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We present direct numerical simulations of subcritical transition to turbulence in a particle-laden channel flow,
with particles assumed rigid, spherical, and heavier than the fluid. The equations describing the fluid flow are
solved with an Eulerian mesh, whereas those describing the particle dynamics are solved by Lagrangian tracking.
Two-way coupling between fluid and particles is modeled with Stokes drag. The numerical code is first validated
against previous results from linear stability: the nonmodal growth of streamwise vortices resulting in streamwise
streaks is still the most efficient mechanism for linear disturbance amplification at subcritical conditions as for
the case of a single phase fluid. To analyze the full nonlinear transition, we examine two scenarios well studied
in the literature: (1) transition initiated by streamwise independent counter-rotating streamwise vortices and
one three-dimensional mode and (2) oblique transition, initiated by the nonlinear interaction of two symmetric
oblique waves. The threshold energy for transition is computed, and it is demonstrated that for both scenarios
the transition may be facilitated by the presence of particles at low number density. This is due to the fact that
particles may introduce in the system detrimental disturbances of length scales not initially present. At higher
concentrations, conversely, we note an increase of the disturbance energy needed for transition. The threshold
energy for the oblique scenario shows a more significant increase in the presence of particles, by a factor about
four. Interestingly, for the streamwise-vortex scenario the time at which transition occurs increases with the
particle volume fraction when considering disturbances of equal initial energy. These results are explained by
considering the reduced amplification of oblique modes in the two-phase flow. The results from these two classical
scenarios indicate that, although linear stability analysis shows hardly any effect on optimal growth, particles
do influence secondary instabilities and streak breakdown. These effects can be responsible of the reduced drag
observed in turbulent channel flow laden with heavy particles.
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I. INTRODUCTION

Laminar-turbulent transition in shear flows has been studied
extensively in the past [1], but it is still not fully understood.
Transition leads to an increase of the drag and is therefore
often undesirable. One possible way to influence the transition
scenario is by suspending additives in the flow, as it is shown
that turbulent drag can be reduced by small amounts of,
e.g., polymers [2], rigid fibers [3], or small heavy particles
[4–7], as investigated here. Although many fluid flows of
practical interest are seeded with particles, our knowledge
about the influence of particles on the flow, in particular
on laminar-turbulent transition, is still limited. Most studies
concern particle-laden turbulent flows; see the reviews by
Toschi and Bodenschatz [8] and Balachandar and Eaton [9].

A particle in a fluid flow is subject to several different
interaction forces [10]. First, the drag force between the
particle and the fluid: when the particle and fluid have slightly
different velocities a shear force is present. Furthermore,
there are added mass and pressure forces, as well as history
effects. For larger particle volume fraction, particle-particle
interactions also have to be taken into account. This suggests
the complexity and richness of the phenomena occurring in
particle-laden flows.

Linear stability analysis is typically considered the first
step towards understanding transition to turbulence. This
allows the determination of critical values of the relevant
adimensional parameters above which exponentially growing
disturbances exist. However, in many configurations, e.g.,

shear flows, transition is subcritical, and a full nonlinear
analysis is needed. In these flows, it is still possible to show
that linear mechanisms are responsible for the instantaneous
amplification of perturbation energy, and therefore a linear
nonmodal analysis [1] can reveal the mechanisms responsible
for transition in linearly stable cases. This was the case with
the linear lift-up process that was identified as a key process
in wall-bounded flows. Indeed, subcritical transition in shear
flows is associated to the presence of streamwise elongated
structures, the so-called streaks.

Previous investigations of laminar-turbulent transition with
the inclusion of particles are performed by Matas et al. [11,12].
These authors carried out experiments on particle-laden flows
using neutrally buoyant particles in a pipe flow. To control
transition to start at Re ≈ 2100 for a clean flow, they inserted
a ring at the pipe entrance. Particles of four different sizes
were injected into the flow, and the Reynolds number at
which the transition starts, the transitional Reynolds number,
recorded. They found that for large concentrations all particle
sizes stabilized the flow, i.e., the transitional Reynolds number
increased. For smaller concentrations (volume fraction � 0.2),
large particles destabilized the flow, while the smaller particles
(d/D � 70) stabilized the flow. Interestingly, in the range of
small particles, the results became independent of the particle
diameter.

In our previous work [13,14], the linear stability of flows
seeded with either heavy or light particles was investigated.
For a flow with heavy particles only, the Stokes drag needs
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to be taken into account. For a flow with light particles,
added mass and fluid acceleration also need to be included.
We have shown that particles do not influence the transient
growth of disturbances in plane channel flow. The optimal
initial disturbances consist of counterrotating streamwise
vortices forming streamwise-independent streamwise velocity
perturbations, the streaks, as for single-phase fluids. This
finding was explained by the fact that the time scale associated
with the transient growth of the streaks is larger than the typical
particle relaxation time so that heavy particles effectively act
just to enhance the suspension density. This suggested that
the initial linear stages of transition may not be affected by
the presence of particles. However, experiments [4,6] and
numerical simulations [7] demonstrate that adding heavy
particles reduces the drag of a turbulent channel flow. As
an example, the experiments in Ref. [6] consider the pipe
flow of glass particles in air at a Reynolds number between
10 000 and 20 000 and mass load up to 1.5. The reduction of
the wall shear stress is measured to be as high as 30%. The
latter result indicates that particles have an effect on turbulent
structures. Therefore, although particles show no influence in
the initial linear stages of transition, they might have an effect
on secondary, nonlinear, instabilities. The aim of the present
paper is therefore to investigate the effect of rigid, spherical
particles on the evolution of finite-size disturbances leading to
turbulent flow.

To investigate this effect, we use direct numerical simu-
lations of a plane Poiseuille flow extended with a model for
two-way coupling between the particles and fluid using Stokes
drag as interaction force. Gravitational forces are initially
neglected; indications about the effect of gravity are provided
in an appendix and in-depth analysis left for future work. We
study the behavior of a finite energy perturbation, instead of
infinitesimal small perturbations as in linear stability analysis.
We investigate how the threshold energy for transition, the
minimum initial disturbance energy necessary to reach the
turbulent state, varies in the presence of heavy particles as well
as how the solid phase changes the evolution of disturbances of
given initial shape and amplitude. This provides information
about the nonlinear behavior of streaks, and it shows whether
the secondary instabilities might be damped by the presence
of particles.

In relation to energy thresholds in subcritical transition
several researchers have considered the concept of “edge
of chaos” [15]. This is the asymptotic state reached by
perturbations, neither decaying to a laminar state nor evolving
to turbulence. Near the “edge of chaos,” exact coherent
structures are found [16–18]. The dynamics on the laminar
turbulent boundary have been investigated more recently by
several groups [15,19–23]. A review is given in Ref. [24].

Exact coherent structures are also reported for dilute poly-
mer solutions in Ref. [25] for plane Couette flow. These authors
found that these exact solutions are a promising method for
capturing the essential physics of drag reduction in polymer
suspensions. More recently, the numerical simulations by Xi
and Graham [26,27] of drag-reducing polymer solutions in the
parameter regime close to laminar-turbulent transition reveal
intervals of hibernating (low-activity) turbulence characterized
by weak streamwise vortices and nearly nonexistent stream-
wise variations.

In this paper we examine two transition scenarios previ-
ously analyzed as representative of subcritical transition; see,
e.g., Ref. [28]. First, we consider a transition initiated by
streamwise vortices (SVs), without any streamwise depen-
dence. SVs trigger the largest linear transient growth and are
common in many shear flows [29,30]. Following Ref. [28],
the transition process initiated by these vortices can be
summarized as

streamwise vortices ⇒ streamwise streaks

⇒ streak breakdown ⇒ transition.

Because transition cannot take place with only streamwise-
independent structures, one needs to consider streamwise-
dependent traveling perturbations able to trigger streak break-
down and transition. Here we choose not to examine the effect
of background noise, but introduce a time-periodic oblique-
mode of given amplitude. Indeed Schoppa and Hussain [31]
and Cossu et al. [32] show how simple spanwise modulations
of the streak can induce a rapid breakdown.

In the second route to turbulence discussed in Ref. [28],
we consider at time zero a pair of oblique optimal waves
(OW scenario). Each of these waves grows by a nonmodal
mechanism so that they can nonlinearly interact. From this
quadratic interaction, streamwise-independent SVs are formed
that in turn induce streamwise streaks via the lift-up effect.
The following breakdown is thus similar to the SV scenario
discussed above:

oblique waves ⇒ streamwise vortices

⇒ streamwise streaks ⇒ streak breakdown

⇒ transition.

The details of this scenario have been extensively investigated
in the past for a clean fluid flow; see, e.g., Refs. [33–35].
Note that the oblique scenario is found to be the most efficient
way to trigger turbulence (see Refs. [19,28]), and it can be
identified also in nonlinear optimal localized initial conditions
[36,37].

The paper is organized as follows. First, we present
the governing equations and the details of our numerical
implementation. Second, we validate the numerical code
against the data from linear theory presented in Ref. [13].
Later we report the results for the two scenarios described
above when varying the particle mass fraction, and we con-
clude the paper with a summary and a discussion of the main
findings.

II. GOVERNING EQUATIONS AND IMPLEMENTATION

A. Governing equations

The equations of motion for the fluid are modeled in an
Eulerian grid, whereas the particles are evolved in a Lagrangian
framework. The particles are assumed to be rigid spheres
heavier than the carrier phase with a diameter smaller than the
smallest flow characteristic length scale. By neglecting gravity,
under the assumption of heavy particles, the only significant
force acting on a single particle is the Stokes drag [10]. The
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equations in nondimensional form are

∂ui

∂xi

= 0, (1)
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+ 1
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, (3)
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dt
= ui − upi

SR

(
1 + 0.15Re0.687

p

)
, (4)

where ui is the fluid velocity and upi
the velocity of one

particle. In the equations above, δ is the Dirac delta function,
f the mass fraction of particles, the Reynolds number R =
UL/ν, and SR = τp

U
L

the Stokes number defined using the
convective time scale of the flow with L the channel half-width
and U the laminar centerline velocity. The particle relaxation
is defined as τp = 2

9
r2

ν

ρp

ρf
, with r the radius of the particle,

ρp the density of the particle, ρf the fluid density, and ν the
kinematic viscosity. The nonlinear formulation of the Stokes
drag is employed to account for a small but finite particle
Reynolds number Rep = |u − up|2r/ν. Here we follow the
formulation described in [38] with drag coefficient for the
sphere CD = 24/Rep(1 + 0.15Re0.687

p ).
The Stokes number is a dimensionless relaxation time

multiplied by the Reynolds number. This dimensionless
relaxation time is based on the flow viscous time scale and
defined as S = ντp

L2 = 2r2ρp

9L2ρf
; therefore it is only a function of

particle size and density ratio. Here we set the density ratio to
ξ = ρf /ρp = 0.001; i.e., we assume that the carrier phase is
air. In this way, we can directly relate the size of the particles
to the relaxation time. The size of the particles can be related
to the number of particles (N ) using the volume fraction (�):

� = f ξ, N = �

4/3πr3
.

B. Implementation

The numerical code is an efficient pseudospectral solver
for the three-dimensional incompressible Navier-Stokes equa-
tions with a particle-tracking algorithm for the solid phase.
The velocity components of the fluid phase are expanded in
both x (streamwise) and z (spanwise) direction with Fourier
modes and with Chebyshev polynomials in the wall-normal, or
y direction. To advance Eq. (2) in time, we use a fourth-order
Runge-Kutta algorithm. Periodic boundary conditions are
assumed in x and z with no slip at both walls, y = ±1. More
details about the code are given in Ref. [39].

The particles are evolved by means of a Lagrangian Solver
and are coupled to the Eulerian grid of the fluid flow [40].
The fluid velocities are interpolated from the Eulerian grid
onto the particle positions using a trilinear interpolation. The
time advancement of the particle uses the same Runge-Kutta
algorithm as the time advancement of the fluid. The Stokes
drag, also forcing the momentum equation, can be extrapolated
back onto the Eulerian grid using the same trilinear scheme
of the interpolation. The particle back reaction is calculated in

physical space and added to the nonlinear term, before Fourier
transformation back into spectral space. For a review of the
numerical procedure to model the particle back reaction on the
flow see Refs. [41,42].

C. Flow configuration and resolution

We study a plane Poiseuille flow given as base velocity by
imposing a constant mass flux. The streamwise and spanwise
dimensions of the domain are Lx = 2π and Lz = 2π , with
Ly = 2 the channel width. The Reynolds number used in
all computations is 2000. If we consider air, typical velocity
are of the order of meters per second and typical lengths of
the order of the centimeters. The resolution used is typically
64 × 65 × 64 for streamwise, wall-normal, and spanwise
directions, respectively. Several resolutions have been used
to investigate the convergence of the solution [43]. If the flow
reaches the turbulent state in our configuration, the friction
Reynolds number Reτ = Uτh/ν = 93 with Uτ the friction
velocity. In these conditions, the grid size in friction wall-
units δ+ = ν/Uτ becomes 
+

x = 
+
z = 6.5 and 
+

y = 0.12–5
with seven grid points inside the viscous layer. This mesh can
be considered more than enough for a good DNS of a turbulent
channel flow [44].

A bisection algorithm is used to find the energy threshold
for transition [19,23,45]. The criterion for convergence of the
energy threshold is the following:

2
At − Al

At + Al

< 1 × 10−5,

where At and Al are the smallest and largest amplitudes at
which turbulent and laminar flow are observed.

III. RESULTS

In Sec. III A the numerical implementation is validated
against the linear stability results in Ref. [13], obtained under
the continuum assumption. Transition initiated by streamwise-
independent counterrotating streamwise vortices and a weak
three-dimensional disturbance is analyzed in Sec. III B. We
aim to identify the threshold energy of the initial condition:
A slightly lower amplitude will result in laminar flow, while
a slightly larger amplitude in a turbulent flow. Results for
the oblique scenario are presented in Sec. III C. Finally we
will look at particle concentration and accumulation during
the transition process. By isolating two different mechanisms
for streak formation and breakdown, ingredients of the self-
sustaining cycle underlying wall-bounded turbulence, we wish
to also understand the effects of the dispersed solid phase in
the turbulent regime.

A. Linear evolution

We consider as initial condition a Poiseuille flow with a
low-amplitude disturbance of spanwise wave number β = 2
and streamwise wave number α = 0. This initial disturbance is
the linear optimal initial condition yielding the largest energy
growth over time and over disturbances of different wave
number and consists of streamwise vorticity. Particles are
assumed to have the same initial velocity as the undisturbed
base flow and to be uniformly distributed. Figure 1(a) shows
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FIG. 1. (Color online) Transient energy growth of disturbances
with streamwise and spanwise wave numbers (α,β) = (0,2), SR = 5,
and R = 2000 versus time. (a) Comparison between linear stability
theory (LST) and DNS. (b) Energy growth versus time divided by
(1 + f ) to show the scaling of the time of optimal growth.

the time evolution of the disturbance energy for SR = 5
and two values of the mass fraction f : We compare results
from linear stability and from our numerical implementation
where a low initial amplitude is chosen to have a linear
disturbance behavior. We observe the transient growth of
streamwise velocity streaks forced by the initial streamwise
vortices before the perturbation energy eventually goes to
zero. These results show that we correctly reproduce by direct
numerical simulation the linear nonmodal results in Ref. [13].
Linear stability analysis predicts that for initial disturbances
consisting only of fluid velocity particles affect only the time
needed to reach the maximum growth; the growth itself is
hardly affected. The time at which the energy maximum is
observed is delayed by a factor (1 + f ). This is confirmed in
Fig. 1(b), where the energy amplification is shown for several
values of f and time divided by (1 + f ).

B. Streak scenario

To study the full nonlinear transition we consider the
initial perturbation introduced above (streamwise-independent
vortices) and two different additional streamwise-dependent
disturbances of wave vector (α = 1, β = 1) for the case
denoted SV1 and (α = 1, β = 2) for the case SV2. The
oblique mode is necessary to trigger transition in a controlled
and reproducible way since it introduces a three-dimensional
velocity field. In our simulations, this oblique mode has an
initial energy equal to 1/9 of that pertaining to the streaky
(0,2) mode, a value close to the optimal found in Ref. [19].
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FIG. 2. (Color online) The critical threshold energy as a function
of the particle mass fraction f for the SV scenario initiated by streaks
and two different oblique waves (α = 1,β = 1) (denoted SV1) and
(α = 1,β = 2) (SV2); SR = 5 and R = 2000.

The energy threshold for transition is shown in Fig. 2 versus the
particle mass fraction. We first notice that the scenario SV2 has
a lower energy threshold for transition. The global minimum
energy threshold is slightly increasing in the presence of
particles; at small mass fractions the disturbance energy
needed to reach turbulence is smaller than in a clean fluid
flow for SV1, whereas it is monotonically increasing for SV2.
At larger mass fractions an increased threshold energy is
found in both cases. Note also that the threshold curves for
transition have usually a fractal or complicated behavior; they
are sensitive to the specific initial condition. For the present
case, critical energy amplitudes are not found to vary in a
noticeable manner when initiating the particles with the local
fluid velocity instead of the base flow velocity.

Besides the effect of the solid phase on the threshold energy
just discussed, Fig. 3 reveals that the time at which transition
occurs is altered by the presence of heavy particles. Here
we report the time evolution of the integrated wall-normal
v and streamwise u fluid velocity perturbations for flows with
different particle mass fractions for the scenario SV1, where
the disturbance velocity is defined as the fluid velocity minus
the base flow parabolic profile. In all cases we kept constant
the initial disturbance energy at 6.25 × 10−5. The transition
follows a similar path in all cases displayed, although the time
at which transition is observed (identified by the sharp increase
of the wall-normal velocity perturbation) is increasing by a
factor of three or more in the presence of particles. Note that
for the particular amplitude chosen here the flow stays laminar
for a mass fraction f = 0.39; however, the trend reported is
observed to be independent of the particular value of the initial
disturbance energy. The data also reveal that the amplitude of
the streamwise velocity disturbances is constant when varying
the mass fraction f , and therefore the transient growth of the
streaks is not affected by the presence of particles, as predicted
by linear theory [see Fig. 1(b)]. The same trend is observed
for the scenario SV2, therefore not shown here, although the
transition time is delayed only by a factor two.

To better follow the disturbance evolution during transition
we report in Fig. 4 the energy pertaining to selected modes
of given streamwise and spanwise wave number (α,β) versus
time for a low and a high value of the mass fraction f . In each
plot dotted lines indicate the energy evolution in the case of
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FIG. 3. (Color online) Volume integral of the wall-normal ve-
locity v (a) and streamwise velocity u (b) of the perturbation as
a function of time for SR = 5 and R = 2000 and the values of the
mass fraction f reported in the legend. The initial perturbation energy
is 6.25 × 10−5.

single phase fluid for the same initial conditions. The data are
shown for SV1 where the transition delay is more evident, as
well as to be able to explain the initial decrease in threshold
energy evident in Fig. 2.

The initial increase of the magnitude of the (α = 1, β = 1)
mode, as well as the wall-normal velocity disturbance in
Fig. 3(a), displays the initial weak transient growth of the
oblique modes. The data clearly indicate that the amplitude
of the oblique mode decreases for increasing mass fraction
f , while the streaks [(0,2) mode] are hardly affected by the
presence of the particles. Figure 4(a) reveals that the (1,2)
mode is responsible for the decrease of disturbance energy
threshold at low mass fraction. This mode is observed only in
the presence of particles and is created by the localized forcing
from the particles to the flow. Indeed, the (1,2) mode cannot be
generated by nonlinear interactions between the (1,1) and (0,2)
modes only. This fundamental (1,2) mode is most detrimental
for the streak instability that is therefore initiated at lower
disturbance amplitudes. The results in Fig. 4(b) indicate that
the (1,2) mode is not induced as efficiently at large mass
fraction, and the transition is therefore delayed because the
background noise level given by the oblique modes is weaker.
Note also that when introducing directly the (1,2) mode
into the flow (Fig. 2), transition is monotonically delayed:
particles are not able to introduce perturbation that can be
more dangerous than those already present.

To confirm our explanation, we examine the linear behavior
of the (1,1) and (1,2) modes. The linear optimal growth is
given in Fig. 5 where the largest possible transient energy
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FIG. 4. (Color online) Time evolution of the disturbance energy
for the SV1 scenario and three Fourier modes (α = 0,β = 2), (1,1)
and (1,2). (a) Low mass fraction f = 0.07 and initial energy E0 =
4 × 10−5. (b) High mass fraction f = 0.39 and initial energy E0 =
7.5 × 10−5. In each plot dotted lines indicate the energy evolution in
the case of single phase fluid for the same initial conditions.

growth, maximized over all possible final times at which
the disturbance is measured, is displayed versus the mass
fraction f for SR = 5 and, in the inset, versus the particle
Stokes number SR for different values of the mass fraction
f . The figure illustrates that a larger mass fraction decreases

FIG. 5. (Color online) Optimal growth of the oblique mode
(α = 1, β = 1) and (α = 1, β = 2) versus the mass fraction f for
SR = 5 and R = 2000. The inset displays the optimal growth versus
Stokes number SR for the indicated values of the mass fraction f and
mode (α = 1, β = 1). The optimal energy gain is maximized over all
possible final times.
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the optimal growth significantly and that minimum transient
growth is observe for SR ≈ 4; the value considered in this
study is therefore representative of conditions at which the
particle size has a noticeable effect. Here we consider the
singular values of the system as representative of the behavior
of the oblique modes, and we can therefore conclude that
particles stabilize the oblique mode and this induces a delay of
the time at which transition is observed. This is associated to a
less effective start of the streak disruption. As a consequence,
given the significant delay of the time of transition, one can
speculate that more persistent streaks would be observed in a
noisy environment, a situation reminiscent of the hibernating
phases on the edge trajectories identified by Xi and Graham
[26] in dilute polymer solutions.

In the light of the above discussion, we can now interpret
the energy threshold reported in Fig. 2. The initial decay of
the energy reported for the SV1 scenario at low values of the
concentration can be attributed to the extra forcing from the
particles to the fluid, with particles acting at more isolated
locations. This forcing initiates slightly more efficiently the
streak breakdown. This is, however, not a general conclusion,
and the same phenomenon is not observed for SV2 at low f

when the most dangerous mode for streak instability is forced
in a controlled manner. In both scenarios, at larger values of
f we observe a stabilizing effect: the amplitude of the oblique
mode introduced initially decreases faster, and its action is less
detrimental.

In summary, for the scenario considered here, streaks
need to reach a sufficient high amplitude so that secondary
instabilities can initiate; this streak generation process is
hardly changed by the particles. However, oblique modes are
generally weakened by the solid phase, and this induces a
transition delay since the time for transition does depend on
the amplitude of the streamwise-dependent forcing induced by
the particles and the oblique mode. The delay can therefore be
explained by the fact that the oblique modes determining the
initial amplitude of the growing secondary instability mode
becomes weaker in the presence of particles.

C. Oblique scenario

As discussed above, the oblique OW scenario is initiated by
a pair of symmetric oblique waves, (α = 1, β = ±1). These
waves interact nonlinearly and initiate streaks of wave vector
(0,2) in the flow, as in the scenario examined in the previous
section [28]. The two oblique waves are both given the same
initial energy, and again particles are initialized uniformly
distributed and with zero disturbance velocity (simulations
where particles have initially the local fluid velocity gave no
significant differences in the results).

The threshold energy for transition is displayed in Fig. 6
versus the particle mass fraction. As in the previous scenario,
the energy required to reach the turbulent state decreases
at low mass fraction and then increases with f ; in this
case, however, the increase of the threshold energy is more
significant, approximately by a factor four for the largest mass
fractions considered. As discussed for the SV scenario, we
attribute the initial decrease of the energy required to transition
to the modulation introduced in the system by the few particles
present. The largest increase observed at large f is instead
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FIG. 6. (Color online) The critical threshold energy for the OW
scenario initiated by two symmetric oblique waves (α = 1, β = ±1)
as a function of the particle mass fraction f with SR = 5 and R =
2000.

related to the decreased amplitude of the oblique modes in the
presence of particles, as also discussed above in relation to
Fig. 5.

The time evolution of the integral of the perturbation
velocities is reported in Fig. 7 for initial disturbances of energy
8 × 10−6. Such a relatively low amplitude has been show to
highlight how, unlike in the SV scenario, the streak amplitude
is significantly reduced when increasing the particle mass
fraction. Indeed, Fig. 7(b) displays a monotonic decrease of
the streak amplitude when increasing f . The transient growth
of the streaks is significantly delayed by the lower amplitude
of the interacting oblique modes. In addition, in contrast to
the case of transition initiated by a pair of counterrotating
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FIG. 7. (Color online) The v velocity (a) and u velocity (b) as a
function of time for several mass fractions at SR = 5 and R = 2000
with an initial perturbation energy of 8 × 10−6.
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FIG. 8. (Color online) Time evolution of the disturbance energy
for the OW scenario and three Fourier modes (α = 0, β = 2), (1,1)
and (1,2). (a) Low mass fraction f = 0.035 and initial energy E0 =
8.7 × 10−6. (b) High mass fraction f = 0.39 and initial energy E0 =
2.1 × 10−5. In each plot dotted lines indicate the energy evolution
in the case of single phase fluid for the same initial conditions. The
oblique mode (1, − 1) has the same energy levels as its symmetric
counterpart (1,1).

streamwise vortices, there is no significant time delay in the
transition for values of the initial energy above the critical
threshold (see Ref. [43]).

The energy of single Fourier components in the flow is
depicted in Fig. 8 for two different values of the mass fraction
f . From the figures one can also appreciate the steps involved
in the oblique transition: first, the amplification of the oblique
modes [see also v perturbation at t ≈ 10 in Fig. 7(a)] and later
the emergence of streaky structures [cf. the u perturbation at
t ≈ 30 in Fig. 7(b)].

Figure 7 reveals that for f � 0.036, transition is induced in
spite of the lower amplitude of the oblique modes compared to
the single phase flow. This clearly points to the importance of
the additional forcing induced by the inertial particles and is
confirmed by the data in Fig. 8(a): Here it is demonstrated that
the (1,2) mode initiated by the particle forcing is responsible
for the laminar-turbulence transition at the lowest values of
f . At larger values of the mass fraction, the decrease in the
amplitude of the oblique modes delays the streak generation
and the following breakdown, as shown in Fig. 8(b) where the
particle-laden flow will eventually return to the laminar state.
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FIG. 9. (Color online) Time evolution of normalized particle
concentration for (a) SV1 scenario and (b) OW scenario for particle
mass fraction f = 0.02 and initial amplitude just above the threshold
for transition to turbulence. SR = 5 and R = 2000. Transition to
turbulence occurs at t ≈ 100 for SV and t ≈ 80 for OW.

D. Particle concentration

Inertial particles are shown to display a characteristic
accumulation at the wall in turbulent flows: the so-called
turbophoresis [46,47]. It is observed that the accumulation
reaches a maximum for intermediate values of the Stokes
number, about 25 in wall units, while it is zero for passive
tracers [40,48]. Turbophoresis is less pronounced when simu-
lations include a feedback on the flow and for increased mass
fraction [49].

Here we examine how particle accumulation occurs during
transition and the differences between the two scenarios con-
sidered. The normalized wall-normal concentration profiles,
normalized with the particle number, are reported in Figs. 9
and 10 for low and large mass fraction, respectively. In each
figure, the left panel displays data pertaining to the SV1
scenario, whereas the OW results are depicted on the right.
Note that only a half-channel is represented in each figure
since we found a symmetric distribution. For all cases under
consideration, the initial amplitude is chosen to be above the
critical threshold for transition to turbulence, and the time of
transition is approximately 100 time units. The data for the
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FIG. 10. (Color online) Time evolution of normalized particle
concentration for (a) SV scenario and (b) OW scenario for particle
mass fraction f = 0.39 and initial amplitude just above the threshold
for transition to turbulence. SR = 5 and R = 2000. Transition to
turbulence occurs at t ≈ 100 for both scenarios.

latest time reported, t = 1000, clearly show the turbophoresis
mentioned above, although the statistics are not yet stationary:
Longer computational times would be required for steady state,
especially at the lowest mass fraction.

Comparing the left and right panel of each figure one
can immediately note that the drift towards the wall is
initiated earlier in the case of OW scenario, while the initial
uniform distribution is still visible for the SV1 scenario. This
difference can be explained by the fact that the SV1 scenario
is characterized solely by the streak breakdown, and this is
localized in the regions of large shear towards the center
of the channel. The streak formation induced by the initial
streamwise vortices does not induce a variation of the mean
wall-normal concentration, but rather a spanwise redistri-
bution. Conversely, the initial stages of the OW transition
are associated to the generation of streamwise vortices by
nonlinear interactions, and these appear to induce a larger
mixing of particles. Figures 9 and 10 also reveal that particles
accumulation is more pronounced at lower mass fraction, in
agreement with previous observations in turbulent flows.

IV. DISCUSSION AND CONCLUSION

Direct numerical simulations of transition in a particle-
laden channel flow are performed, with particles assumed to
be spherical and heavier than the fluid. The interaction between
the particles and the fluid is therefore modeled by the Stokes
drag as the only interaction term. The fluid flow is computed
on a Eulerian mesh with Lagrangian tracking of particles.
The numerical results are shown to reproduce linear stability
predictions based on a continuum model.

We study subcritical transition in plane Poiseuille flow and
quantify the effect of particles on the initial energy needed to
reach the turbulent regime. Previous studies [13] indicate that
the linear nonmodal lift-up mechanism, responsible for the
amplification of streamwise-independent streaks induced by
counterrotating streamwise vortices, is the dominant instability
mechanism at subcritical conditions as for single phase channel
flow. This is hardly affected by the presence of particles, unlike
modal stability; this was explained by the disparity between
the particle relaxation time and the long time scales typical of
streak transient growth, at least for values of particle size and
density consistent with our model. The aim of the present paper
is therefore to assess whether particles influence the nonlinear
stages of transition and whether this may have a relation to drag
reduction observed in turbulent particle-laden shear flows. It
is relevant to recall here that secondary instabilities compete
against viscous diffusion of the streak [31], so that streaks
need to have sufficiently high amplitudes for sufficiently long
times and streamwise-dependent modes need time to reach
amplitudes at which turbulent breakdown can occur. The time
needed to reach these high-enough amplitudes is related to
the disturbances’ initial amplitude and not only to the streak
amplitude.

We consider two classic transition scenarios: the SV
scenario, induced by streamwise vortices and a relatively
weak streamwise dependent mode, and oblique transition,
OW, induced by a pair of symmetric oblique waves. In the
latter, the nonmodal growth of streaks is induced by the
nonlinear interaction of the two streamwise-dependent modes.
The oblique scenario is known to be more effective and require
lower initial disturbance energy [19,28]. To appreciate the
differences between the two scenarios, the energy threshold
for transition is reported in Fig. 11, normalized with the value
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FIG. 11. Comparison between the threshold energies for the two
SV scenarios and OW transition, all normalized with their energy
threshold of a clean fluid.
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for the corresponding single phase fluid. In the case of oblique
scenario and transition initiated by streaks and the (1,1) mode,
we see a small decrease of the energy threshold at the lowest
particle concentrations. This is explained by the fact that in
this case streaks and oblique modes are weakly affected by
the particles, while these induce additional forcing of most
detrimental scales that is able to trigger streak secondary
instabilities. Indeed, particles induce perturbations of wave
vector (1,2) (see Figs. 4 and 8), and these induce transition with
lower disturbance energy. When the (1,2) mode is introduced
in a controlled way in the flow (disturbance fluid velocity),
transition is always delayed in the presence of particles.

For larger particle mass fraction, we observe an increase
of the energy threshold, most pronounced for the oblique
scenario. This is attributed to the stabilizing effect particles
have on the oblique modes, an effect quantified by the
nonmodal analysis of the evolution of these modes reported in
Fig. 5. This stabilization is more effective in case of oblique
transition since it acts directly to hinder the generation of
streamwise vortices by nonlinear interactions of these oblique
modes. The streak generation is delayed and weakened when
the oblique modes decay faster.

In the SV scenario, the streak evolution is basically
unaffected by the presence of the particles. Particles act to
weaken the oblique mode and therefore delay the transition
process. Results obtained with the same initial disturbance
amplitude, above the critical threshold, reveal that the most
evident effect of particles on the transition is that it occurs
at later times: The secondary instability is initiated by lower
amplitude oblique modes and requires more time to develop.

One can speculate that the results presented here can
have implications for turbulent flows where drag reduction
is observed for relatively large mass fraction. In Refs. [50,51],
a regeneration cycle is proposed to underlie wall-bounded
turbulent flows; see Fig. 12. This consists of three steps:
(1) generation of streaks induced by streamwise vortices,
(2) streak breakdown via secondary instabilities, and (3)
regeneration of elongated vortices by nonlinear interactions
between oblique modes originating at the streak breakdown.
As shown in Ref. [13], the streak generation occurs on a time
scale too long for particles to have an effect. However, the
present investigation indicates that particles can affect this

Streaks

x-dependent
flow

streamwise
vortices

Streak formation
(linear
advection) Breakdown

(Instability)

Vortex regeneration
(nonlinear interactions)

FIG. 12. Sketch of the regeneration cycle of wall turbulence; see
Refs. [50,51].

cycle in two ways. They may significantly hinder the last of
these three processes, namely, the regeneration of streamwise
vortices by nonlinear interactions. Indeed, the first step of
the oblique scenario is the most affected in the presence of
heavy particles. However, particles also induce a significant
time delay on the streak breakdown (stage 2). This time
delay can break the regeneration cycle. This delay can also
create phases of hibernating turbulence as observed in polymer
solutions. Unlike polymer suspensions, where elastic effects
damp streamwise vortices [52], we see here a strong effect on
the nonlinear regeneration of these vortices.

The present work can be extended in several interesting
ways. While here we isolated basic linear and nonlinear
process, in particular, streak generation by lift-up, regeneration
of streamwise vortices, and streak breakdown, the behavior of
a turbulent flow can be analyzed to identify those features sug-
gested here, such as intervals of low-activity turbulence with
weak streamwise vortices and streaks of nearly nonexistent
streamwise variations [26]. The effect of finite size particles
also deserves considerations. In particular, our results seem to
suggest that fewer neutrally buoyant large particles (low mass
fraction and large Stokes numbers) can destabilize the flow as
shown in the experiments by Matas et al. [11].
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APPENDIX: EFFECTS OF GRAVITY

In this paper we examined the effect of dispersed particles
on laminar-turbulence transition aiming also to understand the
phenomenon of turbulence drag reduction in turbulent channel
flow. As this effect, first observed in experiments [4,6], has
been reproduced in numerical simulations neglecting gravity
[7], we have so far also neglected particle sedimentation to be
able to isolate the effect of Stokes drag in the particle-fluid
interaction.

As gravity is inevitable in our environment and we are con-
sidering heavy particles, sedimentation is strongly affecting the
particle motion, especially when the flow is laminar and there is
no turbulence to resuspend the particles. We therefore present
in this appendix results of numerical simulations performed
including gravity. These are meant to provide indications
about the effect of gravity on transition, further analysis
being left as future work. In the presence of gravity a new
nondimensional parameter needs to be considered, the Froude
number Fr = U/

√
gL with g the gravitational acceleration.

Note that the friction Reynolds number changes in the case of
vertical channels: It is 106 for the downward flow, whereas it
reduces to 88 for the upward flow.

The time evolution of the total streamwise and wall-normal
perturbation velocity are depicted in Fig. 13 for both the SV
and OW scenarios at fixed initial disturbance energy chosen
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FIG. 13. (Color online) Volume integral of the wall-normal velocity (a, c) and streamwise velocity (b, d) perturbation as a function of time
for Froude number Fr = 10, ∞ and gravity orientations. (a, b) Streamwise vortices scenario, initial disturbance energy E = 1.37 × 10−3. (c,
d) Oblique waves scenario. Initial disturbance energy E = 3.65 × 10−4.

to be close to the threshold transition amplitude for the case
without gravity. The mass load f = 0.2 and results for two
values of Fr are reported, Fr = 10,∞, the first corresponding
to a channel with velocity of 3.42 m/s and half-height of
1.17 cm and the second corresponding to no gravity. In the
figure legend we denote by e2 the wall normal direction and
by e1 the streamwise, so that g = −e1 indicates cases where
gravity acts against the flow direction. From the data in the
figure it is possible to see that the action of gravity facilitates
the turbulent-laminar transition independently of the direction

in which gravity is acting. When the Froude number is large,
i.e., low channels and/or low velocities, the transient growth of
streaks is similar to the zero gravity scenario when the gravity
acts in the streamwise direction and early transition is caused
by an increase of the wall-normal (and cross-stream) velocity
perturbation. Horizontal channels display a quite different
behavior as particle sedimentation breaks the wall-normal
symmetry of the flow and delays the growth of streamwise
streaks. However, more intense cross-stream disturbances still
induce early transition.
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