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We study the two main phenomenologies associated with the transport of inertial
particles in turbulent flows, turbophoresis and small-scale clustering. Turbophoresis
describes the turbulence-induced wall accumulation of particles dispersed in wall
turbulence, while small-scale clustering is a form of local segregation that affects
the particle distribution in the presence of fine-scale turbulence. Despite the fact
that the two aspects are usually addressed separately, this paper shows that they
occur simultaneously in wall-bounded flows, where they represent different aspects
of the same process. We study these phenomena by post-processing data from a
direct numerical simulation of turbulent channel flow with different populations of
inertial particles. It is shown that artificial domain truncation can easily alter the mean
particle concentration profile, unless the domain is large enough to exclude possible
correlation of the turbulence and the near-wall particle aggregates. The data show
a strong link between accumulation level and clustering intensity in the near-wall
region. At statistical steady state, most accumulating particles aggregate in strongly
directional and almost filamentary structures, as found by considering suitable two-
point observables able to extract clustering intensity and anisotropy. The analysis
provides quantitative indications of the wall-segregation process as a function of the
particle inertia. It is shown that, although the most wall-accumulating particles are
too heavy to segregate in homogeneous turbulence, they exhibit the most intense local
small-scale clustering near the wall as measured by the singularity exponent of the
particle pair correlation function.
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1. Introduction
Industrial devices and environmental processes often involve the motion of a

dispersed phase in a flow. Particulate dust impinging on turbine blades or walls
of combustion chambers may negatively affect the efficiency of these systems. For
instance, in the aeronautical context, the ash generated in volcanic eruptions can
induce problems in aeroplane components, calling for accurate description of dust
transport to determine conditions for critical failures. Transport of inertial particles
in turbulent flows is characterized by the peculiar phenomenologies of small-scale
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clustering and turbophoresis – see, among others, Toschi & Bodenschatz (2009) and
Balachandar & Eaton (2010) for recent reviews. It is important to underline that,
while small-scale clustering occurs in both homogeneous and inhomogeneous flow
configurations, turbophoresis is a distinctive feature of particle dispersion in wall-
bounded flows.

Small-scale clustering consists of loss of spatial homogeneity of the particle
distribution due to the combination of particle inertia and turbulence. As a result,
a multi-scale distribution of local particle concentration is produced, leading to
the formation of particle clusters and corresponding void regions. Though their
origin is still debated, one of the most credited and simple explanations of these
anomalous features is particle inertia selectively filtering suitable turbulent excitations,
at least partially. Actually, inertia prevents particles from following convoluted fluid
trajectories leading to preferential concentration outside such vortical structures. One
of the first numerical observations of the correlation between particle localization and
vorticity field was based on a direct numerical simulation (DNS) of a homogeneous
isotropic configuration (Squires & Eaton 1991). The ratio between peak concentration
and average value was found to be of order 30, with particles mainly localized
in elliptic regions outside vortices. The main parameter controlling clustering is the
Stokes number based on the Kolmogorov time scale (Wang & Maxey 1993), implying
that the clustering dynamics is essentially controlled by small-scale turbulent motions.
The clustering is maximum when the characteristic Kolmogorov–Stokes number is
of order one, as successively confirmed by a number of numerical simulations and
experiments (see e.g. Bec et al. 2007). From the theoretical point of view, Elperin,
Kleeorin & Rogachevskii (1996) used a path-integral approach in order to obtain
an equation for the particle density correlation function, observing that the particle
distribution is strongly intermittent when the particle inertia is large enough.

A number of observables can be used to quantify clustering. Fessler, Kulick &
Eaton (1994) measured particle clustering in the bulk of a particle-laden channel flow
by means of the so-called clustering index, which parametrizes the deviation of the
actual particle distribution from the corresponding random Poisson distribution. One of
the most powerful observables is the radial distribution function (RDF), introduced in
Sundaram & Collins (1997) to address particle clustering in homogeneous turbulence
by means of Lagrangian–Eulerian DNS. The RDF is related to the probability of
finding a particle pair at a certain radial distance and behaves at small scales as
a power law. The scaling exponent is related to the dimension of the fractal set
supporting the particle distribution, as discussed by Bec et al. (2007), and can be
used to measure small-scale clustering. In the paper by Calzavarini et al. (2008), a
new clustering indicator, based on the Kolmogorov distance between two distributions,
is introduced to measure the particle clustering in heterogeneous particle-laden flows.
More recently, the Voronoı̈ tessellation analysis was used to quantify the particle
preferential concentration in particle-laden grid turbulence (see Monchaux, Bourgoin &
Cartellier 2010). This global analysis allows the structures of the particle clusters and
void regions to be addressed.

Since the divergence of the particle velocity is related to the divergence of the
particle acceleration field, many recent experiments have focused on measuring particle
accelerations in a variety of turbulent flows – see Ayyalasomayajula et al. (2006) for
grid turbulence and Gerashchenko et al. (2008) for boundary layers. More recently,
Gualtieri, Picano & Casciola (2009) addressed the anisotropy of particle distributions
in homogeneous shear flow, by using the angular distribution function (ADF); this
extends the concept of the RDF while keeping the dependence on direction. These
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authors showed that small-scale clustering is strongly anisotropic also at the small
scales where the carrier phase velocity field already reaches the isotropic regime
associated with the direct Kolmogorov cascade.

Despite the vortical centrifuge effect being the most popular explanation of
clustering, other mechanisms have been proposed. In fact, particle clustering is present
also in random flows without coherent vortical structures (Mehlig et al. 2005). In
particular, Goto & Vassilicos (2008) and Coleman & Vassilicos (2009) proposed the
sweep–stick mechanism for particle clustering, consisting of preferential accumulation
in stagnation points of fluid acceleration.

The other peculiar aspect of inertial particles in turbulence is turbophoresis in
wall flows. Turbophoresis amounts to a net particle flux towards the wall, where
it induces a peak in average concentration. One of the first theoretical studies on
turbophoresis was conducted by Caporaloni et al. (1975), with extensive further
investigations described in Reeks (1983), where the net particle flux towards the wall
was related to the skewness of the particle velocity distribution. The phenomenology
has been investigated experimentally in a number of papers (see e.g. Kaftori, Hetsroni
& Banerjee 1995a,b; Niño & Garcia 1996; Righetti & Romano 2004). More recently,
turbophoresis has been addressed by means of DNS in channel and pipe flow
configurations. Inertial particles seem to be preferentially localized in wall regions
with instantaneous streamwise velocity deficit (see Eaton & Fessler 1994; Pan &
Banerjee 1996). Rouson & Eaton (2001) found a strong link between particle
accumulation and turbulent wall structures. In particular, sweep and ejection events
control particle transfer to the wall, as found in the theoretical works of Young &
Leeming (1997) and Cerbelli, Giusti & Soldati (2001). Subsequently, Marchioli &
Soldati (2002) and Picciotto, Marchioli & Soldati (2005) showed a strong correlation
between coherent wall structures, preferential particle accumulation and deposition
that causes particles to stay near the wall in the region of slower fluid. All these
simulations assume particle motions to be periodic in the streamwise direction. To
address the spatial evolution, Picano, Sardina & Casciola (2009) consider the DNS
of a spatially developing particle-laden turbulent pipe flow. In this case the particle
preferential localization in ejection events is a necessary condition in order to reach
the equilibrium particle concentration.

Clustering quantification (RDF) at a distance corresponding to one particle diameter
and turbophoresis (mean particle concentration) are combined in the expression for the
particle collision rate (Sundaram & Collins 1997):

Nc = πc2σ 2g0(σ )〈δvp(σ )|δvp < 0〉, (1.1)

where Nc is the total collision rate, c is the mean concentration, g0 is the RDF, σ
is the length scale characteristic of the collision (typically the diameter of mono-
disperse particles) and 〈δvp(σ )|δvp < 0〉 is the spherical average of the mean relative
velocity of collision. RDF and mean particle concentration are not dynamically
independent because, as will be shown, a strong interaction exists between clustering
and turbophoresis.

The aim of the present work is to investigate the connections between these two
phenomena. In order to address these issues, data of a DNS of a particle-laden
periodic turbulent channel flow at Reτ = 180 are analysed. We address possible
confinement and blocking effects by comparing two simulations: one in a standard
domain (4π × 2 × 4/3π), and the other in a large domain (12π × 2 × 4π). The
latter domain size is the largest the authors are aware of concerning the simulation
of turbulent flows transporting a dispersed phase. For turbulent unladen flows, it is
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known that small domains can artificially modify the turbulent kinetic energy, which
is mainly associated with large structures, whereas the mean flow appears to be less
affected – see del Álamo & Jiménez (2003) for turbulent channel flow. We will
show instead that, for the dispersed phase, significant alterations already appear in the
mean particle concentration profile. Presumably, the strong sensitivity of the particle
concentration to domain truncation is induced by the finite relaxation time, which lets
the particles perceive the space–time correlation of the fluid velocity field. Actually,
our data indicate that single-point probability density functions (p.d.f.s) of fluid
velocity, particle velocity and fluid velocity conditioned to particles are essentially
unaffected by domain truncation, while two-point fluid correlations are significantly
altered when the domain dimensions are insufficient.

We will further show that the clustering intensity in the near-wall region is
directly correlated with the strength of the turbophoretic drift. In this region,
clustering is largely different from the standard homogeneous and isotropic paradigm:
the clusters feature a strong directional orientation, and clustering is much more
intense. Physically, this behaviour is explained by recalling that, to reach equilibrium
distribution, the particles must balance the turbophoretic drift by localizing into events
with outward fluid velocity. Technically, the analysis is performed by considering the
ADF and the small-scale behaviour of the RDF, which is quantitatively evaluated by
the scaling exponent related to the fractal dimension of the geometrical structure of the
particle distribution.

The paper is organized as follows. Section 2 introduces the numerical methodology.
The results are discussed in § 3. The main conclusions are condensed in § 4.

2. Numerical methodology
A coupled Eulerian–Lagrangian numerical method has been used to perform the

numerical simulations of the particle-laden turbulent channel flow described in this
paper.

We assume the following simplifying hypothesis for the dispersed phase: every
particle is considered to be a rigid sphere with diameter much smaller than the viscous
scales of the turbulence. We consider a dilute suspension with ratio of particle density
to fluid density of the order of 103, as appropriate, for example, for a solid phase
dispersed in air. With the previous assumptions, the only significant force acting on the
particles in the absence of gravity is the viscous Stokes drag, while particle feedback
on the carrier phase, inter-particle collisions and hydrodynamic coupling between
particles can be neglected (Maxey & Riley 1983).

Under these conditions (assuming one-way coupling regime), the carrier fluid is
governed by the classical non-dimensional incompressible Navier–Stokes equations,

∇ ·u= 0, (2.1)
∂u
∂t
+ u ·∇u=−∇p+ 1

Re
∇2u, (2.2)

where u(x, t) is the fluid velocity and p is the pressure. As far as the carrier flow is
concerned, the only control parameter is the Reynolds number, Re= Uch/ν, with h the
channel half-width, Uc the centreline velocity of the corresponding laminar Poiseuille
profile with the same mass flux of the actual turbulent flow, and ν the kinematic
viscosity. In turbulent wall-bounded flows, it is common to refer to the so-called
friction Reynolds number Reτ = U∗h/ν, where U∗ = √τw/ρ is the friction velocity
related to the shear stress at the wall τw and ρ is the fluid density. Following tradition,
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quantities normalized with inner (or viscous) units, i.e. with the friction velocity and
the viscous length δν = ν/U∗, will be indicated with the superscript +. The standard
setting used for the DNS of turbulent channel flows between two planar, parallel walls
is used in the present simulations, with periodic boundary conditions assigned to the
velocity in the two wall-parallel directions of the computational domain and with an
enforced constant mass flux through the channel.

Under the conditions stated above, the non-dimensional equations for the Lagrangian
evolution of particle positions and velocities read

dvp

dt
= u(xp(t), t)− vp

St
, (2.3)

dxp

dt
= vp, (2.4)

where vp and xp denote the velocity and position of the pth particle, respectively.
The Stokes number St is defined as the ratio between the particle response time
τp = ρpd2

p/(18ρν), with dp the particle diameter and ρp its density, and an integral time
scale h/Uc. In this context, the only parameter controlling the particle dynamics for
a given flow field is the Stokes number. The natural choice for a characteristic time
scale in wall-bounded turbulent flows is the viscous time scale ν/U2

∗ . Accordingly, the
viscous Stokes number is defined as St+ = τpU2

∗/ν. An initially uniform distribution
of particles is introduced in the computational domain and allowed to evolve in
interaction with fully developed turbulence up to attaining the statistical steady state.
In the present context, this amounts to assuming, also for the particles, periodic
boundary conditions in the streamwise and spanwise directions, i.e. when a particle
reaches the artificial boundary of the computational domain, it is reintroduced from
the opposite side. The interactions with the solid walls of the channel are treated as
purely elastic rebounds, occurring when the distance between particle centre and wall
equals the particle nominal radius. There are many factors influencing the particle–wall
interaction, such as roughness, particle and wall elasticity, chemical electrostatic
interactions, hydrodynamical lubrication forces and many more. These effects are
usually condensed using a global parameter, the restitution coefficient e = |u2/u1|,
where u1 and u2 are the wall-normal component of the particle velocity before and
after the collision against the wall. A unit value indicates pure elastic rebound, while
a zero value implies particles that stick to the wall. The effect of inelastic collisions
with e = 0.9 on turbophoresis is addressed in the paper of Li et al. (2001), showing
negligible differences in the results between simulations with pure elastic rebound
(e = 1) and with inelastic ones (e = 0.9). For the above reasons, only cases with ideal
elastic collisions are simulated in the present work.

The DNS data in the channel-flow geometry were obtained with an adapted version
of the spectral Navier–Stokes solver SIMSON (Chevalier et al. 2007). For the fluid
phase, streamwise and spanwise directions are discretized with Fourier series, whereas
the wall-normal direction is expanded in Chebyshev polynomials, with no-slip and
impermeability boundary conditions at the two walls enforced by the so-called tau
method (Canuto et al. 1988). The position of the grid points in the wall-normal
direction follows the Gauss–Lobatto distribution, providing fine resolution in the layer
adjacent to the wall. A low-storage four-stage mixed Runge–Kutta/Crank–Nicolson
scheme is employed for temporal discretization. The nonlinear terms are evaluated in
physical space by means of fast Fourier transform (FFT) employing the so-called
3/2 rule de-aliasing procedure in the wall-parallel directions. The code has been
successfully validated for single-phase turbulent channel flow at various Reynolds
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numbers up to Reτ = 590, and gives essentially the same results as those in Moser,
Kim & Mansour (1999); therefore it is not further discussed. In order to run
efficiently on massive parallel cluster computers, an MPI (message passing interface)
parallelization over the spanwise direction has been used for the present simulations.

The numerical integration of positions and velocities of the Lagrangian particles is
achieved by the same Runge–Kutta scheme as used for the carrier phase. The fluid
velocities at the particle locations are interpolated by a trilinear scheme able to provide
the required accuracy everywhere in the field, especially in the near-wall region, where
the grid becomes finer (Sardina et al. 2011). We remark that a similar interpolation
formula was successfully exploited in the pseudo-spectral DNS of the homogeneous
shear flow (Gualtieri et al. 2009). The particle-tracking algorithm is parallelized using
MPI as well, thus enabling the treatment of large domains employing of the order of
100 processors.

The implementation of this mixed Eulerian–Lagrangian algorithm has been validated
by comparing, at matching parameters, the results of the simulation at Reτ = 150 with
those provided in the database by Marchioli et al. (2008) for three different particle
populations with Stokes numbers St+ = 1, 10 and 25. The mean streamwise particle
velocity and its fluctuations are shown in figure 1 by solid lines, where the particles
with St+ = 1 most closely reproduce the mean fluid velocity. These data correspond
almost exactly to those of Kuerten (symbols) contained in the cited database, with
turbulence intensities and Reynolds stresses sharing peak values and relative positions.

The main data set to be addressed in the present paper consists of two channel-
flow simulations at a slightly larger Reynolds number, Reτ = 180, maintained by a
fixed mass flux, which are identical except for the dimensions of the computational
domain. The size of the smaller domain is 4π × 2 × 4π/3, matching the benchmark
simulation of Moser et al. (1999), discretized with a total of 128 × 129 × 128
spectral modes. This simulation will be denoted by the letter S in the following.
These are the typical domain dimensions used in most of the published literature on
turbulent particle-laden channel flows. In recent times, however, it has become clearer
that a small computational domain may induce a substantial phase locking on the
largest turbulent structures (see e.g. del Álamo & Jiménez 2003). We speculate that
the resulting blockage effect has an impact also on the dynamics of the dispersed
phase, an issue that deserves a deeper investigation. To demonstrate the consequences
of an insufficient box size, we consider a substantially larger domain with size
12π × 2 × 4π, matching the dimensions of the simulation in del Álamo & Jiménez
(2003). Accordingly, the number of grid points in the larger simulation is increased by
a factor of 3 in both the wall-parallel directions, i.e. 384× 129× 384 grid points. This
simulation will be denoted L in the following. A comparison between the two domains
is sketched in figure 2.

A total of six particle populations is considered, differing only in the Stokes number
(St+ = 0, 1, 5, 10, 50, 100). The different Stokes numbers are obtained by changing
the radius of the particle populations (see table 1) at fixed density ratio between
the two phases, ρp/ρ = 770. The two simulations evolve 200 000 and 1 800 000
particles per population, in order to keep the same average spatial concentration.
Each simulation was started from a fully developed turbulent velocity field obtained
in the respective boxes seeded with random, homogeneously distributed particles. Each
simulation was kept running for long enough (final time t+fin = 30 000) to reach and
accurately sample the eventual statistical steady state of the particle distributions.
After reaching this steady state, in the time interval t+ = 10 000 to 30 000, ∼100
time-independent fluid velocity fields with corresponding particle configurations and
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FIGURE 1. (a–c) Mean streamwise particle velocity U+p in the channel-flow simulation at
Reτ = 150. (d–f ) Root mean square streamwise particle velocity fluctuations U+p,rms. The
particle populations are ordered from the top down according to their inertia: (a,d) St+ = 1;
(b,e) St+ = 5; (c,f ) St+ = 25. The solid lines represent our simulation, while the circles
correspond to the data of Kuerten’s DNS described in Marchioli et al. (2008).

St+ 0 1 5 10 50 100

r+ — 0.076 0.17 0.24 0.54 0.76

TABLE 1. Particle population parameters: viscous Stokes number St+ and radius in viscous
units r+p = d+p /2. Density ratio ρp/ρ = 770.
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FIGURE 2. Sketch of the simulation domains with the employed coordinate systems. S
denotes the smaller domain and L the larger one.

velocities were collected for statistical analysis. We stress that domain dimensions and
particle number of the larger simulation are presumably the largest ever used so far
for multiphase wall-bounded flows This simulation required ∼200 000 core hours on a
Linux cluster, running on 128 cores in parallel.

3. Results
3.1. Instantaneous snapshots

Figure 3 shows, for the larger simulation, an instantaneous particle configuration (light
dots) in a wall-parallel plane close to one of the two solid walls bounding the channel.
As is well known, turbulence induces a drift towards the wall and leads to the eventual
accumulation of the particles in the wall region (see e.g. Reeks 1983). As apparent
from the figure, the particles are unevenly distributed, with larger local density
occurring in elongated clusters. From visual inspection, the clusters are extremely
long and persistent. Their substantial streamwise extension actually casts doubt on the
reliability of simulations performed in smaller domains, where a single particle cluster
may easily run from side to side across the entire computational box.

We stress here that our larger domain is selected to have negligibly small
fluid velocity correlation between points separated in the streamwise and spanwise
directions by half the corresponding domain length, e.g. for the streamwise velocity
fluctuation u′(x, y, z, t),

〈u′(x, y, z)u′(x+ Lx/2, y, z)〉 � 1, 〈u′(x, y, z)u′(x, y, z+ Lz/2)〉 � 1, (3.1)

where angular brackets imply both spatial averaging in the two wall-parallel directions
and ensemble averaging with respect to the two channel halves and the set of
independent fields collected at the statistical steady state.

The contours shown in the background of the image provide the iso-levels of the
streamwise fluctuation velocity of the carrier fluid, showing the well-known streaky
structures with alternating regions of local velocity excess (lighter tones) and defect
(darker tones) (Kline et al. 1967). This single, generic image already highlights
a strong correlation between particle positions and streamwise fluid velocity. It is
immediately clear that particles are preferentially located in regions with instantaneous
streamwise fluid momentum deficit, the so-called low-speed streaks. These results are
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FIGURE 4. (a) Streamwise and (b) spanwise longitudinal velocity correlations for the large-
domain L (solid line) and the small-domain S (circles) simulations at y+ = 15. Enlargements
are provided in the two insets.

in good agreement with a number of previous observations (see Rouson & Eaton 2001;
Picciotto et al. 2005; Picano et al. 2009, among others), where particles were found to
persist in regions of low fluid velocity.

As shown in figure 4, the smaller domain S is not long enough to allow
decorrelation of the velocity signal, violating condition (3.1). The resulting phase
locking of the fluid velocity streaks is expected to affect the distribution of particles in
the small domain. The issue is qualitatively addressed in figure 5(a), which provides a
comparison between two generic instantaneous particle configurations taken from the
two simulations, one in the small and the other in the large computational box. The
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FIGURE 5. Instantaneous snapshots of the particle distribution (St+ = 10) in the viscous
region at t+ ' 25 000. Particles are shown as light dots superimposed onto the contours
representing the streamwise velocity component (dark represents low-speed fluid). (a) Entire
flow domain of the small simulation S. (b) Corresponding part of the large-domain
simulation L; see figure 3 for a view of the whole domain. Plots are not drawn to scale.

shown wall-parallel slice spans the entire streamwise and spanwise extent of the small
domain. Figure 5(b) displays on the same scale the corresponding portion of the larger
domain; see figure 3 for the complete view. The effect of the computational box size
on the gross features of the particle distribution is apparent. Although the average
particle number per unit volume is identical in the two cases, the image of the small
domain shows a substantially lower local concentration. This suggests that one of the
artifacts of the improper dynamics of the largest fluid velocity structures is a decrease
in the effectiveness of turbophoresis, significantly underestimated in the presence
of artificial confinement. A second artifact is the increased order of the individual
particle aggregates, which look much straighter in the streamwise direction, and more
regularly spaced in the spanwise direction. Both observations are clear indications
that the collective dynamics of the particles is altered, since, as discussed in more
detail in Picano et al. (2009), preferential localization is the essential mechanism
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leading to statistical equilibrium. Actually, in wall turbulence, particles are always
subject to turbophoretic drift, which is responsible for pumping the particles from
the bulk towards the walls, thus establishing the particle number density gradient
corresponding to the eventual accumulation at the wall. At steady state, the particles
need to oversample fluid motions departing from the wall region to balance the
turbophoretic drift (Reeks 1983; Young & Leeming 1997; Picano et al. 2009). This
is achieved by a correlation of particle positions and fluid velocity events directed
from the wall towards the bulk of the channel (Rouson & Eaton 2001; Picciotto et al.
2005), which requires particle persistence in the low-speed streaks. The enhancement
of near-wall concentration is the outcome of such a delicate balance between particles
that leave the wall region in exchange for an opposite flux due to turbophoresis.

3.2. Analysis of wall accumulation
In order to make our analysis more quantitative, we need a global indicator able
to distinguish between different particle distributions in terms of the amount of wall
accumulation. The concept of Shannon entropy can serve for this. This quantity,
borrowed from statistical mechanics and information theory, was introduced by
Picano et al. (2009) as a global measure of particle segregation in turbulent wall-
bounded flows. For the present cases, the whole computational domain is divided
into Nsd = 128 equidistant wall-parallel slabs with dimensions Lx × 2h/Nsd × Lz and
height h+sd = U∗(2h/Nsd)ν = 2Reτ/Nsd = 2.8. The probability of finding a particle in
subdomain i is pi = Ni/Nt, where Ni is the average number of particles in subdomain
i, with Nt the total number of particles. The coarse-grained probability distribution
pi, i = 1, . . .Nsd, describes how particles are distributed as a function of distance
from the wall. An entropy, defined as S = −∑Nsd

i pi ln pi, can be conveniently
attached to this coarse-grained probability distribution. The entropy varies between
zero, corresponding to all the particles being located within the same subdomain, to a
maximum, Smax = ln Nsd, which is achieved with uniform distribution, pi = 1/Nsd. By
normalizing the entropy with its maximum, we construct an indicator, the normalized
entropy, S =S /Smax , which ranges from 0, when all particles are located in the same
subdomain, to 1, when the particles are equally distributed among the domains.

Figure 6 provides the time evolution of the entropy S for the two simulations
in the small and large domains, for each particle population. All curves start from
unity, since the particle initial positions were assigned with uniform spatial distribution.
The entropy decreases while the particles continue to localize more and more in the
subdomains closest to the walls. All populations reach a steady-state distribution, with
the only exception being particles at St+ = 5 whose entropy is still decreasing at the
time the simulation is stopped. The lightest particles (St+ = 1) essentially behave as
Lagrangian tracers and keep the uniform distribution they had initially. The smallest
asymptotic entropy, corresponding to largest accumulation, is achieved by particles
with Stokes numbers in the range St+ = 10–50. For such particles, the Stokes number
based on the local time scale of the buffer layer is of order one, confirming the
accepted explanation that takes the coherent structures of the buffer layer as the engine
of turbophoresis. On the contrary, particles with St+ = 100 show a higher asymptotic
entropy value corresponding to a lower wall accumulation.

Furthermore, figure 6 quantitatively confirms the qualitative differences in the
particle distributions between the large and small domains discussed in connection
with figure 5. Although the transient phase is qualitatively similar between the two
boxes, the particles get much more segregated in the large domain. Apparently, the
delicate balance between turbophoretic drift and preferential sampling of fluid velocity
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events directed away from the wall is extremely sensitive to the large-scale fluid
motions, inhibited in the small domain as a result of the imposed periodicity of the
flow.

As a global feature of the distribution, the Shannon entropy does not give
information concerning the specific regions where particles accumulate. This detail
is immediately spotted in figure 7(a), showing in logarithmic scale the wall-normal
profiles of the normalized mean particle concentration c(y), defined as the ratio
of particle number per unit volume to bulk concentration (ratio of total particle
number to whole domain volume). The large particle accumulation near the wall
stands out. While Lagrangian tracers are uniformly distributed at all times, inertial
particles manifest a concentration maximum close to the wall whose intensity strongly
depends on their inertia. The concentration peaks are found to move outwards
slightly with increasing Stokes number. This behaviour is essentially due to the
finite distance at which particle–wall collisions take places, i.e. the particle radius.
Since different particle populations are obtained on changing the particle radius (see
table 1), the minimum possible distance from the wall increases with the Stokes
number. As anticipated, the highest wall concentrations are exhibited by particles with
St+ = 10, 50, whose local wall density reaches of the order of a thousand times the
values in the centre of the channel. Actually, the largest particles, St+ = 100, show a
higher concentration than particles with St+ = 10, 50 in the range 2 < y+ < 10, but
with a lower concentration peak near the wall.

The difference between the large and small domains in terms of particle
concentration is highlighted in figure 7(b), where the ratio of large- to small-domain
concentration is plotted as a function of wall-normal distance. The difference is
significant (of the order of 20 %) and the particles apparently accumulate at the wall
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FIGURE 7. (a) Steady-state mean normalized particle concentration for the large-domain
simulation L. (b) Ratio between concentrations in the large and the small domains.

much more in the larger box even for particles at St+ = 1. The largest difference is
achieved by particles with St+ = 100. These massive particles are mostly driven by the
low-frequency fluid motions. Hence this behaviour is attributed to the difference in the
large-scale turbulent structures induced by the confinement due to periodic boundary in
the two configurations.

3.3. Particle velocity probability density function
As already stated, the equilibrium wall concentration is controlled by the ability of
the particles to oversample departing fluid events in order to balance the turbophoretic
drift. To quantify the concept, preferential sampling of fluid velocity events can be
addressed by looking at the difference between average fluid velocity at a particle
position, i.e. the average fluid velocity sampled by particles 〈u|p〉, and unconditioned
average fluid velocity 〈u〉.

Figure 8(a) shows the p.d.f. of the wall-normal particle velocity during the steady
state in the buffer layer (5 6 y+ 6 30). In describing the results, the wall-normal
velocity is assumed positive when directed towards the wall, i.e. different from the
usual convention. The thick solid line is the p.d.f. of fluid velocity. This statistic is
essentially identical in the large and the small domains, indicating the good agreement
for the fluid. The other lines in figure 8 provide the p.d.f.s of the wall-normal particle
velocity in the large domain, with symbols indicating small-domain data. We see
that even the single-point particle velocity p.d.f. seems to be unaffected by domain
truncation. We further remark that the mean value of the particle wall-normal velocity
is zero because the statistical steady state is considered. The larger is the inertia,
the less frequent are the intense particle velocity events, i.e. the tails of the p.d.f.,
compared with the fluid ones. This effect is more accentuated for intense departing
events (negative tail). On the contrary, slow motions directed away from the wall
are more frequent compared to fluid, as can be seen from the insets. Hence the
particles move mainly with slow departing velocities and tend to filter out high-
velocity fluctuations, especially those directed away from the wall and towards the
channel centre. This trend is shared by all populations and is more evident for the
largest particles.
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velocity sampled by particles in the buffer layer (5 6 y+ 6 30) at statistically steady state.
Enlargements are provided in the insets. Positive wall-normal velocities are directed towards
the wall.

Since the particles are not uniformly distributed in space, this implies that they can
sample specific fluid events. The p.d.f. of wall-normal fluid velocity conditioned to
the particle positions, i.e. the fluid velocity ‘seen’ by the particles, is used to quantify
the preferential sampling – see Picano et al. (2009) for more details. This p.d.f. gives
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(a) St+ = 1, (b) St+ = 5, (c) St+ = 10 and (d) St+ = 100. Positive velocities are directed
towards the wall.

the normalized number of particles that are subject to a certain fluid velocity event.
Hence, comparing the fluid velocity p.d.f. seen by the particles with the unconditioned
one, it is possible to assess in which regions the particles preferentially localize.
From figure 8(b), inertial particles tend to undersample the intense fluid events (p.d.f.
tails) and especially those directed towards the wall (positive values). Conversely, the
particles tend to oversample slow fluid motions and particularly those away from the
wall (ejection motions). This feature is more accentuated for particles with St+ = 50.
It is expected that the maximum preferential sampling occurs for intermediate Stokes
numbers, since tracers (St+→ 0) and ballistic particles (St+→∞) sample the fluid
events uniformly. The particle preferential sampling of slow departing motions is
consistent with the localization in streaky patterns corresponding to the low-speed
streaks, as discussed with regard to figure 5.

More details can be extracted from the joint probability distribution function (JPDF)
of particle and fluid velocity. The JPDF is shown in figure 9 for the buffer layer where
most of the turbophoresis originates. The lightest particles St+ = 1 (figure 9a) tend
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FIGURE 10. Average collision velocity at the wall V+c versus Stokes number St+ (log scale):
circles, DNS data; full line, fit V+c ∝ (St+)1.33.

to reproduce the fluid velocity accurately, as shown by the bottom-left to top-right
alignment of the JPDF iso-levels, which imply that Vy ' Uy, with the exception of
the negative tail (intense departures from the wall), where particles are strictly slower
than the fluid. In this third quadrant, the particle speed is systematically smaller than
the corresponding fluid velocity, suggesting that even low-inertia particles cannot fully
comply with abrupt fluid departures from the wall. A similar but more accentuated
trend is apparent for particles with St+ = 5, 10 (figure 9b,c). As a general feature,
particles follow the fluid, approaching the wall in quasi-symmetrical fashion, with
almost equiprobable positive and negative relative velocity with respect to the fluid.
On the other hand, they move systematically more slowly than the fluid in departing
motions. On increasing the Stokes number, ballistic behaviour is eventually achieved,
and at St+ = 100 (figure 9d) particle velocities are much less correlated with the
fluid. The small amount of accumulation experienced by these heavy particles may
be understood by the fact that they do not even follow the fluid in the approaching
motions. The rhomboidal shape of the JPDF contours is induced by the collisions
with the wall, which are very intense owing to the large inertia. Note that, the larger
the inertia, the higher the wall collision velocity and the longer the spatial distance
where particles maintain a given velocity. A measure of this effect can be given by
the average collision velocity at the wall, V+c , as a function of St+ (see figure 10).
As can be seen in the figure, the collision velocity increases with the Stokes number,
and for St+ > 5 the data are well fitted by the power law V+c ∝ (St+)1.33. Since a
particle tends to maintain its velocity for a time scale of the order of its particle
relaxation time τp, the length lcol , where the effect of the wall collision is relevant, is
l+col = lcol/(ν/U∗) = V+c St

+. The estimate of l+col for particles with St+ = 100 is l+col ' 7,
while for particles with St+ = 10 it is l+col ' 0.03. This explains why the ballistic
behaviour in the buffer layer is apparent only for our largest particles, St+ = 100.
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FIGURE 11. Second-order structure function of wall-normal fluid velocity in the buffer layer
at y+ = 15 for the two domains (full line, large domain; circles, small domain): (a) angular
average, 〈δU2

y 〉0 (see (3.3)) versus separation r+; and (b) spanwise cut, 〈δU2
y 〉(r+x = 0, r+z ) (see

(3.2)) versus spanwise distance r+z .

The bias in the departing events discussed in connection with the particle velocity
p.d.f. (figure 8a) is entirely consistent with the behaviour of the JPDF (figure 9)
in the third quadrant. At a qualitative level, it is explained by the particle inertia
filtering out the strong acceleration associated with the most intense outburst of fluid.
Unexpectedly, no relevant difference seems to emerge in the single-point velocity
statistics between the two simulations L and S, in the large and small domains,
respectively.

3.4. Two-point statistical analysis
Proceeding to higher-order statistics, figure 11 addresses the wall-normal fluid velocity
differences in terms of the second-order wall-normal structure function,

〈δU2
y 〉 = 〈(Uy(x+ rx, y, z+ rz)− Uy(x, y, z))2〉, (3.2)

which, for given wall-normal position, depends on the separation vector r = (rx, rz) =
r(cos θ, sin θ). Figure 11(a) shows the angular average

〈δU2
y 〉0 =

1
2π

∫ 2π

0
〈(Uy(x+ r cos θ, y, z+ r sin θ)− Uy(x, y, z))2〉 dθ, (3.3)

while figure 11(b) gives the spanwise behaviour for rx = 0. The spanwise structure
function neatly defines the transverse correlation scale of the wall-normal fluid velocity.
Comparing data in the large domain L (solid line) and the small domain S (symbols),
the alteration of the peak intensity clearly appears, confirming the blockage induced by
insufficient domain dimensions. Specifically, the more coherent and aligned structures
found in the small domain here appear as an enhanced peak at the correlation scale.
We clearly expect a similar effect on the two-point particle statistics.

Particle clustering is best addressed in terms of two-point statistics of particle
positions. Given an instantaneous configuration of particles, clustering amounts to
an increased probability of finding a second particle in the neighbourhood of a first
one with respect to a reference distribution where particles are randomly distributed in
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space. This effect is typically studied by analysing the radial distribution function,
which provides the probability of finding a particle pair separated by a given
separation r. This tool has been used and thoroughly discussed for homogeneous
flows by Bec et al. (2007), Shotorban & Balachandar (2006) and Gualtieri et al.
(2009), among others.

In the present case, clustering occurs in combination with turbophoresis, spatial
inhomogeneity and strong anisotropy. The appropriate statistical observable is the ADF
(e.g. Gualtieri et al. 2009), which is the direct extension of the RDF to take into
account the angular dependence. This concept can be specialized to deal with the
geometry of wall-bounded flows, where the interest is focused on the directionality of
particle distributions in wall-parallel planes at given wall-normal distance y. For this
purpose, it is useful to introduce a two-dimensional version of the ADF,

g(r, r̂, y)= 1
r

dνr

dr

1
n0(y)

, (3.4)

where νr(r, r̂, y) is the average number of pairs in the same plane within distance r
along the wall-parallel direction, represented by unit vector r̂, and

n0(y)= 0.5Np(y)[Np(y)− 1]/(LxLz) (3.5)

is the total number of pairs in the plane divided by the area of the system. Given its
normalization, the ADF does not depend on the mean concentration of the specific
plane and is related to the probability of finding a particle pair normalized by
the probability of a random, spatially decorrelated particle arrangement. Hence, for
spatially homogeneous, independent distributions of particle positions, the ADF would
be identically equal to 1 in all planes, for all distances and directions. The actual
number of particle pairs N (ξ, y) expected in a small circular domain of radius ξ � 1,
say, is expressed in terms of the ADF as

N (ξ, y)= n0(y)
∫ 2π

0

∫ ξ

0
rg(r, r̂, y) dr dθ, (3.6)

where the unit vector r̂ lies in the wall-parallel plane at wall-normal position y and
θ is the angle defining its direction in the plane. For spatially independent particle
positions, the number of pairs is N (ξ, y) = n0(y)πξ 2, corresponding to bounded
ADFs for vanishing separations. In the presence of clustering, the probability of
finding a second particle in the vicinity of a given one is instead much increased.
Hence, when small-scale clustering (ξ � 1) occurs, N (ξ, y) > n0(y)πξ 2, implying
that g(r, r̂, y) ∝ r−α, with α > 0 for small r (Sundaram & Collins 1997; Bec et al.
2007). The singularity exponent α can thus be taken as a measure of the small-scale
clustering intensity.

Before discussing the results in more depth, it may be worth stressing once
more that preferential accumulation at the wall and clustering, although strictly
entangled in wall flows, are two distinct phenomena. In principle, preferential
accumulation at the wall could also occur with no relevant clustering effects, like
in a laminar stratification process. Under these conditions, the ADF would be
identically unity everywhere, while the mean concentration could have a wall-normal
variation. Conversely, clustering can take place without turbophoresis in homogeneous
particle-laden turbulent flows. In wall-bounded flows, as we will show, the two
phenomenologies are complementary aspects of the same physics.

In figure 12 the ADF is plotted as a function of rx = rr̂x and rz = rr̂z in the viscous
sublayer (figure 12a–d) and in the outer region (figure 12e–h) for the large-domain
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FIGURE 12. ADF for four different Stokes numbers, (a–d) in the viscous sublayer y+ = 3
and (e–h) in the outer region y/h = 1 for the large-domain simulation: (a,e) St+ = 1;
(b,f ) St+ = 5; (c,g) St+ = 10; and (d,h) St+ = 50. The circle indicates the limit of the small
domain.
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simulation and different Stokes numbers. As already explained, the increase near the
origin, r→ 0, is a manifestation of small-scale clustering. Actually, this is the most
relevant feature characterizing the outer region (figure 12e–h), especially for particles
with Stokes number St+ = 10, 50. The circular symmetry of the ADF in this region
implies the absence of a preferred direction in the wall-parallel plane, as expected, for
example, for isotropic particle aggregates. In fact, small-scale clustering is a persistent
feature of the system, found also in the near-wall region. However, the directionality
of the clusters, negligible further away from the wall, becomes more and more
apparent as the wall is approached and becomes overwhelmingly strong in the viscous
sublayer. In the streamwise direction êx, the ADF, gx(r) = g(r, êx), systematically
exceeds unity, showing that, independently of separation, the number of particle pairs
in the streamwise direction is, for any distance, larger than expected on the basis
of a spatially independent distribution (g ≡ 1). Geometrically, gx(r) = g(r, r̂x) > 1
corresponds to the preferential streamwise alignment of the particle streaks. On
the contrary, in the spanwise direction, êz, the ADF, gz(r) = g(r, êz), falls below
unity to reach a minimum at r = lc. This is interpreted as a smaller probability of
finding particle pairs in that direction at the corresponding separation. This happens
at a typical distance that defines the thickness of the particle streak, when one
particle is within the high-density region and the other in the depleted area that
separates neighbouring streaks. This anisotropic behaviour is particularly relevant for
intermediate size particles, i.e. St+ = 10, 50.

The diameter of the black circles included in each plot in figure 12 corresponds to
the spanwise extent of the small domain. It is clear that, in the near-wall region, the
spanwise scale of the small domain is insufficient to fully resolve the near-wall particle
clustering.

Cuts of the ADF along the streamwise direction êx are plotted in figure 13 for
different Stokes numbers in order to highlight the length scales of the clusters. In the
streamwise direction, particle positions remain highly correlated up to separations of
the order of 500–1000 wall units, a correlation length physically induced by the fluid
velocity structures. Such a correlation length should be compared with the streamwise
extension of the large (L∗x = 12π× 180' 6800) and the small (L∗x = 4π× 180' 2300)
domains. While gx ≡ 1 at large distance in the large domain, with the exception
of particles with Stokes number St+ = 1 (not reported in figure), the small domain
is too short for the correlation between particles positions to properly vanish. As
a consequence of confinement, for Stokes numbers 5–10, the probability of finding
a pair along the streamwise direction at the largest scales in the short domain is
significantly larger in the short than it is in the long domain, denoting an even
increased particle correlation. This alteration extends to smaller scales as the particle
inertia increases, St+ = 50–100, as shown by the ADF of the short domain, which,
for heavy particles, almost everywhere exceeds that of the longer domain. Overall the
analysis of the ADFs confirms the qualitative impression already given by figure 5: in
the small-domain simulation the particle distributions are systematically more aligned
in the streamwise directions.

Figure 14 shows the behaviour of the ADF in the spanwise direction. The streaky
nature of the particle patterns emerges clearly from this observable. The characteristic
spacing of the particle streaks corresponds to twice the spanwise separation lc where
the ADF minimum occurs. This spanwise length is found to be around l+c ' 30
wall units for St+ = 5, 10, 50 in the large domain and l+c ' 40 wall units in the
small one. It is clearly related to the spanwise correlation length of wall-normal fluid
velocity fluctuations `z. For particles with St+ = 100, the spanwise scale increases to



Wall accumulation and spatial localization in particle-laden wall flows 21

gx

gx

5

10

15
20
25
30

10–1 100 101 102 103

5 L
5 S

5

10

15
20
25
30

10–1 100 101 102 103

10 L
10 S

5

10

15
20
25
30

100 101 102

50 L
50 S

5

10

15
20
25
30

100 101 102

100 L
100 S

10–1 103 10–1 103

(a) (b)

(c) (d )

FIGURE 13. ADF in the streamwise direction for four different particle populations in the
near-wall region (y+ = 1).

60 wall units, consistent with the concept that heavy particles tend to filter small-scale
turbulent motions. The particle inertia tends to filter the high temporal frequency of
the fluid velocity fluctuations. As can be understood by the particle equation (2.3),
the filter cut-off time scale is of the order of the particle relaxation time τp. Since
wall turbulence is constituted by spatial–temporal coherent structures, the time scale of
velocity fluctuations can be related to the characteristic length scale by means of their
typical velocity. Since the friction velocity is the natural choice for the velocity scale
in the near-wall region, the particle relaxation time can be easily translated into the
length scale ∆ of an equivalent spatial filter, leading to ∆+ = U∗τp/δν = St+. Hence
we expect that, as long as the filter length scale is smaller than the typical distance
between velocity streaks δ+s , i.e. ∆+ < δ+s , the particles interact with the coherent
structures forming the streaks, yielding lc ∼ `z. On the other hand, when ∆+ > δ+s , the
particles feel only a filtered fluid velocity field with a filter width larger than the streak
spacing. Under these conditions, the particle structures should scale with ∆+, as the
distance between the filtered velocity streaks.

In the small-box simulation, particle structures are very regularly spaced and
highly correlated in the spanwise direction, as understood by the clear oscillating
behaviour of the ADF at large separation scale (see insets) and appreciated from
the instantaneous configuration of figure 5. The order is much reduced for the large
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FIGURE 14. ADF in the spanwise direction for four different particle populations in the
near-wall region (y+ = 1).

domain, where, at separations larger than 100 wall units, the particle pair distribution
achieves an almost uniform state. Besides the large-scale behaviour of the aggregates,
the domain size seems to affect also the small-scale features of the particle distribution,
at least for sufficiently massive particles. Data at St+ = 50, 100 show increased
clustering at small scales in the small domain, as illustrated by the open circles
above the solid line in figure 14(b). These findings confirm that the large-scale fluid
structures may have a significant influence on particle patterns.

Interestingly, the behaviour at very small scale, r+ ' 1, presents some peculiar
aspects. The most accumulating particles, St+ = 10, 50, show a probability of finding
particle pairs aligned in the streamwise direction more than twice that in the spanwise
direction, as can be deduced by the ratio between the values of ADF in the spanwise
and streamwise directions. This implies that particle clusters are streamwise aligned
even at these very small scales. A different behaviour is experienced by smaller or
larger particles, which are more isotropically distributed at these small scales.

The ADF, g(r, r̂, y), can be decomposed into an isotropic component

g0(r, y)= (1/2π)
∫ 2π

0
g(r, r̂(θ), y) dθ, (3.7)
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where θ is the angle between r̂ and the spanwise direction, and an anisotropic
component. Focusing on the large domain, the isolines of the RDF g0, i.e. the isotropic
component of the ADF, are shown in figure 15 for several particle populations in the
(r+, y+) plane. This kind of plot allows the behaviour of the clustering process to be
examined as a function of the wall-normal location y+. Overall, from figure 15, peak
clustering occurs for particles with St+ = 10, 50, which are also those most subjected
to turbophoresis. Recalling that, given its normalization, the ADF does not depend
directly on local concentration, a genuine correlation between wall accumulation and
segregation emerges.

Despite the fact that the maximum accumulation takes place at the wall, particles
tend to achieve maximum clustering a little further away at y+ ' 3 (see figure 15),
where the local concentration level is already lower by more than one order of
magnitude than right at the wall (see figure 7). The viscous sublayer and lower buffer
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layer are clearly locations where the highest clustering is achieved, as a consequence
of flow inhomogeneity and fluid structure population.

Particles with St+ = 10, 50 exhibit large values of g0 (30 and 60, respectively) at
separations of the order of one wall unit (see figure 15), implying that their collision
rate could be enhanced by a factor of 30–60 compared to that of an uncorrelated
distribution with the same local concentration. For lighter particles, namely St+ = 5,
a second peak develops in g0. This second peak occurs in the lower outer region
where the local Kolmogorov time scale (τη =√ν/ε, with ε the turbulent kinetic energy
dissipation) matches the relaxation time, leading to a Kolmogorov–Stokes number
Stη = τp/τη of the order of unity. This behaviour is consistent with the observation
derived from homogeneous flows, where particles at Stη ' 1 are known to be the most
prone to small-scale clustering. This effect cannot be observed for heavier particles
because their Kolmogorov–Stokes numbers exceed unity everywhere in the channel.
We stress that the near-wall clustering peak occurs in fact independently of the local
Kolmogorov–Stokes number, being essentially associated with turbophoresis.

To study the geometry of the particle patterns in more detail, the anisotropy
indicator (Casciola et al. 2007)

A(r, y)=
√∫

(g(r, θ, y)− g0(r, y))2 dθ∫
g2

0(r, y) dθ
(3.8)

is evaluated and plotted in figure 16. The anisotropy indicator A(r, y) is an
increasing function of the anisotropy level of the particle distribution (zero corresponds
to completely isotropic conditions). Both heavy (ballistic) and very light (purely
Lagrangian) particles are expected eventually to reach a uniform and isotropic
distribution. Consistently the strongest anisotropy occurs for intermediate Stokes
numbers, of the order of St+ = 10, 50. For all populations that we have presently
considered, the maximum level of anisotropy is reached in the viscous sublayer at
y+ ' 2.5 and separation of ∼30 wall units, where the anisotropy component exceeds
the isotropic one, leading to A = 2.5 for particles with St+ = 50. The separation of 30
wall units compares well with the transverse characteristic length of particle patterns
lc, confirming that the streaky structures are the origin of the measured anisotropy.
Below this length scale, the ADF tends to decrease the directionality. However, a
substantial level of anisotropy is retained even at r+ = 1 in the viscous sublayer for
particles with St+ = 10, 50 displaying A ' 0.8. As a general trend, isotropy tends
to be recovered by all particle populations for fixed separation r+ moving from the
wall towards the bulk of the flow. It was found by Gualtieri et al. (2009) that,
in particle-laden homogeneous shear flow, the anisotropy level of particle clustering
increases with decreasing separation owing to the presence of mean shear. For the
present configuration, this behaviour is recovered in the log layer, e.g. y+ = 100, where
the anisotropy level is found to increase for all particle populations reducing the
separation distance r+ down to small scales. This is not surprising since homogeneous
shear flow is known to reproduce the most relevant feature of the turbulent dynamics
in the log layer (see e.g. Casciola et al. 2005).

As stated before, the behaviour of g0(r) near the origin is singular, g0(r) ∝ r−α,
with α > 0. The probability of finding a pair of particles at small separation is thus
an increasing function of the exponent, i.e. the larger α, the more intense is the
clustering at small scales. In figure 17(b) the exponent α is plotted as a function
of the wall-normal distance. The most evident feature of the plot is the well-defined
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FIGURE 16. Anisotropy indicator of ADF for four different particle populations: (a) St+ = 5,
(b) St+ = 10, (c) St+ = 50, and (d) St+ = 100.

maximum of α occurring in the viscous sublayer (y+ = 3–5) for most accumulating
particles. The values of α exhibited in the bulk of the flow (y+ > 100) are consistent
with the values found for homogeneous conditions, where the relevant parameter is
the Kolmogorov–Stokes number Stη = τp/τη (τη = η2/ν) – see Bec et al. (2007) and
Gualtieri et al. (2009). In particular, particles with 5 6 St+ 6 50 are characterized by a
Kolmogorov–Stokes number of the order of unity in this outer region (see figure 17a),
and display α ' 0.5. Interestingly, St+ = 100 particles tend to achieve a uniform
distribution (small α) in the bulk owing to their ballistic behaviour (Stη = 5–10).
We stress that the maxima of the exponent in the viscous sublayer cannot be
explained in terms of the local Kolmogorov–Stokes number, at least for particles
with St+ > 10 characterized by 2 < Stη < 20. In particular, most wall-accumulating
particles, St+ = 10, 50, show the highest exponents α ' 0.8. A unit value of the
exponent α would imply that the particle clusters become one-dimensional lines in
the x–z plane. This happens for particles with St+ = 10, 50, which distribute in very
narrow structures that are indeed almost one-dimensional lines in the x–z plane. As
shown by the ADF (figures 12–14) and by the anisotropy indicator A (figure 16), these
aggregates are close to straight lines, oriented in the streamwise direction, as apparent
in the visualization of figure 5.
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4. Conclusion
We perform DNS of a particle-laden channel flow at friction Reynolds number

Reτ = 180 in two computational domains: a standard size and a very large
computational domain. Several point particle populations with friction Stokes number
ranging from pure tracers, St+ = 0, to heavy particles, St+ = 100, have been
considered. Maximum wall accumulation due to turbophoresis is observed at Stokes
numbers of the order of St+ = 10–50 when the particle Stokes time matches the
turbulence time scale of the buffer layer. Comparing particle statistics between the
large and the small domains, a surprising increase of wall particle concentration is
found in the large domain, up to 20 % difference with respect to the small domain.
On the other hand, the single-point fluid and particle velocity probability distributions
are found to be substantially unaffected by domain truncation. The analysis of the
instantaneous configurations shows that the mean particle concentration is composed of
an ensemble of strongly localized instantaneous patterns, which are strongly influenced
by the spatial structure of the advecting fluid velocity field. Insufficient domain
dimensions by inducing an artificial correlation in the velocity field lead to blocking
effects of the particle aggregates, which show an increased level of artificial order in
the small domain. Based on the present results, we believe that the length of particle
streaks is of the order of 103 inner units, i.e. much larger than the velocity streaks.
The apparent relation between mean wall accumulation and particle localization effects
motivates the analysis of more sophisticated statistical observables like the radial
(RDF) and the angular (ADF) distribution functions. These tools allow us to analyse
the intensity and the geometry of the clustering as a function of the scale and of
the wall-normal distance. The typical streamwise extent of the particle aggregates is
estimated to be 500–1000 wall units. For particles with St+ 6 50, the typical transverse
distance of the particle aggregates is determined by the spanwise correlation length of
the wall-normal velocity, while heavier particles display larger separations. This effect
can be understood by translating the delay time of the particle response, τp, into a
related filter length ∆ operating on the advecting fluid velocity field.

Small-scale clustering can be quantified by the singularity exponent α of the RDF.
Typical values found in homogeneous turbulence are of the order of 0–0.7 depending
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on the Kolmogorov–Stokes number, with a maximum attained for Stη ' 1. For the
present flow case, this kind of behaviour is recovered in the outer part of the flow, as
expected. The peculiar aspect is the correlation between turbophoresis and small-scale
clustering: the singularity exponent attains its maximum as a function of wall-normal
distance in the viscous sublayer where the local Kolmogorov–Stokes number greatly
exceeds unity, with most accumulating particles, St+ = 10, 50, displaying the largest
exponents. The closeness of this exponent to one, α ' 0.8, and the high level of
directionality (anisotropy) of these clusters also at small scales imply that the particles
in the wall-parallel plane tend to segregate in quasi-one-dimensional straight lines
almost aligned with the streamwise direction. The reason for this behaviour lies in the
dynamics of turbophoresis and is better understood by addressing the steady state. It
can be shown that, in order to balance the turbophoretic drift of the particles towards
the wall, it is strictly necessary that the particles localize in regions of slow wall-
departing fluid. This causes the streamwise-oriented quasi-one-dimensional patterns we
have described in detail in the present paper.

The combination of wall accumulation leading to large particle concentration near
the wall with strong clustering and anisotropy of the particle aggregates is expected to
crucially enhance the collision rate between particles, and the actual collision models
need to be improved to capture these effects.
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