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Abstract Both modal and non-modal linear stability
analysis of a channel flow laden with particles is pre-
sented. The particles are assumed spherical and solid
and their presence modelled using two-way coupling,
with Stokes drag, added mass and fluid acceleration
as coupling terms. When the particles considered have
a density ratio of order one, all three terms become
important. To account for the volume and mass of
the particles, a modified Reynolds number is defined.
Particles lighter than the fluid decrease the critical
Reynolds number for modal stability, whereas heavier
particles may increase the critical Reynolds number.
Most effect is found when the Stokes number defined
with the instability time scale is of order one. Non-
modal analysis shows that the generation of stream-
wise streaks is the most dominant disturbance-growth
mechanism also in flows laden with particles: the tran-
sient growth of the total system is enhanced propor-
tionally to the particle mass fraction, as observed pre-
viously in flows laden with heavy particles. When
studying the fluid disturbance energy alone, the op-
timal growth hardly changes. We also show that the
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Basset history force has a negligible effect on stabil-
ity. The inclusion of the extra interaction terms does
not show any large modifications of the subcritical in-
stabilities in wall-bounded shear flows.
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1 Introduction

Particle laden flows are found in our environment and
engineering applications, e.g. sand in the atmosphere,
soot in gas flows and turbines. Indeed, significant ef-
forts have been recently devoted to the study of par-
ticles in turbulence as reviewed in Refs. [1] and [2].
Already in the early ‘60, it has been shown that adding
dust to a pipe flow reduces the drag [3]. As an ex-
planation for this phenomenon, it has been proposed
that the interaction between fluid and particles damps
the initiation and growth of disturbances which then
leads to turbulent structures. Turbulent structures en-
hance drag, thus, if turbulence is delayed, drag can be
reduced. Drag reduction in flows with light and heavy
particles has been demonstrated experimentally later
on in several papers [4–6]. Numerically, it is found that
micro-bubbles, which can be modeled as rigid spheres
when the bubbles are small enough, reduce drag in a
turbulent flow [7, 8]. On the other hand, simulations
of drag reduction by means of heavy particles are pre-
sented in [9].
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These findings motivate us to investigate whether
the laminar-turbulent transition can be delayed using
particles, while we studied the case of heavy particles
in previous papers [10, 11]. Here we denote by heavy
particles those whose density is significantly larger
than the fluid density and the interaction between fluid
and particles is given by the Stokes Drag only. When
lighter particles are considered, instead, Stokes drag
alone is not sufficient to describe the fluid-particle in-
teraction. The present study focuses therefore on the
effect of the other interaction terms that are important
when the particles have density of the same order of
the fluid, which we denote ‘light particles’ throughout
the paper.

Most of the research on stability of particle laden
flows discusses heavy particles. Saffman in 1962 [12]
showed theoretically that adding dust to a gas might
stabilize the flow. Michael in 1964 [13] confirmed the
results by Saffman by showing neutral stability curves
for several particle sizes. His findings show that an
optimal particle relaxation time exists for maximum
stabilization. Both Saffman and Michael considered a
plane parallel Poiseuille flow in which the base flow
particle velocity equals the base flow of the fluid. Both
the fluid and the particles are modeled in a Eulerian
framework. In addition, particles are considered spher-
ical and homogeneously distributed.

Rudyak et. al. [14] and Asmolov and Manuilovic
[15] extended the linear stability analysis in channel
and boundary layer flow by improving the numerical
accuracy using a different technique based on integra-
tion in the complex plane. Modal analysis is also con-
sidered in Klinkenberg et al. [10]. These authors show
that stabilization due to heavy particles arises when the
ratio of particle relaxation time and the period of the
instability, the stability Stokes number, is of order one.

Non-modal analysis is a relatively new, but an im-
portant tool to predict instabilities. Nowadays it is
understood that a perturbation in a shear flow can
experience significant transient energy growth [16–
19]. This growth is responsible for the initial linear
amplification of disturbances which leads to subcrit-
ical transition to turbulence. Non-modal effects can
therefore explain the discrepancy observed between
the critical Reynolds number for linear instability and
the experimental observations of transition in wall-
bounded shear flows. One needs therefore to consider
also non-modal analysis to gain insight into the stabil-
ity of wall-bounded flows seeded with light particles.

Klinkenberg et al. [10] investigated non-modal growth
in channel flow seeded with heavy particles and found
that particles have little effect on the flow stability.

The general equations for particle-laden flows
given by Maxey and Riley in 1983 [20] provide an
overview of the particle-fluid interaction forces. These
forces consist of the Stokes drag, the added mass, the
fluid acceleration force (also known as pressure cor-
rection force), buoyancy and the Basset history term.
The starting point of their analysis is the equation
of motion proposed by Tchen [21] and modified by
Corrsin and Lumley [22]. Besides these interaction
forces, the Saffman lift force [23] may also be rele-
vant, as discussed by several authors [24–26] and more
recently by Boronin and Osiptsov [27]. In addition to
these different interaction terms, the effect of finite
particle volume, the volume the particles have, is in-
vestigated by Vreman [28] and Boronin [29]. In the
present paper Stokes drag, added mass, fluid accelera-
tion and Basset history force are considered, limiting
the validity of our analysis to small particles.

Although the different forces between fluid and par-
ticles have been known for a long time and have been
discussed for turbulent flows in several papers, e.g.
Calzavarini et.al. [30], transitional flows with light
particles have not been often investigated in literature.
Relevant work on transition in particle-laden flows is
presented by Matas et. al. [31, 32]. These authors per-
formed experiments in a pipe flow seeded with neu-
trally buoyant particles. To control transition to start
at Re ≈ 2100 in a clean flow, they inserted a ring
at the pipe entrance. Particles of four different sizes
were injected into the flow and the Reynolds number at
which transition starts, the transitional Reynolds num-
ber, investigated. All particle sizes stabilized the flow
for large concentrations, i.e. the transitional Reynolds
number increased. For smaller concentrations (volume
fraction ≤ 0.2), large particles destabilized the flow,
while the smaller particles (d/D ≤ 70) stabilized the
flow. Interestingly, in the range of small particles, the
results became independent of the particle diameter.

The aim of this paper is to investigate modal and
non-modal stability of particle suspensions for a wide
range of density ratios. To perform our analysis, we
adopt the model introduced in Ref. [20], rewritten into
a Eulerian framework. While this continuous approach
is likely to fail in turbulent flows due to particle clus-
tering and singularities in the particle field, it can still
be used for laminar flows and perturbation expansions,
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such as in linear stability calculations [33]. Instead of
modeling both fluid and particles in a Eulerian frame-
work, the particles can also be solved by Lagrangian
tracking. Meiburg et al. [34] investigated the behavior
of heavy particles in a 2D-mixing layer using two-way
coupling in a Eulerian-Lagrangian framework. They
found a vorticity-based understanding of the propaga-
tion of a traveling wave.

2 Flow model and stability analysis

Few approximations exist for the coupling between
fluid and solid phase depending on the particle size and
volume fraction, see Elghobashi [35]. As a first step
in the analysis of the stability of particle laden flows,
we neglect collisions and hydrodynamic coupling and
therefore use the two-way coupling model. The two-
way coupling includes Stokes drag, added mass, fluid
acceleration and Basset history force. We are first in-
terested in the influence of added mass and fluid accel-
eration on the stability and therefore neglect buoyancy.
The Basset history force accounts for the development
of the boundary layer on the particles and its effect is
studied in Sect. 4.

2.1 Governing equations

The governing equations are the Navier Stokes Equa-
tions with the addition of the different fluid-particle in-
teraction terms, written in a Eulerian framework. The
dimensional equation for the total particle field reads
[36]:

dupi

dt
= ρf

ρp

Dui

Dt
− 1

2

ρf

ρp

[
dupi

dt
− Dui

Dt

]

+ K

mp

(ui − upi
), (1)

with ui the fluid velocity, upi
the particle velocity

and i = 1 − 3. mp = 4/3πr3ρp is the particle mass,
ρp and ρf the density of the particle and the fluid,
mf = 4/3πr3ρf the fluid mass ideally contained by
the volume of one particle, and K = 6πrμ the Stokes
drag term with μ the fluid kinematic viscosity and r

the particle radius. The notation D/Dt is used for the
total derivative following a fluid element, while d/dt

is used for the total derivative following a moving par-
ticle. The terms on the right-hand side of Eq. (1) are

the fluid acceleration, added mass and Stokes drag
respectively. The particle relaxation time is defined
as τ = mp

K
. In the particle momentum equation the

particle-particle interaction has been neglected. Al-
though such interactions are important when the vol-
ume fraction is large, we chose to neglect these and
restrict the maximum particle volume fraction, as dis-
cussed in Sect. 2.2. To account for particle-particle in-
teractions, a viscosity and pressure could be defined
in the particle momentum equation. More information
on the modeling of particle-particle interactions in a
two-fluid model can be found in [37].

The counterpart is the momentum equation for the
fluid

ρf

Dui

Dt
= −mf N

Dui

Dt
+ 1

2
mf N

[
dupi

dt
− Dui

Dt

]

− KN(ui − upi
) − ∂p

∂xi

+ μ
∂2ui

∂x2
j

, (2)

with i = 1 − 3, N the number of particles per unit vol-
ume.

When every term is made non-dimensional with the
channel half-width L, centerline velocity U , we obtain
the following non-dimensional particle and fluid mo-
mentum equations:

dupi

dt
= ξ

Dui

Dt
− 1

2
ξ

[
dupi

dt
− Dui

Dt

]
+ 1

SR
(ui − upi

),

(3)

(1 − Φ)
Dui

Dt
= − ∂p

∂xi

+ 1

R

∂2ui

∂x2
j

− f ξ
Dui

Dt

− 1

2
f ξ

[
Dui

Dt
− dupi

dt

]

+ f

SR
(upi

− ui), (4)

with i = 1 − 3. The different dimensionless numbers
are defined in Table 1. These are the mass concentra-
tion f , the mass of particles for unit volume of the
suspension over the density of the fluid, the density
ratio ξ and the volume concentration Φ , the volume
occupied by the particles over the total volume of the
suspension. The particle relaxation time τ is either
non-dimensionalized with the viscous time scale of the
flow (S) or the advective time scale (SR). Note that the
fluid equation (2) is defined using the total volume. To
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Table 1 Definition of the non-dimensional numbers

f
mpN

ρf
Mass concentration

ξ
ρf

ρp
Density ratio

Φ f ξ Volume concentration

R
ρf UL

μ
Reynolds number

S ντ

L2 (= 2
9

r2

L2
ρp

ρf
) Viscous Relaxation time

SR Uτ
L

Stokes number

account for the particle volume we have to multiply
the density with (1 − Φ).

The dimensionless numbers in Table 1 are not
independent of each other and only 4 of them are
strictly necessary. The volume fraction, density ra-
tio and Mass fraction are coupled through Φ = f ξ .
Also the Reynolds number and dimensionless relax-
ation time S can be coupled into the Stokes number
SR. Although not all the non-dimensional numbers re-
ported in the table are independent, we define all of
them to clarify how they change when varying some
of the basic features of the flow or of the particles.
For instance, we may wish to investigate the impor-
tance of either the density ratio, the size of the particles
or the volume fraction independently and thus change
the different non-dimensional number in a less obvi-
ous way. The size of the particles, as example, appears
in several of these dimensionless numbers.

In addition to the momentum equations, conserva-
tion of mass is necessary to close the system; for par-
ticles and fluid these read

∂f

∂t
= − ∂

∂xi

(f upi
) (5)

∂ui

∂xi

= 0, (6)

with i = 1 − 3. To study linear stability, a small
perturbation (u′) to a base flow (U ) is introduced,
where the base flow is considered to be the parallel
Poiseuille flow, U = U(y) = 1 − y2, with y ∈ [−1,1].
The particle base flow is equal to the fluid base flow,
independent of the number of particles. Substitut-
ing ui = U + u′

i , upi
= U + u′

pi
, p = P + p′ and

f = f ′ + f0 in (4)–(6), linearized stability equations
are derived in a standard way [19]. f0 is considered
a homogeneous mass fraction of particles and f ′ is a
small deviation from that homogeneous condition. The
linearized equations read (primes are omitted except

for f ′ and f = f0):

(1 − Φ)
∂ui

∂t
= − ∂p

∂xi

− (1 − Φ)Uj

∂ui

∂xj

− (1 − Φ)uj

∂Ui

∂xj

+ 1

R

∂2ui

∂x2
j

+ f

SR
(upi

− ui) + f · (AM + FA)

(7)

∂upi

∂t
= −Uj

∂upi

∂xj

− upj

∂Ui

∂xj

+ 1

SR
(ui − upi

)

+ AM + FA (8)

∂f ′

∂t
= −∇ · (f ′U + f upi

)
(9)

∂ui

∂xi

= 0. (10)

With i = 1 − 3, AM and FA the Added Mass and
Fluid Acceleration, with subscripts f and p , denoting
fluid and particle respectively:

AM = −1

2
ξ

(
∂

∂t
(ui − upi

) + Uj

∂

∂xj

(ui − upi
)

+ (ui − upi
)
∂Ui

∂xj

)
, (11)

FA = −ξ

(
∂ui

∂t
+ Uj

∂ui

∂xj

+ uj

∂Ui

∂xj

)
, (12)

with i = 1 − 3. For the configuration considered, the
equation for the particle mass fraction f ′ (9) is decou-
pled from the rest of the system. As a consequence,
Squires theorem can be extended to this case and a
complex Orr-Sommerfeld equation can be derived.
Reference [29] This has been done in Ref [12, 13]
for heavy particles, but the approach can be extended
to incorporate the added mass and fluid acceleration.
However, we are here interested in the non-modal sta-
bility of the full three-dimensional problem and there-
fore consider the corresponding initial value problem.
The equations for the fluid velocities are rewritten
into wall-normal velocity v and wall-normal vorticity
η = ∂u

∂z
− ∂w

∂x
, analogous to the standard Orr-Sommer-

feld-Squire system used for parallel single phase
flows. This is done by eliminating the pressure from
Eq. (7) and by solving for ∂u

∂z
− ∂w

∂x
. The correspond-

ing total system of particle and fluid equations then
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reads(
1 + 1

2
f ξ

)
∂

∂t
�2 v − 1

2
f ξ

∂

∂t
Q

=
{
−

(
1 + 1

2
f ξ

)[
U

∂

∂x
�2 −U ′′ ∂

∂x

]
− f

SR
�2

+ 1

R
�4

}
v

+ 1

2
f ξ

[
−U ′′ ∂vp

∂x
− U ′ ∂

∂x
� ·�up + U

∂

∂x
Q

]

+ f

SR
Q (13)

(
1 + 1

2
f ξ

)
∂η

∂t
− 1

2
f ξ

∂

∂t

(
∂up

∂z
− ∂wp

∂x

)

= −
(

1 + 1

2
f ξ

)(
U

∂η

∂x
+ U ′ ∂v

∂z

)

+ 1

2
f ξ

(
U ′ ∂vp

∂z
+ U

∂

∂x

(
∂up

∂z
− ∂wp

∂x

))

+ f

SR

(
∂up

∂z
− ∂wp

∂x
− η

)
+ 1

R
�2 η (14)

with

Q = ∂2vp

∂x2
+ ∂2vp

∂z2
− ∂2up

∂x∂y
− ∂2wp

∂z∂y
. (15)

The boundary conditions of this system are v = η =
up = vp = wp = 0 at top and bottom walls. In the
Appendix, the matrix representation of this system can
be found which is used to solve the eigenvalue prob-
lem.

Note finally that the Reynolds number of the flow
is defined as R = ρf UL

μ
. While this can be seen as

a Reynolds number for the fluid alone, a modified
Reynolds number can be defined for the total system
as:

Rm = (1 + f − Φ)ρf UL

μ
,

thus based on the total density. This modified Reynolds
number Rm is used in the modal analysis, whereas the
Reynolds number R is used when presenting results
from non-modal stability.

2.2 Model limitations

The model used here implies some limitations on the
plausible values of the particle parameters. The param-

eters to be considered are the volume fraction, the den-
sity ratio and the size of the particles. When two-way
coupling is used, the volume fraction should not be too
large, because collisions and hydrodynamic coupling
are not modelled. This limitation is best illustrated us-
ing the average particle spacing: l

D
∼ ( π

6Φ
)1/3, with l

the average particle spacing and D the diameter of the
particle. For a volume fraction of Φ = 0.01, the aver-
age particle spacing l

D
∼ 3.74. Although the physical

particle spacing below which particle-particle interac-
tions play a role is not clearly defined, in this paper we
limit the volume fraction to Φ = 0.01.

The limits on the density ratio are given by the fact
that particles cannot be too light since we neglect sur-
face tension and deformability. Here we will there-
fore limit the results to the case ξ ≤ 2. In addition
buoyancy effects become relevant when ξ 
= 1. These
forces will be however neglected in this study to sim-
plify the problem and to be able to focus on the ef-
fect of the other interaction forces (added mass and
acceleration). Buoyancy effects, and related phenom-
ena like sedimentation, are left as future work. Note
also that neutrally buoyant small particles have no ef-
fect on the flow dynamics in the limit considered here;
neutrally buoyant particles however have significant
effects on the flow for volume fractions larger than
0.01 [31, 38].

The third limiting parameter is the size of the par-
ticles, r/L, where r is the radius of the particle and L

the channel half-height. For large particles finite-size
effects needs to be included, as in the so-called Faxen
correction. In addition, we need sufficiently many par-
ticles to assume a continuous homogeneous particle
distribution. Given a specific volume fraction, the size
and the number of particles are coupled: the smaller
the particle, the more particles are needed to obtain
this volume fraction. This dependence is shown in
Fig. 1 where the particle volume is given as a function
of the number of particles for different particle sizes.
Two limits are also shown, Φ = 0.01 and N = 1000:
with a volume fraction Φ = 0.01 and a minimum num-
ber of N = 1000 particles, the maximum size of the
particles becomes r/L = 0.0134. This is therefore the
order of magnitude for the maximum size allowed by
the model adopted for this work.

Although these are the physical limitations of our
model, in some of the following figures we may also
show data outside this range to emphasize the effect
of the solid dispersed phase on the stability of channel
flow.
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Fig. 1 Particle volume versus number of particles, for different
particle sizes. N0 is the number of particles per unit volume. The
two limits (Φ = 0.01 and N = 1000) are shown as thin black
lines. The intersection of these lines coincides with a particle
size r/L = 0.0134. Larger particles fall outside the limits of the
approximations used in this paper

2.3 Modal stability analysis

To study linear stability, we assume wave-like pertur-
bations of the following form:

q = q̂(y)ei(αx+βz−ωt),

with q = (v, η,up, vp,wp)T . In the expression above,
α and β define the streamwise and spanwise wavenum-
ber of the perturbation respectively and ω is a com-
plex frequency. The temporal problem is considered
here: when �(ω) > 0, the perturbation will grow ex-
ponentially in time. Conversely, when all �(ω) < 0,
all disturbances decay asymptotically, i.e. the flow is
stable. The point where ωi = 0, is called neutrally sta-
ble. When computing ωi in a range of wavenumbers
α and Reynolds numbers, a neutral stability curve can
be obtained. This curve defines the range where expo-
nentially unstable waves can be found. As mentioned
earlier, the neutral stability curve can be computed as-
suming two-dimensional perturbations, since a mod-
ified version of Squire’s theorem holds for particle
laden flows [12, 29].

2.4 Non-modal stability analysis

Transient disturbance energy growth may appear when
the eigenvectors of the system are non-normal. This is
also the case in systems that are asymptotically stable.
To investigate transient growth, non-modal analysis is
necessary. Non-modal analysis determines the largest

possible growth of a perturbation in a finite time in-
terval, also called optimal growth. The initial distur-
bance yielding optimal growth is called an optimal ini-
tial condition.

The discretized governing linear equations can be
written in compact form as:

∂q

∂t
= Lq. (16)

The largest possible growth at time t is the norm of the
evolution operator, or propagator, T = exp(tL). This
propagator takes any initial condition from t = 0 to a
specified final time t . The maximum amplification is
defined as:

max
q0

‖q‖
‖q0‖ = max

q0

‖ exp(tL)q0‖
‖q0‖

= ‖ exp(tL)‖ ≡ G(t). (17)

The norm used should be relevant to our problem.
Therefore we use the kinetic energy of the full sys-
tem defined as the kinetic energy of the fluid and of
the particles together:

Ekin = 1

2

(
mf u2

i + mpu2
pi

)
, (18)

with mf and mp the mass of the fluid and the particles
respectively.

A matrix M can be constructed to compute the ki-
netic energy. This matrix M is applied directly to the
vector q = [v,η,up, vp,wp]T to give the kinetic en-
ergy integrated over the volume V

E(t) = 1

2

∫
Ω

qH MqdV. (19)

With this definition the optimal growth is defined as
the 2-norm of the modified propagator

max
q0

‖q‖E

‖q0‖E

= max
q0

‖Fq‖2

‖Fq0‖2

= max
q0

‖F exp(tL)F−1Fq0‖2

‖Fq0‖2

= ‖F exp(tL)F−1‖2 ≡ G(t) (20)

where F is the Cholesky factorization of M = FFH .
As in our previous study, we are not only interested

in optimizing the total energy of the system, but also
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wish to investigate the optimal growth when perturb-
ing only the fluid or particle velocity. In this case, we
do not consider the total kinetic energy of the system,
but only a part of it, depending on the initial condition
and final state chosen. This separation can be achieved
by including either fluid or particle energy when com-
puting the optimal growth. [10] The optimization can
be written as

G(t) = ‖qout (t)‖Eout

‖qin(0)‖Ein

= ‖T qin(0)‖Eout

‖qin(0)‖Ein

= ‖FoutT qin(0)‖2

‖Finqin(0)‖2

= ‖FoutT F−1
in Finqin(0)‖2

‖Finqin(0)‖2

= ‖FoutT F−1
in ‖2

= ‖FoutC exp(tL)BF−1
in ‖2 (21)

Here, the propagator T = C exp(tL)B is rewritten to
include the input and output matrices. The input is
qin = Bq , while qout = Cq is the output we are in-
terested in. The energy norm must be separated like-
wise, Min = FinF

H
in is applied to qin to measure the

input energy while Mout = FoutF
H
out gives the output

energy. In the classic non-modal analysis discussed,
Fin = Fout and C = B = I .

2.5 Numerical method

The discretization in y-direction of the equations is
done using the Chebyshev collocation method. [39].
Most computations are performed using ny = 37, with
ny the number of collocation points. Several cases
have also been computed with ny = 67 to validate the
accuracy of the results.

For the transient growth computation, we made use
of the following energy matrix M :

M =

⎛
⎜⎜⎜⎜⎜⎝

(−D2

k2 + 1)Iw 0 0 0 0
0 1

k2 Iw 0 0 0
0 0 f Iw 0 0
0 0 0 f Iw 0
0 0 0 0 f Iw

⎞
⎟⎟⎟⎟⎟⎠

.

(22)

In the expression above, Iw is the diagonal matrix per-
forming spectral integration in y direction. This matrix
can be easily factorized using a singular value decom-
position (SVD): M = UΣUH = FFH .

3 Results

3.1 Modal analysis

The results for modal stability analysis are given in
Fig. 2, where we display the critical total Reynolds
number versus the dimensionless, viscous particle re-
laxation time S in (a). Particles heavier than the fluid
increase the critical Reynolds number. The largest sta-
bilization is found when considering heavy particles
and the only relevant interaction term is the Stokes
drag. Lighter particles, but still heavier than the fluid,
also increase the critical Reynolds number. Particles
lighter than the fluid (ξ > 1 and still rigid in our
model) behave oppositely to heavy particles and de-
crease the critical Reynolds number. The results in

Fig. 2 Critical Reynolds number as a function of dimension-
less relaxation time S and of stability Stokes number SRωr for
light particles using both added mass and fluid acceleration:
ξ=[0.5, 2], f = 0.1. The results for heavy particles with large
density ratio (Stokes drag only) is also given as reference
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Fig. 2(b) show that the largest critical Reynolds num-
ber is found when the stability Stokes number SRωr ≈
1, where the stability Stokes number is defined as the
Stokes number times the period of the disturbance
wave. The stability Stokes number therefore, is the ra-
tio between the dimensionless, advective particle re-
laxation time and the timescale of the disturbance.

To gain further understanding on the modal sta-
bility of particle-laden flows, we examine the criti-
cal Reynolds number as a function of density ratio in
Fig. 3(a). The mass fraction is prescribed together with
the dimensionless particle size and we can clearly dis-
tinguish the effects of both parameters: (i) The mass
fraction influences the values of the maximum critical
Reynolds number. (ii) The particle size influences the
density ratio at which the maximum Reynolds number
is reached. When the particle size increases, the maxi-
mum critical Reynolds number is shifted to lighter par-
ticles. The latter finding can be explained by the defi-

nition of S = 2
9

r2

L2
1
ξ

, which is a function of the particle
size and density ratio. The largest stabilization is in-
deed found for stability Stokes number of order one,
as shown previously.

In Fig. 3(b) we display the critical Reynolds num-
ber versus the dimensionless particle size, r/L. If we
consider small particles, the critical Reynolds num-
ber is not affected by the inclusion of particles. When
particle size increases, we see the increased criti-
cal Reynolds number for values in the range r/L =
0.001 < r/L < 0.01. The size at which the critical
Reynolds number is maximum is related to the density
ratio: the particle relaxation time S depends linearly
on ξ = Φ/f . Note that the data for heavy particles are
obtained using Stokes drag only. Fixing the same vol-
ume and mass fraction as for light particles ξ = Φ/f ,
the size is defined by r/L = √

9/2Sξ as a function of
dimensionless relaxation time S. This definition also
explains why small particles hardly have an effect. For
small r/L, also S is small and we have seen before
(Fig. 2) that at small dimensionless relaxation times
particles do not affect modal stability.

The effect of added mass and fluid acceleration on
the critical Reynolds is examined in Fig. 4. The re-
sults in the figure are obtained using Stokes drag and
either added mass or fluid acceleration. The added
mass term shows the same trend as obtained with
Stokes drag only: the critical Reynolds number in-
creases, see Fig. 4(a). When the particles become
heavier, the stability curve computed with added mass

Fig. 3 Critical Reynolds number as a function of the density ra-
tio ξ for two mass fractions and particle sizes (a) and the critical
Reynolds number as a function of particle size r/L for two mass
fractions and Φ = 0.01 (b). In (b) we report also the results for
heavy particles with large density ratio when only Stokes drag
is used

overlaps with that for heavy particles. The figure indi-
cates that the lighter the particle, the lower the critical
Reynolds number when considering only added mass.
Fig. 4(b) shows the results obtained considering fluid
acceleration and Stokes drag. For ξ = 0.1 the critical
Reynolds number is very close to that for heavy parti-
cles. For larger values of ξ , the critical Reynolds num-
ber decreases. Particles lighter than the fluid destabi-
lize the flow and reduce the critical Reynolds number,
as shown for ξ = 2.

The results obtained including the fluid accelera-
tion force are similar to those shown before when all
terms are used. Thus, the fluid acceleration is the dom-
inant force in the system. The fluid acceleration force
is proportional to Dui

Dt
whereas the Added Mass to

(
Dui

Dt
− dupi

dt
). The fact that the fluid acceleration force

is the most dominant of the two indicates that Dui

Dt
and

dupi

dt
tend to be of the same order for light particles.
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Fig. 4 Critical Reynolds number vs. relaxation time S for par-
ticles of density ratio ξ=[0.1, 0.5, 2] and mass fraction f = 0.1.
As reference, we display the results for clean flow and heavy
particles (Stokes drag only). In (a) Stokes drag and added mass,
in (b) Stokes drag and fluid acceleration are used as interaction
terms

3.2 Non-modal analysis

Results of the non-modal analysis are presented in
Fig. 5. The only cases presented are those denoted
fluid → fluid and all → all. The first case investigates
the transient growth of the fluid energy when the initial
condition consists of fluid perturbation only; the opti-
mal growth of the fluid disturbance velocity is studied.
The particles are in the system and can gain energy,
but this is not apparent. In the case all → all, the to-
tal energy of the two-phase system is investigated and
particles may have some initial disturbance velocity. In
Fig. 5(a), we display the optimal growth as a function
of spanwise wave-number β , the streamwise wave-
number α is set to zero. The data represent the max-
imum over the final optimization time. The computa-
tions are performed for 2D waves as well; since the
transient growth of these streamwise waves is two or-

Fig. 5 (a) Optimal growth (Gmax ) as a function of spanwise
wave-number β at S = 5 × 10−5, f = 0.1 and R = 2000.
The cases fluid → fluid and all → all are presented for
ξ = [0.1,0.5,2]. (b) Optimal growth as a function of ξ us-
ing β = 2 at S = 5 × 10−5, r/L = 0.01 and R = 2000 for
Φ = [0.005,0.01,0.02]

ders smaller than for spanwise waves these results will
be presented later. The density ratios under consider-
ation are those used also in the modal analysis, ξ =
[0.1, 0.5, 2]. For all → all we see an increase of the
optimal growth by a factor (1+f −Φ)2. The increase
can be explained by using the modified Reynolds num-
ber Rm. The optimal growth is proportional to R2,
and with the modified Reynolds number defined previ-
ously, we see that the optimal growth therefore should
increase by (1 + f − Φ)2. For fluid → fluid we find
transient growth smaller than for a clean flow. This is
caused by the fact that there is less fluid per unit vol-
ume, (1 −Φ), part of the fluid volume is taken by par-
ticles. Thus, a modified Reynolds number based on the
fluid density alone is smaller and therefore the distur-
bance growth is also smaller. If we include the den-
sity variations in the system in a modified Reynolds
number, the results with all extra forces included are



Meccanica

similar to those for heavy particles, namely there is
no significant effect of particles on the streak transient
growth. In the second figure, Fig. 5(b), the particle
size and total volume is set, while the density ratio is
changed along the horizontal axis. Note that the mass
fraction is a function of density ratio and volume frac-
tion, f = Φ/ξ . For small values of ξ , the mass frac-
tion is large and thus the growth for the case all → all
is larger. This effect is the same as in Fig. 5(a): the
optimal growth increases by (1 + f − Φ)2. The case
fluid → fluid hardly changes: as the volume fraction is
fixed and the growth scales as (1 − Φ), particles have
negligible effect on the amplification of the fluid ki-
netic energy.

The effect of the added mass and fluid accelera-
tion on the streak transient growth is further inves-
tigated for several values of S using the spanwise
wavenumber β = 2, where the optimal growth is at
the maximum. These results can be found in Fig. 6.
First we note in 6(a) that for the cases all → all the
maximum possible amplification starts to diverge for
S > 1 × 10−2; this is due to the decoupling of particle
and fluid behavior at high Stokes number, discussed
for heavy particles in [10]. This indicates that the two
additional forcing terms present in the case of lighter
particles do not influence the growth at large values of
S and therefore the results are consistent with those for
heavy particles.

As noted above, the energy amplification is larger
when considering both fluid and particle energy (all →
all) than for fluid alone (fluid → fluid). Figure 6(a)
shows that at fixed mass fraction, the energy growth
for the fluid → fluid case is almost equal to that for
clean fluid and independent of the particle density ra-
tio. Only at very large values of S the optimal growth
deviates a few percent in the presence of particles. Fig-
ure 6(b) confirms that at fixed volume fraction and
particle size, the maximum growth for all → all goes
as (1 + f − Φ)2. This could be seen also by plotting
G/(1 + f − Φ)2 instead of G. Note that in the figure
the largest values of f occur at large S.

To investigate the structures of the disturbances,
we display the optimal initial condition and response
in Fig. 7 for the case fluid → fluid, S = 1 × 10−3.
The initial condition for the fluid consists of vortices,
which can be seen in (a). The particle disturbance ve-
locities are all zero. This results in streaks at the fi-
nal time, where the streamwise disturbance velocity u

is larger than the spanwise and wall-normal velocities

Fig. 6 Optimal growth (Gmax ) as a function of S, us-
ing β = 2, R = 2000 and (a) f = 0.1, ξ = [0.1,0.5,2]
and (b) Φ = [0.005,0.01,0.02], r/L = 0.01. The cases
fluid → fluid and all → all are presented

present. The velocity field of particles and fluid at fi-
nal time are almost identical to each other and to the
case of clean fluid (not shown here). Since differences
in velocity induce a loss in energy, particles and fluid
have similar velocity in optimal configurations; light
particles do not induce any additional gain or loss in
disturbance energy.

We therefore demonstrated how light particles have
little effect on the non-modal stability of spanwise
waves, confirming the results previously obtained for
heavy particles. We now investigate streamwise and
oblique disturbances. Even though these disturbances
grow less than purely spanwise disturbances, they
are important for transition in real configurations,
e.g. when transition is initiated by localized distur-
bances. The effect of particles on these is therefore
worth investigation. Figure 8 shows the results for per-
turbations with several streamwise α and spanwise
wavenumbers β . When both are nonzero, the waves
are oblique. The values of the maximum possible am-
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Fig. 7 Initial condition (a) and optimal response (b) for
S = 1 × 10−3. Case fluid → fluid with ξ = 2, β = 2, R = 2000
and f = 0.1

plification for a clean fluid flow are reported in the ta-
ble, whereas the curves in the figure display the rel-
ative variation with respect to the case of clean fluid.
We first consider small values of the dimensional re-
laxation time SR: for two-dimensional waves (α = 1,
β = 0), particles induce a decrease in the transient
growth. In our previous paper on heavy particles [10],
we have shown that this reductions scales as (1 + f ).
Streaky modes with (α = 0, β = 2), conversely, dis-
play no difference between laden and unladen flow in
the case of heavy particles, ξ = 0.001. When the den-
sity ratio increases, the growth is reduced by a factor
(1−Φ)2 for the case fluid → fluid in the figure, and as
shown above in Fig. 5. Note however, that an increase
of the streaks transient growth by a factor (1+f −Φ)2

would be observed when studying the total energy in
the system. For oblique waves, the results lie in be-
tween these two extremes. For slightly oblique waves
(β = 2, α = 0.1), we observe the lowest relative loss
of energy growth. The magnitude of this loss increases
for larger values of α.

Fig. 8 Transient growth of oblique waves normalized with the
growth rate of a clean flow as a function of SR for fluid → fluid
and f = 0.1 for ξ = [0.001, 0.1, 0.5, 2]. The amplification
values for a single phase fluid are reported in the table
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We now consider the flow behavior at intermedi-
ate values of the Stokes number, cf. Fig. 8. A clear
decrease of the transient energy growth relative to the
case of single phase fluid is apparent for a range of par-
ticle relaxation times. This occurs at lower SR for two-
dimensional disturbances and at larger values of SR
for disturbances approaching spanwise streaky waves.
This stabilization is observed for values of the stabil-
ity Stokes number, defined by the ratio between the
particle relaxation time and the final time giving the
largest amplification, of order one. Therefore, the re-
duction of the amplitude of oblique disturbances is ob-
served at lower Stokes number for modes with β = 0
for which the transient growth is faster, and at higher
Stokes number for modes with α = 0 for which the
transient growth is a slower process. This stabilization
is the counterpart of the increase of critical Reynolds
number shown by the modal analysis. Note however,
as discussed before, that the values of the Stokes num-
ber necessary to observe this stabilization can be re-
lated to parameters outside the range of validity of our
model, especially for large S and therefore waves with
β ≈ 0. Finally, When further increasing the particle re-
laxation time, we observe an increase of the transient
growth (values larger than 1 in the figure). Again, we
note that this is however happening for particle size
too large for our model to be valid.

4 Basset history force

In this section we include the Basset history term in
the set of equations. First we show how this term is
implemented and in the second part we discuss results
for both heavy and light particles.

4.1 Numerical implementation

The Basset history term has not been considered pre-
viously for linear stability computations. The history
term is different from the terms discussed so far as it
appears as a convolution integral, where the total his-
tory of the fluid and particle flow has to be known. For
Direct Numerical Simulations this is expensive and
therefore only the recent history is usually considered.
Sometimes a model to account for large times is used
[40]. For stability analysis, the integral is also difficult
to deal with and is therefore rewritten so that it can be
implemented in a linear system.

The Basset history term is expressed as a convolu-
tion:

q̄i (t) = 1

Sb
·
∫ t

−∞
dτ

d/dτ {upi
− ui}

[t − τ ]1/2

= 1

Sb
·
∫ t

−∞
F(t − τ)q(τ )dτ, (23)

with i = 1 − 3 and where we approximate
∫ t

−∞ F(t −
τ)dτ by an exponential; having an exponential filter

q̄i (t) =
∫ t

−∞
C exp

(
− t − τ

�

)
q(τ)dτ, (24)

we can use the differential form:

dq̄i(t)

dt
= Cq − q̄

�
. (25)

In this way, we are able to solve an eigenvalue prob-
lem similar to that without Basset history term, only
extended with the three extra equations for q̄i , for-
mally similar to Eq. (25). The matrix representation
of this system is given in the Appendix. Sb is a new
dimensionless number, similar to the Stokes number
SR: Sb = SRLπ1/2

rR1/2 .
Next, we need to approximate the square root de-

pendence of the Basset term with an exponential. Fig-
ure 9 shows the difficulty with the approximation: ei-
ther the exponential is more accurate for small times,
or for larger times. Several combinations of C and
� are tested to investigate whether any combination
changes the critical Reynolds number or the transient
energy growth in a significant way.

Fig. 9 The approximation of a 1/
√

(t) by an exponential in the
form C exp(−t/�)
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Fig. 10 Basset History with heavy particle approximation (only
Stokes drag as interaction term apart from the Basset History
term), f = 0.1 and ξ = 0.001. (a) Critical Reynolds number as
a function of S. (b) Maximum transient growth as a function of
S with R = 2000

4.2 Results

The Basset history term has not been implemented in
stability of a particle laden flow before. Therefore we
show first the results without added mass and fluid ac-
celeration: the heavy particle approximation, and then
include these terms. In both cases, we investigate the
influence of the Basset history on both modal and non-
modal stability.

For heavy particles, only a small difference is
found when the history term is used, Fig. 10(a): The
critical Reynolds number is decreased a few per-
cent using C = 3,� = 1. In non-modal analysis,
Fig. 10(b), hardly anything changes for all filter pa-
rameters investigated. This could be expected due to

the definition of SR and Sb. Sb is Lπ1/2

rR1/2 times larger
than the Stokes number, thus 1/Sb is much smaller
than 1/SR when ξ = 0.001. If we consider SR = 1,
R = 2000, the size fixed at r/L = 0.0015, Sb is
about 30 times larger than SR; thus the Basset his-

Fig. 11 Basset History with light particles with f = 0.1.
(a) Critical Reynolds number as a function of S. (b) Maximum
transient growth as a function of SR with R = 2000

tory term is less important than Stokes drag in this
regime.

When light particles are considered, the Basset his-
tory term might have an effect because the density ra-
tio changes to ξ ∼ 1. However, we show in Fig. 11(a)
that the history term has a small effect on the critical
Reynolds number. For both ξ = 2 and ξ = 0.5, the crit-
ical Reynolds number varies: The Basset history force
slightly decreases the critical Reynolds number. The
model used for the Basset history in this case assumes
� = 1 and C = 3.

Figure 11(b) shows the transient growth for light
particles both with and without the Basset history
term. In the figure only one set of filter parameters
is used (� = 1,C = 3), more data with different fil-
ters have been tested, but no significant difference is
found.

These results imply that the Basset history affects
both modal and non-modal stability for light particles
in a negligible way.
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5 Discussion and conclusions

We presented results for linear modal and non-modal
stability of channel flow laden with particles of vary-
ing density.

Concerning modal stability, the presence of light
particles changes the behavior of single-phase flow
and flows seeded with heavy particles. Particles lighter
than the surrounding fluid decrease the critical
Reynolds number, whereas particles heavier than the
fluid increase the critical Reynolds number. The de-
crease of the critical Reynolds number is due to the
fluid acceleration term. When the fluid acceleration
term is not used, but added mass and Stokes drag
are, particles do increase the critical Reynolds num-
ber. The latter two interaction terms are proportional to

(
Dui

Dt
− dupi

dt
) and (ui − upi

) respectively, whereas the

fluid acceleration is proportional to Dui

Dt
. This shows

that particle and fluid velocity and their derivatives are
of the same order and that therefore added mass and
Stokes drag have less influence in the case of light par-
ticles. When particles are heavier, for a density ratio of
ξ = 0.1, the results are similar to those obtained with
Stokes drag alone, see Fig. 4.

The Reynolds number used in the modal-analysis is
the modified Reynolds number as defined in Sect. 2.1.
The increase in density due to the addition of particles
is incorporated in this modified Reynolds number.

Non-modal analysis shows a more limited effect of
particles. As in a clean fluid, streamwise-independent
modes can undergo large non-modal growth; this is as-
sociated to the amplification of streamwise velocity
streaks induced by counter-rotating streamwise vor-
tices. The mechanisms and flow structures are equal
to those observed in a single phase fluid. The interac-
tion terms added do appear in the energy budget but do
not affect the whole process; this can be explained by
the long time scale associated to the streak lift-up that
allows particles to follow the fluid structures. Table 2
shows the optimal growth as function of mass fraction
for particle laden flows versus clean fluid for spanwise
waves at small values of S. The shift by (1 + f − Φ)2

can be explained by the increased density of the total
system: optimal growth is still proportional to R2 with
R based on the global suspension density. The optimal
condition is that particles and fluid have equal veloc-
ities in order to minimize energy losses. Independent
of which interaction forces one takes into account, the
optimal growth is equal up to S = 10−2, see Fig. 5. At

Table 2 Dependence of the optimal growth with the mass frac-
tion f for streamwise independent disturbances

Case Dependence

all → all (1 + f − Φ)2

fl → fl (1 − Φ)2

larger values of S, the equations for fluid and particles
decouple and the particle energy can grow infinitely in
the linear model, because the only dissipative terms in
the particle momentum equation stems from the forces
exchanged with the fluid. Limitations in size however
show that these results lie outside the validity of the
present model.

When we look at streamwise-dependent distur-
bances, for which modal analysis reveals an increase
of the critical Reynolds number, the non-modal re-
sponse is smaller when compared to that in a clean
fluid flow. We recall that the transient growth is at
least one order of magnitude larger for spanwise-
periodic streamwise-independent modes. However,
oblique modes are important in the case of localized
initial disturbances and at the non-linear stages of tran-
sition and thus stabilization of oblique waves can have
an impact on transition as shown for the case of heavy
particles. [11]

The extra interaction terms have no influence on the
non-modal stability and this appears less obvious than
for heavy particles. [10] The energy analysis of heavy
particles shows that particle-fluid interaction always
induces a loss in kinetic energy. To optimize energy,
both the fluid and particles should have equal veloci-
ties, which then results in an (1 + f − Φ)2 increase of
the energy gain when the particles act as passive trac-
ers and increase the fluid density. In non-modal growth
the particles act basically as passive tracer up to large
values of S because transient growth is a slow process.
Therefore, the stability Stokes number is small indicat-
ing that particles react to the flow faster than the time
needed for the streaks to grow. These apply to both
light and heavy particles.

Finally, we have used a differential form of the ap-
proximated kernel and show that the Basset history
force has a negligible effect for both heavy and light
particles.

Considering also the first part of this investigation
[10], we see that the presence of a solid phase has no
significant effect on the non-modal growth responsible
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for subcritical transition in channel flows, especially
in the case of elongated structures. As a next step,
both particle-particle interactions and finite-size par-
ticles should be considered. For finite-size particles,
we expect significant effects also for neutrally buoyant
particles, see for example Matas et al. [31] and Picano
et al. [41]. Also, a non-linear model should be used to
investigate the effect of particles on secondary insta-
bilities and final breakdown.

Appendix: Matrix operators for the eigenvalue
problem

The equations for the particle laden flow can be written
in compact form as follows:

M
d

dt
q = Lq, (26)

with q = [v, η, up, vp, wp]′ without Basset History
force Eqs. ((8), (13) and (14)) and

q = [v, η, up, vp, wp, q1, q2, q3]′

with the Basset history force (Eqs. (8), (13) and (14)
with the q̄ defined in Eq. (25)).

The matrices M and L without the history force are
defined in Eq. (27), with all the terms for velocity v

given in Eqs. ((28)–(35)).
For the inclusion of the Basset history force, we

do not solve any integro-differential equations. The
integral associated to the Basset history term has
been replaced by 3 new unknowns: [q1, q2, q3], see
Eq. (36) where the matrices are given including the
Basset history force. In here I is the identity ma-

trix and c = C ∗ Sb with Sb = SRLπ1/2

rR1/2 the dimen-
sionless variable for the Basset history term. C and
� are constants used to approximate the differen-
tial form of the integral in the Basset history force.

⎛
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0 Mηη MηU 0 MηW
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⎛
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Fig. 12 Spectrum for the most unstable eigenmode for
R = 3000, S = 5e − 3, ξ = 0.1 and f = 0.1 with (red cross)
and without (blue circle) Basset history term (Color figure on-
line)

The eigenvalue spectra with and without Basset his-
tory term are similar to each other, as can be seen in
Fig. 12 and discussed in the paper.
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