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We study the inertial migration of finite-size neutrally buoyant spherical particles in
dilute and semidilute suspensions in laminar square duct flow. We perform several direct
numerical simulations using an immersed boundary method to investigate the effects of the
bulk Reynolds number Reb, particle Reynolds number Rep , and duct to particle size ratio
h/a at different solid volume fractions φ, from very dilute conditions to 20%. We show
that the bulk Reynolds number Reb is the key parameter in inertial migration of particles in
dilute suspensions. At low solid volume fraction (φ = 0.4%), low bulk Reynolds number
(Reb = 144), and h/a = 9 particles accumulate at the center of the duct walls. As Reb is
increased, the focusing position moves progressively toward the corners of the duct. At
higher volume fractions, φ = 5%, 10%, and 20%, and in wider ducts (h/a = 18) with
Reb = 550, particles are found to migrate away from the duct core toward the walls. In
particular, for φ = 5% and 10%, particles accumulate preferentially at the corners. At the
highest volume fraction considered, φ = 20%, particles sample all the volume of the duct,
with a lower concentration at the duct core. For all cases, we find that particles reside longer
times at the corners than at the wall centers. In a duct with lower duct to particle size ratio
h/a = 9 (i.e., with larger particles), φ = 5%, and high bulk Reynolds number Reb = 550,
we find a particle concentration pattern similar to that in the ducts with h/a = 9 regardless
of the solid volume fraction φ. Instead, for lower Bulk Reynolds number Reb = 144,
h/a = 9, and φ = 5%, a different particle distribution is observed in comparison to a
dilute suspension φ = 0.4%. Hence, the volume fraction plays a key role in defining the
final distribution of particles in semidilute suspensions at low bulk Reynolds number. The
presence of particles induces secondary cross-stream motions in the duct cross section, for
all φ. The intensity of these secondary flows depends strongly on particle rotation rate,
on the maximum concentration of particles in focusing positions, and on the solid volume
fraction. We find that the secondary flow intensity increases with the volume fraction up
to φ = 5%. However, beyond φ = 5% excluded-volume effects lead to a strong reduction
of cross-stream velocities for Reb = 550 and h/a = 18. Inhibiting particles from rotating
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also results in a substantial reduction of the secondary flow intensity and in variations of
the exact location of the focusing positions.

DOI: 10.1103/PhysRevFluids.2.084301

I. INTRODUCTION

The role and the importance of fluid inertia in different microfluidic applications has recently
been recognized [1]. Due to finite fluid inertia, for example, it is possible to achieve enhanced mixing
and efficient particle separation and focusing. To further develop inertial microfluidic devices, it is
therefore necessary to properly understand the behavior of suspensions at finite Reynolds numbers
and in confined geometries.

Clearly, these suspensions exhibit very interesting and peculiar rheological properties. Among
these we recall shear thinning or thickening, the appearance of normal stress differences, and jamming
at high volume fractions [2,3]. Interesting effects due to confinement in simple shear flows in the
Stokes and weakly inertial regimes have also been reported recently [4,5]. Another important feature
observed in wall-bounded flows is particle migration. In the viscous regime, there is an irreversible
shear-induced migration of particles away from channel walls [6]. However, when inertial effects
become important the migration mechanisms may vary. This is typically referred to simply as inertial
migration.

The inertial migration of neutrally buoyant finite-size particles in Poiseuille flow has been
the object of several studies since the work by Segre and Silberberg [7]. These authors studied
experimentally the flow of a dilute suspension of randomly distributed spherical particles in a
laminar pipe flow. They showed that, at very low bulk Reynolds number Reb = O(1), particles
migrate away from the pipe core region and form a stable annulus at a distance of approximately
0.6R, with R the pipe radius. It was later explained that the particle equilibrium position in the
pipe cross section is determined by the balance between the wall repulsive lubrication force [8] and
the shear-induced lift force on the particle due to the curvature of the velocity profile [9]. Matas
et al. [10] studied experimentally the effects of the bulk Reynolds number Reb and pipe to particle
size ratio on the inertial migration of spherical particles at low volume fractions φ < 1%. These
experiments show that particles are progressively pushed toward the wall as the bulk Reynolds
number is increased. However, at larger Reb and depending on the pipe to particle size ratio, it
was also found that particles accumulate on an inner annulus in the pipe cross section. Later on,
the same authors [11] performed an asymptotic analysis to investigate the equilibrium position of
a sphere in laminar pipe flow based on the point particle assumption. While this theoretical work
confirmed the progressive shift of the particle toward the pipe wall by increasing the bulk Reynolds
number Reb, it could not predict the presence of the inner particle annulus closer to the pipe center.
Hence, the existence of the inner equilibrium position is probably related to the finite size of the
particles. Most recently, Morita et al. [12] performed several experiments to clarify this discrepancy
between theoretical and experimental results and suggested that the occurrence of the inner annulus
is a transient phenomenon that would disappear for long enough pipes for Reb < 1000 and tube to
particle diameter ratios of ∼12. Concerning dense suspensions of neutrally buoyant particles in pipe
flows, Han et al. [13] showed experimentally that inertial migration is a very robust phenomenon
that occurs for particle Reynolds numbers Rep larger than 0.1 even at moderately high solid volume
fraction φ ∼ 30%.

In the past few years, the Segre-Silberberg phenomenon has been used as a passive method for
the separation and sorting of cells and particles in microfluidic devices [1,14,15]. Details on the
physics of inertial migration and its microfluidic applications have been documented recently in a
comprehensive review article by Amini et al. [16]. Due to microchip manufacturing, square channels
are often utilized in such applications. Due to the loss of cylindrical symmetry, the particle behavior
is altered with respect to pipe flows. The study of particulate duct flows has hence attracted various
researchers over the years.
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Chun and Ladd [17], for example, performed numerical simulations using a lattice-Boltzmann
method to study the motion of single particles and dilute suspensions in square duct flows. The
existence of eight equilibrium positions at the duct corners and wall centers was reported for single
particles in a range of bulk Reynolds number Reb between 100 and 1000. It was shown that at
moderately high Reynolds numbers (Reb > 500), the equilibrium position at the wall center is not
stable and particles move toward the duct corners. A similar pattern was found for a low solid
volume fraction (φ = 1%) at Reb = 500. Moreover, the appearance of particles at the inner region
of the duct was also observed in addition to four equilibrium positions at the corners for φ = 1%
and Reb = 1000. However, as previously discussed, it seems that the presence of the particles in
the center region of Poiseuille flows of dilute suspensions at high bulk Reynolds number Reb is a
transient feature.

Later, Di Carlo et al. [18] carried out an experimental and numerical investigation of the motion of
an individual particle in duct flow at low Reynolds number. In particular, they explored the lift forces
acting on the particle and the influence of the particle to duct size ratio on the particle equilibrium
position. They showed that for low bulk Reynolds number the duct corners are unstable equilibrium
positions. The duct wall centers are the only points where the wall lubrication and shear-induced lift
forces balance each other and are hence stable equilibrium positions. These results have also been
confirmed recently by the theoretical work of Hood et al. [19] in which an asymptotic model was
used to predict the lateral forces on a particle and determine its stable equilibrium position.

Choi et al. [20] investigated experimentally the spatial distribution of dilute suspended particles
in a duct flow at low bulk Reynolds numbers (Reb < 120) and different duct to particle size ratios
h/a (where h and a are the duct half-width and the particle radius, respectively). For Reb = 12
and relatively high duct to particle size ratio (h/a = 6.25), they observed the formation of a ring of
particles parallel to the duct walls at a distance of around 0.6h from the centerline. They showed
that by increasing the bulk Reynolds number to 120, the particle ring breaks and four particle
focusing (equilibrium) points are observed at the duct wall centers. The same behavior for particle
distributions across the duct cross section has also been observed experimentally by Abbas et al.
[21] for Reb ∈ [0.07; 120]. On the other hand, for very low Reynolds number Re � 1 (i.e., when
inertia is negligible), particles accumulate at the duct center region. More recently, Miura et al.
[22] carried out an experimental study on the inertial migration of particles in a macroscale square
duct for h/a = 9.2 and for Reb ∈ [100; 1200]. They showed that the corner equilibrium position
appears only at relatively high Reynolds number (Reb > 250). These results were later confirmed
by Nakagawa et al. [23], who studied numerically the migration of a rigid sphere in duct flow, in
a range of bulk Reynolds number Reb from 20 to 1000. In particular, these authors showed that
the equilibrium position at the duct corner is unstable until the bulk Reynolds number Reb exceeds
a critical value (Reb ≈ 260). At this Reb, additional equilibrium positions are shown to appear on
the heteroclinic orbits close to the corners. Finally, in a recent paper Lashgari et al. [24] performed
numerical simulations to study the inertial migration of oblate particles in squared and rectangular
ducts.

Despite a considerable number of studies on particulate duct flows, the physical understanding
of the effects observed is not complete and the range of parameters still unexplored is vast. For
example, as said before, most experimental and numerical studies focused on dilute suspensions of
particles, while the flow at higher solid volume fractions has not yet been investigated thoroughly,
a relevant aspect for high-throughput applications. Therefore, the main goal of the present study is
to fill this gap by exploring particle and flow behavior in a square duct at relatively high particle
concentrations covering the range of solid volume fraction φ = 0.4%–20%. To this end, we perform
interface-resolved numerical simulations using an immersed boundary method with lubrication and
collision models for short-range interactions. We report the spatial distribution of particles across the
duct cross section for φ = 0.4%–20% at constant bulk Reynolds number Reb = 550 and h/a = 18.
Overall, we observe that particles depart from the duct core region and accumulate around the duct
walls and preferentially in the duct corners. The same particle concentration pattern is observed for
φ = 5% at bulk Reynolds number Reb = 550 and h/a = 9, i.e., larger particles. In addition, we show
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that for high solid volume fraction φ = 20% at low bulk Reynolds number Reb = 144 and h/a = 9,
particle concentrate at the duct center region and inertial migration of particles is almost lost. We also
investigate the effects of the bulk and particle Reynolds numbers and the duct to particle size ratio on
the behavior of a dilute suspension with φ = 0.4%. The particular focusing positions depend mostly
on the bulk Reynolds number Reb. Changing the duct to particle size ratio h/a, particle inertia varies
independently of fluid inertia in each case and this leads to different specific arrangements of particles
around the equilibrium positions. Finally, we show that the presence of particles alters the flow in
such a way that cross-stream secondary vortices appear around the particle focusing positions at low
solid volume fraction φ = 0.4%. The intensity of these secondary flows depends on the maximum
concentration of particles at these locations. For semidilute suspensions (φ � 5%) at bulk Reynolds
number Reb = 550 and h/a = 18, the presence of particles induces a pair of cross-stream secondary
vortices at the duct corners. At high solid volume fraction (φ = 20%), the duct core region is never
fully depleted of particles and the intensity of secondary flows is substantially reduced. Overall, the
mean secondary flow intensity initially increases with φ and then decreases for φ > 5%. We will
also show that particle rotation plays an important role in determining the focusing positions as well
as the intensity of the secondary flows.

II. METHODOLOGY

A. Numerical method

In this study the immersed boundary method (IBM) proposed by Breugem [25] is used to simulate
dilute and semidilute suspensions of neutrally buoyant spherical particles in square ducts. The flow
field is described on a Eulerian grid by the incompressible Navier-Stokes equations

∇ · uf = 0, (1)

∂uf

∂t
+ uf · ∇uf = − 1

ρf

∇p + ν∇2uf + f, (2)

where p and uf are the pressure and velocity fields and ν and ρf are the kinematic viscosity
and density of the fluid phase. The last term on the right-hand side of Eq. (2), f, is the IBM
force field imposed on the flow to model the boundary condition at the moving particle surface
(i.e., uf |∂Vp

= up + ωp × r). The dynamics of the rigid particles is governed by the Newton-Euler
Lagrangian equations

ρpVp

dup

dt
=

∮
∂Vp

τ · n dS, (3)

Ip

dωp

dt
=

∮
∂Vp

r × τ · n dS, (4)

where up and ωp are the linear and angular velocities of the particle centroid. In Eqs. (3) and
(4), Vp = 4πa3/3 and Ip = 2ρpVpa2/5 represent the particle volume and moment of inertia, τ =
−pI + 2νρf (∇uf + ∇uT

f )/2 is the fluid stress tensor, and r indicates the distance from the center
of the particles (n is the unity vector normal to the particle surface ∂Vp).

The fluid phase is evolved entirely on a uniform staggered Cartesian grid using a second-order
finite-difference scheme. An explicit third-order Runge-Kutta scheme has been combined with a
pressure-correction method to perform the time integration at each substep. This latter integration
scheme has also been used for the evolution of Eqs. (3) and (4). Each particle surface is described
by NL uniformly distributed Lagrangian points. The force exchanged by the fluid on the particles
is imposed on each lth Lagrangian point. This force is related to the Eulerian force field f by the
expression f(x) = ∑NL

l=1 F̂lδd (x − Xl)�Vl , where �Vl is the volume of the cell containing the lth
Lagrangian point and δd is the Dirac delta. Here F̂l is the force (per unit mass) at each Lagrangian
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point and it is computed as F̂l = [Up(Xl) − U∗
l ]/�t , where Up = up + ωp × r is the velocity at the

Lagrangian point l at the previous time step and U∗
l is the interpolated first prediction velocity at the

same point.
An iterative algorithm with second-order global accuracy in space is employed to calculate this

force field. To maintain accuracy, Eqs. (3) and (4) are rearranged in terms of the IBM force field,

ρpVp

dup

dt
= −ρf

Nl∑
l=1

F̂l�Vl + ρf

d

dt

∫
Vp

uf dV, (5)

Ip

dωp

dt
= −ρf

Nl∑
l=1

rl × F̂l�Vl + ρf

d

dt

∫
Vp

r × uf dV, (6)

where rl is the distance between the center of a particle and the lth Lagrangian point on its surface.
The second terms on the right-hand sides are corrections that account for the inertia of the fictitious
fluid contained within the particle volume. Particle-particle and particle-wall interactions are also
considered. Well-known models based on Brenner’s asymptotic solution [26] are employed to
correctly predict the lubrication force when the gap distance between particles and between particles
and walls is smaller than twice the mesh size. A soft-sphere collision model is used to account for
particle-particle and particle-wall collisions. An almost elastic rebound is ensured with a restitution
coefficient set at 0.97. Friction among particles and among particles and walls is also considered
[27]. These lubrication and collision forces are added to the right-hand side of Eq. (5). A more
detailed discussion of the numerical method and of the mentioned models can be found in previous
publications [25,28–31]. Periodic boundary conditions are imposed in the streamwise direction.
In the remaining directions, the stress immersed boundary method is used to impose the no-slip
and no-penetration conditions at the walls. The stress immersed boundary method was originally
developed to simulate the flow around rectangular-shaped obstacles in a fully Cartesian grid [32].
In this work we use this method to enforce the fluid velocity to be zero at the duct walls. For more
details on the method, the reader is referred to the works of Breugem and Boersma [33] and Pourquie
et al. [34].

B. Flow configuration

In this work we investigate the laminar flow of dilute and semidilute suspensions of neutrally
buoyant spherical particles in straight ducts with square cross section. Two different sets of
simulations are performed. Initially we study excluded-volume effects. To this aim we perform
simulations in a Cartesian computational domain of size Lx = 6h, Lz = 2h, and Ly = 2h, where h

is the duct half-width and x, y, and z are the streamwise and cross-stream directions (see Fig. 1).
The domain is discretized by a uniform (�x = �z = �y) cubic mesh with 1296 × 432 × 432

grid points for semidilute cases. In terms of particle radii, the computational domain has a size
of 108a × 36a × 36a, with a being the particle radius. A constant bulk velocity Ub is achieved
by imposing a mean pressure gradient in the streamwise direction. Bulk and particle Reynolds
number are here defined as Reb = Ub2h/ν and Rep = Reb(a/h)2. We consider four different solid
volume fractions: φ = 0.4%, 5%, 10%, and 20%. In this setup these correspond to 134, 1670,
3340, and 6680 particles, respectively. In all cases, particles are initially positioned randomly in
the computational domain with zero linear and angular velocities. Each particle is discretized with
Nl = 1721 Lagrangian control points while their radii are 12 Eulerian grid points long. Considering
12 grid points per particle radius (�x = 1/24) is a good compromise in terms of computational cost
and accuracy.

We also investigate the effects of bulk and particle Reynolds numbers and the duct to particle
size ratio h/a for dilute suspensions with φ = 0.4%. We consider different combinations of Reb and
h/a resulting in different particle Reynolds numbers Rep = Reb(a/h)2. The full set of simulations
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FIG. 1. Three-dimensional view of the duct geometry with few particles.

is summarized in Table I. Resolution is chosen to keep 12 grid points per particle radius for the
different h/a ratios.

III. RESULTS

A. Validation

The code has been validated extensively against several test cases in previous studies [25,28,29].
In this study, first, we investigate how accurate it is to use the stress immersed boundary method to
represent the duct walls. In particular, we compare our results on the mean flow to the analytic result
reported by Shah and London [35]. The maximum discrepancy is found at the centerline and it is
about 0.6% for the resolution used in this study.

We then perform a validation against the experimental results reported recently by Miura et al.
[22] on the flow of dilute suspensions of neutrally buoyant spherical particles in a square duct.
We perform a simulation to resemble the case presented in Fig. 5(a) of Ref. [22]. In particular, we
consider a box of size Lx = 144a and Ly = Lz = 18a, a bulk Reynolds number Reb of 144, duct
half-width to particle radius ratio h/a = 9, and volume fraction φ = 0.4%. After an initial transient,
we compare the particle distribution across the duct to those found experimentally. Figure 2(a) shows

TABLE I. Summary of the simulations. The size of the computational domain is expressed in terms of
particle radii and is denoted by Lx,Ly,Lz in the streamwise and wall-normal directions. The number of grid
points in each direction Nx,Ny,Nz is chosen to keep 12 points per particle radius.

φ (%) Reb Rep h/a Lx × Ly × Lz Nx × Ny × Nz

0.4 144 1.7 9 144a × 18a × 18a 1728 × 216 × 216
0.4 275 3.4 9 72a × 18a × 18a 864 × 216 × 216
0.4 550 6.8 9 72a × 18a × 18a 864 × 216 × 216
0.4 300 1.7 13 78a × 26a × 26a 936 × 312 × 312
0.4 550 3.2 13 78a × 26a × 26a 936 × 312 × 312
0.4 550 1.7 18 108a × 36a × 36a 1296 × 432 × 432
5 144 1.7 9 72a × 18a × 18a 864 × 216 × 216
5 550 6.8 9 72a × 18a × 18a 864 × 216 × 216
20 144 1.7 9 72a × 18a × 18a 864 × 216 × 216
5 550 1.7 18 108a × 36a × 36a 1296 × 432 × 432
10 550 1.7 18 108a × 36a × 36a 1296 × 432 × 432
20 550 1.7 18 108a × 36a × 36a 1296 × 432 × 432
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FIG. 2. (a) Spatial distribution of particles across the duct section for φ = 0.4% and Reb = 144 (Rep = 1.7).
(b) Equilibrium position of individual particle: ◦, initial position; •, final position; �, Chun and Ladd’s [17]
final equilibrium position; and —, particle trajectory.

the particle concentration 	(y,z) in the y-z plane (averaged in the streamwise direction and over
time). Excellent agreement can be seen between our numerical results and the experimental data of
Miura et al. [22] [see Fig. 5(a) of the cited paper].

The dependence of the particle’s equilibrium position on the computational domain length is also
checked. To this end, we perform a simulation in a shorter box, Lx = 72a, and the same Reb and φ.
The same final particle equilibrium position is found (not shown). Thus, we conclude that the results
are independent of the box length for the values here considered.

In addition, we also examine the trajectory of an individual particle and compare it with the data
previously reported by Chun and Ladd [17]. We assume Reb = 100 and h/a = 9.1 and compare
our and their results in Fig. 2(b). The particle, initially slightly below the duct centerline, slowly
migrates toward the same focusing position found by Chun and Ladd [17]. In particular, the focusing
position is at the center of the duct wall (z/h = 0) at a distance of 0.74h from the centerline.

B. Semidilute suspensions

In this section we report and discuss the results obtained for different solid volume fractions φ at a
constant bulk Reynolds number of Reb = 550 (Rep = 1.7) and duct to particle size ratio of h/a = 18.
Note that all results shown hereinafter are obtained by taking averages over the eight symmetric
triangles that form the duct cross section. We first show the particle concentration distribution 	(y,z)
across the duct cross section for φ = 0.4%, 5%, 10%, and 20% in Figs. 3(a)–3(d), respectively. The
particle concentration distribution is defined as

	(y,z) = 1

NtNx

Nt∑
m=1

Nx∑
i=1

ξ (xijk,t
m), (7)

where Nt is the number of time steps considered for the average, tm is the sampling time, and
ξ (xijk,t

m) is the particle indicator function at the location xijk and time tm. The particle indicator
function is equal to 1 for points xijk contained within the volume of a sphere and 0 in the fluid. At
the lowest solid volume fraction φ = 0.4%, particles migrate preferentially toward two symmetric
equilibrium positions near the duct corners [Fig. 3(a)]. However, some particles are also found
uniformly distributed along the walls and in particular close to the wall centers at a distance of
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FIG. 3. Particle concentration distribution 	(y,z) in the y-z plane (duct cross section) at Reb = 550 (Rep =
1.7) and h/a = 18 for (a) φ = 0.4%, (b) φ = 5%, (c) φ = 10%, (d) φ = 20%, and instantaneous snapshots of
particle final positions in the y-z plane for (e) φ = 5% and (f) φ = 10%.

approximately 0.6h away from the duct core. Figures 3(b) and 3(c) show that the particles tend
to concentrate preferentially at the duct corners and less at the wall centers also for φ = 5% and
10%. For these three volume fractions, the core of the duct is completely depleted of particles. In
Figs. 3(e) and 3(f) we show instantaneous snapshots of particle positions in the duct cross section for
φ = 5% and 10%. At each instant, particles are always close to the duct walls. Hence, the particle
concentration distribution 	(y,z) at moderate φ appears to reflect the peculiar focusing positions
obtained in dilute cases. However, at φ = 20%, particles distribute almost all over the cross section
[see Fig. 3(d)]. One can still notice that the particle concentration is slightly larger at the corners
and that stable layers of particles form close to the walls (as also found for channel flows [30]).
Qualitatively similar results have been obtained for suspensions of neutrally buoyant spheres in pipe
flows at solid volume fractions φ = 6%, 10%, and 20% [13]. It was shown that for φ = 6% and
10% and Rep ≈ 0.35, particles migrate from the core region toward the pipe wall. At φ = 20%,
particles are uniformly distributed in the cross section with a maximum of the particle concentration
at the pipe center and close to the wall. The maximum of local particle concentration at the pipe
center for φ = 20% is not present in our results for duct flow [see Fig. 3(d)]. The reason for this
difference is probably the fact that the particle Reynolds number is larger (Rep = 1.7) than in the
cited experiments (Rep = 0.28).

Despite different particle distributions across the duct cross section, residence times of particles
at the duct wall center and duct corners are similar for φ = 5% and 20%. We demonstrate this in
Fig. 4 by calculating the cumulative probability density function Q(τ ) of particles residence time
τ in the corners or at the duct wall centers. We divide the computational domain into nine equal
volumes of size 108a × 12a × 12a: Four of these volumes contain the duct corners, four contain the
duct wall centers, and the ninth contains the duct core (see the inset of Fig. 4). The residence time τ

is defined as the maximum time a particle stays within the boundaries of one specific volume. The
cumulative probability density function Q(τ ) is calculated via the rank-order method [36], which is
free from binning errors. The statistics are collected using the last 1200 nondimensional times. The

084301-8



INERTIAL MIGRATION IN DILUTE AND SEMIDILUTE . . .

FIG. 4. Cumulative density function of residence times Q(τ ) in the corners or at the wall centers for φ = 5
and 20% at Reb = 550 (Rep = 1.7) and h/a = 18. The inset shows different regions of the duct for evaluation
of the statistics.

results for φ = 5 and 20% are shown in Fig. 4, where we see that Q(τ ) is larger at the corners than
at the wall centers (for the sake of clarity, the curves for φ = 10% are not reported).

The streamwise mean particle velocity Up(y,z), normalized by the bulk velocity Ub, is illustrated
in Figs. 5(a)–5(c) over the duct cross section for the different volume fractions φ. The contours
resemble closely those of the streamwise fluid velocity except at the duct core, where it is fully
depleted of particles for φ = 5% and 10%. The uniform distribution of particles across the duct
cross section for φ = 20% results instead in a uniform streamwise mean velocity contour in the duct
core [Fig. 5(c)].

The probability density functions (PDFs) of particle streamwise velocities Up calculated at the
duct corners and over the whole duct cross section are reported in Fig. 6. At the corners, we observe
that the variance of the PDFs increases as the volume fraction increases [see Fig. 6(a)]. The mean
value of the streamwise particle velocity is also found to increase with the volume fraction. As will
be shown later, this behavior may be due to the fact that the streamwise mean fluid velocity at the
duct corner increases with the solid volume fraction.

FIG. 5. Streamwise mean particle velocity contours Up/Ub in the cross-stream y-z plane at Reb = 550
(Rep = 1.7) and h/a = 18 for (a) φ = 5%, (b) φ = 10%, and (c) φ = 20%.
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FIG. 6. Probability density function of particle velocities in the streamwise direction for different solid
volume fractions at Reb = 550 (Rep = 1.7) and h/a = 18 (a) at the duct corner and (b) over the whole duct
cross section.

The variance of the PDF of the particle streamwise velocity Up in the whole duct is instead
similar for all φ [see Fig. 6(b)]. However, as φ increases, particles are forced to distribute more
uniformly across the duct and hence exhibit higher velocities toward the centerline. This leads to a
progressive enhancement of the mean particle streamwise velocity and to a substantial change of the
shape of the PDFs. Indeed, for φ = 20% the mean streamwise particle velocity is 23% larger than
that for φ = 5%; the different, more flattened, shape of the PDF is due to the uniform distribution
of particles across the duct.

Figures 7(a)–7(c) show the streamwise velocity fluctuation contours u′
p,rms(y,z) of the solid

phase. We observe that the maxima of u′
p,rms(y,z) are located close to the wall centers for all φ.

At the highest φ, the maximum of u′
p,rms(y,z) is almost twice that for φ = 5%. As expected, the

fluctuations are lower at the duct corners where particles reside longer.
Fluid velocity fluctuations, absent in laminar regimes, are induced by the solid phase. Contours of

the streamwise mean velocity fluctuations of the fluid phase u′
f,rms are shown in Figs. 8(a)–8(c) for

φ = 5%, 10%, and 20%. As for the particle velocity fluctuations, the maxima of u′
f,rms are located

in the proximity of the duct walls and increase by increasing the solid volume fraction. Spatially
averaged streamwise fluid velocity fluctuations increase by 25% and 64% for φ = 10% and 20%

FIG. 7. Streamwise particle velocity fluctuation contours u′
p,rms/Ub in the cross-stream y-z plane at Reb =

550 (Rep = 1.7) and h/a = 18 for (a) φ = 5%, (b) φ = 10%, and (c) φ = 20%.
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FIG. 8. Streamwise fluid velocity fluctuation contours u′
f,rms/Ub in the cross-stream y-z plane at Reb = 550

(Rep = 1.7) and h/a = 18 for (a) φ = 5%, (b) φ = 10%, and (c) φ = 20%.

compared to the case φ = 5%. Comparing the data with the particle fluctuation velocities, it can be
seen that u′

p,rms/u
′
f,rms is larger than 1 for all volume fractions under investigation.

Due to the solid phase, the mean fluid velocity profiles are altered with respect to the unladen
case. In Fig. 9 we compare the streamwise mean fluid velocity profiles Uf (y), normalized by the
bulk velocity Ub, for each solid volume fraction φ at different spanwise locations z/h. One can
see in Fig. 9(c) that at the wall bisector z/h = 0, the maximum velocity first increases for φ = 5%
and 10% and then decreases for φ = 20%. Blunted velocity profiles for pipe and channel flows of
dense suspensions at low bulk Reynolds numbers have also been reported by other authors [37–40].
At φ = 5% and 10%, particles migrate to the duct corners and depletion is seen at the duct center
[Figs. 3(e) and 3(f)]. As the bulk velocity Ub is kept constant in our simulations, this results in a
slight increase of the streamwise fluid velocity Uf around the centerline. On the other hand, at the
highest volume fraction considered (φ = 20%) particles are homogeneously distributed across the
duct cross section. Hence, the local viscosity of the suspension increases everywhere and this leads
to the blunted velocity profile. Close to the duct corners z/h = −0.8, the maximum streamwise
velocity is largest for φ = 20% [see Fig. 9(a)]. Indeed, since Ub is constant, the reduction of the
mean fluid velocity at the centerline for φ = 20% leads to an expansion of the three-dimensional
paraboloid describing the fluid velocity and hence to an increase of the fluid velocity at the corners.

The presence of particles in the flow increases the rate of energy dissipation and consequently the
suspension viscosity and the wall shear stress. Figure 10(a) shows the distribution of the normalized
shear stress τw/τw0 along the duct wall, where τw0 denotes the mean value of wall shear stress
pertaining the unladen flow. The results show a 16%, 36%, and 93% increase in the mean value of

FIG. 9. Streamwise mean fluid velocity profiles Uf /Ub for different solid volume fractions at Reb = 550
(Rep = 1.7) and h/a = 18 at different spanwise locations along the y axis: (a) z/h = −0.8, (b) z/h = −0.4,
and (c) z/h = 0.
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FIG. 10. (a) Distribution of shear stress along the duct wall and (b) relative viscosity of the suspensions under
investigation in comparison with the Eilers fit: μr = μe/μ = [1 + 1.25φ/(1 − φ/0.6)]2. All cases presented
here have the same bulk Reynolds number Reb = 550 (Rep = 1.7) and h/a = 18.

wall shear stress τw for φ = 5%, 10%, and 20%, respectively, with respect to the unladen case. Taking
the ratio between τw and τw0, the relative viscosity μr = μe/μ (i.e., the ratio between the effective
viscosity of the suspension and the viscosity of the fluid phase) can be determined. When plotted as
a function of the solid volume fraction φ, we see that our results match empirical predictions given
by the Eilers fit [2]. It should be noted that Rep = Reb(a/h)2 = 1.7. Therefore, inertial effects are
expected to be weak and this may explain the accuracy of the fit valid for vanishing inertia. Indeed,
inertial shear thickening [41] is still weak in this case and we report just a weak underprediction of
the effective viscosity.

C. Effect of geometry, bulk, and particle Reynolds numbers on the migration in dilute suspensions

In this section we discuss the influence of the bulk Reynolds number Reb, duct to particle size
ratio h/a, and particle Reynolds number Rep on the spatial distribution of particles across the duct.
To this aim, we focus on dilute suspensions of spheres with solid volume fraction φ = 0.4%. We
consider three different duct to particle size ratios 9, 13, and 18. As the particle Reynolds number is
a function of the bulk Reynolds number and the duct to particle size ratio, Rep = Reb(a/h)2, two
parameters are steadily changed in three steps while one parameter is fixed. The results are shown
in Figs. 11(a)–11(i), where we only report Reynolds numbers for laminar duct flow as turbulent
diffusion would alter the particle distribution across the duct and no direct comparison could be
made.

Figures 11(a)–11(c) show the particle concentration distribution 	(y,z) at constant duct to particle
size ratio h/a = 9 while increasing the bulk and consequently particle Reynolds numbers. As the
bulk Reynolds number Reb is increased from 144 to 275, particles that were initially focused at
the wall centers [Fig. 11(a)] start to spread on a ring parallel to the duct walls with slightly larger
concentration at the duct wall centers [see Fig. 11(b)]. A further increase in the bulk Reynolds number
leads to the rupture of the ring. At Reb = 550, we observe the appearance of equilibrium positions at
the duct corners and a low concentration focusing point close to the duct wall centers [see Fig. 11(c)].
These results are consistent with those by Nakagawa et al. [23], who studied the migration of single
particles in square duct flows. For Reb = 260 and h/a = 9 these authors reported the existence of
two equilibrium positions close to the duct corners in addition to a stable equilibrium position at
the duct wall centers. One of the two equilibrium positions close to the duct corner is located on
the diagonal, whereas the second appears between the diagonal and the wall center equilibrium
position (see Fig. 6 of Ref. [23]). A similar pattern can be seen in Fig. 11(b) of the present study
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FIG. 11. Particle concentration distribution 	(y,z) in the duct cross section for φ = 0.4%: (a)–(c) constant
particle relative size, h/a = 9, and increasing bulk and particle Reynolds numbers Reb and Rep; (d)–(f) constant
Rep = 1.7 for increasing Reb and h/a; and (g)–(i) constant Reb = 550 for Rep and h/a.

for φ = 0.4%, h/a = 9, and Reb = 275, where two symmetric equilibrium positions emerge close
to the duct corners. In addition, Nakagawa et al. [23] showed that by increasing the bulk Reynolds
number from 260 to 514, the equilibrium position at the wall center moves toward the duct core.
The same behavior is observed in our simulations for Reb = 550 where the equilibrium position at
the duct wall center is closer to the duct center in comparison to the case with Reb = 275. In fact,
the location of the maximum local particle concentration changes from about 0.7h for Reb = 275
to approximately 0.6h for Reb = 550. Similar results were found experimentally by Miura et al.
[22]. Interestingly, these results are in contrast to what has been observed in pipe flow where the
particle equilibrium position has been shown to approach the wall as the bulk Reynolds number Reb

is increased (see the work of Segre and Silberberg [7] and Matas et al. [10]).
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FIG. 12. Particle concentration distribution 	(y,z) in the duct cross section for semidilute suspensions at
constant relative size h/a = 9 and different bulk and particle Reynolds numbers: (a) Reb = 550, φ = 5%, and
Rep = 6.8; (b) Reb = 144, φ = 5%, and Rep = 1.7; and (c) Reb = 144, φ = 20%, and Rep = 1.7.

Figures 11(d)–11(f) illustrate the particle spatial distribution across the duct cross section when
the particle Reynolds number is kept constant at Rep = 1.7 while adjusting the bulk Reynolds
number Reb and duct to particle size ratio h/a. Qualitatively, we observe a particle distribution
similar to that shown in Figs. 11(a)–11(c) for constant h/a. For Reb = 300 and h/a = 13 as shown
in Fig. 11(e), we observe multiple equilibrium positions on the heteroclinic orbits that connect the
wall center and corner equilibrium positions. The existence of additional equilibrium positions on
the heteroclinic orbits for Reb � 260 had also been hypothesized by Nakagawa et al. [23].

Comparing Figs. 11(c) and 11(f), we note that particles distribute more uniformly across the cross
section for larger h/a and the same bulk Reynolds number of Reb = 550. Moreover, the regions of
higher concentration are located at two symmetric points around each corner. Therefore, for larger
h/a these symmetric equilibrium positions appear at higher bulk Reynolds numbers as particles
experience less inertia (i.e., smaller Rep) in comparison to the case with h/a = 9.

Finally, to further explore the role of the bulk Reynolds number Reb, we show in Figs. 11(g)–11(i)
the particle concentration 	(y,z) at constant bulk Reynolds number Reb = 550 for different particle
Reynolds numbers Rep and duct to particle size ratios h/a. The results show similar patterns at the
same bulk Reynolds number Reb: All cases in Figs. 11(g)–11(i) display clear equilibrium positions
at the corners and weaker focusing at the wall center. This shows that changes in the bulk Reynolds
numbers lead to the most significant variations of the particle distribution. Therefore, the bulk
Reynolds number appears to be the dominant parameter in the system. However, increasing the
duct to particle size ratio, the particle concentration at the duct corner broadens until two separate
equilibrium positions appear for h/a = 18 [Fig. 11(i)]. By increasing the duct to particle size ratio
h/a at the same bulk Reynolds number Reb, particles experience weaker velocity gradients (i.e.,
inertial effects), resulting in a more uniform distribution across the duct cross section.

In Sec. III B we observed similar particle distribution pattern for dilute (φ = 0.4%) and semidilute
(φ = 5%) suspensions at Reb = 550 and h/a = 18 [Figs. 3(a) and 3(b)]. In addition, Fig. 12(a) shows
the particle distribution for φ = 5%, Reb = 550, and h/a = 9. These results, together with the case
presented in Fig. 3(c) for φ = 0.4%, Reb = 550, and h/a = 9, show that at the same bulk Reynolds
number Reb = 550, particles are preferentially concentrated at the duct corners rather than at the
wall centers regardless of the different duct to particle size ratio h/a and solid volume fraction φ.
Hence, we would expect a similar behavior for φ = 0.4% and φ = 5% also at the bulk Reynolds
number of Reb = 144. To test this conjecture, we have performed a simulation with volume fraction
φ = 5%, h/a = 9, and Reb = 144. The resulting particle distribution at steady state is shown in
Fig. 12(b). It can be seen that in addition to the wall center equilibrium position [where 	(y,z) is
the maximum], particles also accumulate around the corners at this low bulk Reynolds number of
Reb = 144. It should be mentioned that the corner equilibrium position is absent at the same bulk
Reynolds number of Reb = 144 and low solid volume fraction φ = 0.4% [Fig. 11(a)]. Therefore,
while particles still undergo inertial migration away from the core, the exact particle distribution
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depends also on the volume fraction φ. At the highest volume fraction φ = 20% and low bulk
Reynolds number Reb = 144 [see Fig. 12(c)] the inertial focusing appears to be almost lost and
particles concentrate mostly at the duct center region. Elsewhere in the cross section the particle
concentration is substantially uniform. From these results, we can conclude that for suspensions
of neutrally buoyant particles at moderately high concentration (φ � 5%) and low bulk Reynolds
numbers Reb, the exact particle distribution depends on both the nominal solid volume fraction φ and
the bulk Reynolds number Reb. These observations can have implications for inertial microfluidics
at high throughput.

To summarize, the results in this section indicate that the key parameter in defining particle
migration and focusing positions at low φ is the bulk Reynolds number Reb. Similar particle
distributions across the duct are obtained for equal and finite bulk Reynolds numbers (greater than
100) and different h/a. The small differences in the distributions are due to the duct to particle
size ratio h/a (and hence to particle inertia). In particular, our systematic study shows that at
lower Reb, particles focus at the wall centers. Increasing the bulk Reynolds number, particles first
form a ringlike structure close to the four walls and finally accumulate mostly at the duct corners
(higher Reb).

At a constant Reb, however, larger particles experience stronger velocity gradients than smaller
particles. The particle Reynolds number is hence different for larger and smaller particles and this
results in a slight modification of the exact particle distribution across the duct. Indeed, for Reb = 550
and h/a = 9 we see that almost all particles are precisely at the corners while fewer focus closer
to the wall centers. For h/a = 18, the results are similar. However, particles do not accumulate
precisely at the corners (i.e., on the diagonal) and the distribution is slightly more uniform close to
the walls than for the previous case. For semidilute suspensions (φ = 5%–20%), while the inertial
effect is dominant at the highest bulk Reynolds number Reb = 550, the excluded-volume effects
have a significant role in determining the final particle distribution at the lowest bulk Reynolds
number Reb = 144 investigated here.

D. Secondary flows

No secondary motions are present in a laminar duct flow. Typically secondary flows appear
at high bulk Reynolds numbers once the flow becomes turbulent. According to Prandtl [42],
there are two kinds of secondary flows: skew induced and Reynolds stress induced. The
former are absent in fully developed turbulent duct flows while the latter are produced by
the deviatoric Reynolds shear stress 〈v′

f w′
f 〉 and the cross-stream Reynolds stress difference

〈v′2
f 〉 − 〈w′2

f 〉 (where 〈·〉 denotes averaged quantities). When a solid phase is dispersed in the
liquid, particle-induced stresses generate cross-stream secondary motions also in originally laminar
flows.

The results of the present study show the existence of secondary flows induced by particles in dilute
suspensions. In Figs. 13(a)–13(f) we report the crossflow velocity magnitude

√
V 2

f + W 2
f and vector

fields for different cases with φ = 0.4%. We clearly see that the intensity of these secondary flows is
stronger close to the particle focusing positions. For h/a = 9 and Reb = 144 particles focus at the
wall centers [cf. Fig. 11(a)] and, accordingly, secondary motions are stronger around the focusing
positions and point from the core toward the wall centers [Fig. 13(a)]. As documented in Sec. III B,
when the bulk Reynolds number Reb is increased, these four focusing positions are lost and particles
form a ringlike structure close to the walls [Fig. 11(b)]. The corresponding secondary motions are
displayed in Fig. 13(b): Their intensity reduces significantly due to the more uniform particle distribu-
tions across the duct cross section. Further increasing the bulk Reynolds number Reb = 550, particles
focus at the duct corners [Fig. 11(c)]. Consequently, the secondary motion is more evident at these
locations, now directed toward the corners along the bisectors [Fig. 13(c)]. Comparing Figs. 13(a) and
13(c), we note that the cross-stream motions are directed from the duct core to the locations of particle
focusing.
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FIG. 13. Contour plot of crossflow velocity magnitude
√

V 2
f + W 2

f and vector field for φ = 0.4% and
Reynolds numbers and particle size reported in the legend. For comparison, (a)–(c) correspond to the cases
presented in Figs. 11(a)–11(c), (d) and (e) correspond to the cases in Figs. 11(h) and 11(i), and (f) corresponds
to the case in Fig. 11(e).

Further, we observe in Fig. 11(c) that for h/a = 9 and Reb = 550, the local particle concentration
at the duct corners is higher than that found at the wall centers for Reb = 144 [Fig. 11(a)]. Moreover,
Fig. 13(c) shows that the secondary flow intensity increases for Reb = 550 with respect to the cases
at Reb = 144 and 275 [Figs. 13(a) and 13(b)]. These observations suggest that the intensity of the
secondary flows is determined by the local particle concentration. However, the intensity of these
secondary flows is small and less than 0.4% of Ub.

Figures 13(d) and 13(e) show the crossflow velocity magnitude
√

V 2
f + W 2

f and vector fields for
two cases with the same bulk Reynolds number Reb = 550 and different duct to particle size ratios
h/a of 13 and 18. We see that both the maximum value of the local particle concentration [Fig. 11(i)]
and the secondary flow intensity are higher for the duct with h/a = 13. At smaller h/a and constant
Reb, when the particle inertia (i.e., the particle Reynolds number Rep) and particle-induced stresses
are higher, stronger secondary flows are generated. Finally, we report the secondary flow pattern
for bulk Reynolds number Reb = 300 and h/a = 13 in Fig. 11(f). This configuration has the same
particle Reynolds number (Rep = 1.7) and similar maximum value of local particle concentration
as the case with Reb = 550 and h/a = 18 [see Figs. 11(e) and 11(i)]. In agreement with the previous
results, we observe similar secondary flow intensity in Figs. 13(e) and 13(f).

Next we explore the dependence of the fluid secondary motions on the solid volume fraction φ. To
this aim, contours of the crossflow velocity magnitude

√
V 2

f + W 2
f and velocity vectors are reported

in Figs. 14(a)–14(c) for the semidilute cases (φ = 5%–20%) in the wider duct with h/a = 18 and
bulk Reynolds number of Reb = 550. The maximum intensity of these secondary flows is still low,
about 0.2% of the bulk velocity Ub (approximately 1/10 of that found in turbulent duct flows).
The maximum of the secondary cross-stream velocity is similar for φ = 5% and 10%, while it
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FIG. 14. Contour plots of the crossflow velocity magnitude
√

V 2
f + W 2

f and velocity vectors for Reb = 550,
Rep = 1.7, h/a = 18, and (a) φ = 5%, (b) φ = 10%, and (c) φ = 20%.

substantially decreases for φ = 20%. The mean of the crossflow velocity magnitude
√

V 2
f + W 2

f

initially increases and then decreases as the volume fraction φ increases as shown in Fig. 15, where
we report the mean values of

√
V 2

f + W 2
f for each φ. All results are normalized by the mean value

obtained for φ = 0.4%. It is also interesting to note that, in semidilute suspensions, when particles
accumulate at the corners, the secondary flow patterns are similar to those found in turbulent flows.
Particle-induced stresses act in a similar fashion to Reynolds stresses and consequently lead to
similar secondary flows. These secondary flows, although weak, convect the mean velocity from
regions of large shear along the walls toward regions of low shear. This convection occurs along
the corner bisectors, resulting in a lower mean streamwise velocity at the walls (and particularly
at the wall centers) [43]. This effect can also be seen in the contours of mean particle streamwise
velocity Up (which closely resemble the contours of the mean fluid streamwise velocity) (see
Fig. 5). This behavior is attenuated as the solid volume fraction increases and the secondary flows
are progressively damped.

FIG. 15. Mean value of
√

V 2
f + W 2

f normalized by the mean value of (
√

V 2
f + W 2

f )0.4% for semidilute
suspensions with φ = 5%, 10%, and 20%. Also shown is the result from a simulation with φ = 5%, in which
particles are constrained not to rotate. The dashed line is for visualization.
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FIG. 16. Contour plots of the crossflow velocity magnitude
√

V 2
f + W 2

f and velocity vectors for semidilute
suspensions at constant relative size h/a = 9 and different bulk and particle Reynolds numbers: (a) Reb = 550,
φ = 5%, and Rep = 6.8; (b) Reb = 144, φ = 5%, and Rep = 1.7; and (c) Reb = 144, φ = 20%, and Rep = 1.7.

Figures 16(a)–16(c) show the crossflow motions for the semidilute cases (φ = 5% and
20%) presented in Sec. III C at constant h/a = 9 and different bulk Reynolds numbers Reb

[see Figs. 12(a)–12(c)]. Comparing Figs. 16 and 14(a), it can be clearly seen that the secondary
motion is stronger for bigger particles, i.e., h/a = 9, at the same volume fraction φ = 5% and bulk
Reynolds number Reb = 550. Figure 16(b) shows the presence of crossflow motion for φ = 5% at
lower bulk Reynolds number Reb = 144. A significant reduction in the secondary flow intensity can
be seen as the bulk Reynolds number Reb decreases from 550 to 144 at the same h/a. These results
are in agreement with our previous observation about the role of particle inertia and the local particle
concentration on the intensity of the secondary motion in dilute suspensions. Finally, Fig. 16(c)
shows the secondary motion pattern for φ = 20% at Reb = 144 and h/a = 9. Interestingly, while
particles accumulate mostly at the duct center [Fig. 12(c)], the counterrotating vortices point toward
the duct corners along the bisector and their intensity is higher than for φ = 5% [see Fig. 16(b)].
This result is in contrast to what is observed for h/a = 18 and Reb = 550, where the secondary flow
intensity decreases for φ = 20%. Hence, the threshold φ above which the maximum secondary flow
intensity decreases changes with both Reb and h/a. However, it must be noted that for φ = 20% the
mean value of the secondary flow intensity in the cross section is smaller than for φ = 5%, as also
found for Reb = 550 and h/a = 18 (not shown here).

To gain further insight into the role of particle angular velocities on the intensity of secondary
flows, we performed an additional simulation at Reb = 550, h/a = 18, and φ = 5% in which
we artificially impose zero particle rotation (i.e., constant null angular velocities) while allowing
translations. The mean value of the crossflow velocity magnitude reduces significantly (∼55%) with
respect to the reference case at φ = 5% (see Fig. 15). This confirms that the intensity of secondary
motions strongly depends on the particle angular velocities.

At finite particle Reynolds number Rep, when inertia plays an important role, the flow field
around a particle is altered and the fore-aft symmetry of the streamlines is lost [44]. Amini et al. [45]
investigated the flow field around a translating and rotating spherical particle in Poiseuille flow at
finite particle Reynolds number. These authors showed the existence of a pair of recirculating zones
perpendicular to the primary flow in the vicinity of the particle. Here we investigate the flow field
around an individual particle moving through a duct at its equilibrium position at Reb = 100 and
h/a = 10. We first consider a particle free to move and rotate and then artificially set the spanwise
particle angular velocity to zero, ωz = 0, to quantify the effect of particle rotation on the intensity
of the recirculating flows (calculated as in Ref. [45]). As shown in Fig. 17, the intensity of the
flow around the particle is directly related to the particle angular velocity and drastically decreases
by setting ωz = 0. Moreover, the particle focusing position changes in the absence of rotation and
moves slightly toward the duct core. The presence of this local secondary flow near the particle is
also reported by Shao et al. [46] at bulk Reynolds number Reb = 1000 in pipe flow.
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FIG. 17. Contour plot of the crossflow velocity magnitude
√

V 2
f + W 2

f and velocity vectors around a
particle: (a) the particle moves and rotates freely through the duct and (b) the particle moves downstream with
spanwise angular velocity set to zero. The red circle shows the position of the particle center.

IV. CONCLUSION

We presented results from direct numerical simulations of laminar duct flow of suspensions
of finite-size neutrally buoyant spherical particles at different solid volume fractions. We used an
immersed boundary method for the fluid-solid interactions with lubrication and collision models for
the short-range particle-particle (particle-wall) interactions. The stress immersed boundary method
was applied to generate the duct walls. Initially we investigated excluded-volume effects in dilute and
semidilute suspensions with φ = 0.4%, 5%, 10%, and 20%, for duct to particle size ratio h/a = 18
and bulk Reynolds number Reb = 550. We showed that for solid volume fractions φ = 5% and
10%, particles mostly accumulate at the duct corners and particle depletion can be seen at the core
of the duct. For φ = 20%, particles distribute uniformly over the whole domain with slightly higher
concentration at the diagonal of the the duct. For all φ, particles reside longer at the corners than at
the wall centers. An effective viscosity increase leads to a blunted streamwise fluid velocity profile
at the duct center at a solid volume fraction φ = 20%. Nonetheless, the Eilers fit was able to predict
the increase of dissipation in the duct as inertial effects (at the particle scale) are small, Rep = 1.7.

We then investigated the interactions and role of Reb, Rep, and h/a on the behavior of dilute
suspensions with φ = 0.4%. Initially, we kept the duct to particle size ratio constant at h/a = 9
and increased the bulk and particle Reynolds numbers. For Reb = 144 particles focused at the walls
centers. Increasing Reb, particles initially formed a ring close to the walls and finally, for Reb = 550,
accumulated preferentially at the duct corners and partially closer to the wall centers, at a distance
of 0.6h away from the core. The particle equilibrium position at the wall center moved toward the
duct core when Reb was increased from 144 to 550. The same behavior of the evolution of the
particle local volume fraction was observed at constant particle Reynolds number Rep = 1.7 when
increasing the bulk Reynolds number Reb and duct to particle size ratio h/a. Finally, for constant bulk
Reynolds number Reb = 550 and different particle Reynolds numbers Rep and duct to particle size
ratios h/a, we found a high concentration around the duct corners and less at the wall centers. The
same behavior was observed for φ = 5%, h/a = 9, and the same bulk Reynolds number Reb = 550.
In the same manner, for lower bulk Reynolds number Reb = 144, h/a = 9, and φ = 5%, we would
have expected particles to accumulate at the walls centers (since for φ = 0.4% the focusing positions
are located there). Instead, we observed accumulation of particles around the corners in addition
to the particle equilibrium position at the wall centers. We also showed that at high solid volume
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fraction φ = 20%, h/a = 9, and Reb = 144, particle concentrate mostly at the duct core region and
no inertial migration of particles was observed. Therefore, for the range of h/a and Reb investigated
here, we concluded that in dilute suspensions the particle focusing position is mainly governed by
the bulk Reynolds number. In addition, excluded-volume effects seem to be another key parameter in
determining the particle concentration distribution in semidilute suspensions (φ = 5%–20%) at low
bulk Reynolds number. Thus, trivially extending results for single particles to semidilute suspensions
may lead to wrong predictions.

Secondary flows are generated in the duct due to the presence of particles. At low volume fractions
φ = 0.4%, secondary flows appear around the particle focusing positions and the corresponding
vorticity strength is dominated by the local particle concentration. We showed that for Reb = 550
and h/a = 18, the mean secondary flow intensity initially increases with the solid volume fraction
from φ = 0.4% to φ = 5%, while it decreases for φ > 5%. In the semidilute regime (φ � 5%), the
secondary flows appear as a pair of counterrotating vortices directed toward the corners, along the
bisectors. Since they resemble closely the secondary flows found in turbulent duct flows, particle-
induced stresses generate secondary flows in a similar fashion to Reynolds stresses. Their intensity
is however 1/10 of that found in turbulent duct flows. We saw that the mean intensity of these
secondary flows decreases above φ = 5%. Indeed, when many particles are injected in the duct, the
cross-stream motions generated by a particle are quickly disrupted by its neighbors.

Finally, we studied the relation between particle rotation and secondary flows. We constrained
a single particle to translate without rotation and we observed that the intensity of the secondary
vortices substantially decreases. We also noticed that the focusing position (initially at the wall
center) moves vertically closer to the duct core. We also inhibited particle rotation in the semidilute
suspension with φ = 5%, Reb = 550, and h/a = 18 and found that the mean intensity of the
secondary flows is reduced by 55%. Therefore, these secondary flows strongly depend on particle
rotation.

In the future, it will be interesting to study turbulent duct flows laden with finite-size spheres and
observe the modification of secondary flows, particle statistics, and turbulence modulation.
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APPENDIX: TEMPORAL EVOLUTION OF THE PARTICLE CONCENTRATION

In this Appendix we briefly discuss the effect of Reb, Rep, and φ on the temporal evolution of
the cases under the investigation. In Table II we report the dimensionless time T ∗ needed for the
simulations to reach their final steady state in terms of particle concentration distribution 	(y,z).
We define this as the time needed by the local particle concentration around the focusing points to
reach the final mean value. Here time is nondimensionalized by viscous units [(2a)2/ν].

For constant h/a = 9 and φ = 0.4%, the results show that the particles reach the equilibrium
positions faster by increasing the bulk Reynolds number Reb from 144 to 550. For constant bulk
Reynolds number Reb = 550 and increasing h/a, we notice that it takes longer for the particles to
evolve and reach their equilibrium positions. Indeed, this is due to the fact that particle inertia, i.e.,
Rep, is less significant at higher h/a. Overall, we see that for the dilute suspensions φ = 0.4%, the
particle evolution time T ∗ is reduced by increasing the particle Reynolds number Rep.

Finally, for semidilute cases, we show that T ∗ decreases by increasing the solid volume fraction
φ from 5% to 20%. At higher concentrations there is progressively less space available for particle
migrations and the final average particle distribution is reached faster.
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TABLE II. Time to reach the final steady-state particle distribution for the different cases considered.

φ (%) Reb Rep h/a T ∗

0.4 144 1.7 9 56
0.4 275 3.4 9 45
0.4 550 6.8 9 34
0.4 300 1.7 13 64
0.4 550 3.2 13 43
0.4 550 1.7 18 79
5 144 1.7 9 100
20 144 1.7 9 44
5 550 6.8 9 51
5 550 1.7 18 110
10 550 1.7 18 80
20 550 1.7 18 49
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