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Transition to turbulence occurring in a flat-plate boundary-layer flow subjected to high levels of free-
stream turbulence is considered. This scenario, denoted bypass transition, is characterised by the non-
modal growth of streamwise elongated disturbances. These so-called streaks are regions of positive
and negative streamwise velocity alternating in the spanwise direction inside the boundary layer. When
they reach large enough amplitudes, breakdown into turbulent spots occurs via their secondary instabil-
ity. In this work, the bypass-transition process is simulated using direct numerical simulations (DNS) and
large-eddy simulations (LES). The ADM-RT subgrid-scale model turned out to be particularly suited for
transitional flows after a thorough validation.
Linear feedback control is applied in order to reduce the perturbation energy and consequently delay
transition. This case represents therefore an extension of the linear approach (Chevalier, M., Hoepffner,
J., Åkervik, E., Henningson, D.S., 2007a. Linear feedback control and estimation applied to instabilities
in spatially developing boundary layers. J. Fluid Mech. 588, 163–187, 167–187.) to flows characterised
by strong nonlinearities. Control is applied by blowing and suction at the wall and it is both based on
the full knowledge of the instantaneous velocity field (i.e. full information control) and on the velocity
field estimated from wall measurements.
The results show that the control is able to delay the growth of the streaks in the region where it is active,
which implies a delay of the whole transition process. The flow field can be estimated from wall measure-
ments alone: The structures occurring in the ‘‘real” flow are reproduced correctly in the region where the
measurements are taken. Downstream of this region the estimated field gradually diverges from the
‘‘real” flow, revealing the importance of the continuous excitation of the boundary layer by the external
free-stream turbulence. Control based on estimation, termed compensator, is therefore less effective than
full information control.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

The aim of this study is to perform numerical simulations to ap-
ply linear feedback control to transitional boundary-layer flows in
the presence of free-stream turbulence where bypass transition oc-
curs. An efficient pseudo-spectral numerical discretization is used
and tools from modern control theory are incorporated into the
controller design. Both large-eddy and direct numerical simula-
tions are performed for evaluating the control efficiency in a highly
nonlinear configuration.

1.1. Flow control

Control of wall-bounded transitional and turbulent flows is the
object of the present investigation owing to the high potential ben-
ll rights reserved.

se (A. Monokrousos).
efits. Any reduction of the skin friction, for example, implies rele-
vant savings of the operational cost of commercial aircrafts and
cargo ships. In particular, the bypass transition scenario considered
here is relevant in turbomachinery where high levels of free-
stream turbulence are present.

Direct numerical simulations (DNS) have provided physical in-
sight into the phenomena of transitional and turbulent flows, de-
spite the fact that they are limited to simple and moderate
Reynolds-number flows (Moin and Mahesh, 1998). The same tools
are now adopted to investigate the feasibility and performance of
feedback control algorithms on a complex transitional flow case.

A linear model-based feedback control approach, that minimises
an objective function which measures the perturbation energy, is
formulated where the Orr–Sommerfeld and Squire equations model
the flow dynamics. The latter equations describe the linear evolu-
tion of perturbations evolving in a parallel base flow. The require-
ment implicit in this formulation is the need of complete state
information. However, the control problem can be combined with
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a state estimator to relax this requirement. The information prob-
lem is a limiting factor in the success of a control scheme, since,
as a first step, it affects the whole procedure. The so-called Kalman
and the extended Kalman filter have been implemented in order to
reconstruct the flow in an optimal manner by only considering wall
measurements (Kailath and Hassibi, 2000).

Flow control has been the object of comprehensive investiga-
tion the past years and recently, much effort has been put in the
combination of computational fluid dynamics and control theory.
While early attempts of flow control were based on physical intu-
ition or on a trial-and-error basis, more systematic approaches are
now followed. General reviews on flow control can be found in
Moin and Bewley (1994), Joslin et al. (1996), Bewley (2001) and
Kim and Bewley (2007) to mention a few.

Different control strategies have been attempted over the years
for transitional flows, for example, wave cancellation where Tollm-
ien–Schlichting waves are damped by applying anti-phase signals.
Early reviews on the subject can be found in Thomas (1990) and
Metcalfe (1994). Wave-cancellation methods for control were ap-
plied already in the 1980s both experimentally (Thomas, 1983)
and numerically, see e.g. Laurien and Kleiser (1989). A more ‘dras-
tic’ control strategy, also known as laminar flow control, consists in
stabilising the flow by applying strong suction on the boundary
layer thus modifying the mean flow profile. A review on this meth-
od can be found in Joslin (1998). Nonlinear control methods have
been studied as well and an overview of these methods is given
by Joslin et al. (1997). In many cases, nonlinear control is applica-
ble only within the conditions and parameter range that it is de-
signed for. An example of a robust controller that addresses that
problem is described by Bewley et al. (2000). Other examples of
application of nonlinear controllers are Berggren (1998), Bewley
et al. (2001) and Collis et al. (2000).

The use of linear feedback controllers has been investigated
more recently. This was motivated by the understanding on how
the energy growth of fluctuations in a turbulent flow is related to
linear mechanisms. In particular, Farrell and Ioannou (1996), Hen-
ningson (1996) and Kim and Lim (2000) showed that linear mech-
anisms are important to sustain turbulence and thus linear
controllers can be applied for turbulence control. One early work
on linear feedback control schemes is Joshi et al. (1995). Results
from the application of linear optimal control theory also confirm
the importance of linear mechanisms in the nonlinear flows under
consideration (Högberg and Henningson, 2002). Relaminarisation
of turbulent channel flow was achieved by Högberg et al. (2003a)
with this method and the controller and estimator were combined
by Högberg et al. (2003b). The combined control and estimation
problem is also known as a ‘‘compensator”.

Recent studies from our group on the application of model-
based linear feedback control have shown the importance of phys-
ically relevant stochastic models for the estimation problem which
turns out to be crucial for fast convergence (Hoepffner et al., 2005;
Chevalier et al., 2006). Such stochastic noise needs to describe
Fig. 1. Visualisation of the streamwise disturbance velocity component (dark colour i
development under the influence of free-stream turbulence. Streamwise extent Rex ¼ ½32
full length of a typical turbine blade.
accurately enough the unmodelled dynamics, like uncertainties
and nonlinearities. Based on these models the estimator is shown
to work for both infinitesimal as well as finite amplitude perturba-
tions in numerical simulations. The compensator has been applied
to spatially developing boundary layers and shown to reduce the
perturbation energy of both modal and non-modal disturbances
(Chevalier et al., 2007a).

1.2. Bypass transition

Laminar–turbulent transition in a zero-pressure-gradient
boundary layer subject to high levels of free-stream turbulence is
considered. Such a scenario is usually referred to as bypass since
the transition occurs bypassing the exponential growth of the
Tollmien–Schlichting waves. It has indeed been shown both exper-
imentally and theoretically that the asymptotic solutions given by
the classical stability analysis are not always adequate to predict
transition in wall-bounded shear flows. In some cases, significant
energy growth can be observed even when the flow is stable (Sch-
mid and Henningson, 2001). This can be explained by the non-nor-
mality of the linearised operator describing the flow dynamics and
the associated non-orthogonal set of eigenmodes (Reddy and Hen-
ningson, 1993). If the state of the system has a strong projection on
some of these highly non-orthogonal eigenmodes the energy of the
flow can experience a significant transient growth. In the case of
boundary layers, the upstream perturbations which undergo the
largest possible growth consist of streamwise counter-rotating
vortex pairs, see Andersson et al., 1999. These vortices lift low-
momentum fluid from the wall and push high-momentum fluid
from the outer parts towards the plate, thus creating elongated re-
gions of alternating accelerated and decelerated fluid, called
streaks. This process of vortex tilting is also known as lift-up effect
(Landahl, 1980).

After the primary energy growth due to the lift-up effect, the
flow is in a more complicated laminar state where strong nonlinear
interactions can come into play, leading to transition to turbulence.
As the streaks grow in strength, they become susceptible to high-
frequency secondary instabilities due to the presence of both
wall-normal and spanwise inflectional velocity profiles (Brandt
and Henningson, 2002; Brandt, 2007). These secondary instabilities
manifest themselves in symmetric and antisymmetric streak oscil-
lations, which are precursors to the formation of localised regions
of chaotic swirly motion, the so-called turbulent spots (Brandt
et al., 2004; Mans et al., 2007). The leading edge of a spot travels
at about the free-stream velocity U1 while the trailing edge at half
this speed. The spots become therefore more elongated and even-
tually merge: a fully-developed turbulent boundary layer is ob-
served. A visualisation of the transition under free-stream
turbulence from the simulations presented here is provided in
Fig. 1. Streamwise streaks can be seen to form close to the compu-
tational inlet, followed by streaks oscillations and turbulent spots.
The flow is turbulent in the second half of the domain.
s low velocity, light high velocity) in a plane close to the wall showing the flow
;000; 570;000�, true aspect ratio. The streamwise extent corresponds to almost the
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The bypass transition scenario is observed when the boundary
layer is subject to free-stream turbulence levels higher than 0.5–
1% (Matsubara and Alfredsson, 2001). As described above, the flow
reproduces, though on a larger scale, the near-wall dynamics of
wall-bounded turbulence, see e.g. Robinson, 1991, and it is there-
fore an ideal test configuration in view of possible control of turbu-
lent flows. This work represents therefore a natural extensions of
the flow control studies mentioned above (Hoepffner et al., 2005;
Chevalier et al., 2007a) to flows characterised by strong nonlinear
interactions. An experimental demonstration of reactive control
of the same scenario was recently presented by Lundell (2007).
In this study, an ad hoc threshold-and-delay control algorithm is
evaluated and shown to inhibit the growth of the streamwise
velocity fluctuations for a distance downstream of the actuator
position.

The paper is organised as follows. In Section 2, the control ap-
proach is presented while the numerical method, the large-eddy
simulation and the free-stream turbulence generation are intro-
duced in Section 3. The results are presented in Section 4. First,
the focus will be on the validation of the LES while in the second
part of Section 4 linear feedback control applied to bypass transi-
tion is considered. The paper ends with a summary of the main
conclusions.
2. Feedback control

Linear analysis is commonly used to understand the energy
growth mechanisms of perturbations in shear flows (Schmid and
Henningson, 2001). However, it can also be used as a tool to design
controllers that actively reduce the perturbation level and prevent
or delay transition. The procedure adopted here is linear feedback
control based on noisy measurements within the Linear Quadratic
Gaussian (LQG) framework where a Linear Quadratic Regulator
(LQR) is combined with a Kalman filter (Friedland, 1986).

Within this framework a set of linear equations is used as a
model for the physical process to be controlled along with a qua-
dratic objective function. The system is assumed to be subject to
Gaussian random excitations which represent unmodelled dynam-
ics, e.g. nonlinearities. The control requires knowledge of the full
state of the system. Therefore, a state estimator, also called Kalman
filter, is used to reconstruct the flow field from noisy measure-
ments taken at the wall. To model uncertainties in the measure-
ments, noise is assumed to contaminate the output signals. The
control and estimation problem can be considered and solved sep-
arately and when combined it can be proven that this is the opti-
mal solution (Skogestad and Postlethwaite, 2005). This is known
as the separation principle. Control can be applied both in the real
and in the estimated flow. The combination of an estimator and a
full information controller is called compensator.

The design of a controller aims at finding the optimal mapping
between the various inputs and outputs of the system in such a
way that a certain objective is obtained. In this case, the system
is the boundary layer flow, inputs are the external disturbances
from the free stream (unknown) and the blowing/suction at the
wall (known) while output is the wall measurements (known).
The objective here is to reduce the kinetic energy of the perturba-
tions in the flow.
2.1. Control

In this section, the design process of the full information con-
troller is presented. Therefore, it is assumed that the exact state
of the system is known.

To model the flow, the linearised Navier–Stokes equations are
employed:
ou
ot
þ Uruþ urU ¼ �rpþ Re�1r2u; ð1aÞ

ru ¼ 0; ð1bÞ

where u ¼ u v w½ �T. The streamwise, wall-normal and spanwise
directions are denoted x, y and z, respectively, with the correspond-
ing velocity components u, v and w and wavenumbers kx, ky and kz.

In Eqs. (1a), we consider small perturbations around the base
flow U ¼ U V W½ �T. To reduce the order of the system a parallel
base flow is assumed U ¼ UðyÞ 0 0½ �T and under this assump-
tion Fourier transform can be applied along the wall-parallel direc-
tions. Thus, we can treat each wavenumber pair individually and
instead of solving one problem with a large number of degrees of
freedom, we solve many smaller systems. For the channel flow this
assumption is exact, whereas for boundary layers, it is a good
approximation due to their slow viscous growth.

To eliminate the pressure, the wall-normal velocity v and the
wall-normal vorticity g formulation is adopted where the state is
ðvgÞT. The equations that describe the dynamics are the Orr–Som-
merfeld/Squire (OSS) system (see Schmid and Henningson, 2001),

o

ot
v

g

� �
¼

LOS 0
LC LSQ

� �
v

g

� �
; ð2Þ

where

LOS ¼ ½D��1 �ikxUDþ ikxD2U þ 1
Re

D

� �
;

LC ¼ �ikzDU;

LSQ ¼ �ikxU þ 1
Re

D;

ð3Þ

where U is the mean-flow profile, the similarity Blasius solution, D
is the Laplacian operator D ¼ D2 � k2 with k2 ¼ k2

x þ k2
z and D is the

wall-normal derivative. The Reynolds number Re is defined by using
the free-stream velocity U1 and the local boundary-layer displace-
ment thickness d�,

Re ¼ U1d�

m
:

The control is applied through non-homogeneous boundary
conditions as a model for localised blowing and suction at the wall.
To adopt the same formulation as in classical control theory, the
control signal is expressed in the equations as a volume forcing
by a lifting procedure (Högberg and Henningson, 2002). To account
for non-modelled dynamics, such as non-parallel effects and non-
linearities, external excitation is added such that two extra forcing
terms appear in the equations

oq

ot
¼AqþB1w1 þB2w; ð4Þ

where q ¼ v g v½ �T, B1w1 is the forcing due to external excita-
tions w1 of stochastic nature and B2w is the forcing from the control
signal w and v is the velocity at the wall. We thus have ov=ot ¼ w.
The operator A governs the dynamics of the augmented system
(Chevalier et al., 2007a). Note that the control signal is the time
derivative of the blowing and suction at the wall. In the case of full
state-feedback control, the signal is calculated directly from the
state q so B2w ¼ B2Kq where K is the control gain.

The aim is to calculate the control gain K so that the kinetic en-
ergy of the mean-flow disturbances is minimised while at the same
time the control effort is kept at low levels. To this end the follow-
ing objective function is defined:

F ¼
Z T

0
ðq�Qqþ w�RwÞdt; ð5Þ

where ð�Þ� denotes the complex conjugate. The term q�Qq corre-
sponds to the kinetic energy of the perturbations for the specific
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wavenumber pair under consideration where Q is the energy norm
operator. The second term in Eq. (5) represents the control effort,
R ¼ l2, where l is the actuation penalty.

As a next step, we discretise the problem so that it can be solved
numerically. The control problem is now redefined as a set of
one-dimensional partial differential equations, one for each wave-
number pair. Along the wall-normal direction y, Chebyshev poly-
nomials are used. In the case of unbounded domains, the
corresponding wall-parallel wavenumbers are a continuous set
but in a bounded domain this set becomes discrete and the corre-
sponding Fourier representation transforms from integrals into
series. The series will be truncated to a wavenumber that corre-
sponds to the resolution of the numerical simulation.

If q is the discrete state vector the energy norm operator Q is de-
fined in such a way that the quantity qHQq approaches the kinetic
energy of the system as the resolution increases. qH is the Hermi-
tian transpose of q.

The discretised system has a similar form as the continuous one

oq
ot
¼ Aqþ B1w1 þ B2/; ð6Þ

where the quantities q, A, B1, w1, B2 and / are the equivalent dis-
crete counterparts of q, A, B1, w1, B2 and w.

We use the Lagrange multipliers to find the optimal solution to
our problem. We define the Lagrangian

L ¼
Z T

0

1
2
ðqHQqþ /HR/Þ � p

oq
ot
� Aq� B2/

� �� �
dt; ð7Þ

where p is the Lagrange multiplier and R is the discrete versions of
R. Here, we have dropped the stochastic term B1w1 since we will
use the deterministic approach in deriving the full information con-
trol. The variation of the Lagrangian functional can be written as

dL ¼ oL

oq

� �
dqþ oL

op

� �
dpþ oL

o/

� �
d/: ð8Þ

Combining Eqs. (7) and (8) and assuming dL ¼ 0 leads to the
set of equations

oL

oq
¼ op

ot
þ AHpþ Qq ¼ 0; ð9aÞ

oL

op
¼ � oq

ot
þ Aqþ B2/ ¼ 0; ð9bÞ

oL

o/
¼ R/þ BH

2 p ¼ 0: ð9cÞ

A linear time dependent relation is assumed between the for-
ward solution q and the Lagrange multiplier p ¼ Xq. Inserting this
assumption into Eq. (9a) and adding Eqs. (9a) and (9c) we arrive
at the differential Riccati equation,

oX
ot
þ AHX þ XA� XB2R�1BH

2 X þ Q ¼ 0: ð10Þ

The optimal K is then given through the non-negative Hermi-
tian solution X of Eq. (10). A full derivation of the above equation
is given by Lewis and Syrmos (1995). A simplified version arises
if an infinite time horizon is assumed, yielding the steady-state
Riccati equation,

AHX þ XA� XB2R�1BH
2 X þ Q ¼ 0 ð11Þ

with the control gain computed from

K ¼ �R�1BHQX: ð12Þ

The Riccati equation is solved for each streamwise and span-
wise wavenumber pair ðkx; kzÞ separately and an inverse Fourier
transform can be applied to visualise the control gains in physical
space. It is shown by Högberg and Henningson (2002) that the con-
trol gains, relating the velocity perturbations to the control signal,
are spatially localised: The control is thus dependent only on the
perturbations in a limited region located upstream of the actuator.

2.2. Estimation

The duty of the estimator is to approximate the full three-
dimensional velocity field from wall measurements in real time.
Measurements are taken from the wall and the sensors responsible
for the measurements include noise. The estimator can be seen as a
filter operator where the equations governing the flow are used for
the filtering process. Input is the measurements from the real flow
and output the estimated flow. This is often called Kalman filter.

In the estimation problem, two flow fields are considered: The
‘real’ flow and the estimated flow (see Fig. 2). All the quantities that
correspond to the estimated flow are marked with a hat ð̂�Þ.

The estimated field is assumed to fulfill the following equation:

oq̂
ot
¼ Aq̂� Lðr � r̂Þ þ B2/; ð13Þ

where L is the measurement gain and r indicates the measurements.
The latter are extracted through the measurement operator C and
since the measurements process introduces noise, we write
r ¼ Cqþ g and r̂ ¼ Cq̂, where g is the measurement noise. The gov-
erning equation for the estimation error can be written as

o~q
ot
¼ ðAþ LCÞ~qþ B1w1 þ Lg ¼ Ae~qþ B1w1 þ Lg: ð14Þ

The aim of the estimation problem is to minimise the difference
between the real and the estimated flow, namely the estimation
error ~q ¼ q� q̂. From the equations above, the mathematical simi-
larity between the feedback control and the estimation problem is
evident. We are looking for the optimal L for which the objective
function F ¼ ~rH~r is minimised. However, in this case we have to
use the stochastic approach instead of the deterministic, since
the equation is forced by stochastic inputs.

We assume that the external disturbances w1 and g are zero-
mean stationary white noise Gaussian processes (Chevalier et al.,
2007a). Since the system is forced by these stochastic processes,
expected values of the relevant flow quantities are examined. In
particular, for the estimation problem the covariance of the esti-
mation error P is considered and, as for the full information control,
a steady state is assumed. The covariance of the error satisfies the
algebraic Lyapunov equation,

AeP þ PAH
e þ B1WBH

1 þ LGLH ¼ 0; ð15Þ

where W and G are the covariances of w1 and g, respectively. This
along with the objective function F form a new Lagrangian M,
where the traces of the covariance matrices are involved. The trace
of covariance matrices correspond to rms (root-mean-square) val-
ues of the quantity under consideration (Hoepffner et al., 2005),

M ¼ traceðPQÞ þ trace½KðAeP þ PAH
e þ LGLH þ B1WBH

1 Þ�; ð16Þ

where K is the Lagrange multiplier. The first term in Eq. (16) is the
objective function to be minimised and the second is the constraint
coming from the Lyapunov equation satisfied by the covariance er-
ror. At the stationary point of M

oM

oP
¼ Q þ ðAþ LCÞHKþ KHðAþ LCÞ ¼ 0; ð17aÞ

oM

oK
¼ ðAþ LCÞP þ PðAþ LCÞH þ B1WBH

1 þ LGLH ¼ 0; ð17bÞ
oM

oL
¼ 2KðPCH þ LGÞ ¼ 0: ð17cÞ

The solution to this optimisation problem is given by the
numerical solution P of a Riccati equation similar to that arising
in the feedback control problem,



Fig. 2. A schematic drawing of the compensator. Wall measurements are taken in the real flow and compared to those from the estimator. The control signal is computed
based on the reconstructed velocity field and applied in the real flow.
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AP þ PAH � PCHG�1CP þ B1WBH
1 ¼ 0 ð18Þ

with the estimation feedback gain given by L ¼ �PCHG�1. For a sim-
ilar derivation, see also Bagheri et al., in press.

In the computations presented, three quantities are measured
at the wall, namely the streamwise and spanwise skin friction
and the pressure:

sx ¼ sxyjwall ¼
1
Re

ou
oy

����
wall

; ð19aÞ

sz ¼ szyjwall ¼
1
Re

ow
oy

����
wall

; ð19bÞ

pwall ¼ D�1
xz

1
Re

o3v
oy3

 !�����
wall

; ð19cÞ

where D�1
xz denotes the formal inverse of the wall-parallel Laplacian.

The Kalman filter presented here is the optimal estimation in a
linear setting. To apply the above theory in a highly nonlinear case,
one may use the full (nonlinear) equations when solving the esti-
mation problem (13) while the gains used are computed with
the linear theory. This is the extended Kalman filter and it is ex-
pected to be more accurate than the standard Kalman filter.

2.3. Compensator

The compensator is the combination of full information control
and state estimation. The measurements taken from the real flow
are communicated to the estimator where they are used to com-
pute the forcing needed to reproduce the perturbations present
in the real flow. The actuation signal is computed from the esti-
mated flow and it is applied to both the estimated and the real
flow. Although computed for linear systems, the control and esti-
mation are applied to the full nonlinear Navier–Stokes equations
(Högberg et al., 2003c).

The compensator problem as it was stated here accounts only
for parallel flows as there is no explicit streamwise dependence
in the OSS operator. Further, it assumes that measurements are ta-
ken and actuation is applied continuously over the whole domain.
This theory is applied to a spatial boundary layer and both mea-
surements and actuation are available only on a part of the domain
(see Fig. 2). Two regions need to be specified, one for the control
and one for the estimator. For both regions, the local laminar veloc-
ity profile is used as a base flow in the OSS operator. The flow is as-
sumed to be locally parallel around these locations in order to
solve the control and estimation problems. Once the control and
estimation gains are calculated, the actuation forcing is limited
to the actuation region by a smooth transfer function in physical
space with two smooth step functions around the chosen locations
(Chevalier et al., 2007a).

3. Simulation approach

3.1. Numerical method

For the present computations, the three-dimensional, time
dependent, incompressible Navier–Stokes equations are solved
using a spectral method (Chevalier et al., 2007b). The algorithm
uses Fourier representation in the streamwise and spanwise direc-
tions and Chebyshev polynomials in the wall-normal direction, to-
gether with a pseudo-spectral treatment of the nonlinear terms.
Dealiasing using the 3/2-rule is employed in the wall-parallel (Fou-
rier) directions, whereas a slightly increased resolution is used in
the wall-normal direction to reduce aliasing errors. The time is ad-
vanced with a four-step low-storage third-order Runge–Kutta
method for the nonlinear terms and all the forcing contributions,
and a second-order Crank–Nicolson scheme for the linear terms
and boundary conditions. To correctly account for the downstream
boundary-layer growth the spatial simulation approach is neces-
sary. This requirement is combined with the periodic streamwise
boundary condition by the implementation of a fringe region
(Nordström et al., 1999; Lundbladh et al., 1999). In this region,
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positioned at the downstream end of the computational box occu-
pying approximately 10% of the flow domain, a volume forcing is
smoothly raised from zero to force the flow from the outflow to
the desired inflow condition. The inflow consists of the laminar
Blasius boundary layer with superimposed spatially and tempo-
rally varying disturbances, i.e. the free-stream turbulence in the
present case.

3.1.1. MPI implementation and performance
The numerical code described above is parallelised to run on

distributed-memory architectures (i.e. clusters) using the Message
Passing Interface (MPI). As detailed in Section 2.3, the simulation of
the estimator and compensator actually requires the time-
advancement of two flow fields, i.e. the ‘‘real” flow field and the
estimated field. These two fields are coupled by the measurements
and the control actuation (in case of compensator), and feature dif-
ferent inflow conditions and may have different spatial resolution
and domain size. In the present implementation this is achieved by
having two simulations running simultaneously on a subset of the
available processors; the two simulations have two different exec-
utables, compiled with different options but running within the
same MPI environment. Information exchange is then accom-
plished using distinct messages sent between the two codes. De-
tails on the implementation can be found in Seyed (2007).

To give an estimate of the computational cost, the details of a
typical simulation are now outlined. The ‘‘real” flow is simulated
via direct numerical simulation (DNS) discretised on a domain
with approximately 20� 106 grid points. The corresponding esti-
mator simulation can be run as a large-eddy simulation (LES)
(see Section 3.2 below) with a lower resolution of approximately
2:5� 106 grid points. In this example, the DNS is run on 24 proces-
sors, and the estimator LES on 6 processors, i.e. employing a total of
30 processors. The necessary runtime in order to obtain fully con-
verged statistics (simulated time Dt ¼ 4000) is about 300 h on 30
processors corresponding to 9000 CPU hours.

3.2. Subgrid scale modelling

The fine grids (and the corresponding small time steps) neces-
sary in the DNS of turbulent flows at moderate to high Reynolds
numbers give rise to very high computational costs. Therefore,
other approaches based on large-eddy simulations (LES) have been
developed to be able to simulate transitional and turbulent flows in
large-enough domains and at high Re. In LES the mesh size is chosen
considerably larger than for DNS. This implies that the structures
present in the flow are only resolved above a certain size corre-
sponding to the cutoff wavenumber xc;grid. This length scale is cho-
sen to be small enough to capture well the structures that are
involved in the physical phenomena under investigation. On the
other hand, the scales below the cutoff scale are not resolved on
the numerical grid, but their influence due to nonlinearity onto
the resolved scales must be modelled by a subgrid-scale (SGS) mod-
el. For flows with solid walls, the thin boundary layers adjacent to
the walls need to be resolved in both DNS and LES for accurate re-
sults. Therefore, even LES requires a substantial computational ef-
fort, albeit lower than DNS: A typical resolution for an LES is
approximately 1–20% of a corresponding fully-resolved DNS.

Formally, the solution in an LES calculation is obtained by
applying a generic low-pass filter GP with a certain filter width D
suitable for the problem under consideration,

�uiðxÞ :¼ GP � ui :¼
Z
V

GPðx; x0;DÞuiðx0Þdx0; ð20Þ

where �uiðxÞ denotes the filtered quantity and V the computational
domain. GP is referred to as the primary LES filter. The governing
momentum equations for the filtered quantities become
o�ui

ot
þ o�ui�uj

oxj
¼ � o�p

oxi
� osij

oxj
þ 1

Re
o2�ui

oxjoxj
ð21Þ

together with filtered incompressibility constraint

o�ui

oxi
¼ 0: ð22Þ

The interaction between the resolved and unresolved scales is
given by the SGS stresses,

sij ¼ uiuj � �ui�uj; ð23Þ

which is an unclosed term and thus has to be modelled based on the
filtered velocity field �ui. In most LES approaches the primary filter is
not applied explicitly, but rather given by the implicit filter due to
the lower grid resolution.

The ADM-RT model used here acts on the velocity components
directly. The model employs the relaxation term proposed in the
context of the approximate deconvolution model (ADM) (Stolz
and Adams, 1999). It has been shown in, e.g. Schlatter et al.
(2006a) and Schlatter et al. (2006b) that for spectral simulations
the deconvolution operation applied in the ADM approach is not
necessary. Therefore, the SGS force due to the ADM-RT model is gi-
ven by (Schlatter et al., 2004)

osij

oxj
¼ vHN � �ui ð24Þ

with v being the model coefficient. HN denotes a high-order three-
dimensional high-pass filter (Stolz et al., 2001), and the symbol �
stands for convolution in physical space, i.e. a multiplication with
the respective transfer function bHN in Fourier space.

The high-pass filter HN used in the present work is obtained by
the repeated application of a low-pass filter G according to

HN ¼ ðI � GÞNþ1
; N > 0: ð25Þ

Typically, G is chosen as the low-order low-pass filter suggested
by Stolz et al. (2001). The cutoff frequency is defined asbGðxcÞ ¼ 1=2 and can be adjusted. For the present results,
xc ¼ 2p=3 and N ¼ 5. HN is at least of order rðN þ 1Þ with r being
the order of G. The latter is at least r ¼ 3 on non-equidistant grids.

v is the model coefficient which is set to a constant value herein
motivated by previous studies showing little dependency of the re-
sults on the actual value of the coefficient (see e.g. Schlatter et al.,
2006b). If the model coefficient v is chosen inversely proportional
to the time-step size the relaxation term has a similar effect as a
filtering of the velocities after every time step, as mentioned in
Stolz and Adams, 1999.

The relaxation term vH�N �ui is proportional to the small-scale
velocity fluctuations in the flow field. Therefore, it will damp out
these oscillations leading to a drain of kinetic energy from the
smallest resolved scales.

The ADM-RT model proved to be accurate and robust in predict-
ing transitional and turbulent incompressible flows with spectral
methods (Schlatter et al., 2004; Schlatter et al., 2006b). Note that
the relaxation-term model is related to the spectral vanishing vis-
cosity approach (Karamanos and Karniadakis, 2000). Due to the
high-order filter HN with a cutoff frequency of xc � 0:86p only
the smallest represented eddies are affected, whereas the larger,
energy-carrying scales are not directly influenced by the model
contributions.

3.3. Free-stream turbulence generation

The boundary layer considered here is subject to external dis-
turbances, in particular free-stream turbulence. To generate this
inflow a superposition of eigenmodes from the continuous spec-
trum of the OSS operator is used (Jacobs and Durbin, 2001; Brandt



Table 1
Different computational boxes used

Box Method Lx � Ly � Lz d�0 Nx � Ny � Nz (resolution)

Small DNS 1000� 60� 50 1024� 121� 72
Small LES 1000� 60� 50 256� 121� 36
Medium LES 2000� 60� 90 512� 121� 64
Large LES 2000� 60� 180 512� 121� 128
X-large LES 4000� 60� 180 1024� 121� 128

Resolution for each box dimensions and type of simulation.
The box dimensions include the fringe region and are non-dimensionalised with
respect to the displacement thickness d�0 at the inflow ðRed�0

¼ 300Þ.
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et al., 2004). In the present implementation disturbances can be
introduced in the flow in three different ways: forcing them in
the fringe region, with a body force as in the estimation problem,
or via blowing and suction at the wall by a non-homogeneous
boundary condition as done in the control problem. The free-
stream turbulence is forced at the inflow by adding the modes to
the laminar base-flow profile in the fringe region.

Detailed description of the procedure adopted can be found in
Brandt et al. (2004). Here, the free-stream generation is shortly
outlined. A three-dimensional wave vector k ¼ ðkx; ky; kzÞ is associ-
ated to each eigenfunction of the continuous spectrum where, kx

and kz are defined by the normal-mode expansion along the
wall-parallel directions of the underlying linear problem while
the wall-normal wavelength is determined by the eigenvalue along
the continuous spectrum. If Taylor’s hypothesis is applied the
streamwise wavenumber kx can be replaced by a frequency
x ¼ kxU1 and the disturbance signal is written as

udist ¼
X

ANûNðyÞeikzzþikxx�ixt ; ð26Þ

where the wall-normal wavenumber ky is implicit in the shape of
the eigenfunction ûNðyÞ (Grosch and Salwen, 1978). The complex
wavenumber kx is determined by the dispersion relation once the
real wall-normal wavenumber ky and the real wavenumbers kz

and x are selected according to the procedure described below.
The wavenumbers pertaining to the modes used in the expansion
are selected by defining a number of spherical shells of radius jkj
in the wavenumber space ðx; ky; kzÞ. Forty points are then placed
at equal intervals on the surface of these spheres. The coordinates
of these points define the wavenumbers of the modes used in the
expansion above. The complex coefficients AN provides random
phase but a given amplitude. The amplitude jANj is in fact the same
for all modes on each shell and is chosen to reproduce the Von
Kármán spectrum,

EðkÞ ¼ 2
3

aðkLIÞ4

ðbþ ðkLÞ2Þ17=6 LITu: ð27Þ

This spectrum is for large scales asymptotically proportional to
k4, whereas it matches the Kolmogorov-(5/3)-law for small scales.
In the expression above, Tu is the turbulence intensity, LI is a char-
acteristic integral length scale such that kmax ¼ 1:8=LI where kmax is
the wavenumber of maximum energy and a, b two normalisation
constants.

3.3.1. Free-stream turbulence generation in the LES
Due to the lower resolution employed for the LES runs, the im-

posed turbulence spectrum at the inlet has to be adapted. To obtain
results that are as close to the DNS as possible, it was decided to
use exactly the same set of modes and the same random phases
on all the various grids, without any modification of the turbulence
intensity level at the inlet. Modes with wavenumbers too large to
be resolved on a given coarser LES grid were discarded and conse-
quently not forced at the inlet. All the other parameters specifying
the inlet spectrum, i.e. length scale, choice of modes and the indi-
vidual scaling of the modes, are the same on all grids. This leads to
the observation that the measured turbulence intensity at the inlet
is smaller for coarser grids, because less modes are actually forced.
To obtain the true Tu one had to also include the unresolved fluc-
tuations, which are however not available during an LES. The re-
sults show that the transition process is not crucially influenced
by that difference in inlet Tu. If, on the other hand, the resolved
Tu at the inlet is adapted to exactly match the level on the finest
(i.e. DNS) grid, premature transition corresponding to the higher
turbulence levels is observed. The explanation for this behaviour
is that the receptivity of the boundary layer is mainly dominated
by low-frequency modes of the free stream. The amplitudes of
these modes, which are resolved on both the DNS and LES grids,
should therefore not be modified.

3.4. Simulation parameters

The parameters defining the problem are the Reynolds number,
the intensity and the integral length scale of the free-stream turbu-
lence and the size of the computational box. The inflow Reynolds
number Red�0

, defined using the displacement thickness of the
boundary layer at the inflow of the computational domain, was
chosen to be 300 for all cases under consideration.

The different computational boxes used are reported in Table 1.
Direct numerical simulations were only performed in the small
box, while the largest boxes were used to allow the transition to
turbulence to occur within the computational domain. The latter
computational domains are thus used for the parametric study of
bypass transition and its control. The medium-size box was used
when investigating the influence of limiting the control signal
(see Section 4.2.1).

The code was run in four different modes, corresponding to four
different physical problems: no control (used as reference case),
full information control, estimation without control and compen-
sator, i.e. control based on estimation.

4. Results

Based on the theory and numerical methods presented in the
previous sections, simulations of transition in a flat-plate boundary
layer subject to free-stream turbulence are performed. Linear feed-
back control is then applied to the flow in order to delay transition.
Both LES and DNS are presented here and all the statistics pre-
sented are obtained by averaging in time and in the spanwise
direction.

In the following results the streamwise coordinate is indicated
by the Reynolds number based on the distance from the leading
edge,

Rex ¼
U1x

m
¼ Re2

d�

1:7208
;

where the value of d� for the laminar Blasius solution is used. All the
quantities presented are non-dimensionalised with the free-stream
velocity, U1, the viscosity, m and the displacement thickness at the
inflow of the computational domain d�0.

4.1. LES validation

In a first step, the possibility to reduce the numerical resolution
and consequently replacing the effect of the non-resolved scales by
a subgrid-scale model (see Section 3.2) is explored. In particular,
additional to fully-resolved DNS, two different modelling ap-
proaches are considered: under-resolved DNS without model
where the interaction between the resolved and unresolved scales
is essentially neglected and the ADM-RT model. This SGS model
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has been shown to perform particularly well with transitional
wall-bounded flows (Schlatter et al., 2006b). All the LES presented
in this section are performed with a free-stream turbulence inten-
sity of Tu ¼ 4:7% on the ‘‘Large LES” grid given in Table 1. The ref-
erence DNS data is taken from Brandt et al., 2004 using the same
numerical method and inflow turbulence generation algorithm.

Fig. 3 shows the evolution of the statistically averaged skin fric-
tion coefficient cf and the shape factor H12 as a function of the
downstream distance Rex. The skin friction coefficient gives a mea-
sure on how well the near-wall flow structures can be represented,
whereas the shape factor, being the ratio between the boundary-
layer displacement thickness and the momentum thickness, de-
scribes the flow development and structural reordering of the
boundary layer during laminar–turbulent transition further away
from the wall.

The evolution of the skin friction (Fig. 3a) clearly shows that the
no-model approach without employing a subgrid-scale model
leads to inaccurate results. This behaviour of under-resolved simu-
lations is however well-known from other studies: The reduced
dissipation present in the flow leads to an increased fluctuation le-
vel at the scales close to the numerical cutoff; in case of flows
undergoing transition this increased energy may be causing pre-
mature breakdown. Usually, increased values of the wall-normal
velocity gradient close to the wall lead to a dominant overshoot
of the skin friction, until the flow has settled down to a new equi-
librium state accounting for the missing dissipation in the small
scales. The ADM-RT model with a constant model coefficient how-
ever is seen to provide an accurate prediction of the skin friction
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Fig. 3. Integral quantities during bypass transition ðTu ¼ 4:7%Þ for different SGS models
DNS, � (Brandt et al., 2004). The thin dashed lines correspond to analytical correlations

Fig. 4. Instantaneous streamwise velocity in a plane parallel to the wall. (a): DNS. (b):
Streamwise extent Rex ¼ ½32;000; 300;000�, spanwise extent enlarged by a factor of 5.
throughout the laminar initial phase dominated by the streaky
structures ðRex < 150; 000Þ, the stage dominated by the intermit-
tent appearance and growth of turbulent spots ðRex < 300;000Þ,
and the fully-developed turbulent region thereafter.

The shape factor given in Fig. 3b confirms the previous findings:
the initial phase ðRex < 100; 000Þ characterised by only minor dis-
turbances within the boundary layer is predicted accurately also by
the no-model LES. However, as soon the boundary-layer distortion
becomes too large, the under-resolved DNS will immediately break
down to turbulence. It is interesting to note that the SGS model
feature a slight departure from the reference level of H12 between
Rex ¼ 100;000 and Rex ¼ 170;000; however the final stages of
transition seem not to be influenced.

A comparison of an instantaneous visualisation of a wall-paral-
lel plane at y ¼ 2d�0 from both DNS and ADM-RT is presented in
Fig. 4. Note that for both simulations the same amplitudes and
phase shifts in the inlet free-stream turbulence have been used
(see Section 3.3.1), consequently the flow structures can be directly
compared between DNS and LES. The most obvious feature is that
the LES data looks slightly blurred, which is a natural consequence
of the lower resolution. Nevertheless, many of the flow structures
present in the DNS flow field can also be detected in the LES field,
and vice versa: the shape and location of the dominant strong
streaks, the intermittent breakdown to localised turbulent spots,
and a calm region even more downstream than the first turbulent
patch. This figure clearly shows that – despite the lower resolution
used in the LES – a good prediction of the dominating flow physics
and the processes leading to turbulent breakdown can be obtained
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. (a): skin-friction coefficient cf , (b): shape factor H12. ADM-RT, ; no-model LES, ������;
for both laminar and turbulent boundary-layer flow.

LES using ADM-RT. Light colour indicates low velocity, dark colour high velocity.
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via appropriate subgrid-scale modelling. It can also be shown that
the LES is able to capture the instantaneous structures just prior to
turbulent breakdown.

4.2. Full information control

Results on linear feedback control of a boundary layer subject to
free-stream turbulence are reported next. The design parameters
for the compensator problem are reported in Table 2 and will be
discussed when presenting the results for each specific case.

The first step when applying control is to design a reasonably
good full-information controller. This can be used as reference
for the compensation, since the best possible performance is ex-
pected when the whole flow field is known. This case is also used
as a benchmark for LES: Since LES is used for most of the simula-
tions, it is considered important to evaluate the SGS model against
DNS data not only in the general case without control, but also in
the case of full information control. Further, in order to later com-
pare these results to those from the compensator, the blowing and
suction strip are placed further downstream, so that there will be
enough space for the measurement region at the beginning of
the computational domain, see Table 2. Note that in the following
figures the gray areas correspond to the regions where measure-
ments are taken, and blowing and suction is applied, respectively.
The simulations in the remaining part of this section are performed
with a turbulence level Tu ¼ 3:0% except the results in Fig. 6 where
Tu ¼ 4:7%.

In Fig. 5, the wall-normal maximum of the streamwise velocity
perturbation is shown for both DNS and LES of the uncontrolled
case as well as for the two cases with full information control. This
quantity is selected since it indicates the growth of the streaks in-
side the boundary layer. It can be clearly seen that the control is
able to inhibit the streak growth and that using LES-(ADM-RT)
gives similar decrease of the streak amplitude as in the fully-re-
Table 2
Control penalties, estimation sensor noise, measurement-strip position, actuation-
strip position and location of the base flow target profiles for the estimator and the
controller

Estimation Control

Sensor noise penalties
p 50 l 102

sx 0.07 r2 0
sz 0.07

Rexstart 6:04� 104 Rexstart 1:95� 105

Rexend 1:50� 105 Rexend 2:85� 105

Location of target profile 1:05� 105 location of target profile 2:40� 105
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Fig. 5. Wall-normal maximum urms. no control DNS, —; no control LES, 3; control
DNS, – – – –; control LES, – – – –.
solved DNS. Slight differences between LES and DNS can be noticed
at the inlet of the domain. This can be explained by noting that the
wall-normal maximum of the rms value is a very sensitive quan-
tity, involving both the location and the amplitude of the fluctua-
tions. Indeed mean quantities, like the skin friction, would not
show any difference at all in such a plot.

A study to investigate the influence of the length of the control
region on the transition delay was also performed. The free-stream
turbulence level was chosen to be 4.7% to be able to reproduce the
full transition process within the small computational domain
(Barri, 2006). The initial and final locations of the control region
are reported in Table 3, whereas the value of the wall-normal max-
imum of the streamwise velocity fluctuations and the skin friction
are displayed in Fig. 6 for the three cases under consideration to-
gether with the reference uncontrolled case. It can be noticed in
Fig. 6a that with a longer control domain, it is possible to reduce
the streak growth even more. The effect of the control is more pro-
nounced when looking at the friction coefficient cf as shown in
Fig. 6b. By comparing the two plots it can be deduced that the large
values of streamwise velocity fluctuations at the end of the compu-
tational domain are not associated to a fully turbulent flow. The re-
sults farther show that for the longest control region the streak
growth is indeed quenched for a larger distance but the down-
stream recovery is faster and the differences between the cases
‘‘Medium” and ‘‘Long” are attenuated further downstream.

In order to understand the physical mechanism behind the con-
trol, instantaneous features that appear in the controlled field are
examined. In Fig. 7, the streamwise velocity component on a plane
parallel to the wall at y ¼ 2d�0 (Fig. 7a) along with the wall-normal
velocity component at the wall (Fig. 7b) indicating the control
actuation via wall blowing and suction is displayed. From these
two instantaneous images of the flow one can see the correlation
between the flow state and the control signal. In the case of a
high-speed streak blowing is induced from the controller. This
causes the flow downstream of the actuation to settle in a more
stable state since the fast moving fluid is forced to move upwards
away from the wall. The opposite action is happening for low-
speed streaks, i.e. the controller is applying suction to move
high-speed fluid from the free stream to cancel the region of decel-
erated flow. One other aspect to note from this figure is that most
of the control effort is concentrated at the beginning of the control
region in agreement with the results by Chevalier et al. (2007a).

4.2.1. Limiting of control signal
When extending the linear control to these highly nonlinear

scenarios, problems may arise and ad hoc tuning may be necessary.
For our case, Brandt and Henningson (2004) observed that, if too
strong localised blowing is applied, turbulent spots may be in-
duced by local instabilities due to wall-normal inflectional profiles
already inside the control region. An improvement of the transition
delay can therefore be expected by limiting the blowing at the
wall. This was implemented in the numerical code by imposing
an artificial clipping to the control signal

vðx; y; z; tÞjy¼0 ¼minfvðx; y; z; tÞy¼0; vmaxgj:
Table 3
Study on the influence of the control region length

Start ðRexÞ End ðRexÞ

No control – –
Short 5:3� 104 1:4� 105

Medium 5:3� 104 1:9� 105

Long 5:3� 104 2:3� 105

The initial and final location of the control region are given in units of Rex .



Fig. 7. (a): Instantaneous streamwise velocity at y ¼ 2d�0. (b): corresponding control signal. The levels of the contours are u ¼ ½0:3U1;0:6U1� for (a) and
v ¼ ½�2� 10�2U1;5� 10�3U1� for (b). White corresponds to the minimum value and black to the maximum.
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The clipping threshold vmax is set to 0:01U1, for cases where the
(unlimited) maximum of the blowing at the wall occasionally
reaches values of the order of 0:02U1. The value of vmax is chosen
by examining the instantaneous values of the blowing in cases
where transition was triggered by the wall actuation.

The comparison between the optimal linear control and control
with limited blowing is displayed in Fig. 8, where the evolution of
the wall-normal maximum of the streamwise velocity fluctuations
is depicted for cases with and without clipping. The performance of
the control is on average improved by limiting the blowing; anal-
ysis of the instantaneous velocity fields reveals that this is due to
the absence of the localised spots intermittently induced by the
strong control signals and not by an overall decrease of the streak
amplitudes, or increase of the actuation efficiency. The results pre-
sented in the following are all obtained by limiting the blowing at
the wall.
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Fig. 8. Wall-normal maximum urms. Control with clipping of the blowing, 3; Co-
ntrol without the clipping blowing, —.
4.3. State estimation

The construction of the estimator involved extensive tuning of
several parameters associated with the theoretical tools described
in Section 2.2. In particular, these parameters are: the covariance
matrix as a model for the stochastic disturbances involved in the
estimation process, the sensor noise quantifying the confidence
in the measurements taken and the length of the estimation
region.

The covariance matrix is essential for the estimator (see Eq.
(18)). In the ideal case, the measurements indicated in Eq. (19c)
would uniquely identify the current state of the system (Bewley
and Protas, 2004). This is not the case since there are unknown ini-
tial conditions, unknown external disturbances and noise corrupt-
ing the measurements. To improve the estimation in the case of
free-stream turbulence, the variance of the external disturbances
needed to be extended further out in the free stream if compared
to that used in Chevalier et al. (2007a). A diagonal matrix was used
as covariance matrix for the external disturbances. For the covari-
ance of the wall measurements a simple function proportional to
the boundary-layer velocity profile was selected.

The parameters that define the strength of the forcing that is
applied to the system are the sensor noise. The tuning of these
parameters was also performed by testing different sets of values;
the set of values yielding the best performance is reported in
Table 2. Note that a relatively large value of the pressure sensor is
needed to achieve good estimation. This limits the use of this mea-
surement and can be explained by the fact that the pressure at the
wall appears to be more sensitive to the free-stream turbulence
than to the streaks inside the boundary layer.

One would expect that the longer the measurement strip the
better the estimation since more information from the flow is
available. However, since the gains are computed for a parallel
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flow, this may not be the case and above a certain length the qual-
ity of the estimation degrades. The optimal length was found to be
500 approximately d�0 units. Further, it was found that at these high
levels of perturbation, estimation works better if the forcing is ac-
tive only on the scales that correspond to the streaks. Thus, the
gains where rescaled in wavenumber space with a two-dimen-
sional Gaussian function. The parameters of this function were
determined by applying two-dimensional Fourier transforms along
the wall-parallel directions to the flow fields to be estimated and
extracting the wavenumbers of richest energy content. One exam-
ple of this weighting function is shown in Fig. 9. The gains are fo-
cused around wavenumber kx ¼ 0:0 in the streamwise direction,
which corresponds to infinitely long structures and around
kz ¼ 0:4 which corresponds to the spanwise width of the most
energetic structures, namely the streaks.

Two different criteria were used to determine the performance
of the estimator. The first was visual inspection of the instanta-
neous velocity fields: One example of this comparison can be seen
in Fig. 10, where the streamwise velocity in a plane parallel to the
wall is displayed for the real and the estimated flow. It can be seen
in the figure that the main features of the incoming streaks are well
reproduced in the estimated field. A second, more systematic way,
is to calculate the estimation error given by
Fig. 9. The Gaussian function scaling the estimation gains in wavenumber space.
The centre of the Gaussian is at kx ¼ 0 and kz ¼ 0:4 in units of d��1

0 .

Fig. 10. Instantaneous streamwise velocity fields. (a): real flow; (b): estimated flow.
Rex ¼ ½32;000; 570;000�, spanwise extent enlarged by a factor of 5.
� ¼
R

Xðq� q̂ÞdXR
XðqÞdX

; ð28Þ

where X is the region selected to evaluate the estimation error. In
Fig. 11, the estimation error is plotted as a function of time. In this
case the error is computed in a plane parallel to the wall, y=d�0 ¼ 2,
over the whole region where the control will be applied. This is se-
lected as the most relevant area in terms of compensator perfor-
mance since the flow in this region is used to compute the
control signal. It can be seen in the figure that the estimation is con-
verging toward values of � � 0:3 after an initial transient of about
400 time units.

The wall-normal maximum of the streamwise velocity pertur-
bation is shown for both the real and the estimated flow in
Fig. 12. The perturbations are weaker in the estimated flow, a
The measurement strip is indicated with two vertical lines. Streamwise extent
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Fig. 11. Estimation error according to Eq. (28).
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Fig. 12. Wall-normal maximum of urms. Real flow, ; Estimated flow, – – – –. The
shaded area indicates the measurement region.
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strong estimation forcing leading directly to transition in the esti-
mator simulation. In the real flow, the streaks are forming and
growing also downstream of the estimation region, whereas in
the estimated flow the streaks decay downstream of the measure-
ment region. This can be explained by the fact that the free-stream
turbulence is continuously forcing the streaks all along the plate
whereas the estimation forcing is active only in a limited stream-
wise region, i.e. the gray area in the plot.

In Fig. 13, the wall-normal profiles of urms at different stream-
wise locations are shown. Again it can be seen that the streaks
are weaker in the estimated flow than in the real flow, and that
the difference between the two fields increases further down-
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Fig. 13. Wall-normal profile of urms at different streamwise positions Rex ¼ ½0:6;1:2;2:1
flow, – – – –.

Fig. 14. Instantaneous streamwise velocity fields. (a): uncontrolled; and (b): controlled.
ratio.
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Fig. 15. (a): Wall-normal maximum urms; (b): skin friction coefficient cf
stream. Perturbations in the free stream are not reproduced in
the estimator and the estimation is more accurate close to the wall.

4.4. Compensator

The final stage is combining the full information controller and
the estimator into the compensator. The procedure requires the
estimator to run first without the control until the estimated field
approaches the real flow; afterwards the control forcing is turned
on. The control region is placed downstream of the estimated field
and an overlap between the two strips is avoided. At the location
where the actuation is active, the amplitude of the streaks is
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significantly increased. The perturbations to be controlled are
further downstream, i.e. in the region where nonlinear effects are
more important.

A visualisation of the controlled and uncontrolled flow field is
displayed in Fig. 14 in a wall-parallel plane. The decrease of the
streak amplitude in the control region is clearly visible. A turbulent
spot is appearing further downstream in the uncontrolled flow
while the flow is laminar when blowing/suction is applied. It can
also be noticed that the control often changes an incoming high-
speed streak into a low-speed region and vice versa. Further, a ra-
pid increase in the streak amplitude is occurring after the end of
the control region.

In Fig. 15a, the wall-normal maximum of the rms-value of the
streamwise velocity perturbation is shown for the uncontrolled
case and for both full information control and compensation. As
observed by the flow visualisation in Fig. 15a, the growth of the
streaks is reduced within the control region. However, down-
stream of the control region, velocity fluctuations continue to
grow. This can be explained by the presence of the free-stream tur-
bulence above the boundary layer that is able to induce new per-
turbations inside the boundary layer.

The skin friction coefficient is shown in Fig. 15b. This plot quan-
tifies the transition delay which can be achieved in the case of
boundary-layer transition induced by free-stream turbulence. The
transition delay obtained without estimation corresponds approx-
imately to the length of the control region. The delay is between
120;000m=U1 and corresponds to approximately 15–20% of the full
length of a typical turbine blade, resulting in a reduction of the to-
tal friction drag of 5–10%. The loss of performance to be expected
in the case of control based on estimation from wall measurements
is not severe. Thus, a longer control region or alternatively a se-
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control, —; Full information control, 3; Compensator, – – – –.
quence of measurement and blowing/suction strips may lead to
further delay or even prevent the transition process.

In Fig. 16, wall-normal profiles of the rms value of the stream-
wise velocity perturbation are shown at different streamwise sta-
tions along the plate for the three cases under consideration. The
reduction of streak amplitude is evident in the control region. Note
also that where blowing/suction is applied the profiles feature a
double-peak structure: the lowest peak closest to the wall is due
to the local effect of the actuation, while the largest peak, repre-
senting the streak, is moved away from the wall. The changeover
from laminar to turbulent streaks is occurring in the region
5� 105 < Rex < 7� 105. The typical profiles for urms of a turbulent
boundary layer are observed at the end of the computational
domain.

The production of turbulent kinetic energy uvoU=oy with the
Reynolds shear stress uv, is considered to characterise the effect
of the blowing/suction at the wall. The wall-normal profiles of
the turbulent production at two streamwise positions are dis-
played in Fig. 17. It can be seen that the turbulence production in-
creases near the wall due to the blowing and suction while it
decreases farther up in the boundary layer, attaining negative val-
ues at the beginning of the control region. In the compensator a
reduction over the whole profile is observed as well as a small peak
near the wall.

In order to study the performance of the control for higher
streak amplitudes, simulations with turbulence intensity
Tu ¼ 4:0% are also performed. Owing to the larger turbulence
intensity the growth of the streaks is faster, the transition location
is moved upstream and the amplitude of the streaks within the
control region are further increased. Overall, the performance of
the estimation is as in the case presented above, while the
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extension of the transition delay is reduced. Even though the
growth of the streaks is reduced in the control region, the regener-
ation downstream is more rapid at this higher free-stream turbu-
lence levels. As shown by Barri (2006), for the control to be more
effective, maybe the actuation region should be placed further
upstream.
5. Conclusions

Numerical simulations of the transition to turbulence occurring
in a flat-plate boundary-layer flow subjected to high levels of free-
stream turbulence are performed. This scenario, denoted bypass
transition, is characterised by the non-modal growth of stream-
wise elongated disturbances, so-called streaks. When these streaks
reach large enough amplitudes, breakdown into turbulent spots
occurs via their secondary instability. The scenario under consider-
ation is highly intermittent in nature, i.e. streaks appear randomly
in the boundary layer, and therefore large computational domains
and long integration times are needed to obtain converged statis-
tical data.

In order to reduce the computational cost, mostly large-eddy
simulations are performed. The ADM-RT subgrid-scale model is
shown to be particularly suited for transitional flows: it is thor-
oughly validated before examining the effect on the transition pro-
cess. The results indicate that the details of the streak breakdown
can and need to be captured by LES. The high-frequency oscilla-
tions of the elongated streaks appearing as spot precursors define
the grid size on which the LES can be performed. The reduction
in terms of number of degrees of freedom compared to a full
DNS is of the order of 10, while the computational cost is reduced
about 50 times.

Linear model-based feedback control is applied in order to delay
transition, where the linear parallel Orr–Sommerfeld/Squire sys-
tem is used to design the estimation and control laws. The method
presented here was previously developed by Hoepffner et al.
(2005); Chevalier et al., 2006; Chevalier et al., 2007a and shown
to be successful in damping linear and weakly nonlinear perturba-
tion in a variety of wall-bounded shear flows. The method is now
applied to flows with highly nonlinear behaviour.

In practical situations, the full flow field is usually not accessi-
ble. The control problem is therefore combined with an estimation
procedure based on wall measurements, the two wall-parallel
components of the wall-shear stress and the pressure at the wall
being considered here. It is found that to achieve an accurate esti-
mation most of the confidence should be put in the shear-stress
data; the pressure measurements are in fact too affected by the
high-level fluctuations in the free stream.

The results presented show that the control is able to reduce the
energy of the streaks, which are responsible, through their second-
ary instabilities, for the considered bypass-transition scenario and
thus delay the whole process. The delay achieved is of order of the
streamwise extent of the area where control is applied. For turbo-
machinery applications, this amounts to about 15–20% of the
length of a typical turbine blade, resulting in a reduction of the to-
tal friction drag of 5–10%. The control performance is limited by
the fast growth of the streaks just downstream of the region where
blowing and suction is applied. This recovery is similar to that ob-
served when control of turbulent flow is investigated and it can be
explained by considering the action of the control in these highly
disturbed flow: When blowing/suction is applied, the streamwise
streaks are quenched close to the wall while the upper part of
the boundary layer is less affected. As a consequence, as soon as
the actuation is turned off, the streaks diffuse into the shear layer
near the wall and can again be amplified. The relatively fast recov-
ery of the streamwise streaks downstream of the control region
was also observed in the recent experimental work by Lundell
(2007). This author considers the same transition scenario but a
different control strategy: reactive control is applied with sensors
and actuators placed in a staggered manner. A more direct
comparison between the linear optimal control and the experi-
ments appears therefore relevant and it is the object of new
investigations.

The streamwise streaks can be estimated from wall measure-
ments alone; however the structures occurring in the real flow
are reproduced correctly mainly in the region where the measure-
ments are taken. Downstream of this region the estimated field
gradually diverges from the real field, revealing the importance
of the continuous excitation of the boundary layer by the external
free-stream turbulence (Westin et al., 1998). Control based on esti-
mation (termed compensator) is therefore less effective than full
information control. For actual implementations of feedback con-
trol the estimation process needs to be improved, in particular
by reducing its cost. With this aim, two directions may be followed.
First, model reduction can be introduced in the estimation prob-
lem. Global modes of the flow can be used for this, as global eigen-
modes (Åkervik et al., 2007) or balanced POD modes (Rowley,
2005). The model based on these two- or three-dimensional modes
does not need to be linear, possibly improving the estimation per-
formance for this type of flows. Alternatively, the relation between
sensors and actuators may be deduced directly from flow measure-
ments, relaxing the need for a flow model, as suggested, e.g. by
Lundell (2007). The latter option will be the object of future work,
in the context of a closer interplay between experiments and
simulations.
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