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Nonlinear boundary-layer receptivity to pairs of unsteady oblique freestream vortical
modes is studied in direct numerical simulation of flow over a flat plate with an elliptic
leading edge. The freestream is perturbed by three types of oblique Fourier modes,
differing in the magnitude of the three vorticity components. The vortical modes excite
steady boundary-layer streaks. The associated receptivity mechanism, described in de-
tail, is quadratic in the forcing amplitude. Elliptic leading edges with two different aspect
ratios are considered. We find that – and explain why – the streak amplitudes in nonlinear
receptivity are largely unaffected by the leading-edge bluntness for the types of external
disturbances studied. As linear receptivity is the predominant mechanism at low forcing
frequencies, the nonlinear mechanism comes into play when high-frequency vortices
are present in the freestream. Nonlinear receptivity is therefore expected to contribute
to the excitation of boundary-layer streaks by freestream turbulence.

Keywords: nonlinear receptivity; freestream disturbances; elliptic leading edge; direct
numerical simulation

1. Introduction

Receptivity is the initial stage of laminar-turbulent transition in boundary layers. The term
denotes the mechanism by which freestream fluctuations or disturbances created by a rough
aerodynamic surface are converted into boundary-layer instabilities. Here we present a
direct numerical simulation (DNS) study of nonlinear receptivity to freestream vortical
modes in boundary-layer flow over a flat plate with an elliptic leading edge.

Vortical freestream disturbances play a vital role in laminar-turbulent ‘bypass transi-
tion’ [1] of boundary layers. In wind tunnel experiments with freestream turbulence levels
above 1% of the freestream speed, the dominant flow structures of pre-transitional flat-plate
boundary layers are longitudinal streaks with alternating high and low streamwise velocity
(see Figure 4 in [2]). Experiments reveal that quasi-steady counter-rotating streamwise
freestream vortices are particularly effective in exciting these streaks [3]. The streamwise
vortices constitute an ‘optimal disturbance’ [4], creating boundary-layer streaks with max-
imum transient amplification. The receptivity mechanism to these low-frequency vortices
is linear in the amplitude of the freestream disturbance [5,6] and relies on the exchange of
high- and low-speed fluid at the flanks of the vortices (termed ‘lift-up’ in [7]).
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2 L.-U. Schrader et al.

The role of the plate leading edge in linear receptivity to freestream vortical disturbances
depends on the leading-edge geometry and the disturbance type. While the linear receptivity
to steady streamwise vortices is barely affected by the bluntness of elliptic leading edges
[6,8], the receptivity to steady vertical freestream vorticity is augmented by an increase
of bluntness. This is caused by an intensification of tilting and stretching of the vertical
vorticity lines at blunter leading edges, effecting a conversion of vertical into streamwise
vorticity, as first explained by asymptotic analysis [9] and verified in experiments [10] and
DNS [6]. Numerical simulations with freestream turbulence show that the enhancement of
vortex stretching and tilting at blunter elliptic leading edges leads to an upstream shift of
the transition location [11].

There also exists a nonlinear receptivity mechanism in boundary layers, driven by
pairs of oblique freestream modes [5]. The interaction of two oblique waves was first
analyzed in free shear layers [12]. The nonlinear receptivity mechanism to this type of
disturbance, first discovered in channel flow [13], facilitates an effective laminar-turbulent
transition route (‘oblique-mode transition’), modelling many features of bypass transition in
shear flows. Oblique-mode transition can also be realized in DNS [14,15] and wind-tunnel
experiments [15] of boundary-layer flow over flat plates. Three steps are identified: the
nonlinear generation of streamwise vortices by oblique modes, the formation of boundary-
layer streaks by these vortices and the secondary streak instability, triggering the breakdown
of the laminar streaks to turbulence. The streak generation through oblique modes can
be reproduced by a weak nonlinear perturbation analysis [16]. Nonlinear receptivity to
oblique waves is also observed in DNS of flat-plate boundary layers exposed to broadband
freestream turbulence [17].

The study of nonlinear effects on streak formation in boundary layers is motivated
by the observation that linear theories underpredict the streak amplitudes typically found
in experiments with freestream turbulence. Moreover, nonlinearity affects the shape of
the streaks and their secondary instability [18]. It is stated that ‘nonlinear effects play an
important role in the development of Klebanoff modes in many of the most important
experiments’ [19]. Further, ‘this [nonlinear] effect increases with increasing downstream
distance from the leading edge and possibly with increasing frequency’, and ‘the nonlinear
effects may enter in a more or less quasi-steady manner’ [19]. These statements are verified
in the present paper, where the nonlinear boundary-layer response to freestream vortical
modes with different frequencies is studied. We extend the earlier studies of nonlinear
receptivity [5,14,16] by including the plate leading edge and vary its shape in order to
identify bluntness effects on the receptivity. Since a wealth of different nonlinear disturbance
interactions – symmetric and asymmetric – are possible in boundary layers exposed to
freestream turbulence, we do not intend to present an exhaustive parametric study but
limit our attention to symmetric interactions between pairs of oblique freestream modes.
This paper follows a similar study of linear receptivity to vortical modes on the same
geometry [6].

2. Flow configuration

We study the flow over a flat plate with a leading edge shaped as a modified super-ellipse
(Figure 1). This contour features smoothness in wall curvature and hence a reduction of
receptivity at the junction [20,21]. The super-ellipse is defined by

(y

b

)2
= 1 −

(
a − x

a

)p

, (1)
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Journal of Turbulence 3

Figure 1. (a) Flat plate with elliptic leading edge (AR = 6). Lengths are normalized by the half-
thickness b of the plate. The red line marks the leading-edge junction. (b) Modified super-ellipse
(MSE), representing the leading-edge shape.

where the exponent p is

p = 2 +
(x

a

)2
. (2)

We denote the streamwise, vertical and spanwise directions by x, y and z, and the respective
velocities by U , V and W (baseflow) and u, v and w (disturbance). All lengths are scaled
by the short semi-axis b of the leading edge. The long semi-axis, a = AR · b, determines
the bluntness of the nose, where AR stands for the aspect ratio of the leading edge.
Here we consider AR = 6 and 20. These values are also used in earlier numerical studies
[6,21,22]. The reference speed is the freestream velocity U∞ and the flow conditions are
defined by the Reynolds number Re = U∞b/ν = 2400. The outflow boundary is located
at xout = 208.34b so that the outflow Reynolds number is Reout = U∞xout/ν = 5 × 105.

3. Numerical method

The simulations are carried out using the three-dimensional incompressible Navier–Stokes
solver Nek5000 [23] based on the spectral-element method (SEM) [24]. The SEM com-
bines the high accuracy of global spectral methods with the geometrical flexibility of
finite-element methods and is suitable for high-fidelity simulations of flow around bodies
with surface curvature and leading edges. The physical domain is decomposed into spec-
tral elements, upon which the solution is approximated by tensor products of Legendre
polynomial Lagrangian interpolants. The expansion is written as

q(l)(r, s, t) =
N∑

i=0

N∑
j=0

N∑
k=0

q
(l)
ijk hi(r)hj (s)hk(t), (3)

where q is a flow variable (e.g. the streamwise velocity), r , s and t are the local spatial
coordinates of elements l, hi , hj , and hk , respectively, are the ith, j th and kth order
Lagrangian interpolants in the r-, s- and t-directions, qijk is the spectral coefficient and N

is the highest polynomial degree included. The spatial allocation of the integration nodes is
based on Gauss–Lobatto–Legendre (GLL) and Gauss–Legendre (GL) quadratures for the
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4 L.-U. Schrader et al.

Figure 2. Spectral-element mesh for a plate with an elliptic leading edge (AR = 6). (a) Inflow
region, and (b) close-up view of the leading edge. Spectral elements (black boxes) and GLL nodes
(red dots).

velocity and pressure fields, respectively. Here we choose N = 7 for the velocity grid and
N = 5 for the pressure grid (PN–PN−2 discretization; see [25]). This results in a staggered
pressure grid with regard to the velocity grid, obviating the possibility of spurious pressure
modes and rendering pressure boundary conditions unnecessary.

The computational mesh (Figure 2) is similar to the grids used in the preceding linear
receptivity study [6]; however, the freestream boundary is streamline-shaped instead of
straight. This is advantageous when freestream disturbances are convected downstream.
For the three-dimensional simulations, 7650 elements are used, which amounts to nearly
2.8 million degrees of freedom. Dirichlet conditions for mean velocity at the inflow and
freestream boundaries are generated from a potential-flow solution, including the streamline
displacement by the boundary layer (see [6]). No-slip, no-stress and periodic conditions are
applied at the wall, the outflow and the lateral boundaries, respectively.

3.1. Error estimator

The quality of the flow solution on a given computational mesh can be assessed by comput-
ing a posteriori error estimates. This is carried out here for two-dimensional simulations of
the streamwise mean flow around the leading edge with AR = 6. The error estimator [26]
is defined for each elemental direction separately (r and s here) as

ε =
√

q2
N

1
2 (2N + 1)

+
∫ ∞

N+1

q2
n

1
2 (2n + 1)

dn, (4)

where n is a placeholder for indices i and j in Equation (3). The quantity qN is the highest
order spectral coefficient of Equation (3) (i.e. i = N or j = N ), while the coefficients qn

for orders N + 1 and higher are estimated by an extrapolation of the spectrum (of the
streamwise mean velocity here), using the exponential-decay relation qn = ce−σn. The
constant c and the decay rate σ are obtained through a least-squares best fit of the last four
points (N − 3, ..., N ) of the resolved spectrum to an exponential decay.

The error estimator was originally developed to devise criteria for spectral-element
mesh adaptation [27]. Here we use ε to investigate the error of the streamwise baseflow
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Journal of Turbulence 5

Figure 3. Error estimators of the streamwise baseflow around the plate with AR = 6 leading edge
obtained with an initial SEM mesh ((a–c) from [6]) and an improved mesh (d–f). The error estimators
are computed along two local elemental directions (cf. Equation (3)): r-direction (a–b, d–e) and
s-direction (c, f). Errors in the inflow region (a, d) and near the leading edge are shown (b–c, e–f).

on a given mesh and improve the mesh manually as indicated by ε. Since ε estimates the
one-dimensional spectrum of elemental approximation, we obtain N + 1 values of ε for
each local direction per element. Averaging ε over these N + 1 values yields two error
estimators per element for a two-dimensional simulation (one in the r- and another in
the s-direction). The initial mesh (from [6]) produces an uneven error distribution in the
inflow region (Figure 3(a)) and relatively large errors at the leading edge, especially in the
s-direction (Figures 3(b) and (c)). This information is used to derive an improved numerical
mesh (Figures 3(d)–(f)), where we only redistribute the elements while leaving the total
number of elements and the spectral order unchanged. The major benefit of the improved
mesh is a reduction of iterations in the pressure correction step and an ensuing acceleration
of simulations by approximately 10%.

3.2. Freestream disturbance

Pairs of oblique vortical modes serve as a simple model of freestream turbulence. The
vortical disturbances are prescribed as Fourier modes with spatial and temporal periodicity.
The modal amplitude functions are those used in the earlier linear receptivity study [6],
where three different types are considered (labelled ‘ξ -’, ‘η-’ and ‘ζ -modes’). These differ
in the dominant component of the vorticity vector (ξ, η, ζ ). We point out that only two lin-
early independent vortical modes exist, the ξ - and the ζ -modes, whereas the third type (the
η-mode) is not a physically independent solution [6]. It is nonetheless convenient to intro-
duce all three modes because vortical modes with only one single vorticity component can
easily be derived from ξ -, η- and ζ -modes. This is extensively utilized in the preceding study
of linear receptivity to purely streamwise, vertical and spanwise freestream vorticity [6].

The inflow wave vector is (γ, β) = (0.48,±0.72), with γ and β being the vertical and
spanwise wavenumbers. These values are consistent with those in the earlier study [6]; the
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6 L.-U. Schrader et al.

Figure 4. Inflow disturbance composed of pairs of oblique vortical modes (frequency F = 96, wave
vector (γ, β) = (0.48, ±0.72), amplitude εin = 3.54 × 10−3). Velocity magnitude of (a) ξ -modes, (b)
η-modes and (c) ζ -modes. Streamwise vorticity of (d) ξ -modes, (e) η-modes and (f) ζ -modes.

only difference is that we also include the mode with spanwise wavenumber β = −0.72
and add it to the mode with β = +0.72. This produces a freestream vortical disturbance
consisting of two oblique waves. The disturbance is scaled to obtain an amplitude of

εin =
√

u2
in/2. The bar denotes averaging over one wall-normal and spanwise wavelength in

the inflow plane and over time, and uin is the disturbance-velocity vector at the computational
inlet,

uin = �{û ei(γy±βz−ωt)}, (5)

with � denoting the real part. The quantity û = (û, v̂, ŵ) is the modal velocity coefficient
and depends on the mode type (ξ -, η- or ζ -mode),

ξ -mode: û = i√
γ 2 + β2

(0, β,−γ ), (6)

η-mode: û = i√
α2 + β2

(−β, 0, α), (7)
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Journal of Turbulence 7

ζ -mode: û = i√
α2 + γ 2

(γ,−α, 0). (8)

The derivation of Equations (6)–(8) is outlined in [6], where the vorticity amplitude func-
tions for ξ -, η- and ζ -modes are also given. Invoking Taylor’s hypothesis, we replace the
streamwise wavenumber α in Equations (6)–(8) by the angular frequency ω, which in
turn is substituted by the frequency parameter, F = [ω/(U 2

∞/ν)] × 106. Figure 4 shows
velocity magnitude and streamwise vorticity of inflow disturbances made up of pairs of
oblique ξ -, η- and ζ -modes (frequency F = 96, wave vector (γ, β) = (0.48,±0.72), am-
plitude εin = 3.54 × 10−3). The ξ -modes feature the largest and the η-modes the smallest
streamwise vorticity.

4. Results

4.1. Physical mechanism

The boundary-layer response to a pair of oblique ξ -modes with frequency F = 96 man-
ifests itself mainly in the streamwise velocity (Figure 5(a)). In the upstream part of the
boundary layer, the streamwise vortices in the freestream generate a disturbance with a
short streamwise length scale (Figure 5(b)), where a patch of positive (negative) stream-
wise disturbance occurs on the downwash (upwash) side of vortices (‘lift-up effect’,
Figure 6(a)). The velocity distribution of this disturbance is inverted farther downstream
as the freestream vortices change the rotation direction (Figure 6(b)), indicating that the
disturbance is unsteady and shares its streamwise wavelength with freestream modes. We
also notice a second disturbance pattern near the wall with half the spanwise wavelength of
freestream vortices, which is fixed in space in the downstream direction (Figures 6(b)–(d))
and takes the form of streamwise elongated streaks (Figure 5(b)). The steady nature of
these streaks, their doubled spanwise wavenumber and their near-wall location suggest
that they are not triggered directly by the fundamental freestream vortices but originate
from a nonlinear process. This process creates weak counter-rotating longitudinal vortices

Figure 5. Boundary-layer response to a pair of oblique ξ -modes (F = 96, (γ, β) = (0.48, ±0.72),
εin = 3.54 × 10−3) for a plate with an elliptic leading edge (AR = 6). (a) x–y plane of streamwise,
vertical and spanwise disturbance velocities (z = 2.05). Thin lines: δ99. (b) Horizontal plane of
streamwise disturbance at y(maxy(urms)).
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8 L.-U. Schrader et al.

Figure 6. Cross-stream planes of streamwise velocity (colors) and wall-normal and spanwise ve-
locities (vectors) at various downstream locations, showing the flow response to a pair of oblique
ξ -modes (F = 96, (γ, β) = (0.48, ±0.72), εin = 3.54 × 10−3) downstream of an elliptic leading
edge (AR = 6). (a) x = 20; (b) 35; (c) 50; (d) 200. The white dashed line shows the local boundary-
layer thickness (δ99). (e) Close-up view of (d), highlighting the details of the steady boundary-layer
disturbance near the wall.

with half the fundamental spanwise wavelength, which penetrate the boundary layer more
easily than the fundamental mode [16,28] and generate steady streaks by the lift-up effect
(Figure 6(e)).

A temporal-spanwise Fourier decomposition of the total boundary-layer disturbance
(urms curve in Figure 7(a)) confirms that the upstream disturbance is dominated by an un-
steady short-scale mode with fundamental spanwise wavenumber, whereas the downstream
disturbance evolution is mainly attributed to steady streaks with twice the fundamental
wavenumber. This confirms that nonlinear effects appear ‘in a more or less quasi-steady
manner’ [19]. The third and fourth most important contributions to the boundary-layer
disturbance are the mean-flow modification (0, 0) and the double-frequency mode (2,±2)
(Figure 7(a)).

The nature of the boundary-layer receptivity is elucidated by considering boundary-
layer forcing with two different amplitudes (εin) of the freestream disturbance
(Figure 7(b)) and matching the evolution curves obtained for these two cases (Figure
7(c)). The unsteady fundamental mode amplitude is found to be linear in εin, whereas
the steady streak amplitude scales as ε2

in, suggesting a quadratic interaction of unsteady
fundamental modes as being the source of the streaks. The amplitudes of modes (0, 0) and
(2,±2) are also proportional to ε2

in (not shown). Hence, the linear and nonlinear receptivity
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Journal of Turbulence 9

Figure 7. (a) Temporal-spanwise Fourier decomposition of the boundary-layer streamwise distur-
bance excited by a pair of oblique ξ -modes (F = 96, (γ, β) = (0.48, ±0.72), εin = 3.54 × 10−3).
Plate with AR = 6 leading edge. Besides the streamwise velocity amplitudes of different disturbance
contributions (û), the temporal-spanwise averaged streamwise rms of the total disturbance is shown
(urms). All quantities are plotted at the wall distance of their maximum. (b) Comparison of the fun-
damental unsteady mode (F, β) and the steady and spanwise harmonic mode (0, 2β) for two forcing
amplitudes: εin = 3.54 × 10−3 and 3.54 × 10−4. (c) Rescaling of curves for εin = 3.54 × 10−4 from
(b) so that they match the corresponding curves for εin = 3.54 × 10−3.

mechanisms act simultaneously in boundary layers subject to high-frequency freestream
fluctuations.

When exposed to oblique η- and ζ -modes, the boundary layer develops steady distur-
bance streaks, too, but these streaks have lower amplitudes than those forced by ξ -modes
(Figure 8). Since the ξ -modes feature a larger streamwise vorticity component than the η-
and ζ -modes (Figure 4), we conclude that the boundary layer is nonlinearly most receptive
to streamwise vorticity, as in the case of linear receptivity [6]. Interestingly, the (0, 0) and
(2,±2) components amplify less in an environment of oblique η-modes than in the presence
of the other two mode types (Figure 8(a)).

4.2. Frequency effects

The effect of frequency is illuminated by comparing the standard case (F = 96) with
two cases at a lower and a higher forcing frequency (F = 16 and 192), using oblique
freestream waves of ξ -type. For F = 16, the disturbance (urms-curve) is made up mostly of
the fundamental unsteady mode, whereas the steady double-spanwise wavenumber streak
hardly contributes to urms (Figure 9(a)). The dominant receptivity mechanism of ξ -modes
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10 L.-U. Schrader et al.

Figure 8. Temporal-spanwise Fourier decomposition of the boundary-layer streamwise disturbance
excited by a pair of oblique (a) η-modes and (b) ζ -modes (F = 96, (γ, β) = (0.48, ±0.72), εin =
3.54 × 10−3). The wall-normal maximum of each contribution is plotted. Plate with AR = 6 leading
edge.

with F = 16 is thus linear and leads to the formation of slowly travelling streaks with finite
length (see [29] for the relevance of these streaks in bypass transition). In contrast, the
boundary-layer destabilization by oblique ξ -modes with F = 192 is almost entirely due
to nonlinear receptivity, resulting in strong steady streaks (Figure 9(b)). Thus, the present
simulations confirm the conjecture [19] that nonlinear effects on streak development may
be more relevant at high frequencies.

4.3. Bluntness effects

So far, only the leading edge with AR = 6 has been used. In order to study leading-edge
bluntness effects, we now also consider a more slender elliptic leading edge (AR = 20) and
compare six different simulations (two leading edges times three mode types, ξ , η and ζ , at
a frequency of F = 96). This confirms that the boundary layer is most receptive to ξ -modes

Figure 9. Temporal-spanwise Fourier decomposition of the boundary-layer streamwise disturbance
excited by a pair of oblique ξ -modes ((γ, β) = (0.48, ±0.72), εin = 3.54 × 10−3). The wall-normal
maximum of each contribution is plotted. Plate with AR = 6 leading edge. Forcing frequency
(a) F = 16 and (b) F = 192.
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Journal of Turbulence 11

Figure 10. Comparison of two leading edges (AR = 6 and 20) in nonlinear receptivity to pairs of
oblique modes. Wall-normal maximum of the streamwise amplitude of the (0, 2β)-streak excited
by (a) ξ -, η- and ζ -modes (F = 96, (γ, β) = (0.48, ±0.72), εin = 3.54 × 10−3) and (b) ηy-modes
(purely vertical vorticity; γ = 0, F = 96, β = ±0.72, εin = 3.38 × 10−3).

and least receptive to η-modes (Figure 10(a)). Most notably, the nonlinear receptivity to
all three types of freestream vorticity is largely unaffected by the bluntness of the elliptic
leading edge.

Linear boundary-layer receptivity is known to become dependent on the leading-edge as-
pect ratio under certain freestream disturbance conditions: If triggered by steady freestream
modes with vertical vorticity only, the boundary-layer streaks intensify in the presence of
a blunter elliptic leading edge [6]. The vertical-vorticity modes (denoted as ‘ηy-modes’
in [6]) are constructed by setting the vertical wavenumber γ of η-modes to zero. Key to
the receptivity mechanism is the conversion of vertical vorticity into streamwise vorticity
by tilting and stretching of vorticity lines at the leading edge [9] – processes that are more
effective at blunter leading edges (see also Figure 15 in [6]).

In order to clarify whether a similar dependence on bluntness also exists in nonlin-
ear receptivity, we use a pair of unsteady ηy-modes (F = 96) here, invoking the quadratic
receptivity mechanism. However, changing the leading-edge shape does not alter the ampli-
tude of steady streaks (Figure 10(b)). This suggests that the nonlinear receptivity process to
the unsteady ηy-modes is fundamentally different from the linear mechanism to the steady
ηy-modes. In the present scenario, the oncoming vertical vortex columns (Figure 11, plane
1) directly enforce a streamwise disturbance at the nose of the plate, which evolves as a
nonmodal instability (plane 2). The lift-up mechanism, driven by vertical vortices here, is
most effective in the close vicinity of the nose. Most notably, we do not observe consid-
erable streamwise vortices farther downstream (plane 3), i.e. a conversion of vertical into
streamwise vorticity near the boundary-layer edge by vortex tilting and stretching does not
significantly take place. Instead, the near-wall streamwise vortices (not shown in Figure 11)
forming the downstream dominant steady streaks (plane 4) are created through quadratic
interactions of upstream unsteady disturbances. This process is independent of leading edge
and thus insensitive to nose bluntness.

4.4. Receptivity coefficients

The different cases of nonlinear receptivity studied are summarized by compiling the
associated receptivity coefficients in Table 1 (for AR = 6 only). These relate the amplitude
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12 L.-U. Schrader et al.

Figure 11. Details at the leading edge (AR = 6) of the nonlinear receptivity to ηy-modes (purely
vertical vorticity; γ = 0, F = 96, β = ±0.72, εin = 3.38 × 10−3). Plane 4 is located much farther
downstream than apparent in the figure as large parts of the x-axis are cut out to save space.

of the boundary-layer instability to that of the triggering disturbance,

Cnln = Astr

ε2
le

, (9)

thus measuring the efficiency of the receptivity mechanism. Astr is the streak amplitude,
defined here by the streamwise velocity amplitude û of the steady streak. We extract Astr

far downstream at x = 208 (Rex = 5 × 105), where the (0, 2β)-streak is easily identifiable
in all cases. The freestream disturbance level is evaluated at the leading edge, where εle is
defined similar to εin (see Section 3.2) but computed on the z–y plane at the nose (x = 0).
This reflects that the receptivity mechanism is initiated at the leading edge. Using the square
of εle in Equation (9) accounts for the quadratic nature of the receptivity mechanism. It
turns out in all cases that the freestream disturbance decays very little on travelling from
the inflow plane to the leading edge (εle ≈ εin) so that we use εin to evaluate Equation (9).

Table 1. Receptivity coefficients (Cnln, Equation (9)) for nonlinear receptivity to pairs of oblique
ξ -, η- and ζ -modes with wavenumber vector (γ, β) = (0.48, ±0.72), and ηy-modes with (γ, β) =
(0,±0.72) and frequency F = 96. Two additional frequencies (F = 16 and 192) are considered
in the case of ξ -modes. The leading-edge AR = 6 is used.

ξ -modes η-modes ζ -modes ηy-modes

F = 16 2170
F = 96 3729 911 1336 1098
F = 192 3170
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The highest receptivity coefficients are obtained for the oblique ξ -modes, thanks to
their large streamwise vorticity (cf. Figure 4). The steady boundary-layer streaks are most
receptive to ξ -modes with F = 96, attaining a more than four times higher amplitude
than in the presence of η-modes with F = 96. Even at the lowest frequency (F = 16), for
which the linear receptivity mechanism takes precedence over the nonlinear mechanism
(see Figure 9(a)), the ξ -modes still produce stronger steady streaks than the η- and ζ -modes
with F = 96.

4.5. Nonlinear versus linear receptivity

In order to assess the relevance of the nonlinear receptivity mechanism relative to the linear
mechanism, we compare the downstream evolution of two steady boundary-layer streaks
with the same spanwise wavenumber (β = 1.44) but different origin: the first streak is
excited by a pair of oblique ξ -modes with wavenumber β = ±0.72 and frequency F = 96
(nonlinear receptivity), whereas the second streak is triggered by a single ξ -mode with
β = 1.44 and F = 0 (linear receptivity). The amplitudes of these two streaks are written as

Astr,nln(x) = Cnln(x) ε2
le,nln, (10)

Astr,lin(x) = Clin(x) εle,lin, (11)

where εle,nln and εle,lin are the forcing amplitudes of nonlinear and linear receptivity mech-
anisms, extracted at the leading edge (x = 0), and Cnln and Clin are local nonlinear and
linear receptivity coefficients. Since Astr,nln and Astr,lin scale differently with amplitude
ε of freestream disturbances, the relative importance of nonlinear and linear receptivity
changes with ε. For the example of εle,nln = εle,lin = 3.54 × 10−3, the linear receptivity
mechanism produces a significantly larger streak amplitude than the nonlinear mechanism
(Figure 12(a)). We also notice that the two streaks amplify at different streamwise rates
since these are generated in different regions of the boundary layer (under different flow
conditions): the linear receptivity mechanism is initiated directly at the leading edge, where

Figure 12. Comparison of two steady streaks (β = 1.44) with different origins: excitation by
(i) a pair of unsteady oblique ξ -modes (nonlinear receptivity), and (ii) a single steady ξ -mode (linear
receptivity) with the same amplitude: (a) ε = 3.54 × 10−3, and (b) ε = 4.30 × 10−2. The wall-normal
maximum of the streamwise disturbance amplitude is shown. In (b), the streak amplitudes become
identical at Rex = 2 × 105.
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14 L.-U. Schrader et al.

it produces significant transient growth, while the nonlinear process involves several stages,
thus acting over a longer stretch of the boundary layer.

Since nonlinear receptivity becomes more competitive with increasing ε, a threshold
amplitude εthresh(x) exists, at which the nonlinearly excited streak becomes as strong at
a certain streamwise location x as the streak due to linear receptivity. This threshold is
identified by equating Equations (10) and (11) as εthresh(x) = Clin(x)/Cnln(x). For x = 83
(Rex = 2 × 105), we read off from Figure 12(a) streak amplitudes of Astr,nln = 0.0113
and Astr,lin = 0.1370. This yields Cnln = 904.45 and Clin = 38.73 so that εthresh = 0.043.
Such high-level free-stream disturbances would create energetic streaks (Figure 12(b))
with amplitudes far above typical thresholds of incipient secondary streak instability and
breakdown (see [30]), i.e. these streaks are not realizable. This suggests that the linear
receptivity mechanism is more relevant in typical vortical disturbance environments than
the nonlinear mechanism. Since εthresh drops with increasing distance from the leading edge
(e.g. εthresh = 0.018 at x = 208 or Rex = 5 × 105), the nonlinear receptivity mechanism
becomes more competitive farther downstream. Moreover, εthresh depends on the frequency
of the oblique vortical modes triggering the nonlinear streak.

5. Summary and discussion

This paper reports a study of nonlinear (quadratic) boundary-layer receptivity to unsteady
freestream vorticity. To this end, we perform DNS of flow past an elliptic leading edge,
considering pairs of unsteady oblique vortical freestream modes. The present work extends
previous investigations of nonlinear receptivity to oblique modes [5,14,16] by including
the plate leading edge and is a follow-up of an earlier study on linear receptivity [6].
The spectral-element method used proves particularly efficient when combined with an
error-estimator-based mesh improvement to treat the leading-edge region.

The focus of this paper is on the physical processes and the role of elliptic leading
edges in nonlinear boundary-layer receptivity of steady streaks to high-frequency oblique
freestream modes. The receptivity mechanism, earlier reported for flat-plate boundary layers
without leading edges [5,14,16], involves the following stages: (1) quadratic interactions
of the fundamental unsteady perturbation, creating weak steady streamwise vortices with
half the fundamental spanwise wavelength; and (2) the linear lift-up process of these
vortices, forming steady streamwise streaks with significantly larger amplitudes than the
upstream fundamental disturbance (cf. Figure 6). The steady vortex-streak system obtained
amplifies through the transient-growth mechanism of the shear layer and may further
be energized along the entire boundary-layer edge through continuous forcing by weak
nonlinear streamwise freestream vortices [31]. The quadratic receptivity mechanism is most
effective if the frequency of the freestream vortices is high. The largest streak amplitudes
are obtained when the freestream modes bear mainly streamwise vorticity, as in linear
receptivity [6].

The streak intensity is largely unaffected by the bluntness of the elliptic leading edge for
the range of aspect ratios considered, irrespective of the dominant vorticity component of
the freestream disturbance. This is contrary to linear receptivity, where blunt leading edges
enhance the receptivity to vertical freestream vorticity: The leading edge distorts the on-
coming vertical vorticity and converts it into streamwise vorticity through vortex stretching
and tilting [9] – processes that are intensified by blunter leading edges [6]. In the present
nonlinear receptivity mechanism, the streamwise vortices required for streak excitation
are not created by vortex stretching and tilting at the leading edge, but these emerge
farther downstream through quadratic disturbance interactions. These interactions are
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independent of the leading-edge bluntness. The leading edge plays nonetheless an impor-
tant role in nonlinear receptivity, because the impingement and boundary-layer penetration
of freestream disturbances happen at the nose of the plate (cf. Figure 11).

Although linear receptivity appears to be more effective, nonlinear receptivity is shown
to come into play when high-frequency disturbances are present in the freestream. Direct
numerical simulation studies of boundary layers exposed to broadband freestream turbu-
lence [17] reveal that the nonlinear receptivity mechanism to oblique freestream waves is
active if the higher frequency range of the turbulent spectrum contains sufficient energy.
In such disturbance environments, the boundary-layer streaks are created and energized by
the linear and the nonlinear receptivity mechanisms simultaneously, where the nonlinear
mechanism sets in farther downstream than the linear mechanism. This may at least in part
explain the discrepancy observed downstream between experimentally measured streak
amplitudes and those predicted by linear receptivity and instability theories.
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Supercomputer Centre, Linköpings universitet) is acknowledged.

References
[1] M.V. Morkovin, On the many faces of transition, in Viscous Drag Reduction, C.S. Wells, ed.,

Plenum, New York, 1969, pp. 1–31.
[2] M. Matsubara and P.H. Alfredsson, Disturbance growth in boundary layers subjected to free-

stream turbulence, J. Fluid Mech. 430 (2001), pp. 149–168.
[3] F.P. Bertolotti and J. Kendall, Response of the Blasius boundary layer to controlled free-stream

vortices of axial form, AIAA Paper 97-2018 (1997).
[4] P. Andersson, M. Berggren, and D.S. Henningson, Optimal disturbances and bypass transition

in boundary layers, Phys. Fluids 11(1) (1999), pp. 134–150.
[5] S. Berlin and D.S. Henningson, A nonlinear mechanism for recpetivity of free-stream distur-

bances, Phys. Fluids 11(12) (1999), pp. 3749–3760.
[6] L.U. Schrader, L. Brandt, C. Mavriplis, and D.S. Henningson, Receptivity to free-stream vorticity

of flow past a flat plate with elliptic leading edge, J. Fluid Mech. 653 (2010), pp. 245–271.
[7] M.T. Landahl, Wave breakdown and turbulence, SIAM J. Appl. Math. 28(4) (1975), pp. 735–

756.
[8] J.M. Kendall, Studies on laminar boundary-layer receptivity to freestream turbulence near a

leading edge, in Boundary Layer Stability and Transition to Turbulence; Proceedings of the
Symposium of 1st ASME and JSME Joint Fluids Engineering Conference, Portland, OR, ASME,
New York, 1991, pp. 23–30.

[9] M.E. Goldstein and D.W. Wundrow, On the environmental realizability of algebraically growing
disturbances and their relation to Klebanoff modes, Theor. Comput. Fluid Dyn. 10 (1998),
pp. 171–186.

[10] M.N. Kogan, V.G. Shumilkin, M.V. Ustinov, and S.V. Zhigulev, Response of boundary layer flow
to vortices normal to the leading edge, Eur. J. Mech. B – Fluids 20 (2001), pp. 813–820.

[11] S. Nagarajan, S.K. Lele, and J.H. Ferziger, Leading-edge effects in bypass transition, J. Fluid
Mech. 572 (2007), pp. 471–504.

[12] M.E. Goldstein and S.W. Choi, Nonlinear evolution of interacting oblique waves on two-
dimensional shear layers, J. Fluid Mech. 207 (1989), pp. 97–120.

[13] P.J. Schmid and D.S. Henningson, A new mechanism for rapid transition involving a pair of
oblique waves, Phys. Fluids A 4(9) (1992), pp. 1986–1989.

[14] S. Berlin, A. Lundbladh, and D. Henningson, Spatial simulations of oblique transition in a
boundary layer, Phys. Fluids 6(6) (1994), pp. 1949–1951.

D
ow

nl
oa

de
d 

by
 [

K
un

gl
ig

a 
T

ek
ni

sk
a 

H
og

sk
ol

a]
 a

t 0
4:

17
 2

4 
O

ct
ob

er
 2

01
2 



16 L.-U. Schrader et al.

[15] S. Berlin, M. Wiegel, and D.S. Henningson, Numerical and experimental investigations of
oblique boundary layer transition, J. Fluid Mech. 393 (1999), pp. 23–57.

[16] L. Brandt, D.S. Henningson, and D. Ponziani, Weakly non-linear analysis of boundary layer
receptivity to free-stream disturbances, Phys. Fluids 14 (2002), pp. 1426–1441.

[17] L. Brandt, P. Schlatter, and D.S. Henningson, Transition in boundary layers subject to free-
stream turbulence, J. Fluid Mech. 517 (2004), pp. 167–198.

[18] P. Ricco, J. Luo, and X. Wu, Evolution and instability of unsteady nonlinear streaks generated
by free-stream vortical disturbances, J. Fluid Mech. 677 (2011), pp. 1–38.

[19] S.J. Leib, D.W. Wundrow, and M.E. Goldstein, Effect of free-stream turbulence and other
vortical disturbances on a laminar boundary layer, J. Fluid Mech. 380 (1999), pp. 169–203.

[20] M.E. Goldstein and L.S. Hultgren, Boundary-layer receptivity to long-wave free-stream distur-
bances, Annu. Rev. Fluid Mech. 21 (1989), pp. 137–166.

[21] N. Lin, H. Reed, and W. Saric, Effect of leading edge geometry on boundary-layer receptivity
to freestream sound, in Instability, Transition and Turbulence, M. Hussaini, A. Kumar, and C.
Streett, eds., Springer, New York, 1992, pp. 10–29.

[22] J.B.V. Wanderley and T.C. Corke, Boundary layer receptivity to free-stream sound on elliptic
leading edges of flat plates, J. Fluid Mech. 429 (2001), pp. 1–21.

[23] P. Fischer, J. Kruse, J. Mullen, H. Tufo, J. Lottes, and S. Kerkemeier, NEK5000 – Open source
spectral element CFD solver (2008). Available as of May, 2012, at http://nek5000.mcs.anl.gov/
index.php/MainPage.

[24] A.T. Patera, A spectral element method for fluid dynamics: Laminar flow in a channel expansion,
J. Comp. Phys. 54 (1984), pp. 468–488.

[25] Y. Maday and A.T. Patera, Spectral element methods for the Navier-Stokes equations, in State
of the Art Surveys in Computational Mechanics, A.K. Noor, ed., ASME, New York, 1989, pp.
71–143.

[26] C. Mavriplis, A posteriori error estimators for adaptive spectral element techniques, in Notes on
Numerical Fluid Mechanics, vol. 29, P. Wesseling, ed., Vieweg Braunschweig, Berlin, Germany,
1990, pp. 333–342.

[27] C. Mavriplis, Adaptive mesh strategies for the spectral element method, Comput. Methods Appl.
Mech. Eng. 116 (1994), pp. 77–86.

[28] R.G. Jacobs and P.A. Durbin, Shear sheltering and continuous spectrum of the Orr-Sommerfeld
equation, Phys. Fluids 10(8) (1998), pp. 2006–2011.

[29] L. Brandt and H.C. deLange, Streak interactions and breakdown in boundary layer flows,
Phys. Fluids 20 (2008), pp. 1–16.

[30] P. Andersson, L. Brandt, A. Bottaro, and D.S. Henningson, On the breakdown of boundary layer
streaks, J. Fluid Mech. 428 (2001), pp. 29–60.

[31] K.J.A. Westin, A.A. Bakchinov, V.V. Kozlov, and P.H. Alfredsson, Experiments on localized
disturbances in a flat plate boundary layer. Part 1. The receptivity and evolution of a localized
free stream disturbance, Eur. J. Mech. B – Fluids 17(6) (1998), pp. 823–846.

D
ow

nl
oa

de
d 

by
 [

K
un

gl
ig

a 
T

ek
ni

sk
a 

H
og

sk
ol

a]
 a

t 0
4:

17
 2

4 
O

ct
ob

er
 2

01
2 

http://nek5000.mcs.anl.gov/index.php/MainPage
http://nek5000.mcs.anl.gov/index.php/MainPage



