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A two-dimensional direct numerical simulation study of the linear instability in a laminar plane wall jet
is presented. The evolution of the wall jet disturbances is in reasonable agreement with predictions by
spatial linear stability theory only with regard to the wavelength and the amplitude shape of the disturbance,
whereas significant differences in the linear growth rate are noticed. As a consequence, the “stable island”
on the instability map based on linear stability theory turns out to be connected with the outer stable region
in the simulations, thus taking the form of a “stable peninsula”. The failure of the theory is attributed to
the rapid streamwise spread and decay of the wall jet, which is incompatible with the assumption of parallel
flow. We also assess the maximum possible transient linear amplification of two-dimensional disturbances in
the plane wall jet, using the concept of optimal initial disturbances. The transient energy growth relies on
the Orr mechanism, and the upper bound of the disturbance energy increases linearly in time for the present
flow configuration. The optimal disturbances exhibit local maxima near the edge of the jet and close to the
wall, where sites of effective receptivity are hence expected. We find that the outer region of the plane wall
jet is more receptive to time periodic forcing than the inner region.

I. INTRODUCTION

Consider a jet injected through a narrow spanwise slit
over a wall into a quiescent fluid (Fig. 1). The fully de-
veloped flow conditions downstream of the slit are known
as laminar plane wall jet. Wall jets are characterized
by their maximum speed Um and their thickness δ, de-
fined as the wall distance where the streamwise velocity
in the outer flow field is Um/2. The jet speed decays as
Um ∝ x−1/2 while the thickness grows as δ ∝ x3/4 with
the downstream distance x (Ref. 1). Um(x) and δ(x)
form along with the fluid viscosity ν the local Reynolds
number Re(x) = Um(x)δ(x)/ν. Laminar wall jets can
be modeled using similarity theory2,3. The streamwise
self-similar flow profiles (Fig. 2) are a fairly accurate ap-
proximation of fully developed plane wall jets observed in
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FIG. 1. Schematic of laminar plane wall jet originating in x0.
Dashed boxes depict the two computational domains consid-
ered in this study (box heights scaled up by five).
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FIG. 2. Downstream development of the plane wall jet. Wall-
normal profiles of (a) streamwise and (b) vertical velocity
at five streamwise stations (Re = 225; 373.5; 436.8; 480.4;
514.8), along with local values of jet speed umax, entrainment
velocity vmin and wall displacement velocity vmax. Dashed
line shows local wall jet thickness δ(x).

experiments4. A recent application of laminar wall jets is
found in cooling devices of laptop computer processors5.

According to linear stability theory (LST), lami-
nar plane wall jets become unstable beyond a critical
Reynolds number of Rec = 57 (Ref. 6; we report
Rec = 56.75 in Fig. 3). The discrete modes of the
Orr-Sommerfeld/Squire spectrum of spatial eigenvalues
represent two different types of instability referred to as
‘mode 1’ and ‘mode 2’7. The eigenfunctions of these
modes feature two local maxima of the streamwise veloc-
ity amplitude in the core of the wall jet (Fig. 4). Mode
1, becoming unstable first, assumes its global maximum
near the inflection point in the outer part of the wall jet
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FIG. 3. Instability map of plane wall jet as per spatial LST.
Neutral stability curve with four branches (I–IV). Point ‘c’
marks critical conditions (Rec = 56.75, ωc = 0.549; critical
streamwise wavenumber is αc = 1.164). Points ‘w’ and ‘e’
mark western and eastern tips of stable island (Rew = 378.25,
ωw = 0.566; Ree = 459.35, ωe = 0.570). Dotted lines are
trajectories of constant dimensional frequency; thick dotted
line (red online) pertains to ω = 0.0321 (value normalized at
Re = 225).
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FIG. 4. Wall-normal shape of plane wall jet instability eigen-
modes from spatial LST for conditions of point ‘e’ in Fig. 3
(Ree = 459.35, ωe = 0.570). Normalized magnitude and real
and imaginary parts of streamwise velocity of (a) mode 1 and
(b) mode 2. Dotted line shows normalized wall jet streamwise
velocity profile for comparison.

profile (Fig. 4a) where the flow is prone to inviscid in-
stability; mode 2 is most intense near the wall (Fig. 4b)
where viscous instability may occur8. The coexistence of
these two modes leads to composite growth curves of the
linear wall jet instability (Fig. 5b) and four branches of
the neutral stability curve (labeled I–IV in Fig. 3), sep-
arating the regions in the instability map where mode 1
or mode 2 is unstable, or both modes are stable. The
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FIG. 5. (a) Trajectories of the eigenvalues λ of modes 1 and 2
on the complex plane for increasing Reynolds number. Modes
follow thick dotted line (red online) in Fig. 3 (ω = 0.0321).
(b) Spatial growth rates σ = −Im{λ} of modes 1 and 2 versus
Reynolds number. Thick portions of lines highlight composite
growth curve of wall jet instability. Shaded regions indicate
unstable half-plane.

latter region is not connected but features a small “sta-
ble island” within the unstable regime6,9. The stable
island only persists in a limited range of frequencies, for
which mode 1 leaves the unstable half-plane of complex
eigenvalues λ before mode 2 enters it (Fig. 5a). At the
lowest Reynolds number of the stable island, Rew ≈ 381
(Ref. 10; our finding in Fig. 3: Rew = 378.25), the invis-
cid and the viscous modes coalesce at a fixed frequency,
assuming the same streamwise wavenumber and (zero)
growth rate10. Apart from modal instabilities, three-
dimensional nonmodal disturbances may also develop in
wall jets11. These undergo transient growth and become
manifest as quasi-steady streamwise disturbance streaks
in the outer part of the wall jet.

The present paper reports direct numerical simulations
(DNS) of a laminar plane wall jet. We revisit the linear
instability of the wall jet in order to assess the applica-
bility and limitations of spatial LST for this flow type
(Sec. III A). Optimal initial disturbances and the result-
ing transient growth of two-dimensional instabilities are
computed (Sec. III B), and possible sites of receptivity
are inferred from the shape of these optimal disturbances
(Sec. III C). Time periodic localized forcing is applied
at these sites in order to clarify their relevance for the
receptivity of the plane wall jet.
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II. SIMULATIONS

A. Flow type

A two-dimensional incompressible wall jet is studied
in the Reynolds-number regime 150 ≤ Re ≤ 520. The
flow conditions are established by the inflow Reynolds
number Re0 = Um0δ0/ν, where the inflow values of the
jet thickness and maximum speed, δ0 and Um0, are used
to normalize the lengths and velocities. Two different
computational domains are considered (labeled ‘Box 1’
and ‘Box 2’ in Fig. 1), with inflow Reynolds numbers of
Re0 = 150 (Box 1) and 225 (Box 2). The size, resolution
and Reynolds number range of the two boxes are listed
in Table I. Since the reference lengths and speeds are
different, the normalized values of x and y pertaining to
Box 1 and Box 2 are not directly comparable (see Fig. 1
for the relative size and location of the boxes).
The undisturbed flow (baseflow) is denoted by U

(streamwise velocity) and V (wall-normal velocity). Two
different baseflows are used: a streamwise self-similar
wall jet, solution to the boundary layer equations (‘BLE
baseflow’, cf. Fig. 2), and a wall jet fulfilling the in-
compressible Navier-Stokes equations (‘NSE baseflow’).
The NSE baseflow is obtained using self-similar wall jet
profiles at the inflow and top boundaries of the DNS do-
main. The outer flow field is truncated at a distance of
about 3.6 jet thicknesses from the wall, measured at the
outlet of the computational boxes. Numerical tests with
lower and higher domains reveal that the boxes chosen
are high enough. No-slip and no-stress conditions are
prescribed along the flat plate and the outflow boundary,
respectively.
We present a brief comparison between the NSE and

BLE solutions here as we will use both baseflows for the
instability calculations. The downstream growth of the
NSE wall jet thickness closely follows the BLE distri-
bution δ(x)/δ0 = [(|x0| + x)/|x0|]3/4 (Fig. 6a, shown
for Box 2), with x0 = −15.2 being the virtual origin of
the wall jet. The curves for the NSE and BLE base-
flows are matched at the computational outflow, where
the similarity approximation is most accurate. We also
notice good agreement between the theoretical jet de-
cay Um(x)/Um0 = [(|x0| + x)/|x0|]−1/2 and that of the
NSE baseflow (Fig. 6b). However, the upstream growth
of δ and decay of Um are slightly enhanced in the NSE
wall jet, causing an initially faster growing local Reynolds
number as compared to the BLE baseflow (Fig. 6c). The
relative difference in Re between the NSE and BLE base-
flows levels out at about 3% towards the outlet (Fig. 6d),
indicating that the NSE solution approaches a self-similar
behavior in the downstream region. Similar results are
obtained when using Box 1 (not shown).
The instability of the wall jet is computed by lin-

ear DNS (LDNS) solving the incompressible linearized
Navier-Stokes equations. These govern the linear evo-
lution of small-amplitude disturbances, where u and v
denote the streamwise and wall-normal perturbation ve-

TABLE I. Size of spectral element grids used (‘Box 1’ and
‘Box 2’ in Fig. 1), where x and y are streamwise and wall-
normal directions (normalized by respective inflow jet thick-
ness Boxes 1 and 2), x0 denotes virtual origin of wall jet and
Re is the Reynolds number. Values pertain to BLE baseflow.

Box x y x0 Re

1 ∈ [0, 360] ∈ [0, 55] −10.1 ∈ [150, 369]

2 ∈ [0, 420] ∈ [0, 45] −15.2 ∈ [225, 520]
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FIG. 6. Comparison between NSE and BLE baseflows for
plane wall jet (Box 2, Re0 = 225). Downstream develop-
ment of (a) jet thickness, (b) maxima of streamwise and wall-
normal velocity and (c) local Reynolds number. (d) Difference
between local Reynolds number of NSE and BLE baseflows.

locity components. The inflow disturbance is modeled by
mode 1 or mode 2 (see Fig. 4). The disturbance is as-
sumed to vanish along the wall and the top boundary, and
a zero-stress condition is prescribed at the outlet. When
solving the direct and adjoint linearized Navier-Stokes
equations (Sec. III C), we use disturbance free conditions
along all boundaries. These are combined with sponge
regions at the computational inlet and outlet, where the
direct and adjoint linear disturbances smoothly decay to
zero (see Ref. 12 for the sponge technique).

B. Numerical method

The DNS results on the wall jet instability are obtained
by solving the two-dimensional incompressible linearized
Navier-Stokes equations (LDNS) with a spectral element
method (SEM)13. The SEM combines spectral accuracy
with a flexible allocation of the grid points and is, un-
like Fourier-based spectral methods, suitable for inflow-
outflow problems of downstream developing flows. The
spatial domain is discretized by spectral elements, which
in turn are subdivided into arrays of quadrature nodes.
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TABLE II. Resolution of the two spectral element grids used
(‘Box 1’ and ‘Box 2’ in Fig. 1), where Kx, Ky and K are the
numbers of elements in the x and y directions and in total, N
is the spectral order and ntot denotes the degrees of freedom.

Box Kx Ky K N ntot

1 120 28 3360 7 165677

2 140 24 3360 7 165789
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FIG. 7. Spatial structure of disturbance (ω = 0.0321) in
plane wall jet (Box 2, Re0 = 225; y axis scaled up by two).
Instantaneous fields of (a) streamwise and (b) wall-normal
velocity and (c) spanwise vorticity. Results from LDNS about
BLE baseflow with mode 1 as inflow disturbance.

The flow variables are approximated on the elements by
tensor products of Lagrangian interpolants using Legen-
dre polynomials. The spatial discretization is determined
by the number of spectral elements, K, and the highest
degree of the Legendre polynomials employed, N (see
Table II). We use the open source SEM implementation
Nek500014, optimized for MPI-based parallel computa-
tions. Numerical tests reveal that a choice of 32 MPI
processors represents the best compromise between short
simulation times and high efficiency for the present two-
dimensional LDNS computations.
The LST calculations employ a Chebyshev collocation

method with 257 nodes in order to discretize the spatial
Orr-Sommerfeld/Squire operator for the plane wall jet.
The vertical coordinate is truncated at the same level as
that of the DNS Boxes 1 and 2 (see Table I).

III. LINEAR INSTABILITY

A. Modal Growth

We report LDNS results of the linear spatial distur-
bance evolution in the laminar plane wall jet. Most of
the simulations presented use the BLE baseflow and in-
flow disturbances made up by spatial LST eigenfunctions
of mode 1 type. The incoming disturbance is normalized

0 100 200 300 400
0

5

10

x

|u
| m

Outer
Inner

peak

FIG. 8. Downstream evolution of disturbance (ω = 0.0321) in
plane wall jet computed by LDNS about BLE baseflow (Box
2, Re0 = 225), using mode 1 as inflow disturbance. Outer
and inner amplitude peak of streamwise disturbance velocity.

such that the quantity

u =

y∞∫
0

urmsdy (1)

is one at the inlet, where urms is the root-mean-square of
the streamwise velocity and y∞ denotes the distance of
the top boundary from the wall. The streamwise distur-
bance developing from these inflow conditions preserves
the double-peak shape typical of the wall jet eigenmodes
as it travels downstream (Figs. 7a, 9a–c). However,
the relative importance of the two peaks changes: the
outer maximum dominates over the inner maximum in
the upstream flow field and vice versa farther downstream
(Fig. 8), indicating a changeover of the driving instability
mechanism from the inviscid to the viscous type8. The
difference of instability is also manifested in the wall-
normal disturbance component, which is weak in the up-
stream region and intense farther downstream (Fig. 7b).
The distribution of the horizontal and vertical distur-
bance velocities corresponds to strong, streamwise oscil-
lating wall vorticity with two layers of counter-rotating
spanwise vortices in the interior of the jet15 (Fig. 7c).
After a significant upstream growth, the wall jet distur-
bance starts to decay at x ≈ 170 and then amplifies anew
at x ≈ 220 (Figs. 7, 8), as expected in light of the stable
island on the instability map.

Local linear stability theory is commonly consid-
ered appropriate to characterize the qualitative behav-
ior of small-amplitude disturbances in laminar plane wall
jets6,10. For instance, Ref. 9 reports good agreement be-
tween the normalized disturbance shapes extracted from
experimental data and those from spatial LST. This is
confirmed here by comparing LDNS and LST results: es-
pecially far downstream, the amplitude functions of the
streamwise and wall-normal disturbance velocities match
well when normalized by their maximum (Figs. 9c,f).
However, because the wall-normal flow profiles of the
plane wall jet change more rapidly in the streamwise di-
rection than in other wall-bounded flows (e.g. the flat
plate boundary layer), the assumption of locally par-
allel flow may become inadequate for small Reynolds
numbers and disturbances with large streamwise wave-
lengths (low frequencies). Here, we consider wall jet dis-
turbances of mode 1 type with four different frequencies
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FIG. 9. Wall-normal profiles of (a,b,c) horizontal and (d,e,f)
vertical disturbance velocity amplitude (normalized by max-
imum) in plane wall jet (Box 2, Re0 = 225) for frequency
ω = 0.0321. Three downstream locations: (a,d) x = 60; (b,e)
x = 150; (c,f) x = 405. Results from LDNS about BLE base-
flow with mode 1 inflow disturbance and spatial LST. Thin
dotted lines: normalized local wall-jet profiles for comparison.

(ω = 0.0321, 0.1, 0.4 and 0.8; values scaled at Re0 = 225)
and compare the downstream distributions of the stream-
wise wavenumber α and the growth rate σ obtained by
LDNS and spatial LST. Both Box 1 and Box 2 are em-
ployed now, covering a fairly large portion of the ω-Re
parameter space. The growth rate is calculated from the
LDNS data as σ = (du/dx)/u (see Eq. 1 for u), while
the wavenumber and the growth rate of the LST compu-
tations are obtained from the real and imaginary parts
of the eigenvalue λ of the spatial Orr-Sommerfeld/Squire
operator, with α = Re{λ} and σ = −Im{λ}.
The strongly nonparallel streamlines of the baseflow

are reflected by a rapid increase of the wavenumber α
in the downstream direction (Fig. 10). The distribution
of α corresponds to a large-wavelength inviscid instabil-
ity upstream and a small-wavelength viscous instability
downstream9, where the region of maximum slope indi-
cates a change in type of the most unstable eigenmode
from mode 1 to mode 2. For all four frequencies, the val-
ues of α extracted from the LDNS data are in reasonable
agreement with the predictions by LST. However, this
does not hold for the growth rate: a large discrepancy is
noticed in particular for small Reynolds numbers, where
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FIG. 10. Comparison of streamwise wavenumber of distur-
bance in plane wall jet as obtained by spatial LST and LDNS
about BLE baseflow, using mode 1 as inflow disturbance.
Four frequencies are considered: ω = 0.0321, 0.1 (curves ob-
tained on Box 2, Re0 = 225), 0.4 and 0.8 (Box 1, Re0 = 150;
curves rescaled to conform to results from Box 2).
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FIG. 11. Comparison of linear disturbance growth rates in
plane wall jet obtained by spatial LST and LDNS about BLE
and NSE baseflows, using mode 1 as inflow disturbance. Vari-
ation of frequency: (a) ω = 0.0321; (b) 0.1 (curves obtained
on Box 2, Re0 = 225); (c) 0.4; (d) 0.8 (Box 1, Re0 = 150;
curves rescaled to conform to results from Box 2). Growth
rate from LDNS is that of quantity u (Eq. 1).
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FIG. 12. Downstream disturbance evolution (ω = 0.0321) in
plane wall jet computed by LDNS about BLE baseflow (Box
2, Re0 = 225). (a) Streamwise distribution and (b) spatial
growth rate of u for two different inflow disturbances, mode
1 and mode 2.

the disturbance amplifies significantly faster in the sim-
ulations than predicted by LST (Fig. 11). According to
LST, stable conditions prevail in a narrow region around
Re = 400 for a frequency of ω = 0.0321, while an ex-
tended stable patch centered at Re ≈ 439 is observed in
the LDNS data (Fig. 11a). The stable region persists
and moves upstream for higher frequencies (Figs. 11b,c),
whereas no stable island is seen in the LST results. At
the highest frequency considered (ω = 0.8, Fig. 11d), the
local stable patch disappears and the wall jet disturbance
becomes stable farther upstream than predicted by LST.
The growth rates from LDNS and LST are consistent
with each other only in the region far downstream, where
the flow eventually becomes stable. The σ-distribution
changes slightly when replacing the BLE baseflow (solid
lines in Fig. 11) by the NSE baseflow (dashed lines,
red online), especially in the upstream flow field, where
the NSE baseflow deviates most significantly from the
BLE solution (cf. Fig. 6d). The linear spatial devel-
opment of the wall jet disturbances is hence somewhat
sensitive to baseflow modifications. However, this sen-
sitivity only contributes marginally to the disagreement
between LDNS and LST, while the major contribution is
attributed to the highly nonparallel nature of the plane
wall jet.
We have so far only considered inflow disturbances

consisting of mode 1. However, because branch IV of
the neutral stability curve is established by mode 2 and
branches II and III by a changeover from mode 1 to mode
2 according to LST (cf. Fig. 5), mode 2 is expected
to contribute to the linear wall jet instability. Here,
we compare the downstream evolution of wall jet dis-
turbances originating from mode 1 and mode 2 inflow
conditions, using the measure u (Eq. 1). Although the
disturbance arising from mode 2 is more strongly damped
near the inlet than that due to mode 1 (Fig. 12a, shown
for ω = 0.0321), the u curves become similar farther
downstream so that the spatial growth rates converge at
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FIG. 13. Curves of neutral spatial stability of plane wall jet.
Comparison between spatial LST and LDNS about BLE and
NSE baseflows, using mode 1 as inflow disturbance. Thin
dotted curves: lines of constant dimensional frequency.

Re ≈ 390 (x ≈ 104, Fig. 12b). We notice that the neu-
tral stability point pertaining to branch I is determined
by mode 1, whereas the neutral points on branches II, III
and IV are unaffected by the type of inflow mode cho-
sen. This behavior, also observed for frequencies other
than ω = 0.0321, is explained by a mutual excitation of
the modes: when prescribing mode 1 at the LDNS in-
let, mode 2 is also forced and vice versa, so that the two
modes appear simultaneously and are inseparable in the
downstream disturbance field.

In order to clarify in what way the mismatch of the
growth rates obtained by LDNS and LST affects the
instability map of the plane wall jet, we report a pa-
rameter study over various frequencies in the interval
ω ∈ [0.015, 1.6] (values normalized at Re0 = 225). Be-
cause most parts of branch I of the neutral stability curve
lie outside the Reynolds number range captured by the
LDNS Boxes 1 and 2, the study only includes the stable
island and branch IV. It is sufficient to consider inflow
disturbances of mode 1 type only as branches II, III and
IV do not depend on the type of inflow mode chosen (see
Fig. 12). When redrawn as per the LDNS results, the in-
stability map looks fairly different from that known from
LST: the inner stable patch is shifted towards higher fre-
quencies, covers a larger area and is connected with the
outer stable region, forming a “stable peninsula” (Fig.
13). Acceptable agreement between LST and LDNS data
is only obtained at branch IV for Re >∼ 300. The enlarge-
ment of the stable area in the present part of the instabil-
ity map seen in the LDNS suggests a local stabilization
of the wall jet owing to nonparallel effects, although the
overall effect of the diverging streamlines appears to be
a destabilizing one (cf. the enhanced upstream growth
rates in Fig. 11). While the overall appearance of the
LDNS instability diagram does not depend on the type
of baseflow, the stable portion is a little larger when
using the NSE solution instead of the fully self-similar
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FIG. 14. Early phase of optimal disturbance evolution in
plane wall jet (Box 2, Re0 = 225, BLE baseflow) for growth
period T = 800. (a) Time t = 0, (b) 30, (c) 90 and (d) 180.

BLE baseflow. Although the neutral stability curve from
LDNS somewhat changes when tracking the growth rates
of other quantities than u, e.g. the disturbance energy or
the streamwise velocity at the inner and outer peaks of
the disturbance profile, the principal topography of the
LDNS instability map remains the same.

B. Transient Growth

Shear flows are known to support short-time ampli-
fication of nonmodal disturbances. Here, we study the
potential of linear transient growth in the laminar plane
wall jet using the concept of ‘optimal disturbances’.
These are initial flow structures evolving into a distur-
bance pattern with maximum kinetic energy at a certain
time T . The disturbance kinetic energy is defined as

E(t) =
1

LxLy

Lx∫
0

Ly∫
0

u(t)2dydx, (2)

where t denotes the time, u = (u, v) is the disturbance
velocity and Lx = 420 and Ly = 45 are the length and
height of the computational domain (Box 2). The maxi-
mum of E(T ) is computed using the method of Lagrange
multipliers. The optimization procedure adopted em-
ploys an iterative scheme of alternating LDNS and ad-
joint LDNS (’timestepper technique’16) and is outlined in
Ref. 17. The first LDNS of the iteration loop is initialized
by a disturbance field with a random spatial distribution
(see Ref. 18 for a schematic of the iteration procedure).
The optimal initial disturbance obtained is an up-

stream localized pattern of tilted structures arranged in
two rows, one near the wall and the other in the outer
part of the wall jet (Fig. 14a, shown for T = 800). These
structures initially “lean against” the mean shear of the
wall jet and then rotate due to shearing (Figs. 14a-c) un-
til a pattern typical of a wall jet disturbance is achieved
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FIG. 15. Wall-normal profiles of streamwise and wall-normal
velocity magnitude of optimal disturbance shown in Fig.
14(a) at three downstream locations: (a) x = 30, (b) 90,
(c) 150. Thin dotted lines: wall-jet profiles (BLE baseflow)
at the same locations, scaled for comparison.
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FIG. 16. Temporal evolution of disturbance kinetic energy
(Eq. 2) of various optimal disturbances with E(0) = 1 in
plane wall jet (Box 2, Re0 = 225, BLE baseflow). Cir-
cles: maximum kinetic energy for different growth periods
T ; dashed line (red online): envelope curve.

(Fig. 14d). This process is the well-known Orr mecha-
nism earlier reported for Couette flow, plane Poiseuille
flow and the flat plate boundary layer17,19. In the plane
wall jet, the Orr mechanism is active in two layers with
mean flow gradients of opposite sign (the wall-bounded
and the free shear layers), so that the inner and outer ini-
tial optimal flow structures rotate in opposite directions.
The wall-normal profiles extracted from the optimal ini-
tial disturbance field exhibit a streamwise velocity mag-
nitude with multiple local peaks and a global maximum
in the outer part of the wall jet (Fig. 15).

The potential of transient growth in the plane wall
jet is demonstrated by a parameter study over differ-
ent growth periods T . We consider values in the range
300 ≤ T ≤ 1200, for which both the optimal initial dis-
turbance and the final wall jet instability remain inside
the computational domain at all times. All optimal per-
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TABLE III. Parameters of streamwise volumetric force fx
(Eq. 3). The four parameter sets listed pertain to forcing
at two distances from the wall and two streamwise positions.

af ωf xc yc bx by

1 0.0321 15
0.33

0.5 20
1.67

1 0.0321 220
1.52

0.5 20
7.81

turbations undergo rapid initial amplification followed by
a ‘plateau’, a second phase of amplification and final de-
cay (Fig. 16). The initial growth, ascribed to the Orr
mechanism, is terminated when the plateau is reached
and establishes the gain of the optimally excited unsta-
ble wavepackets with respect to purely modal wall jet
instabilities (≈ 50 here). The growth phase following
the plateau is driven by the inviscid and viscous insta-
bility mechanisms of the plane wall jet. The maximum
possible values of the disturbance kinetic energy for dif-
ferent growth periods T (circles in Fig. 16) group along
a straight line (‘envelope curve’), setting an upper bound
for the linear temporal amplification of two-dimensional
disturbances in the plane wall jet.

C. Receptivity

Since the optimal streamwise disturbance velocity ex-
hibits local maxima both in the inner and the outer part
of the plane wall jet (cf. Fig. 15), both regions are ex-
pected to be potentially receptive to forcing. A simple
numerical experiment is carried out to clarify the region
in which the wall jet is more effectively destabilized. To
this end, a localized, time-periodic volumetric force is
added to the linearized streamwise momentum equation,

fx(x, y, t) = af e−[bx(x−xc)
2+by(y−yc)

2] sin (ωf t), (3)

where af is the amplitude and ωf the frequency of the
forcing. A two-dimensional Gaussian distribution cen-
tered at (xc, yc) defines the spatial structure of the force,
with bx and by determining the degree of localization.
We consider four sets of parameters with different cen-
ters (xc, yc) of the Gaussian, placed upstream (xc = 15)
or downstream (xc = 220) and in the inner or outer part
of the wall jet (see Tab. III). The inner and outer wall
distances yc are adjusted such that the local wall jet speed
is U(xc, yc) = Um(xc)/2 in all cases. The values of bx and
by chosen ensure that the spatial forcing distribution is
comparable to the flow structures in size.
The disturbance attains the largest amplitude, if the

flow is forced near the edge of the wall jet (Fig. 17, shown
for ω = 0.0321). This also holds if the force is applied
farther downstream (xc = 220) where the inner peak of
the wall jet disturbance amplitude is dominant (see Fig.
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FIG. 17. Excitation of plane wall jet instability (Box 2, Re0 =
225, BLE baseflow) by time periodic volumetric forcing (see
Eq. 3 and Table III). Forcing is applied at two wall distances
yc in outer and inner region of wall jet and at two streamwise
stations: (a) xc = 15 and (b) xc = 220.

8). The larger receptivity of the outer wall jet region is
consistent with the outer location of the global maximum
of the optimal disturbances (cf. Fig. 15). In practice,
plane wall jets are often destabilized by perturbations
originating from the jet nozzle, e.g. due to a rough nozzle
surface. The present results suggest that the upper nozzle
wall (opposing the flat plate) is a particularly relevant
site of such perturbations.

IV. SUMMARY

A two-dimensional direct numerical simulation (DNS)
study of a laminar plane wall jet is presented. Previ-
ous DNS studies of this flow type deal with transition
to turbulence20, nonlinear phenomena21 and forced heat
transfer22. In this work, we focus on the linear evolution
of disturbances in the plane wall jet and compare results
from linear DNS (LDNS) and spatial linear stability the-
ory (LST). Ref. 9 reports fair agreement of the normal-
ized streamwise disturbance velocity profiles when data
from experiments and LST are matched. Our compari-
son between LDNS and LST data confirms this, and we
also notice reasonable agreement of the disturbance wave-
lengths. This is in line with Ref. 23, where satisfactory
LST calculations of normalized disturbance profiles and
wavelengths in flat plate boundary layers are reported.
However, LST results of the spatial disturbance growth
rates in the plane wall jet turn out to be inaccurate. At
low Reynolds numbers, the instabilities amplify signifi-
cantly faster in the simulations than predicted by LST.
The growth rates only agree near the downstream branch
of the neutral stability curve (branch IV), where the dis-
turbances eventually decay.

Our LDNS results imply a modified instability map of
the plane wall jet: the stable island predicted by LST ap-
pears to be significantly larger than reported so far6,9,10
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and is connected with the outer stable region, forming a
“stable peninsula”. We attribute the failure of LST to the
rapid streamwise variation of the wall jet (as compared
with e.g. the flat plate boundary layer), which is incom-
patible with the parallel flow assumption and the require-
ment of sufficiently separated characteristic length scales
of the baseflow and the unstable eigenmodes. The over-
all nonparallel effect is manifested as a destabilization of
the plane wall jet, as shown before in flat plate boundary
layers23, while the flow is locally stabilized in the neigh-
borhood of the stable peninsula. We anticipate that the
rapid streamwise evolution of the wall jet also affects the
lowest branch of the neutral stability curve (branch I)
and possibly the critical Reynolds number of linear in-
stability. However, we have not verified this as the long
disturbance waves at the critical conditions along with
the excessive spreading rate of the wall jet would require
costly simulations on large domains beyond the scope
of this study. Moreover, the self-similar approximation
would become inadequate in the near field of the wall jet,
which strongly depends on the geometry of the jet orifice.
We also report the transient growth potential of two-

dimensional disturbances in the plane wall jet, using the
concept of ‘optimal disturbances’. These are computed
by an iterative procedure of direct and adjoint Navier-
Stokes simulations (timestepper technique16). The opti-
mal initial disturbances consist of upstream tilted flow
structures similar to those in flat plate boundary lay-
ers17,19 – but in the wall jet, these structures are ar-
ranged in two rows as there are two shear layers. The
tilted structures are turned by the mean shear (Orr mech-
anism) and evolve into traveling wavepackets. The tran-
sient evolution curves for different growth times establish
a straight envelope line. The wall-normal profiles of the
optimal streamwise disturbance velocity exhibit multiple
local maxima across the wall jet, explaining the large re-
ceptivity to perturbations and the rapid destabilization
of this flow type. The excitation of wall jet instabilities
by localized volumetric forcing is particularly effective in
the outer region of the plane wall jet, where the baseflow
appears to be more receptive than near the wall.
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