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Introduction 
Illustrations, simple examples and local 
hydrodynamic stability equations. 
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What are hydrodynamic instabilities? 

Illustrations 
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Transition in pipe flow 

Pioneer experiment by Osborn Reynolds in 1883. 
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Smoke from a cigarette. 

Three different flow regimes can easily be identified : 

laminar, transition and turbulence. 
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Kelvin-Hemholtz billows 

Named after Lord  Kelvin and Hermann von Helmholtz. 

One of the most common hydrodynamic instabilities. 
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Kelvin-Hemholtz billows 

Named after Lord  Kelvin and Hermann von Helmholtz. 

One of the most common hydrodynamic instabilities. 
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von-Karman vortex street 

Named after the engineer and fluid dynamicist Theodore 

von Karman. 
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Rayleigh-Taylor instability 

Instability of an interface between two fluids of different 

densities. 
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How do we study them? 

Some definitions, mathematical formulation and a simple 

example. 



Stability? 
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Stable Unstable 

Neutral Conditionaly stable 

We will mostly discuss about linear (in)stability in this course. 



Some definitions 

 

Let us consider a nonlinear dynamical system 

 
𝑑𝐐

𝑑𝑡
= 𝑓(𝐐, 𝑅𝑒) 

 

For a given value of the control parameter 𝑅𝑒, equilibrium 

solutions of the system are given by 

 

𝑓 𝐐𝑏 , 𝑅𝑒 = 0 
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Some definitions 
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Unconditional stability Conditional stability Unconditional instability 

𝑅𝑒𝑔 𝑅𝑒𝑐 

 

Three situations can be encountered depending on the value of 𝑅𝑒: 

 
1. 𝑅𝑒 < 𝑅𝑒𝑔 : The equilibrium is unconditionally stable. Whatever the shape 

and amplitude of the perturbation, it decays and the system return to its 

equilibrium position. 

2. 𝑅𝑒𝑐 < 𝑅𝑒: The equilibrium is unconditionally (linearly) unstable. At least 

one infinitesimal perturbation will always depart away from it.  

3. 𝑅𝑒𝑔 ≤ 𝑅𝑒 ≤ 𝑅𝑒𝑐 : The stability of the equilibrium depends on the shape and 

finite-amplitude of the perturbation. Determining the shape and amplitude of 

such perturbation usually requires solving a complex nonlinear problem. 



Mathematical formulation of the problem 

• The first part of this course concerns linear stability 

analysis, that is the determination of the unconditional 

linear instability threshold 𝑅𝑒𝑐. 

 

• The dynamics of an infinitesimal perturbation 𝐪 can be 

studied by linearizing the system in the vicinity of the 

equilibrium 𝐐𝑏 

 
𝑑𝐪

𝑑𝑡
= 𝐉𝐪 

 

with 𝐉 the Jacobian matrix of the system evaluated at 𝐐𝑏. 
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Mathematical formulation of the problem 

 

 

The 𝑖𝑗-th entry of the Jacobian matrix evaluated in the vicinity 

of 𝐐𝑏 is given by 

 

 

𝐽𝑖𝑗 =
𝜕𝑓𝑖

𝜕𝑄𝑗
 
𝐐𝑏
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Mathematical formulation of the problem 

• This linear dynamical system is autonomous in time. Its 

solutions can be sought in the form of normal modes 

 

𝐪 𝑡 = 𝐪 𝑒𝜆𝑡 + 𝑐. 𝑐 

 

with 𝜆 = 𝜎 + 𝑖𝜔.  

 

• Injecting this form for 𝐪 𝑡  into our linear system yields the 

following eigenvalue problem 

 

𝜆𝐪 = 𝐉𝐪  
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Mathematical formulation of the problem 

 

 

The linear (in)stability  of the equilibrium 𝐐𝑏 then depends on 

the value of the growth rate 𝜎 = ℜ(𝜆)  of the leading 

eigenvalue : 

 

1. If 𝜎 < 0, the system is linearly stable (𝑅𝑒 < 𝑅𝑒𝑐). 

2. If 𝜎 > 0, the system is linearly unstable (𝑅𝑒 > 𝑅𝑒𝑐). 

3. If 𝜎 = 0, the system is neutrally stable (𝑅𝑒 = 𝑅𝑒𝑐). 
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Mathematical formulation of the problem 

 

 

 

The value of 𝜔 = ℑ(𝜆) characterizes the oscillatory nature of 

the perturbation : 

 

1. If 𝜔 ≠ 0, the perturbation oscillates in time. 

2. If 𝜔 = 0, the perturbation has a monotonic behavior. 
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Exercise 

 

• Consider the equation of motion of a damped pendulum. 

 

𝜃 = −𝑘𝜃 − 𝜔0
2 sin(𝜃) 

 

• Introducing 𝑥 = 𝜃  and 𝑦 = 𝜃 , this equation can be 

rewritten as a 2 × 2 system of first order ODE’s 

 

 

𝑥 = 𝑦

𝑦 = −𝑘𝑦 − 𝜔0
2 sin(𝑥)
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Exercise 

 

1. Compute the two equilibrium solutions of this system. 

 

2. Derive the linear equations governing the dynamics of an 

infinitesimal perturbation. 

 

3. Study the linear stability of 

a) the first equilibrium. Is it linearly stable or unstable? 

b) the second one. Is it linearly stable or unstable? 
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Local hydrodynamic stability analysis 

Navier-Stokes, Reynolds-Orr and Orr-Sommerfeld-Squire 

equations 



Navier-Stokes equations 

 

• The dynamics of an incompressible flow of Newtonian fluid 

are governed by 

 

 

 

𝜕𝐔

𝜕𝑡
= − 𝐔 ∙ 𝛻 𝐔 − 𝛻𝑃 +

1

𝑅𝑒
𝛻2𝐔

𝛻 ∙ 𝐔 = 0
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Navier-Stokes equations 

 

 

• It is a system of nonlinear partial differential equations 

(PDE’s). The variables depend on both time and space. 

 

 

 

• In the rest of this course, we will assume that the 

equilibrium solution (or base flow) 𝐐𝑏 = (𝐔𝑏, 𝑃𝑏)𝑇 is given. 
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Reynolds-Orr equation 

• Assume a velocity field of the form 

 

𝐔 =  𝐔 + 𝐮 
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Reynolds-Orr equation 

 

• Plugging it into the Navier-Stokes equations, the 

governing equations for the fluctuation 𝐮 read 

 

 

 

𝛻 ∙ 𝐮 = 0

𝜕𝐮

𝜕𝑡
= − 𝐮 ∙ 𝛻 𝐔 − 𝐔 ∙ 𝛻 𝐮 − 𝛻𝑝 +

1

𝑅𝑒
𝛻2𝐮 − 𝐮 ∙ 𝛻 𝐮
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Reynolds-Orr equation 

 

 

• Multiplying from the left by 𝐮 gives an evolution equation for 

the local kinetic energy 

 

1

2

𝜕

𝜕𝑡
𝐮 ∙ 𝐮 = −𝐮 ∙ 𝐮 ∙ 𝛻 𝐔 − 𝐮 ∙ 𝐔 ∙ 𝛻 𝐮 + 𝐮 ∙

1

𝑅𝑒
𝛻2𝐮  

                           −𝐮 ∙ 𝛻𝑝 − 𝐮 ∙ 𝐮 ∙ 𝛻 𝐮  
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Reynolds-Orr equation 

• After integrating over the whole volume, the Reynolds-Orr 

equation governing the evolution of the total kinetic energy 

of the perturbation finally reads 

 

𝑑𝐸

𝑑𝑡
= − 𝐮 ∙ 𝐮 ∙ 𝛻 𝐔  𝑑𝑉

𝑉
−

1

𝑅𝑒
 𝛻𝐮:𝛻𝐮 𝑑𝑉
𝑉

 

 

 

 

• The evolution of the perturbation’s kinetic energy results 

from a competition between production and dissipation. 
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Production Dissipation 



Reynolds-Orr equation 

 

 

• These two terms only involve linear mechanisms whether 

or not we initially considered the nonlinear term in the 

momentum equation. 

 

 

• The non-linear term is energy-conserving. It only scatters 

the energy along the different velocity components and 

length scales. 
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Reynolds-Orr equation 

 

• In the case of the Navier-Stokes equations, investigating 

the dynamics of infinitesimal perturbation  allows one to: 

 

1. Identify the critical Reynolds number beyond which 

the steady equilibrium flow is unconditionally unstable. 

(Linear stability analysis) 

 

2. Highlight the underlying physical mechanisms through 

which any kind of perturbation (linear or nonlinear) 

relies to grow over time. (Reynolds-Orr equation) 
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Parallel flow assumption 

 

• For the sake of simplicity, in the rest of the course we will 

assume a base flow of the form 

 

 
𝐔𝑏 = 𝑈 𝑦 , 0,0  

 

 

• The base flow only depends on the cross-stream 

coordinate. We neglect the streamwise evolution of the 

flow. 
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Examples of parallel flows 
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Linearized Navier-Stokes equations 

 

 

• In the most general case (3D base flow and perturbation), 

the linearized Navier-Stokes equations read 

 

 

𝜕𝐮

𝜕𝑡
=  − 𝐔𝑏 ∙ 𝛻 𝐮 − (𝐮 ∙ 𝛻)𝐔𝑏  − 𝛻𝑝 +

1

𝑅𝑒
𝛻2𝐮

𝛻 ∙ 𝐮 = 0
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Linearized Navier-Stokes equations 

• Based on the parallel flow assumption used for 𝐔𝑏, these 

equations simplify to 

 
𝜕𝑢

𝜕𝑡
= −𝑈𝑏

𝜕𝑢

𝜕𝑥
− 𝑈𝑏

′𝑣 −
𝜕𝑝

𝜕𝑥
+

1

𝑅𝑒
𝛻2𝑢

𝜕𝑣

𝜕𝑡
= −𝑈𝑏

𝜕𝑣

𝜕𝑥
 −

𝜕𝑝

𝜕𝑦
+

1

𝑅𝑒
𝛻2𝑣              

𝜕𝑤

𝜕𝑡
= −𝑈𝑏

𝜕𝑤

𝜕𝑥
 −

𝜕𝑝

𝜕𝑧
+

1

𝑅𝑒
𝛻2𝑤           

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
= 0
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Orr-Sommerfeld equation 

• Taking the divergence of the momentum equations gives 

 

𝛻²𝑝 = −2𝑈𝑏
′ 𝜕𝑣

𝜕𝑥
 

 

• One can now eliminate the pressure in the 𝑣-equation 

 

𝜕

𝜕𝑡
+ 𝑈𝑏

𝜕

𝜕𝑥
𝛻² − 𝑈𝑏

′′ 𝜕

𝜕𝑥
−

1

𝑅𝑒
𝛻4 𝑣 = 0 

 

• This is the Orr-Sommerfeld equation. It governs the 

dynamics of the wall-normal velocity component of the 

perturbation. 
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Squire equation 

• The normal vorticity is given by 

 

𝜂 =
𝜕𝑢

𝜕𝑧
−

𝜕𝑤

𝜕𝑥
 

 

• Its governing equation is 

 

𝜕

𝜕𝑡
+ 𝑈𝑏

𝜕

𝜕𝑥
−

1

𝑅𝑒
𝛻² 𝜂 = −𝑈𝑏

′ 𝜕𝑣

𝜕𝑧
 

 

• This is the Squire equation. It governs the dynamics of 

the horizontal flow (𝑢, 𝑤). 
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Orr-Sommerfeld-Squire equations 

• The Orr-Sommerfeld-Squire (OSS) equations read 

 
𝜕𝑣

𝜕𝑡
= −𝑈𝑏

𝜕

𝜕𝑥
𝛻² + 𝑈𝑏

′′ 𝜕

𝜕𝑥
+

1

𝑅𝑒
𝛻4 𝑣

𝜕𝜂

𝜕𝑡
= −𝑈𝑏

𝜕

𝜕𝑥
+

1

𝑅𝑒
𝛻2 𝜂 − 𝑈𝑏

′ 𝜕𝑣

𝜕𝑧
      

 

 

• In matrix form 

 

𝜕

𝜕𝑡

𝑣

𝜂
=

𝓛𝑂𝑆 0
𝐂 𝓛𝑆

𝑣

𝜂
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Orr-Sommerfeld-Squire equations 

 

• The dynamics of the cross-stream velocity 𝑣  are 

decoupled from the dynamics of the normal vorticity 𝜂. 

 

• The linear stability of the Squire equation is dictated by the 

linear stability of the Orr-Sommerfeld one.  

 

• As a consequence, to determine the asymptotic time-

evolution (𝑡 → ∞ ) of an infinitesimal perturbation, it is 

sufficient to consider the Orr-Sommerfeld equation only. 
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Linear stability of the OS equation 

• The OS equation is autonomous in time 𝑡, and in the space 
coordinates 𝑥 and 𝑧. 

 

• Its solutions can be sought in the form of normal modes 
 

𝑣 𝑥, 𝑦, 𝑧, 𝑡 = 𝑣 𝑦 𝑒𝑖(𝛼𝑥+𝛽𝑧−𝜔𝑡) + 𝑐. 𝑐 
                      = ℜ 𝑣 𝑦  𝑒𝑖 𝛼𝑥+𝛽𝑧−𝛼 𝑐𝑟+𝑖𝑐𝑖 𝑡  

                      = 𝑣 (𝑦)  cos 𝛼 𝑥 − 𝑐𝑟𝑡 + 𝛽𝑧  𝑒𝛼𝑐𝑖𝑡 

with 

𝛼 the streamwise wavenumber of the perturbation, 
𝛽 its spanwise wavenumber, 
𝜔 the complex angular frequency, 
𝑐𝑟  the phase speed, 
𝛼𝑐𝑖 the temporal growth rate. 
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Linear stability of the OS equation 

 

Introducing the normal mode ansatz into the OS equation 

yields 

 

𝑈 − 𝑐 𝐷2 − 𝑘2 − 𝑈′′ −
1

𝑖𝛼𝑅𝑒
(𝐷2 − 𝑘2)² 𝑣 = 0 

 

with  

𝑘² = 𝛼² + 𝛽²  

and  

𝐷² =
𝜕²

𝜕𝑦²
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Squire transformation 

• In 1933, Squire proposed a change of variables to reduce 

the 3D problem to an equivalent 2D one. 

 

• Assuming that 

𝛼 = 𝛼² + 𝛽² , 𝜔 =
𝛼 

𝛼
𝜔 ,𝛼 𝑅𝑒2𝐷 = 𝛼𝑅𝑒 and 𝑣 = 𝑣 , 

 

the OS equation reduces to 

 

𝑈 − 𝑐 𝐷2 − 𝛼 2 − 𝑈′′ −
1

𝑖𝛼 𝑅𝑒2𝐷
(𝐷2 − 𝛼 2)² 𝑣 = 0 

 

with 𝜔 > 𝜔 and 𝑅𝑒2𝐷 < 𝑅𝑒. 
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Squire theorem (1933) 

 

Theorem: For any three-dimensional unstable mode (𝛼, 𝛽, 𝜔) 
of temporal growth rate 𝜔𝑖  there is an associated two-

dimensional mode (𝛼 , 𝜔 ) of temporal growth rate  

 

𝜔 𝑖 = 𝛼² + 𝛽²
𝜔𝑖

𝛼
 

 

which is more unstable since 𝜔 𝑖 > 𝜔𝑖. Therefore, when the 

problem is to determine an instability condition, it is sufficient 

to consider only two-dimensional perturbations. 
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Summary 

• Hydrodynamic instabilities are ubiquitous in nature. 

 

• Though the Navier-Stokes equations are nonlinear PDE’s, 

the kinetic energy transfer from the base flow to the 

perturbation is governed by a linear equation (Reynolds-

Orr equation). 

 

• Hence, as a first step toward our understanding of 

transition to turbulence, investigating the dynamics of 

infinitesimally small perturbations governed by the 

linearized Navier-Stokes equations can prove useful. 
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Summary 

• Investigating the linear stability of a given system is a four-

step procedure: 

1. Compute an equilibrium solution 𝐐b  of the original 

nonlinear system. 

2. Linearize the equations in the vicinity of 𝐐𝑏. 

3. Use the normal mode ansatz to formulate the problem 

as an eigenvalue problem. 

4. Solve the eigenvalue problem. 

 

• The linearly stable or unstable nature of 𝐐𝑏 is governed 

by the eigenspectrum of the Jacobian matrix. 
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Summary 

• For the Navier-Stokes equations, using the parallel flow 
assumption greatly reduces the complexity of the 
perturbation’s governing equations. 

 

• Making use of the Orr-Sommerfeld-Squire equations 
decreases the dimension of the problem from ℝ4𝑛  to ℝ2𝑛 . 

 

• The linear (in)stability of the flow is solely governed by the 
Orr-Sommerfeld equation, thus further reducing the 
dimension of the problem down to ℝ𝑛. 

 

• Thanks to the Squire theorem, it is sufficient to investigate 
the linear stability of two-dimensional perturbations to 
determine the instability condition. 
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Inviscid instability of parallel 
flows 
Rayleigh equation, Rayleigh, Fjørtotf and Howard 
theorems and the vortex sheet instability 
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Rayleigh equation 

 

• The linear (in)stability of a viscous parallel flow is 

governed by the Orr-Sommerfeld equation 

 

𝑈 − 𝑐 𝐷2 − 𝛼2 − 𝑈′′ −
1

𝑖𝛼𝑅𝑒
(𝐷2 − 𝛼2)² 𝑣 = 0 

 

• In the inviscid limit (𝑅𝑒 → ∞), it reduces to the Rayleigh 

equation 

 

𝑈 − 𝑐 𝐷2 − 𝛼2 − 𝑈′′ 𝑣 = 0 
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Rayleigh equation 

• It can be useful to introduce the stream function 𝜓 

 

𝑢 =  
𝜕𝜓

𝜕𝑦
,    𝑣 = −

𝜕𝜓

𝜕𝑥
 

 

• The Rayleigh equation for the normal mode 𝜓  then reads 

 

𝑈 − 𝑐 𝐷2 − 𝛼2 − 𝑈′′ 𝜓 = 0 

 

with appropriate boundary conditions. 
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Rayleigh inflection point theorem 

 

 

 

 

Theorem: The existence of an inflection point in the velocity 

profile of a parallel flow is a necessary (but not sufficient) 

condition for linear instability. 
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Rayleigh inflection point theorem 

 

Demonstration: Let us assume the flow is unstable so that 

 

𝑐𝑖 ≠ 0 and 𝑈 − 𝑐 ≠ 0 

 

Dividing the Rayleigh equation by 𝑈 − 𝑐, multiplying by 𝜓 ∗ 

and integrating from 𝑦 = −1 to 𝑦 = 1 gives 

 

 𝐷𝜓 
2

+ 𝛼2 𝜓 
2

1

−1
 𝑑𝑦 +  

𝑈′′

𝑈 − 𝑐
𝜓 

2
 𝑑𝑦

1

−1
= 0 
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Rayleigh inflection point theorem 

 

Let us consider only the imaginary part of this integral 

 

 

ℑ  
𝑈′′

𝑈 − 𝑐
𝜓 

2
 𝑑𝑦

1

−1
=  

𝑐𝑖𝑈
′′

𝑈 − 𝑐 2 𝜓 
2
 𝑑𝑦

1

−1
= 0 

 

 

By assumption, we have 𝑐𝑖 ≠ 0 and this integral must vanish. 

As a consquence 𝑈′′(𝑦) must change sign, i.e., the velocity 

profile must have an inflection point. 
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Rayleigh inflection point theorem 
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Rayleigh inflection point theorem 

 

• According to the Rayleigh theorem : 

o Velocity profile (a) is stable (in the inviscid limit). 

o Vecolity profiles (b) and (c) can potentially be 

unstable. 

 

• One important conclusion of this theorem is that, if the 

effect of viscosity on the pertubation is neglected, 

both the Poiseuille flow and the Blasius boundary layer 

flow are stable (see profile (a) ).. 
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Fjørtoft theorem 

 

 

 

 

Theorem: For a monotonic velocity profile, a necessary (but 

still not sufficient) condition for instability is that the inflection 

point corresponds to a vorticity maximum. 
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Fjørtoft theorem 

 

 

 

• In the inviscid limit, according to the Fjørtoft theorem : 

o Velocity profiles (a) and (b) are stable. 

o Vecolity profile (c) can potentially be unstable. 
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Application to KH-instability 
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‘’Bernoulli effect’’-like explanation of the Kelvin-Helmholtz instability. 



Application to KH-instability (Exercises) 
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Summary 

• If we assume that the inertial effects are much larger than 

the viscous ones (𝑅𝑒 → ∞), the Orr-Sommerfeld equation 

reduces to the Rayleigh equation. 

 

• Rayleigh theorem states that an inflection point in the 

velocity profile is a necessary (but not sufficient) condition 

for inviscid instability. 

 

• Fjørtoft theorem states that this inflection point needs to 

correspond to a maximum in the vorticity distribution. This 

is however still just a necessary (but not sufficient) 

condition for inviscid instability. 
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Summary 

 

• Ignoring all effects of viscous diffusion leads to an 

unbounded growth rate at large wave numbers (small 

wavelength). 

 

• Despite this limitation, the vortex sheet problem enable a 

relatively good understanding of the Kelvin-Helmholtz 

instability process. 

 

• More realistic models, as the broken line velocity profile, 

avoids the divergence of the growth rate at large wave 

numbers while retaining the invisicid approximation. 
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