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Linné FLOW Centre and SeRC (Swedish e-Science Research Centre),10

KTH Mechanics, Stockholm, Sweden11

∗Corresponding author address: Ekaterina Ezhova12

E-mail: ekaterina.ezhova@helsinki.fi13

Generated using v4.3.2 of the AMS LATEX template 1

LaTeX File (.tex, .sty, .cls, .bst, .bib) Click here to download LaTeX File (.tex, .sty, .cls, .bst, .bib)
wall_fin2.tex



ABSTRACT

Subglacial discharges have been observed to generate buoyant plumes along

the ice face of Greenland tidewater glaciers. These plumes have been tra-

ditionally modelled using classical plume theory and their characteristics

parameters, i.e. velocity, are employed in the widely used three-equation

melt parametrization. However, the applicability of plume theory for three-

dimensional turbulent wall plumes is questionable due to the complex near-

wall plume dynamics. In this study, corrections to the classical plume theory

are introduced to account for the presence of a wall. In particular, the drag and

entrainment coefficients are quantified for a three-dimensional turbulent wall

plume using data from direct numerical simulations. The drag coefficient is

found to be an order of magnitude larger than that for a boundary layer flow

over a flat plate at a similar Reynolds number. This suggests a significant in-

crease in the melting estimates by the current parametrization. However, the

volume flux in a wall plume is found to be half that of a conical plume which

has double the buoyancy flux. This suggests that the total entrainment (per

unit area) of ambient water is the same and that the plume scalar character-

istics, i.e. temperature and salinity, can be predicted reasonably well using

classical plume theory.
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1. Introduction32

Subglacial discharge is among the major factors controlling submarine melting of Greenland’s33

tidewater glaciers (Straneo and Cenedese 2015). Turbulent plumes generated by fresh water at the34

freezing temperature discharged at the glacier base enhance melting of the ice face. In Greenland35

the ice tongue has broken off in most tidewater glaciers and the ice face is quasi vertical, thus,36

subglacial discharge plumes are usually modelled as a turbulent buoyant plume propagating along37

a vertical ice face (Straneo and Cenedese 2015).38

Current ice-ocean models quantify melting employing the three-equation formulation by Hol-39

land and Jenkins (1999), where the effect of plume turbulence is parametrized through the friction40

velocity u∗, a fundamental parameter defining wall-bounded turbulence, and the melting rate is41

assumed to be proportional to u∗. To estimate the friction velocity from the mean velocity profile42

a drag coefficient is typically used43

Cd =
τ

ρU2
re f

=
u2
∗

U2
re f

, (1)

where τ = ρ < u′iu
′
j > is the mean turbulent stress parallel to the ice face, Ure f the reference44

velocity, and ρ the water density. The drag coefficient is usually taken to be of the order Cd ∼45

0.001, a value close to that of a turbulent boundary layer flow over a flat plate at high Reynolds46

numbers (e.g. Monin et al. 1971). However, a three-dimensional wall plume can be expected47

to exhibit strong lateral spreading similarly to what reported for the more extensively investigated48

wall jets (Launder and Rodi 1983). This effect is attributed by these authors to the secondary flows49

in the jet as well as to the gradients of turbulent stresses, the latter being more important (Craft50

and Launder 2001). Assuming the turbulent stresses to be similar to those in the two-dimensional51

boundary layer flow over a flat plate is thus not justified. A recent study (Slater et al. 2016) used52

a larger value of Cd = 0.01 following Jenkins et al. (2010) who found that this larger value of Cd53
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was necessary to predict the observed melt rates of an ice shelf in Antarctica. In addition, current54

estimates of entrainment in wall plumes are based on experimental data and theoretical models for55

conical free plumes (Cowton et al. 2015; Slater et al. 2016; Mankoff et al. 2016).56

The main focus of this study is to compare the modification of the classical plume theory for57

a three-dimensional turbulent wall plume against Direct Numerical Simulations (DNS) and to58

quantify the drag and entrainment coefficients consistent with the theory using data from DNS and59

existing experiments. An appropriate drag coefficient is obtained by applying the modified plume60

theory to our simulations and for this we use an analytical solution which, to our knowledge, is61

novel for 3D flows (2D analogues are reported by Gayen et al. 2016). As a first step, we consider62

a turbulent plume along a vertical wall without the meltwater feedback, i.e. we assume that the63

wall is neither a source of mass nor of buoyancy.64

2. Wall plume theory65

Following Cowton et al. (2015) we consider the wall plume as half of a conical plume and66

assume that it can be described by the classical system of equations suggested by Morton et al.67

(1956) (this approach will be justified later by means of DNS). This theory is referred hereafter as68

a modified MTT theory: the conservation equations for volume Q̃, momentum M̃ and buoyancy F̃69

fluxes, are written, following Cowton et al. (2015) and Slater et al. (2016), as70

dQ̃
dz̃

=
d
dz̃

(π b̃2ũ/2) = πα b̃ũ, (2)

dM̃
dz̃

=
d
dz̃

(π b̃2ũ2/2) = π b̃2g′/2−2Cd b̃ũ2, (3)

dF̃
dz̃

=
d
dz̃

(π b̃2ũg′/2) = 0. (4)
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In the above, b̃ is the dimensional plume radius, ũ the dimensional plume velocity (assuming71

a top-hat velocity profile), g′ = g∆ρ̃/ρ̃0 the reduced gravity, Cd the drag coefficient and α the72

entrainment coefficient. The latter is defined as ũe = α ũ, where ũe is the entrainment velocity.73

Note that, due to the presence of a wall, α is not necessarily equal to that for a conical plume.74

Moreover, to account for a possible asymmetry in the plume shape, we introduce an ‘equivalent’75

radius b̃ (to be defined in terms of momentum and volume fluxes).76

The system (2)-(4) is non-dimensionalized introducing the following variables Q = Q̃/
(
b̃2

0ũ0
)
,77

M = M̃/
(
b̃2

0ũ2
0
)
, F = F̃Fr2

0/
(
b̃0ũ3

0
)

and z = z̃/b̃0, where Fr0 = ũ0/
√

g′0b̃0 is the source Froude78

number and the subscript ‘0’ indicates values at the source. Equations (2)-(3) can be rewritten as79

dQ
dz

=
√

2παM1/2, (5)

dM
dz

=
F0Q

Fr2
0M
−
√

8/πCdM3/2Q−1. (6)

When neglecting the effect of a wall on the plume dynamics (hereafter ‘free’ plume), the drag80

term in (6) is assumed to be zero and81

dM
dQ

=
F0Q√

2παFr2
0M3/2

, (7)

which has the following analytical solution82

M5/2 = M5/2
0 +

5F0(Q2−Q2
0)

4
√

2παFr2
0
. (8)

However, in the presence of a wall the drag term in (6) should be considered, which leads to83

dM
dQ

=
F0Q√

2παwFr2
0M3/2

− 2
παw

Cd
M
Q
. (9)

The solution therefore becomes (see supplementary material for derivation details)84

M5/2 =
5F0Q2

4
√

2παwFr2
0(1+

5Cd

2παw
)

+

M5/2
0 −

5F0Q2
0

4
√

2παwFr2
0(1+

5CD

2παw
)

(Q0

Q

) 5Cd

παw , (10)
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where αw is the entrainment coefficient in the presence of a wall.85

The first term on the r.h.s. of (10) grows with Q, while the second decreases; thus, for Q >>86

Q0, i.e. sufficiently far from the source, the second term on the r.h.s. of (10) can be neglected.87

Thus, in the far field (i.e. for M >> M0 and Q >> Q0), the ratio M5/2/Q2 is constant for both88

the free (8) and wall (10) plume, and the drag and turbulent entrainment coefficients define the89

difference between these two cases. Since Cd is taken to be small in current models (Cowton et al.90

2015; Slater et al. 2016), the wall plume is assumed to behave as a half-conical free plume. This,91

however, should be treated with caution. We show in what follows that the drag coefficient is an92

order of magnitude larger than it can be expected when compared to the boundary layer flow over93

a flat plate.94

The entrainment coefficient for a free plume can be obtained from the MTT theory, b = 6/5αz,95

if one knows the evolution of the plume radius with the distance from the source. The far-field96

asymptotic solutions for the wall plume radius and velocity can be obtained substituting the first97

term on the r.h.s. of (10) in (5) and combining the solution with the definitions of the volume and98

momentum fluxes:99

bw = 6/5αwz, (11)

uw =

(
α

αw

)2/3 u(
1+

5Cd

2παw

)1/3 , (12)

where u =

(
5F0

4παFr2
0

)1/3(6αz
5

)−1/3

is the classical MTT self-similar solution for a conical100

plume in a homogeneous fluid and the subscript ‘w’ indicates wall plume properties.101

In what follow, we quantify the entrainment and drag coefficients using data from DNS. In102

particular, we use the radius dependence on the distance from the source to define the entrainment103
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coefficients for free and wall plumes, and then quantify the drag coefficient based on the far-field104

solutions of (8) and (10).105

3. Results106

Two simulations of a turbulent vertical lazy plume in a homogeneous fluid were performed:107

one conical plume and one wall plume. The conical plume is generated by a source volume108

flux 2Q̃0 exiting from a round source of radius b̃0. The source Froude number of the plume is109

Fr0 =
ũ0√
g′0b̃0

= 0.66 and the Reynolds number Re0 =
ũ0b̃0

ν
= 1000, where ν is the kinematic110

viscosity. The Froude number chosen here corresponds to that of a lazy plume, typical of those111

generated by a subglacial discharge. Note that a lazy plume gains velocity near the source due112

to its buoyancy (e.g. Fischer et al. 1979), and for the Froude number used here the equivalent113

top-hat velocity near the source becomes approximately twice as large as the source velocity, and114

consequently, the effective Reynolds number near the source also increases nearly twice. The wall115

plume is generated from a half-round source of radius b̃0 attached to a wall with a total discharge116

Q̃0 (see visualization in Fig. 1a).117

The DNS has been performed using the spectral element code Nek5000 (Fischer et al. 2008).118

We consider an incompressible fluid with buoyancy modelled by the Boussinesq approximation.119

A cylindrical domain is used to simulate the conical plume, whereas a half-cylinder is used for the120

wall plume, with an increased resolution close to the wall. The domain radius is 10b̃0, while the121

vertical length is 29b̃0. The resolution is less than 0.01b̃0 near the wall (or in terms of inner scaling122

∆x ≤ 0.8xv, where xv = (Re0 · u∗)−1 is the viscous length scale, except in a small domain in the123

vicinity of the symmetry axis where the resolution is ∆x ≈ xv) and close to 0.01b̃0 in the plume,124

thus, we resolve the viscous sublayer as well as the plume up to the Kolmogorov scale of this flow,125

estimated as b̃0/Re3/4 ∼ 0.01b̃0. The total number of nodes is about 29 million for the wall plume126
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and 46 million for the conical plume. We use the open (zero-gradient) boundary conditions for127

the vertical velocity and density, combined with a sponge layer for the density fluctuations and128

horizontal velocity at the top outflow boundary, open boundary conditions for all variables and a129

sponge layer for the density fluctuations on the open domain sides (cf. Ezhova et al. 2017). Finally,130

we set zero velocity and zero buoyancy flux at the wall.131

a. Comparison between wall plume theory and DNS results. Estimates of drag and entrainment132

coefficients using the wall plume theory.133

The DNS results show that a wall plume indeed behaves similarly to a wall jet, being wider in134

the direction parallel to the wall and narrower perpendicular to the wall, as illustrated by Figs. 1b,135

c.136

The volume and momentum fluxes are computed at horizontal cross-sections at each vertical137

z-level as Q =
∫∫

Udxdy and M =
∫∫

U2dxdy. The non-dimensional mean vertical velocity U is138

an average over 50 non-dimensional time units (the eddy turnover time near the top boundary139

is approximately 2 time units for the wall plume and 1.7 for the conical plume, where time is140

non-dimensionalized using t = b̃0/ũ0). The values for a half-conical free plume are obtained by141

dividing by 2 the values from a conical plume.142

The volume flux of the wall plume is almost identical to half of the volume flux pertaining the143

conical plume, whereas away from the source due to the wall friction the momentum flux of the144

wall plume is reduced by ≈ 15% when compared to that of the free plume due to the wall friction145

(Fig. 2). A similar result, i. e. same volume fluxes and significant reduction of momentum flux in146

the presence of a wall, has been reported for three-dimensional turbulent wall jets by Namgyal and147

Hall (2016). In agreement with the modified MTT theory solutions for wall plumes (dashed lines148
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in Fig. 2), the volume and momentum fluxes increase with distance from the source as Q ∼ z4/3
149

and M ∼ z5/3 (see supplementary material for a detailed derivation).150

The ‘equivalent’ plume radius is calculated at each vertical z-level as b =

√
2Q2

πM
and using the151

relationship b = 6/5αz we determine the entrainment coefficient α for the two cases considered152

(Fig. 3). The entrainment coefficient pertaining the wall plume is slightly larger than that for the153

conical plume, αw = 0.110 and α = 0.102, respectively. Using the entrainment coefficients, we154

therefore proceed with the estimate of the drag coefficient by means of (8) and (10). As discussed155

above, we neglect the second term on the r.h.s. of (10) and use the far-field formulations of (8) and156

(10) to obtain the ratio M5/2/Q2 for both free and wall plumes, which is given by the slope of the157

two curves in Fig. 3, right panel. The ratio of these two slopes, (1+
5Cd

2παw
)
αw

α
= 15.2/9.6, gives158

a value of the drag coefficient Cd ≈ 0.065, which is an order of magnitude larger than that for a159

boundary layer flow over a flat plate at a similar Reynolds number.160

The most striking result of the simulations, which was not expected given the complex dynamics161

of the wall plume, is the similarity of the volume fluxes for a wall plume and half a conical plume162

(Fig. 2, left panel). In light of the latest works on jet and plume turbulence (e.g. Burridge et al.163

2016), one may speculate that the turbulent structures defining the entrainment in a wall plume164

remain similar to those in a conical plume, while only the shape of the plume ‘boundary’ changes.165

To support this hypothesis, the maximum velocities in the free and wall plumes are similar, and166

the geometric scales of the fluctuations of the plume ‘boundaries’ are similar (Fig. 4). However,167

the wall acts to reduce the average velocity in the wall plume as compared to the conical plume168

(Fig. 2) and, given the similarity of volume fluxes, the ‘equivalent’ plume radius at any given169

height must be larger for a wall plume (Fig. 3, left panel). Finally, given b = 6/5αz, the latter170

produces an increase in entrainment coefficient for a wall plume.171
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b. Estimates of the drag coefficient for a wall plume using the measured velocity profiles.172

To support the finding that the drag coefficient for a wall plume is an order of magnitude larger173

than than that for a boundary layer flow over a flat plate, we estimated the drag coefficient from174

the mean velocity profiles at two different z cross-sections, z = 15 and z = 18.175

We fitted the velocity profiles in the vicinity of the wall with a linear function to get the slope176

defining the turbulent stresses (or friction velocity). The fitting function is U = x(Re0 · u2
∗), cor-177

responding to the inner scaling in the viscous sublayer. Then it is straightforward to calculate178

the viscous scale xv = (Re0 · u∗)−1. Fig. 5 displays the velocity profiles in the inner coordinates179

x+ = x/xv and U+ =U/u∗ at fixed y-coordinate and in the cross-sections z = 15 and z = 18. Note,180

that u∗ and xv are different for the profiles at different fixed y-coordinates. We also show the181

(U+ = x+) dependence, characteristic of the viscous sublayer, and the classical log-law depen-182

dence (U+ = ln(x+)/0.41+5).183

As can be seen, all the velocity profiles follow the dependence typical of a viscous sublayer184

up to x+ ≈ 5, in agreemant with other studies on turbulent boundary layers (e.g. Monin et al.185

1971). However, further from the wall all the velocity profiles are lower than the classical log-law186

dependence. Note that even for the simpler case of a plane wall jet there is a discrepancy in log-187

law constants in different studies (e.g. Banyassady and Piomelli 2015), not all studies report the188

classical values for the parameters κ = 0.41 and B = 5. We are not aware of any studies comparing189

the log-law dependence with the velocity profiles in 3D plumes or jets. However, the boundary190

layer structure of a 3D plume is more complicated when compared to that of a 2D flow. The191

maximum of the wall-parallel velocity in each cross-section y = const moves further away from192

the wall as the flow propagates in the z-direction, and also in each cross-section z = const as the193

plume spreads horizontally, at |y|> 0. Similar behaviour is reported by Namgyal and Hall (2016)194
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for a 3D wall jet. This can be considered as a smooth detachment of the flow from the wall and,195

in analogy with the separating (Falkner-Skan) boundary layer, might be the reason for the lower196

mean wall-parallel velocity in the log-law zone as compared to the classical boundary layer flow.197

Table 1 summarizes the drag coefficients based on the maximum vertical velocity for each pro-198

file, Cdm = (u∗/Umax)
2 = 0.008−0.024. Further, we estimate the drag coefficients, Cd = (u∗/u)2,199

for all the profiles based on the cross-sectional average vertical velocity, as used in the modified200

MTT theory. The cross-sectional average vertical velocity, defined as u = M/Q, yields u15 = 1.45201

and u18 = 1.39 in the cross-sections at z = 15 and z = 18, respectively. The drag coefficient Cd can202

be estimated from the friction velocity as
∫

u2
∗dy = 2Cdbu2. Introducing the local drag coefficient203

for each cross-section, Cd,loc(y) = (u∗(y)/u)2, one can obtain
∫

Cd,loc(y)dy = 2Cdb. We have val-204

ues of Cd,loc(y) in 7 y-cross-sections (the drag coefficient is calculated at y = 0,1,2,3 and due to205

symmetry Cd,loc(−y) =Cd,loc(y)). Therefore, with the distance ∆y= 1 between the different cross-206

sections, one can get an estimate for the integral:
∫

Cd,loc(y)dy ≈ ∑Cd,i∆y = (7∆y)(∑Cd,i/7) =207

Cd,avg ·2B, where 2B = 7∆y and Cd,avg is the average value of the local drag coefficient (see Table208

1 for Cd,i). Thus, Cd = Cd,avg · (B/b) ≈ 0.04 both for z = 15 and z = 18, which is lower, but still209

of the same order as the results obtained in the subsection 3a using the modified MTT equations.210

It is important to note that the value of the drag coefficient depends on the choice of the reference211

velocity Uref, as follows from its definition, i.e. eq (1). Using the maximum and average vertical212

velocity as the reference velocity in the calculation above lead to differences in the drag coefficient213

of a factor of 3, a significant difference comparable to that obtained when changing the Reynolds214

number by 3-4 orders of magnitude. Hence, the choice of the drag coefficient should be consis-215

tent with the choice of the reference velocity when employing the MTT equations to obtain the216

subglacial discharge plume vertical velocity used in the melt parameterization.217
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c. Estimates of the drag coefficient for a wall jet.218

In this subsection we estimate the drag coefficient using the experimental data obtained for a219

three-dimensional wall jet by Namgyal and Hall (2016). The drag is defined by the turbulent220

shear stresses, which have been observed to be similar for conical jets and plumes (van Reeuwijk221

et al. 2016), thus one could expect similar results for wall jets and plumes. These estimates can222

be used to test the sensitivity of the results to the Reynolds number, which in the experiment is223

Re = 250000, i.e. two orders of magnitude larger than in the DNS discussed in this section.224

The solution of equation (9) for a turbulent jet is225

M = M0

(
Q0

Q

) 2Cd

παw j , (13)

where αw j is the wall jet entrainment coefficient. The above expression gives the momentum flux226

evolution with distance from the source:227

M = M0

(√
2παw j(1+

Cd

παw j
)M1/2

0 Q−1
0 z
)− 2Cd

παw j

1

(1+
Cd

παw j
)
. (14)

Opposite to the wall plume results, the evolution of the wall jet ‘equivalent’ radius involves a228

dependence on the drag coefficient: bw j =

√
2Q2

πM
= 2αw j

(
1+

Cd

παw j

)
z. The ‘equivalent’ radius229

and momentum flux of the wall jet from the experiment of Namgyal and Hall (2016) are shown230

in Fig. 6. A best fit of the data in the far field allows to determine the entrainment coefficient231

αw j ≈ 0.052, reduced when compared to the typical entrainment coefficient for a round jet found232

in the literature, 0.065 < α j < 0.082 (e.g. Fischer et al. 1979), and the drag coefficient Cd ≈ 0.032,233

larger than for a flat-plate boundary layer. The difference in Cd for the wall plume (Cd = 0.065) and234

jet (Cd = 0.032) can be related to the difference in Reynolds number between the simulations (Re=235

1000− 2000) and the experiments (Re = 250000) and probably to near-wall buoyancy effects,236

absent in the case of wall jets.237
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d. Implications of the results for the estimates of submarine glacier melt rates238

The drag coefficient obtained in the present study is 6.5 times larger than the value used by Slater239

et al. (2016), Cd = 0.01, much higher than that used by Cowton et al. (2015), Cd = 0.0025, and in240

general an order of magnitude larger than that for a boundary layer flow over a flat plate. A large241

drag coefficient is expected given the relatively low Reynolds numbers, however the difference is242

too large to be explained exclusively by the effect of the Reynolds number. The well-known von243

Karman law for the boundary layer flow over a flat plate is
1
√c f

=
1

κ
√

2
(ln(Rez

√c f )+B5), where244

B5 = 1.7, Rez =Uz/ν and c f = 2Cd (Monin et al. 1971). If, for example, we take the cross-section245

at z = 15 in the region with developed turbulence, the mean vertical plume velocity increases by246

a factor 1.5 from its initial value, and we obtain Rez ≈ 20000. For this Reynolds number the drag247

coefficient obtained from the above von Karman law for a flat plate is approximately Cd = 0.005,248

an order of magnitude lower than what we obtain in the simulations. Hence, the simulations249

results and the reasoning above suggest that also for larger Re we should expect an increased drag250

coefficient for a wall plume. This increase in Cd is a critical factor in the current parametrization251

for submarine melting.252

The present study suggests that Cd = 0.001 is an inappropriate estimate of the drag coefficient253

when using the modified MTT model with a top hat velocity profile. The drag decrease with254

increasing Reynolds number can be expected to be similar to that following from the von Karman255

law and reliably quantified for the boundary layer flow over a flat plate (e.g. Monin et al. 1971).256

The von Karman law suggests a 4-5 times decrease of the drag coefficient from the low (Re∼ 104)257

to high (Re ∼ 109) Reynolds numbers, thus, the value of Cd = 0.065 obtained for Rez = 20000258

corresponds to a value Cd = 0.01−0.02 for the large Reynolds numbers, relevant to geophysical259

flows. This is in agreement with the value 0.01 used by Slater et al. (2016). It is worth noting,260
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that the lower value of the drag coefficient due to a larger Re obtained for a wall jet in subsection261

3c is also consistent with that predicted by the von Karman law. In addition, given that some262

important phenomena, such as sediment load within the subglacial discharge plumes and glacier263

surface roughness, are not considered in our study, the drag coefficient relevant to geophysical264

flows is likely larger than 0.01-0.02.265

We finally discuss the implications of the larger value of the drag coefficient obtained using266

the modified MTT theory, which is often implemented to calculate the subglacial discharge plume267

velocity used in the melt rate parametrizations. From the three-equation melt formulation (Holland268

and Jenkins 1999) the melt rate is proportional to the friction velocity, or using eq. (1) to the mean269

vertical plume velocity: ṁ ∼ uC1/2
d , where Cd = 0.01 is used by Slater et al. (2016) (0.0025 by270

Cowton et al., 2015) and u can be obtained from MTT theory neglecting the wall effects. Within271

the same framework, improved with eq. (12) to account for the presence of the wall, the melting272

rate can be written as273

ṁw ∼ u
(

α

αw

)2/3 C1/2
d

(1+
5Cd

2παw
)1/3

,

with the velocity u from MTT theory without a wall. This dependence of the melt rate on the274

drag coefficient is illustrated in Fig.7, with the melt rate normalised with that obtained with the275

frequently used drag coefficient Cd = 0.0025. Thus, the estimate of melt rate for Cd = 0.01−0.02276

is more than twice that obtained using Cd = 0.0025. Moreover, from van Kessel and Kranenburg277

(1996), it follows that up to a three times increase in the drag coefficient can be expected when278

sediments are present in the flow. Thus the melt rate can grow further to yield as much as ∼279

4− 5 times that for Cd = 0.0025 if the sediment load and a roughness of the glacier surface are280

taken into account. Given the non-negligible change in melt rates, additional investigations are281
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therefore needed to characterize the dependence of Cd on Reynolds numbers and its sensitivity to282

the sediment load.283

4. Conclusions284

We have shown that classical plume theory can form the basis of improved models of three-285

dimensional wall plumes if the wall drag is accounted for and the entrainment coefficient is cor-286

rected. The volume flux evolution of a wall plume is well captured already by considering half287

of that obtained for a conical plume, which implies that the dilution of the wall plume fluid, i.e.288

the salinity and temperature evolution with depth, should also be predicted reasonably well when289

neglecting drag effects. The difference is only in the momentum flux which is overestimated by290

about 10-20% if the wall drag is not accounted for. However, the coefficients parametrizing turbu-291

lence effects for entrainment, drag and scalar transfer are important for the predictions of melting292

rates, as these coefficients appear in the widely used three-equation melt formulation (Holland and293

Jenkins 1999). We have shown that a consistent estimate of the drag coefficient based on the mod-294

ified MTT theory plume velocity, and a corrected vertical velocity for wall plumes which takes295

into account a non negligible drag coefficient (eq. 12) substantially increases the predictions for296

melting rates near an ice wall. Furthermore, we have shown for the first time that the wall plume297

spreads horizontally parallel to the wall and loses its axisymmetric shape (Fig. 1b, c). This impor-298

tant aspect will produce an increase in melting when compared to that obtained with a half-conical299

plume due to the larger area covered on an ice face by the wall plume.300

Adding the mass and buoyancy fluxes associated with melting into the wall plume model is not301

expected to alter our results significantly. Generally, a subglacial discharge is characterized by302

a volume flux Q ∼ 100 m3 s−1, corresponding to a ‘convection-driven melting’ regime (Jenkins303

2011), where the contribution of submarine melting to the plume buoyancy is small. It is only304
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for a small discharge, ≈ 10 m3 s−1 (Mankoff et al. 2016; Ezhova et al. 2017), that the effect of305

submarine melting on the plume buoyancy flux cannot be neglected. Both drag and entrainment306

are mainly influenced by the turbulent characteristics of the wall plume which, for substantial307

subglacial discharges, should remain unchanged.308

Our study shows that the increase in Cd for a modified MTT model of a three-dimensional wall309

plume at large Reynolds numbers can be as high as 10 times as compared with that associated with310

a 2D turbulent boundary layer flow (Cd = 0.001) and thus, can not be ignored while calculating311

melting rates.312
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Parameter, z = 15 y = 0 y = 1 y = 2 y = 3

u∗ 0.30 0.26 0.19 0.13

xv 0.0033 0.004 0.005 0.008

Umax 3.38 2.72 1.80 0.84

Cdm 0.008 0.009 0.011 0.024

Cd,i 0.043 0.033 0.018 0.008

Parameter, z = 18 y = 0 y = 1 y = 2 y = 3

u∗ 0.28 0.25 0.20 0.15

xv 0.0036 0.004 0.005 0.0065

Umax 3.10 2.59 1.90 1.27

Cdm 0.008 0.009 0.011 0.015

Cd,i 0.041 0.033 0.021 0.012

TABLE 1. Parameters of the logarithmic near-wall flow.
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FIG. 1. (a) Wall plume visualized by the density contour ρ = (ρ̃− ρ̃pl)/(ρ̃amb− ρ̃pl) = 0.99, where ρ̃pl is the

plume density and ρ̃amb is the density of the ambient fluid. (b) Mean vertical velocity at the cross-section z = 20

normalized with the maximum velocity in this cross-section. (c) Characteristic radii of the wall plume, b1/2, in

the x and y directions vs vertical coordinate z. b1/2 is defined as the radius where the mean maximum velocity is

halved. Best fits of the data for z≥ 10 have the slopes sx = 0.036 and sy = 0.157.
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FIG. 2. Volume flux (left) and momentum flux (right) vs the vertical coordinate for the half-conical free and

wall plumes. The volume flux of the wall plume is almost identical to half that of the conical plume, hence

the two symbols lie on top of each other and the circles on the left panel are below the squares. Solid curves

indicate the asymptotic scaling following from the classical MTT theory and valid for the conical plume; dashed

curves indicate the asymptotic scaling following from the modified MTT theory and valid for the wall plume

(see supplementary material). Both theories give Q ∼ z5/3 and M ∼ z4/3. The difference is in the coefficients:

Qw/Q =
(

αw

α

)4/3 1(
1+

5Cd

2παw

)1/3 = 0.97 (dashed and solid curves are on top of each other in the left panel);

Mw/M =
(

αw

α

)2/3 1(
1+

5Cd

2παw

)2/3 = 0.82 with Cd , α and αw obtained from DNS in the present study.
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FIG. 3. Left: free and wall plume radii (‘equivalent’ plume radius for the wall plume). Lines indicate the

radius solution b =
6
5

αz for two different values of the entrainment coefficient. Right: M5/2 versus Q2 for the

free and wall plumes.
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FIG. 4. Statistics of the turbulent plume boundary location at z = 15: wall plume (upper panel) and half a

conical plume (lower panel). The figures illustrate the frequency of finding the plume boundary at a certain

location (in a square 0.1×0.1). Given the turbulent structure of the plume, the boundary is not always a single

simple closed curve, as it encompasses turbulent eddies. The plume boundary is defined by the contour of density

ρ = (ρ̃− ρ̃pl)/(ρ̃amb− ρ̃pl) = 0.97, where ρ̃pl is the plume density and ρ̃amb is the density of the ambient fluid.
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FIG. 5. Horizontal cross-sections (left) and profiles (right) of the mean velocity parallel to the wall U =√
(< u >2 +< v >2) in the inner coordinates at different y locations. Upper panel: z = 15, lower panel: z = 18.
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Dashed and solid curves represent approximations to near-field and far-field data respectively. The data are taken

from the wall jet experiment by Namgyal and Hall (2016).
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