of
the unit vector e (which is the unit vector along R) along
these three perpendicular directions by e1, e2, and e3; these
are merely the cosines of the angles between R and the three
principal directions of the strain tensor. The PDFs of e1, e2, and
e3 are plotted in the Fig. 14(a) for polymers close to the wall
(y+ ≈ 7) and for three different values of Wi. The peak seen
in Fig. 14 corresponds to the polymers orientating along the
streamwise direction as shown already in Fig. 13. Interestingly
the polymers are not preferentially oriented along the strongest
direction of strain λ1 but along the streamwise direction. This
has an angle of about 45 degrees with respect to the x axis
since the main component of the strain rate comes from the
wall-normal shear ∂U/∂y.

Close to the center line, however, the PDFs look quite
different [Fig. 14(b)]. For small Wi there is no preferential
orientation, but as Wi increases the polymers develops a trend
of orienting parallel to the direction of either λ1 or λ2 and
shows anti-alignment to λ3.

Finally we look at the relative orientation between the
polymer end-to-end vector R and the vorticity vector ω. Close

056314-8



STATISTICS OF POLYMER EXTENSIONS IN TURBULENT . . . PHYSICAL REVIEW E 86, 056314 (2012)

FIG. 14. (Color online) PDF of e1, e2, and e3, components of
the unit vector along R along the three principal directions of strain:
(a) for polymers near the wall and (b) for polymers near the center line.
Three different Wi are used, namely, Wi = 0.1 (◦),1.5 (�),4.5 (�).
The data for Wi = 1.5 and 4.5 coincide with each other. The PDFs
of e1 and e2 are, respectively, plotted using a continuous line with
symbols (P1) and dashed line with symbols (P2). The inset shows the
PDF of e3, P3.

to the wall we find that PDF of the cosine of the angle ψ

between R and ω has a peak at zero; see Fig. 15(a). This
implies that the polymers show a weak tendency to lie in the
plane perpendicular to ω. However, this trend is reversed near
the center line Fig. 15(b) where the polymers orient along the
vorticity vector.

To summarize, the polymers near the wall shows the
cleanest trend in their orientation. They show a strong tendency
to line along the streamwise directions. Weaker trends are
seen near the center. The statistics of orientation of polymers
near the center of our flow is very similar to the statistics
of orientation of polymers obtained in homogeneous and
isotropic flows [18]. Note, however, that the orientation effects
are much stronger near the wall than near the center line.

IV. CONCLUSIONS

We have presented in this paper an extensive numerical
study of the passive Lagrangian polymers in turbulent channel
flow. We have used both linear (Oldroyd-B) and nonlinear
(FENE) polymers. To understand the statistics of polymer
end-to-end vector it is necessary to know the statistics of the
finite-time Lyapunov exponents. For this purpose in addition
to the polymers we have solved the equation of evolution of
infinitismal line elements in the turbulent flow and calculated

FIG. 15. (Color online) PDF of cos(ψ), where ψ is the angle
between the polymer end-to-end vector R and vorticity, (a) for
polymers near the wall and (b) for polymers near the center line. Three
different values of Wi are plotted: Wi = 0.1 (◦), 1.5 (�), 4.5 (�).

the FTLEs for an inhomogeneous flow. We find that the PDF
of FTLEs does admit a large deviation expression, and we
calculate a corresponding Cramer’s function. Note, however,
that the large deviation expression is valid only at very large
times. In addition we use the location of the minima of
the Cramer’s function to define our Weissenberg number.
Consequently for the FENE model we observe coil-stretch
transition at Wi ≈ 1. For the Oldroyd-B model we find that
the PDF of polymer extension shows power-law behavior for
Wi < 1. We calculate the exponent of this power law using
the rank-order method. We also calculate the same exponent
from the Cramer’s function using the theory of Ref. [6]. These
two different calculations match within error, validating the
theory of Ref. [6]. This shows that the idealizations used
in Ref. [6], in particular the assumption that in Lagrangian
coordinates the rate-of-strain tensor σαβ is delta-correlated in
time, is a reasonable approximation at least for linear polymers
below the coil-stretch transition even in the case of a realistic
flow. For the FENE model we cannot meaningfully calculate
the PDF of polymer extension from the Cramer’s function
using the results of Ref. [7] because our numerically calculated
Cramer’s function is not accurate enough for this exercise. For
the FENE model we find that the polymers are more extended
near the wall, but the difference decreases as Weissenberg
number increases far beyond the coil-stretch transition. We
further find that near the center of the channel the orientational
statistics of the polymers show similarity to orientational
statistics obtained for homogeneous and isotropic flows [18];
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i.e., they align along either of the two largest directions of strain
and tend to orient orthogonal to the third principal direction
of strain. A much stronger orientational trend is seen near the
wall where the orientations of the polymers are along by the
streamwise direction.

Although our DNSs involve passive polymers it is possible
to have insights on polymeric drag reductions from these
simulations. We can calculate the polymeric stress from our
simulations and add this to the Reynolds stresses to see how
they change the Reynolds-averaged flow equations. It would be
interesting to see how much of drag-reduction can be described

by this simple approach. Such results will be presented in a
future publication.
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