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Receptivity of the two-dimensional boundary layer on a flat plate with elliptic leading
edge is studied by numerical simulation. Vortical perturbations in the oncoming free
stream are considered, impinging on two leading edges with different aspect ratio
to identify the effect of bluntness. The relevance of the three vorticity components
of natural free-stream turbulence is illuminated by considering axial, vertical and
spanwise vorticity separately at different angular frequencies. The boundary layer
is most receptive to zero-frequency axial vorticity, triggering a streaky pattern of
alternating positive and negative streamwise disturbance velocity. This is in line with
earlier numerical studies on non-modal growth of elongated structures in the Blasius
boundary layer. We find that the effect of leading-edge bluntness is insignificant for
axial free-stream vortices alone. On the other hand, vertical free-stream vorticity is
also able to excite non-modal instability in particular at zero and low frequencies.
This mechanism relies on the generation of streamwise vorticity through stretching
and tilting of the vertical vortex columns at the leading edge and is significantly
stronger when the leading edge is blunt. It can thus be concluded that the non-modal
boundary-layer response to a free-stream turbulence field with three-dimensional
vorticity is enhanced in the presence of a blunt leading edge. At high frequencies
of the disturbances the boundary layer becomes receptive to spanwise free-stream
vorticity, triggering Tollmien–Schlichting (T-S) modes and receptivity increases with
leading-edge bluntness. The receptivity coefficients to free-stream vortices are found to
be about 15 % of those to sound waves reported in the literature. For the boundary
layers and free-stream perturbations considered, the amplitude of the T-S waves
remains small compared with the low-frequency streak amplitudes.

1. Introduction
Numerical simulation of receptivity to free-stream vorticity of the flow over a flat

plate with elliptic leading edge is considered. Receptivity denotes the process by
which ambient disturbances such as sound and vorticity enter the boundary layer and
initialize the formation of boundary-layer instabilities. Most numerical receptivity
studies presented so far are concerned with flow over an infinitely thin flat plate
downstream of the leading edge, for instance the Finite-Reynolds Number (FRNT)
studies by Crouch (1992) and Choudhari & Streett (1992) (acoustic receptivity) and the
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work by Bertolotti (1997) (vortical receptivity) for Blasius flow. In contrast, Goldstein,
Leib & Cowley (1992) and Goldstein & Wundrow (1998) consider through asymptotic
analysis flow around a flat plate of finite thickness with an upstream vortical free-
stream disturbance. Since the 1990s there have also been a smaller number of
numerical simulations of flow around leading edges with different geometry, mainly
dealing with acoustic receptivity. Here, we summarize the literature on acoustic and
vortical leading-edge receptivity, being most relevant to our present study, and refer
to the recent review by Saric, Reed & Kerschen (2002) for a complete survey.

1.1. Leading-edge receptivity to free-stream sound

The theoretical foundation of leading-edge receptivity to sound has been laid by
Goldstein (1983) who shows through asymptotic analysis that long-wavelength
acoustic free-stream disturbances are coupled to short-wavelength T-S waves via
a length scale reduction mechanism near the leading edge. Goldstein, Sockol &
Sanz (1983) compute receptivity coefficients, a measure for the coupling between
the sound and the T-S waves, at an infinitely sharp leading edge. Heinrich &
Kerschen (1989) extend this study to the case of obliquely impinging acoustic waves
and find larger receptivity coefficients than those for the parallel sound waves.
Receptivity to oblique sound is also investigated through asymptotic and numerical
analyses by Hammerton & Kerschen (2005) for a thin cambered airfoil with parabolic
leading edge. The authors show that increasing the angle-of-attack initially decreases
(increases) the acoustic receptivity on the upper (lower) wing side, whereas the
opposite holds when the critical angle for flow separation is approached.

Lin, Reed & Saric (1992) investigate through numerical simulation the receptivity
of the boundary layer on a finite-thickness flat plate with elliptic leading edge to
planar sound waves with different frequencies. They introduce the modified super-
elliptic (MSE) leading edge with zero curvature at the joint to the plate, reducing
undesired localized receptivity due to geometric discontinuities (see Goldstein &
Hultgren 1987). The mean flow is at Reynolds number Reb =2400 with b being the
plate half-thickness, and the acoustic disturbance is introduced as an unsteady free-
stream boundary condition for the streamwise velocity. Considering three different
leading edges Lin et al. (1992) find a decrease in receptivity of T-S waves to sound with
increasing aspect ratio (decreasing bluntness). The juncture of the MSE leading edge,
though being comparably smooth, contributes up to 50 % to the total receptivity,
owing to the decay of the leading-edge induced T-S wave upstream of branch I.
Fuciarelli, Reed & Lyttle (2000) present acoustic branch-I receptivity coefficients
computed for the same base flow as discussed in Lin et al. (1992). They study the
effect of angle of incidence of the sound wave and show that receptivity is more
than four times as efficient at an angle of 15◦ as in the symmetric case. Wanderley &
Corke (2001) consider two relatively sharp MSE leading edges (large aspect ratios) at
Reb = 2400 and study the effect of acoustic frequency. The authors show receptivity
coefficients both at branch I of the T-S mode and at the leading edge. While the
branch-I amplitude decreases with increasing aspect ratio, the opposite holds for
the extrapolated receptivity amplitude at the leading edge. This is due to the lower
adverse pressure gradient of the sharper leading edge considered, causing a faster
decay of the T-S instability upstream of branch I. Wanderley & Corke (2001) also
show that T-S waves excited at the juncture are superimposed on those triggered at
the leading edge, which becomes apparent through local maxima and minima in the
receptivity amplitude when plotted versus frequency.
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1.2. Leading-edge receptivity to vortical free-stream disturbances

Goldstein & Leib (1993) and Wundrow & Goldstein (2001) present an asymptotic
analysis of the boundary-layer response to steady low-amplitude disturbances
upstream of a zero-thickness flat plate (infinitely sharp leading edge). The free-
stream perturbations considered represent counter-rotating axial vortices distorting
the streamwise velocity profiles via a weak cross-stream motion. This leads to
steady structures of positive and negative streamwise disturbance velocities, long
in streamwise and narrow in spanwise directions – similar to the Klebanoff modes
(streaks) observed in flat-plate experiments with free-stream turbulence. Receptivity to
axial free-stream vortices is also studied in Bertolotti & Kendall (1997). The authors
report results from an experiment with a controlled axial vortex generated by a micro-
wing upstream of the leading edge and compare these with numerical findings based
on the parabolized stability equations (PSE). This work also shows the efficiency of
axial vortices in exciting non-modal streaky instabilities in the boundary layer. The
experiment was carried out on a flat plate with elliptic leading edge – the prevalent
geometry in wind-tunnel testing, which highlights its relevance for theoretical and
numerical studies. Goldstein et al. (1992) and Goldstein & Wundrow (1998) show
asymptotic results for the boundary-layer response to a steady low-amplitude spanwise
periodic disturbance in streamwise velocity upstream of a finite-thickness flat plate
with rounded leading edge. This particular perturbation is characterized by steady
vertical vorticity, with the vortex lines being stretched and tilted as the disturbance
impinges on the leading edge. This mechanism first generates streamwise vorticity,
which in turn produces boundary-layer streaks. Heinrich & Kerschen (1989) and
Kerschen, Choudhari & Heinrich (1990) consider through an asymptotic approach
the coupling between two-dimensional vortical gusts upstream of an infinitely sharp
leading edge and T-S instability inside the boundary layer. Streamwise velocity
disturbances are found to produce larger T-S amplitudes than those produced by
vertical free-stream fluctuations.

Buter & Reed (1994) present numerical results obtained for the same configuration
as presented in Lin et al. (1992), considering vortical high-frequency disturbances,
both symmetric and asymmetric with respect to the flat-plate axis. The asymmetric
perturbation, causing an oscillating forward stagnation point, leads to larger T-S
wave amplitudes than that of the symmetric forcing. A linear dependence of the T-S
amplitudes on the forcing magnitude is reported for both types of free-stream vorticity
(linear receptivity). Both vortical disturbances cause lower receptivity amplitudes of
the T-S waves than the free-stream sound presented in Lin et al. (1992). Buter &
Reed (1994) also investigate the influence of surface curvature, using an ordinary
elliptic and an MSE leading edge. Although receptivity at the juncture becomes
weaker for the smoother MSE shape, the total receptivity increases due to a
larger pressure-gradient maximum and an upstream shift of branch I of the T-S
instability.

Here, we present results obtained by means of the Spectral Element Method
(SEM) with the aim to study receptivity to free-stream vorticity of the flow over
a flat plate with elliptic leading edge. Two aspects are the focus of our study: the
effect of leading-edge bluntness and the relevance of the three vorticity components
for receptivity. The former aspect is addressed by considering a blunt and a sharp
leading edge (small and large aspect ratios); the latter by using a sufficiently simple
model for free-stream vortices, enabling us to investigate the boundary-layer response
to streamwise, wall-normal and spanwise free-stream vorticities separately. This is
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accomplished considering vortical modes in analogy to the ‘A’ and ‘B’ modes used in
Bertolotti (1997).

2. Numerical approach and flow configuration
2.1. Numerical method

The results are obtained using the SEM proposed by Patera (1984) to solve
the three-dimensional time-dependent incompressible Navier–Stokes equations. The
implementation used has been developed and described by Fischer et al. (2008). The
physical domain is decomposed into sub-domains (spectral elements), allowing for
geometric flexibility and thereby applicability to engineering problems. While sharing
this flexibility with the Finite Element Method (FEM), the SEM builds on different
basis functions: the local approximation of the flow field is based on high-order
orthogonal polynomials. In the present implementation the Lagrange polynomial
interpolants are defined on Gauss–Lobatto–Legendre (GLL) nodes. The expansion
for the flow variables reads

u[x(l)(r, s, t)] =

N∑
i=0

N∑
j=0

N∑
k=0

û(l)
ijkhi(r)hj (s)hk(t). (2.1)

x(l) is the mapping from the reference coordinates (r, s, t) ∈ [−1, 1]3 to the local
coordinates of element l; hi , hj and hk are the Nth-order Lagrange polynomials in

the three local spatial directions and �̂uijk is the nodal spectral velocity coefficient.
The order N of the polynomial basis functions is the same in the three spatial
directions and usually takes values between 4 and 14. The spatial discretization is
based on the weak form of the governing equations and follows the �N − �N−2

discretization by Maday & Patera (1989), i.e. the pressure grid, staggered with
respect to the velocity grid, is of order N − 2. The time integration employs a
high-order operator-splitting method (Maday, Patera & Ronquist 1990; Fischer
1997), with the convective terms computed explicitly via an extrapolation method
and the viscous terms treated implicitly with a third-order backward-differentiation
scheme. To stabilize the simulation the solution is slightly damped at highest order
(5 % reduction), allowing for a larger time step while hardly degrading the spectral
accuracy (see also Fischer & Mullen 2001).

The spectral nature of the SEM ensures exponential convergence of the solution
for sufficiently smooth flow fields as the resolution of the numerical domain is
refined by raising N . Apart from this so-called p-refinement the SEM provides a
second refinement strategy through reduction of the size (raising the number K)
of the elements (h-refinement), allowing for localized and adaptive refining of the
computational domain (see e.g. Feng & Mavriplis 2002). Since the computational
cost of the SEM is estimated as O(KN4) for three-dimensional problems (Tufo &
Fischer 1999), the two refinement strategies have a different effect on the simulation
cost. The paramount benefit of the present implementation is its efficient element-wise
parallelization for computations on large parallel supercomputers. Tufo & Fischer
(1999) show for a simulation of roughness-generated hairpin vortices in boundary-
layer flow that the speed-up of parallel computations on up to 2048 processors is
nearly linear. Most of the present simulations have been carried out on 512 processors.
Ohlsson et al. (2009) report for turbulent channel flow that the efficiency of the SEM
code is about one tenth of that of their Fourier–Chebyshev pseudo-spectral code.
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Figure 1. (a) Leading edge with aspect ratio AR =6 of MSE (—–) and ordinary elliptic shape
(----). y axis enlarged. (b) Surface curvature of the shapes in (a). · · ·, Juncture between leading
edge and flat plate.

2.2. Base flow

Semi-infinite flat plates with MSE leading edges are considered. The super-ellipse is
defined by (

y

b

)2

= 1 −
(

a − x

a

)p

, (2.2)

where the exponent p is

p = 2 +

(
x

a

)2

(2.3)

and x and y are the axial and the vertical coordinates. This type of geometry has
been proposed in Lin et al. (1992), as it provides smoothness in curvature at the
juncture to the flat plate, thus reducing undesired localized receptivity. a and b are
the semi-major and -minor axes of the ellipse. The exponent p rises smoothly from 2
to 3 from the tip of the leading edge to the joint with the plate, which results in zero
curvature at the joint. To identify the influence of leading-edge curvature and thus
mean pressure gradient, two different leading edges are investigated, a blunt one with
aspect ratio AR ≡ a/b = 6 and a sharp one with AR = 20. Figure 1(a) shows the MSE
leading edge with AR =6 in comparison with a leading edge with ordinary elliptic
shape. The MSE type has a slightly fuller contour than the ordinary elliptic type;
the most remarkable feature is, however, the smoothness in curvature at the juncture
seen in figure 1(b).

Figure 2 displays the computational mesh around the leading edge with AR = 6. In
figure 2(a) the elements in the upstream part of the grid are depicted, while figure 2(b)
gives a close-up view of the nose region, also showing the GLL nodes inside the
spectral elements. The parameters of the meshes used are compiled in table 1. In the
upstream region the full body is meshed, which allows the introduction of asymmetric
disturbances with respect to the symmetry plane of the body. A large portion of the
mesh is clipped in the lower part of the domain to reduce the computational costs, i.e.
only a small part of the ntg elements listed in table 1 is located below the symmetry
plane of the body. The base flow, independent of the spanwise direction, is computed
on the two-dimensional grids.

The polynomial order is N = 7 in each direction. The semi-minor axis b of the
elliptic leading edge, at the same time the half-thickness of the plate, is chosen as
the reference length. The reference velocity is the undisturbed inflow velocity U∞, and
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Size lax × lvt × lsp ntg × nno × nsp N Nv,tot Np,tot

Two-dimensional Short 224.33 × 45.83 150 × 17 7 126 120 91 800
Medium 432.67 × 45.83 220 × 17 7 184 920 134 640
Long 641 × 45.83 287 × 17 7 241 200 175 644

Three-dimensional Short 224.33 × 45.83 × 17.45 150 × 17 × 5 7 4 540 320 2 754 000
Medium 432.67 × 45.83 × 17.45 220 × 17 × 5 7 6 657 120 4 039 200

Table 1. Parameters of the numerical grids: size of the domain in axial, vertical and spanwise
directions (lax × lvt × lsp), number of elements in tangential, normal and spanwise directions
(ntg × nno × nsp), order N of polynomial basis functions and total number of nodes Nv,tot of
the velocity grid and Np,tot of the pressure grid. Two-dimensional: Nv,tot = (ntgN +1)(nnoN +1)

and Np,tot = ntgnno(N − 1)2; three-dimensional: Nv,tot = (ntgN + 1)(nnoN + 1)(nspN + 1) and

Np,tot = ntgnnonsp(N − 1)3.
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Figure 2. Computational grid for the blunt leading edge (AR = 6). (a) Distribution of the
spectral elements in the upstream part of the body. (b) Close-up view of the nose region. Grey
dots: Gauss–Lobatto–Legendre (GLL) points.

the kinematic viscosity is chosen such that the reference Reynolds number becomes
Reb = U∞b/ν = 2400, as in Lin et al. (1992), Buter & Reed (1994) and Wanderley &
Corke (2001). The outflow Reynolds number is then ReL = U∞L/ν =0.5/1/1.5 × 106

for the short/medium/long grid, where L is the streamwise location of the outflow
plane.

No-slip conditions are prescribed on the wall. The mean-flow conditions along
the far-field boundary (inflow plane and free-stream boundary) are of Dirichlet type,
obtained from a potential-flow solution around a corresponding body thickened by
the displacement thickness of the evolving boundary layer. The latter is estimated
by combining a preliminary inviscid solution with a boundary-layer solver. This
procedure allows for far-field boundaries located rather close to the plate, while the
desired zero-pressure gradient along its flat part is maintained. The inflow plane is
16b ahead of the leading edge, where the free stream is still nearly uniform and the
presence of the body is hardly felt. This is seen in figure 3 showing the far-field
boundary conditions for the mean flow around the blunt leading edge (AR = 6).
The axial velocity defect on the stagnation streamline is less than 0.02U∞, and
the vertical displacement velocity is about ±0.01U∞. The chosen position ensures
a sufficiently uniform inflow while reducing the length of the upstream region and
thus the computational costs. For AR = 20 the deviation from a uniform inflow is
even smaller. The upper and lower free-stream boundaries are 23b (11 99 %-layer



Receptivity of flow past a leading edge 251

1.00

20

0

0.99

1.01

0.98 0.985
–20

1.01
0 50 100 150 200

0
0 20

50 100 150 200

(a)

x

y

20

0

–0.01 0.01
–20

y

U

U

0

–0.02
0 20

V

0.01

0.02(b)

V

Figure 3. Far-field Dirichlet boundary conditions used for the mean-flow computation. Blunt
leading edge (AR = 6). The curves are extracted from a potential-flow solution around the
plate thickened by the displacement thickness. (a) Axial and (b) vertical mean velocities.

thicknesses at Rex = 106) away from the centreline of the body. At the outflow
boundaries above and below the symmetry plane von-Neumann conditions for the
velocity are prescribed, while no boundary conditions are associated directly with
the pressure (staggered grid). This type of outflow is found to be suitable for the
low-amplitude perturbations considered, producing a smooth pressure field without
spurious fluctuations.

2.3. Perturbed flow

The perturbed flow is computed on the three-dimensional meshes in table 1. In the
spanwise direction z, five spectral elements with a total of 36 points are used, and the
width of the domain is 17.45b. The three-dimensional simulations are initialized with
the spanwise extended planar base flow, and periodicity conditions are applied at the
lateral domain boundaries.

2.3.1. Vortical modes

Fourier modes of the form φ = φ̂ei(αx+γy+βz−ωt) are used as a model for free-stream
vorticity, where φ is a placeholder for velocity and vorticity respectively; α, γ and
β denote the axial, vertical and spanwise wavenumbers and t and ω are time and
angular frequency, respectively. The axial, vertical and spanwise disturbance velocity

and vorticity are denoted as (u, v, w) and (ξ, η, ζ ). The amplitude functions φ̂ can be
derived by considering a single vorticity component, ξ say, along with the continuity
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equation,

iξ̂ = βv̂ − γ ŵ, (2.4a)

0 = αû + γ v̂ + βŵ. (2.4b)

Vorticity and velocity pointing in the same direction (ξ̂ and û here) evolve
independently of each other in a uniform stream. Therefore, without loss of generality,
û is set to zero in the inflow region, and the first term on the right-hand side of (2.4b)
is dropped. A disturbance field with one vorticity component alone is, however,
sustained only in uniform flow, e.g. far upstream of a body. Figure 3 shows, though,
that the mean flow is exposed to a weak irrotational distortion in the inflow region
such that a small adjustment of the vortical disturbance to the underlying flow is
expected.

Using (2.4), the velocity amplitudes v̂ and ŵ are readily expressed in terms of
streamwise vorticity ξ̂ as

v̂ =
iβ

γ 2 + β2
ξ̂ and ŵ = − iγ

γ 2 + β2
ξ̂ . (2.5)

We choose ξ̂ =
√

γ 2 + β2, implying that the streamwise vorticity is proportional to
the length of the wavenumber vector (γ, β) on the inflow plane. The velocity and
vorticity components then read

(û, v̂, ŵ) =
i√

γ 2 + β2
(0, β, −γ ), (2.6a)

(ξ̂ , η̂, ζ̂ ) =
1√

γ 2 + β2
(γ 2 + β2, −αγ, −αβ). (2.6b)

The vortical mode is hence obtained by selecting a certain inflow wavenumber
vector (γ, β) and a certain streamwise wavenumber α. Note that the magnitude of
the disturbance vector (û, v̂, ŵ) does not depend on (γ, β) under the normalization
adopted, i.e. the energy of the vortical mode is independent of its length scale. Note
as well that the lateral vorticity components η̂ and ζ̂ vanish when α = 0 such that the
resulting free-stream mode contains solely the streamwise vorticity.

The free-stream mode defined above is similar to the model used by Bertolotti
(1997), which in turn dates back to the work of Rogler & Reshotko (1976). The
formulation of Bertolotti (1997) is, however, slightly more complicated, as the vortical
disturbance used there has been inserted in the free-stream above a Blasius boundary
layer. Thus, the model in that work includes a streamwise decay rate and a correction
due to displacement of the vortical modes by the growing boundary layer. Both effects
are implicit in the numerical simulations presented here. Except for these corrections,
the formulation in (2.6) is identical to mode ‘B’ in Bertolotti (1997); here, we adopt
the notation ‘ξ -mode’ to emphasize the vorticity component involved in its derivation.

A vortical mode can also be derived starting from the wall-normal vorticity
component η plus v = 0 or from spanwise vorticity ζ along with w = 0. Based on
η, the expressions read

(û, v̂, ŵ) =
i√

α2 + β2
(−β, 0, α), (2.7a)

(ξ̂ , η̂, ζ̂ ) =
1√

α2 + β2
(−αγ, α2 + β2, −γβ), (2.7b)
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Figure 4. Normalized magnitude of vorticity (black: 0; white: 1). (a) ξ -mode with β = 0.72,
γ = 0.24 and F = 0 (axial vorticity). (b) η-mode with β =0.72, γ = 0 and F =96 (vertical
vorticity). (c) ζ -mode with β =0, γ = 0.4032 and F = 96 (spanwise vorticity).

while starting from ζ yields

(û, v̂, ŵ) =
i√

α2 + γ 2
(γ, −α, 0), (2.8a)

(ξ̂ , η̂, ζ̂ ) =
1√

α2 + γ 2
(−αβ, −γβ, α2 + γ 2). (2.8b)

Here, we label the mode defined in (2.7) as the ‘η-mode’ and that in (2.8) the ‘ζ -mode’.
Note that pure vertical vorticity is obtained from the η-mode, if the wall-normal
wavenumber is γ = 0. In the same fashion, only the spanwise vorticity component of
the ζ -mode does not vanish when the spanwise wavenumber is β =0. The ζ -mode
has also been considered in Bertolotti (1997) and is called mode ‘A’ there. We point
out that the three modes are not linearly independent; in fact, any of the solutions
‘ξ ’, ‘η’ and ‘ζ ’ can be obtained by combining the other two types. The η-mode, for
instance, can be written as a linear combination of the ξ - and ζ -modes

‘η’ = − 1

γ
√

α2 + β2
[β

√
α2 + γ 2 · (‘ζ ’) + α

√
γ 2 + β2 · (‘ξ ’)] (2.9)

Figure 4 displays the three types of modes in terms of the vorticity magnitude
(enstrophy) in a box with y–z planes equal to the inflow plane of the computational
domain. Figure 4(a) shows the structure of the ξ -mode with β = 0.72, γ = 0.24 and
F = 0, figure 4(b) depicts the η-mode with β = 0.72, γ =0 and F = 96 and figure 4(c)
shows the ζ -mode for β = 0, γ =0.4032 and F = 96. Clearly, the modes reduce to
axial, vertical and spanwise vortex rolls respectively in these particular cases.

2.3.2. Free-stream disturbance

The response of the boundary layer to the vortical modes defined above depends
on the streamwise, vertical and spanwise wavenumbers α, γ and β . A parametric
study of the effect of wavenumber is outlined in the next section. To limit the
number of simulations and thus the computational costs, several modes with different
spanwise wavenumber are simultaneously inserted at the inflow plane. The modes
are superimposed using random phase angles to ensure a total disturbance with
homogeneous distribution, amenable to a characterization in terms of root mean
square (r.m.s.) velocities. The total free-stream disturbance is scaled to obtain a mean
inflow fluctuation amplitude εin � U∞, defined as

εin =

√
1
2
(u2 + v2 + w2), (2.10)
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where the bar denotes the vertical average of the spanwise r.m.s. disturbance velocities.
Note that one of the velocity components in (2.10) is always zero. A small value
for εin, together with the spanwise homogeneity of the base flow, ensures that the
different modes prescribed at the inlet evolve in essence independently of each other
without significant nonlinear interaction. We further define a free-stream fluctuation
amplitude εle at the leading edge in the same way as in (2.10). Using εle instead of εin

for the normalization of disturbance amplitudes excludes the decay of the free-stream
fluctuations from the inlet to the leading edge, thus ensuring independence of the
results from the location of the inflow plane. On prescribing the inflow disturbance
conditions the chordwise wavenumber α in (2.6)–(2.8) is substituted with the angular
frequency ω via Taylor’s hypothesis, assuming a phase speed c = U∞ = 1 at the inlet;
ω, in turn, is expressed in terms of the reduced frequency,

F ≡ ν

U 2
∞

106ω =
L

ReLU∞
106ω. (2.11)

Figure 5 gives the vorticity amplitudes of three inflow disturbances constructed from
vortical ξ -, η- and ζ -modes, respectively. The disturbances consist of seven modes with
different wavenumbers (γ, β), chosen to match those given in Bertolotti (1997), and
are plotted for low and high frequencies (F =16 and 96). The free-stream fluctuations
composed of ξ -modes in figure 5(a) are dominated by axial vortices, the amplitudes
of which are independent of F ; the disturbance fields based on η- and ζ -modes
in figures 5(b) and 5(c) have a predominant vertical vorticity component for both
frequencies. The vorticity distribution for η- and ζ -modes is in fact similar except for
the sign. These three inflow perturbations are used later to investigate the receptivity
of the boundary layer to free-stream vorticity.

2.4. Validation

A resolution study on a small test domain of the leading-edge region revealed that
results obtained on an h- and a p-refined mesh (≈1.5 times as many elements and
N = 9, respectively) are in good agreement with those for the present grids. In order to
validate the method described in § 2.2 to compute the Dirichlet boundary conditions
for the base flow we compare the pressure distribution obtained with the present SEM
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Growth and decay of T-S instability (F = 96) in the boundary-layer downstream of a leading
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code with results published in Wanderley & Corke (2001). There, MSE leading edges
with AR = 20 and 40 are considered. Figure 6(a) depicts the chordwise distribution
of the pressure coefficient cp . The desired constant pressure is approached on the flat
part of the plate, and good agreement between the present cp curves and those from
Wanderley & Corke (2001) is observed for both leading edges. Figure 6(b) shows a
comparison between results obtained with the present SEM code and those from a
PSE calculation. The evolution of a T-S wave with frequency F = 96 is considered.
Good agreement in terms of streamwise r.m.s. amplitude is obtained, verifying that
the grid resolution is fine enough to correctly predict the development of a short
instability wave.

3. Results
3.1. Base flow

Figure 7 gives a characterization of the mean flow around the plates with blunt
and sharp leading edges in comparison with Blasius flow. In figure 7(a) the pressure
coefficient cp and its chordwise derivative are plotted along the chord of the plate. The
suction peak is more distinct when AR = 6, resulting in a stronger adverse pressure
gradient than for AR = 20. For both leading edges, in the region x � 100, cp drops
less than 1 % over a length of 100 plate half-thicknesses; for x � 220, the drop in cp

is even less than 0.1 % per 100b. The downstream flow is thus essentially of Blasius
type. Figure 7(b) shows the displacement thickness δ∗ versus the surface coordinate
s. Downstream of the junction, the δ∗ distribution becomes a straight line with slope
1/2 in the double-logarithmic plot, as in Blasius flow; upstream of it δ∗ increases
more rapidly due to flow deceleration downstream of the pressure minimum. In
figure 7(c) the mean wall vorticity ζw is displayed along s. ζw approaches the Blasius
solution further downstream and is less smooth near the junction when AR = 6 –
a typical behaviour on bluff bodies. Figure 7(d) shows that the shape factor Hδθ

on the leading edges is much larger than the Blasius value of 2.59, approaching it
downstream of the junction, yet remaining about 2 % larger within the computational
domain.
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3.2. Perturbed flow

3.2.1. ξ -modes

Figure 8 displays the boundary-layer response to low-amplitude free-stream
fluctuations constructed from seven ξ -modes (AR =6 leading edge). Two values of
the frequency are considered: F = 16 and 96. This perturbation, shown in figure 5(a),
is dominated by axial vortices, while the lateral vorticity components are smaller by
one order of magnitude. The excited boundary-layer disturbance is most energetic in
the axial velocity component and takes the form of streamwise elongated structures
(streaks) with axial wavenumber α ∼ F . The disturbance is concentrated in different
regions when F is changed: close to the wall for F = 16 and near the layer edge when
F =96. This behaviour, observed before in Blasius flow (e.g. Zaki & Saha 2009),
is associated with the penetration of the free-stream modes into the shear region,
being larger at low frequency. Figure 8(b) shows the spanwise r.m.s. of the streamwise
disturbance, normalized by the amplitude εle of the free-stream fluctuations. The
low-frequency streaks due to ξ -modes with F = 16 amplify in the region x � 100
(Rex � 2.4×105) and attain a significant streamwise r.m.s. amplitude before decaying.
The vortical modes with high frequency (F = 96) are also able to enter the shear
layer at the leading edge, but the excited disturbance is damped inside it. Since the
high-frequency vortical disturbance is associated with a shorter streamwise length
scale than that with low frequency, this result indicates that the boundary layer is
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Figure 8. Boundary-layer response to ξ -modes with frequencies F = 16 and F = 96.
Free-stream disturbance consisting of seven modes with (γ, β)0 = (0.1344, 0); (γ, β)j =
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normalized streamwise disturbance (maximum value in y, z). Wall-normal coordinate stretched;
lines mark δ99. (b) Normalized spanwise r.m.s. of u. (c) Spanwise-wavenumber spectrum at the
location marked by the symbol in (b).

more receptive to long vortical waves. Figure 8(c) depicts the spanwise-wavenumber
spectrum of the boundary-layer disturbance. The spanwise Fourier transforms are
extracted downstream of the junction, where the r.m.s. amplitudes in figure 8(b) are
maximum, and they are normalized by the spectral amplitude ε̂j of their counterparts
in the oncoming free-stream disturbance. ε̂j is defined in analogy to (2.10)

ε̂j =
√

1
2
(|ûj |2 + |v̂j |2 + |ŵj |2), (3.1)

with ûj , v̂j and ŵj being the velocity Fourier coefficients of the j th free-stream mode
at the leading edge. For both frequencies the boundary layer is most receptive at the
scale β6 = 2.16; however, streaks with spanwise wavenumber β > β6 may attain even
higher amplitudes. In Schrader (2008) the largest amplitude has indeed been found
for streaks with β = 2.88, translating into a streak spacing comparable to the 99 %
boundary-layer thickness at Rex = 106.

Axial free-stream vorticity

Figure 8 suggests that boundary-layer receptivity increases with decreasing forcing
frequency; ξ -modes with zero frequency are thus expected to trigger a particularly
strong boundary-layer response. F = 0 defines a special set of ξ -modes with one-
dimensional vorticity vector pointing in the streamwise direction. We denote these
modes ‘ξx-modes’ to emphasize their purely axial vorticity and use them to identify the
role of streamwise vortices for boundary-layer receptivity. The inflow wavenumbers
are (γ, β)j = (0.12, 0.36)j , j = 1 . . . 6. These values match those used in the PSE study
by Bertolotti (1997); in particular, the modes j =2 and j = 4 correspond to the
β = 0.09 and the β = 0.18 mode of Bertolotti (1997, figure 6). The shortest spanwise
wavelength is then about 1.4 times, and the longest about 8.4 times, the 99 %-
thickness at Rex = 106. Note that the ratio between vertical and spanwise length scale
is fixed at a value of 3 for all modes included, i.e. the vortices have a different size
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|û j|
max
y
εle

u2

Figure 9. Boundary-layer disturbance excited by ξx-modes ((γ, β)j = (0.12, 0.36)j , j = 1 . . . 6)

with amplitude εin. (a) Normalized r.m.s. of streamwise disturbance velocity for εin = 2 × 10−6

and 10−5. (b) Spanwise wavenumber spectrum at Rex = 106 when εin = 2 × 10−6.

(a) (b)

y

y

z

x

u
δ99

u

v

w

4

2

0

0 100 200
x

300 400

2
1
0

2
(× 10–6)

(× 10–6)

(× 10–4)

(× 10–4)

0

4

0

0

100
10

0
–10–2

2
0
–2
–4
–6

200

300

400

2

1

0

–1
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(a) x–y plane showing the instantaneous disturbances u, v and w where u is maximum.
The lines mark δ99. (b) Spanwise plane of u along the wall-normal maximum of urms .

but the same ‘proportions’. The inflow amplitude of the free-stream perturbation
is εin = 2 × 10−6, small enough to ensure linearity in εin and to limit nonlinear
interaction between modes of different length scale. Figure 9(a) displays the spanwise
r.m.s. of streamwise velocity of the boundary-layer response to forcing with amplitude
εin = 2 × 10−6 and a value five times larger. The normalized data collapse, that is,
the flow response is linear in εin for the amplitudes considered. Figure 9(b) shows
the spanwise-wavenumber spectrum far downstream. Modes with β >β6, potentially
excited by nonlinear interaction, are virtually not present in the shear layer.

Figure 10 shows the structure of the boundary-layer perturbation due to ξx-modes.
In figure 10(a) the instantaneous disturbance velocities u, v and w are shown on the x–
y plane of maximum u (AR = 6 leading edge): the perturbation has zero streamwise
wavenumber and is clearly concentrated on u. Figure 10(b) depicts a streamwise–
spanwise plane of u along the wall-normal maximum in urms . This view highlights the
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spectrum at Rex = 106 of the boundary-layer disturbance. The modes are normalized by their
free-stream values at the leading edge. (c) Streamwise evolution of individual normalized
contributions with β2 = 0.72, β4 = 1.44 and β6 = 2.16.

streaky pattern of the disturbance triggered by the steady axial free-stream vortices.
These structures resemble the Klebanoff modes seen in many wind-tunnel experiments
with free-stream turbulence due to upwelling and downwelling of fluid by weak vertical
perturbation velocity (lift-up mechanism). This vertical motion originates from the
steady free-stream vortices, capable of penetrating to some extent into the shear layer.
The efficiency of steady axial vortices in generating boundary-layer streaks has also
been reported (e.g. in Bertolotti 1997 and Bertolotti & Kendall 1997).

The results from figure 10 are quantified in figure 11. Both leading edges, AR =6
and 20, are considered now. Figure 11(a) shows the wall-normal maximum of urms ,
normalized by the amplitude εle of the free-stream disturbance. Compared with
figure 8(b) for F = 16 and 96 the steady free-stream vortices excite a boundary-layer
disturbance with significantly higher downstream amplitude (more than 50 times the
forcing amplitude), amplifying throughout the domain. There is little difference in
urms when the AR =6 leading edge is replaced by AR = 20. Hence, in the presence of
axial free-stream vorticity, the growth of steady streaks is hardly affected by leading-
edge bluntness. This behaviour has in fact been predicted by Wundrow & Goldstein
(2001) through asymptotic analysis. The spectrum of spanwise wavenumbers of the
downstream boundary-layer perturbation, indicating the dominant spanwise length
scales, is plotted in figure 11(b). To quantify the receptivity of the individual spanwise
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|ûj|

ε̂j

Figure 12. Streamwise evolution of two individual normalized modes β2 = 0.72 (black) and
β4 = 1.44 (grey) in comparison with PSE results from Bertolotti (1997, figure 6): β = 0.09
(black circles; β2 in our scaling); β = 0.18 (grey squares; β4 here).

waves, the spectrum is normalized by the spectral amplitude ε̂j of the corresponding
scales in the free-stream. The picture is similar for both leading edges, with the
amplitude peak found at β3 = 1.08. The contributions with values of β > β3 are slightly
more enhanced on the leading edge with AR = 6. The streamwise amplification of three
individual normalized disturbance components is shown in figure 11(c). Figure 11(c)
also illustrates that the dominant spanwise length scale successively increases in the
downstream direction with the boundary-layer thickness: near the leading edge, the
shortest wave (β6 = 2.16) dominates; at the outlet, the longest wave (β2 = 0.72) grows
the fastest. Leading-edge bluntness effects – in general small – are most pronounced
for modes with short spanwise wavelength.

In figure 12 the modal evolution for β2 = 0.72 and β4 = 1.44 from figure 11(c) is
compared with PSE results for Blasius flow reported in Bertolotti (1997, figure 6). The
PSE data have been matched with the present curves to give good agreement for the
β2-streak in the downstream region, where the leading-edge flow has relaxed towards
the Blasius solution. The evolution of this scale has been validated in Bertolotti
(1997) with experimental results and is therefore considered particularly reliable.
Indeed, good agreement is found for x � 150 (Rex � 3.6 × 105). Bertolotti (1997)
also reports the evolution of the β4-mode, forced in the PSE analysis with the same
initial amplitude as the β2-mode. The downstream growth rate of the β4-streak is in
reasonable agreement with our Direct Numerical Simulation (DNS) data whereas the
amplitude level is considerably higher in our study, which we attribute to additional
receptivity downstream of the leading edge and upstream of the region captured by
the model in Bertolotti (1997). This suggests that leading-edge bluntness enhances
receptivity to disturbances of shorter spanwise scale.

3.2.2. η-modes

The oncoming vortical disturbance now consists of seven low-amplitude η-modes
with the same wavenumbers and frequencies as considered in § 3.2.1. This free-stream
perturbation, plotted in figure 5(b), is made up of vortices with strong vertical and
weak spanwise vorticity, while the axial component is negligible. The response of
the boundary layer is illustrated in figure 13(a) for the leading edge with AR =6,
showing a streaky pattern of non-modal instability. However, the streak amplitudes
seen in figure 13(b) are considerably lower than those in the presence of ξ -modes.
Again, the low-frequency streaks attain larger r.m.s. amplitudes than those with
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Figure 13. Boundary-layer response to η-modes with frequencies F = 16 and F = 96.
Free-stream disturbance consisting of seven modes with (γ, β)0 = (0.1344, 0); (γ, β)j =

(0.12, 0.36)j , j = 1 . . . 6; amplitude εin = 10−5. Leading edge with AR = 6. (a) x–y plane of
normalized streamwise disturbance (maximum value in y and z). Wall-normal coordinate
stretched; lines mark δ99. (b) Normalized spanwise r.m.s. of u. (c) Spanwise wavenumber
spectrum at the location marked in (b) by the symbol.

high frequency. Figure 13(c) shows that the streaks with smallest spanwise length
scale attain the largest amplitude for both values of F before the boundary-layer
perturbation eventually decays on all scales.

Vertical free-stream vorticity

A special subset of η-modes, characterized by the absence of the axial and spanwise
vorticity component, is obtained when setting the wall-normal wavenumber γ of
all modes to zero. These modes, denoted by ηy-modes here, are used to establish
the receptivity of the boundary layer to vertical free-stream vorticity, considering
now both leading edges (AR =6 and 20). The spanwise wavenumbers are βj = 0.36j

(j = 1 . . . 6), as before. The results in § 3.2.1 suggest a particularly strong flow response
for free-stream fluctuations with zero frequency; in that case a vortical free-stream
disturbance with only η and u �= 0 is obtained. The flow response to this kind
of forcing is illustrated in figure 14. The boundary layer develops steady streaks
with zero streamwise wavenumber, which are qualitatively similar to the response to
axial free-stream vorticity (ξx-modes) shown in figure 10; the disturbance amplitudes
remain, however, smaller. It is concluded that the layer is also receptive to vertical
free-stream vorticity with F = 0.

The details of the receptivity mechanism are illustrated in figure 15, displaying
a spanwise extract of the disturbance field in the leading-edge region (AR =6). We
show, as an example, the contribution with wavenumber (γ, β) = (0, 1.8) in this figure;
the results for other wavenumbers and for the total disturbance are qualitatively the
same. The free-stream perturbation upstream of the leading edge is manifested in
an oscillating u-component while w is nearly zero and v = 0 per construction. When
the ηy-mode impinges on the leading edge, however, a strong spanwise disturbance is
produced (plane I in the figure). This is confirmed in figure 16(a) for the total free-
stream disturbance, where the plot at the top shows in terms of spanwise r.m.s.-values
that w is generated at the expense of u. This ‘cross-flow’ has been predicted in
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Figure 14. Boundary-layer response to free-stream ηy-modes (vertical vorticity) with (γ, β)j =

(0, 0.36)j , j = 1 . . . 6; F = 0 and εin = 10−5. AR = 6 leading edge. (a) x–y plane showing
the instantaneous disturbances u, v and w where u is maximum. The thin lines mark δ99.
(b) Spanwise plane of u along the wall-normal maximum of urms .

Goldstein et al. (1992) and Goldstein & Wundrow (1998) through asymptotic analysis
for the same type of upstream disturbance. Plane II in figure 15 illustrates that there
is also a weak vertical motion in the boundary layer. v together with w establishes
an axially oriented, counter-rotating vortical motion (see plane III of figure 15),
producing the u-disturbance (streaks) in figure 14(b) through the lift-up mechanism.
The axial vortices are active throughout the boundary layer (figure 16b) such that
the downstream amplitude of the streaks becomes large. Figure 16 also illustrates
that down-/up-washing of fluid by the vortices produces a high-/low-speed streak.
The conversion of upstream vertical vorticity into downstream axial vorticity by the
leading edge is limited to the region near the boundary layer. This is seen in the
lower plot of figure 16(a): the vertical vorticity far above the plate (y = 15b) is nearly
unaffected; v and w essentially remain zero, while u decays slowly. The vortex lines
thus change orientation from the boundary layer (axial) to the free-stream (vertical),
with vortex stretching and tilting being the underlying mechanisms. Goldstein et al.
(1992) and Goldstein & Wundrow (1998) have predicted this behaviour in their
asymptotic analysis.

The physical mechanism described above relies on the leading edge; bluntness effects
are therefore expected to be relevant. This is highlighted in figure 17. According to
figure 17(a) bluntness clearly enhances the disturbance magnitude, with the r.m.s.
amplitude observed downstream of the AR =6 leading edge being nearly three times
that in the case of AR = 20. This is in contrast to the response to axial free-stream
vortices, for which the dependence on nose bluntness is marginal. The explanation for
this behaviour is illustrative in the light of figure 15: the blunt leading edge causes
a stronger deformation of the oncoming ηy-modes, enhancing vortex stretching and
tilting in the downstream direction. Figure 17(a) also indicates that the shear-layer
disturbance for F = 0 becomes about twice as strong as that due to vertical-vorticity
modes with F = 16 (cf. figure 13b); moreover growth of streaks is observed throughout
the domain. This accentuates again the relevance of the steady part of vortical
free-stream fluctuations. Figure 17(b) shows the normalized spanwise-wavenumber
spectrum at Rex =5 × 105. The Fourier spectrum forced by axial free-stream vorticity



Receptivity of flow past a leading edge 263

3

2

1y

x

z

0

2 1 0 –1 –2

–4

0

Plane I

Plane II

Plane III

4

1.0

0.5

0

–0.5

–1.0
8

(× 10–5)
δ99

Figure 15. Instantaneous boundary-layer response to a single ηy-mode (vertical vorticity)

with (γ, β) = (0, 1.8), F = 0 and εin = 10−5. Leading-edge with AR = 6; ∼1/4 of the spanwise
domain width is shown. Plane I: w (colours), u and w (vectors); plane II: 5 · v; plane III: u
(colours), v and w (vectors).

0
–3–4 –2 –1 0

3

2

1
–2 –1 0 1 2

–5

0

5

500 100 150 200

0.5
1.0
1.5

0

0.5
1.0
1.5

(a) (b)

x z

max yy u2
i

εin

u
(× 10–5)
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the boundary layer at x = 175b (Rex = 4.2 × 105) for forcing with the ηy-mode from figure 15.

(ξx-modes) is shown as well for comparison (scaled by 1/5), indicating that the
preferred spanwise scales due to ηy-modes are found at higher values of β than in
the presence of ξx-modes. This suggests that the conversion of vertical into axial
vorticity is more efficient for larger spanwise wavenumbers, that is, smaller vortical
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structures are more easily stretched and tilted at the leading edge than larger ones.
Figure 17(c) depicts the evolution of the streaks with wavenumber β2 = 0.72, β4 = 1.44
and β6 = 2.16. The strongest downstream amplification rate is no longer seen for β2,
in contrast to the case of ξx-modes, but for β4. The β6-streaks attain the largest
downstream amplitude.

To summarize, (i) there is no ‘direct’ receptivity to vertical free-stream vortices; the
vertical vorticity component has first to be converted into streamwise vorticity. This
conversion is most efficient at a blunt leading edge. (ii) Though the streak amplitude
due to vertical-vorticity modes is lower than that caused by axial vortices (ratio ≈ 1/5
for the AR = 6 leading edge), it is significant for sufficient leading-edge bluntness.
We thus expect that the vertical vorticity component of natural three-dimensional
turbulence will significantly contribute to the total boundary-layer response.

3.2.3. ζ -modes

The ζ -modes illustrated in figure 5(c) are now used to perturb the inflow. These
modes have a similar vorticity distribution as the η-modes used in § 3.2.2 (except
for the sign), i.e. they are also dominated by vertical vorticity. The axial vorticity
component of the modes j > 0 is, however, somewhat stronger than that of the
η-modes, and mode j =0 carries spanwise vorticity instead of axial vorticity. The
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flow response, shown in figure 18, is indeed similar to that triggered by the η-modes.
The r.m.s. amplitude of the streaks is, though, larger, which is attributed to the stronger
axial vorticity component of the ζ -modes. Figure 18(c) shows that the component
β = 0 is also present in the excited shear-layer disturbance. This component has not
been seen before when ξ - and η-modes interact with the boundary layer. The role of
the β = 0-contribution is addressed below.

Spanwise free-stream vorticity

Free-stream fluctuations with pure spanwise vorticity are obtained from ζ -modes
with β = 0 (labelled ζz-modes here). In this case, the vortical disturbance no longer
depends on the spanwise coordinate, i.e. two-dimensional simulations similar to those
in Buter & Reed (1994) can be performed. The two-dimensional grids in table 1
(medium and long) have been used (outflow Reynolds numbers 106 and 1.5 × 106,
respectively). The amplitude of the free-stream disturbance is set to εin =2×10−3. The
effect of frequency F and vertical wavenumber γ is investigated for both leading edges,
AR = 6 and 20. Figure 19 shows planes of streamwise and vertical disturbance velocity
due to a ζz-mode with vertical wavenumber γ =0.1344 for (a) F =96 and (b) F =56
(leading edge AR = 6). Stability theory for Blasius flow reveals that T-S instability
can exist at these frequencies (see also Wanderley & Corke 2001). Indeed, T-S waves
are identified in the boundary layer; they are, however, much weaker than the streaky
disturbances excited through axial and vertical free-stream vorticity. As predicted by
classic theory the unstable region is shifted downstream when the frequency is lowered
from F = 96 to 56, the T-S wave becomes longer and its amplitude smaller. Figure 19
also illustrates the difference in wavelength between the free-stream modes and the T-S
waves, associated with their different propagation speed. In fact, ‘wavelength reduc-
tion’ is an integral part of receptivity to external disturbances, coupling the free-stream
waves with the shear-layer modes (Goldstein 1983). This process takes place in the
rapidly diverging part of the boundary layer near the leading edge and establishes
wavenumber coupling between the vortical free-stream mode and the T-S wave.



266 L.-U. Schrader, L. Brandt, C. Mavriplis and D. S. Henningson

(a) (b)
4

2

0

4

2

0–0.5

0

0.5

–0.5

0

0.5

0 200
x

y

400 0 200
x

400 600
–0.1

0

0.1

–0.1

0

0.1
v/εle

u/εle u/εle

v/εle

Figure 19. Boundary-layer response to spanwise free-stream vorticity (β = 0) with γ =56 and
εin =2 × 10−3. x–y plane of u (top) and v (bottom), normalized by εle . Leading edge with
AR = 6. (a) F = 96. (b) F = 56.

150 300 450 600
0

0.1

0.2

0.3

(a) (b)

(c) (d)

150 300 450 600
0

0.04

0.08

0.12

100 200 300
0

0.1

0.2

0.3

x
100 200 300

x

0

0.04

0.08

0.12

max
y
εle

u2

max
y
εle

u2

max
y
εle

v2

max
y
εle

v2
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In figure 20 the wall-normal maximum of urms and vrms in the shear layer is plotted
versus the chordwise coordinate (temporal r.m.s.). In figures 20(a) and 20(b) the focus
is on the effect of frequency (F = 56 and 96) while the vertical wavenumber is fixed at
γ =0.1344; figures 20(c) and 20(d) illustrate the influence of γ on the T-S amplitudes,
with F kept at 96. The effect of leading-edge shape is captured in all four figures.
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The largest T-S amplitude is obtained for F =96, increasing by a factor of nearly 6
when the AR = 20 leading edge is replaced by AR = 6. Hence, leading-edge bluntness
drastically enhances receptivity to spanwise vortical modes with F =96, whereas a
change of bluntness has a less significant effect on urms and vrms (factor ≈ 4/3) when
F = 56. The leading edges are then shorter (blunter) relative to the wavelength of
the ζz-mode and the T-S wave, i.e. even the AR = 20 leading edge may be ‘blunt
enough’ at low frequency to support efficient wavelength conversion. Figure 20(b)
shows that the initial vertical disturbance v due to displacement of the vortical modes
in the leading-edge region rapidly decays before v is generated again through the T-S
mechanism. The influence of wall-normal wavenumber is shown in figures 20(c) and
20(d). Values of γ = 0.1008, 0.1344 and 0.4032 are considered. The wall-normal scale
of the ζz-modes is then 7.5, 22.5 and 30 times the 99 %-thickness at Rex = 106. The
plots reveal that receptivity to large-scale spanwise vortical modes is more efficient
than to modes with a smaller vertical scale. The highest amplitude in urms and vrms is
found for γ = 0.1344 in agreement with results by Bertolotti (1997) for Blasius flow.
Both increasing and decreasing γ leads to a reduction of the T-S amplitudes. The
relative differences in disturbance level are smaller when the leading edge is slender
(AR = 20); in particular, the T-S amplitudes observed for γ = 0.1008 and 0.1344 are
indistinguishable in the figure.

In order to quantify the efficiency of the receptivity mechanism to spanwise free-
stream vorticity, receptivity coefficients are computed, defined by

CI =
AI

εle

, (3.2)

where AI is the T-S amplitude at branch I of the instability. εle, the magnitude of
the free-stream ζz-mode, is in contrast evaluated at the nose of the plate, where the
receptivity mechanism is initiated. Therefore, CI incorporates both the receptivity in
the leading-edge region and the subsequent decay of the T-S wave upstream of the
first neutral point; CI is therefore sometimes labelled ‘effective receptivity coefficient’.
Note that, apart from the leading edge itself, the joint between the MSE leading edge
and the flat plate – though rather smooth – also contributes to the receptivity (see
e.g. Lin et al. 1992). The above definition of CI enables us to compare our values
with those reported in Wanderley & Corke (2001) for receptivity to free-stream sound
at F = 96. AI is obtained by matching a PSE solution for the development of the
pure T-S wave to the amplitude of the boundary-layer disturbance from the present
DNS (cf. figure 6b). The matched PSE data are used to trace the contribution of
the T-S wave to the total disturbance back to branch I of the T-S mode. The values
of CI for the present vortical ζz-modes (spanwise free-stream vorticity) are compiled
in table 2, where the coefficients for acoustic receptivity from Wanderley & Corke
(2001) are also given. In Wanderley & Corke (2001), a leading edge with AR =20
has been considered while there are no data for AR =6. The receptivity coefficients
found are lower by one order of magnitude than those reported in Wanderley &
Corke (2001). In particular, the largest coefficient for vorticity is about 15 % of that
for sound waves for both F = 96 and 56. Buter & Reed (1994) have observed as well
that vortical receptivity is lower than that to acoustic waves. For a significantly higher
frequency (F = 230) they have found that coefficients for receptivity to vortical modes
are about 1/3 those for acoustic disturbances. The values in table 2 also indicate that
receptivity to vortical modes with frequency F = 96 becomes about six times more
efficient at the blunt leading edge than at the slender one, which holds for all three
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AR 6 20

F 56 96 56 96

γ 0.1344 0.1008 0.1344 0.4032 0.1344 0.1008 0.1344 0.4032
Cvo

I × 103 2.8 38.1 40.3 23.7 2.1 6.4 6.3 4.1

F 56 96
Cac

I × 103 13.0 47.0

Table 2. Receptivity to free-stream disturbances in terms of branch-I receptivity coefficients
for T-S instability. Receptivity to spanwise vortical free-stream modes (Cvo

I ) with different
frequencies and vertical wavenumbers and to free-stream sound (Cac

I , cf. Wanderley & Corke
2001).

values of γ considered. For F = 56, the receptivity is only 30 % larger in the case of
the blunt leading edge.

4. Discussion and conclusions
Results from DNS of the receptivity and response of leading-edge flow to vortical

free-stream disturbances are presented. The configuration considered incorporates
aspects of flow around wings and blades, for instance the upstream stagnation point,
the boundary-layer curvature and the streamwise pressure variations. Receptivity
mechanisms, responsible for the transfer of energy from ambient perturbations to
the boundary-layer instabilities, are a prerequisite of transition to turbulence. This
highlights the relevance of receptivity studies, aiming to identify instabilities and
their initial amplitudes, for a correct prediction of the transition location. DNS
based on spectral methods has so far been successful in predicting receptivity of
flow for relatively simple configurations such as flat plates (e.g. Schrader, Brandt &
Henningson 2009), while more complex flows have been beyond the scope of these
methods. With the introduction of the Spectral Element Method and the development
of efficient algorithms, though, it is possible to carry out studies with spectral accuracy
of receptivity to vortical modes for leading-edge flow. Previous investigations have
shown that perturbation approaches for theoretical non-parallel receptivity prediction
may prove inadequate (e.g. Collis & Lele 1999), and accurate simulations of the full
geometry are therefore necessary.

The effect of leading-edge geometry is included in the present investigation
by considering blunt and sharp elliptic noses with aspect ratios AR =6 and 20,
respectively. Simplified models for the vortical free-stream fluctuations are applied,
which allow for setting two of the three vorticity components to zero. This enables
us to single out the receptivity of the boundary layer to axial, vertical and spanwise
free-stream vortices. A divergence-free inflow perturbation is obtained by putting the
disturbance velocity parallel to the free-stream vorticity to zero. On approaching and
passing the obstacle the disturbance field is distorted and displaced. This results in
the forcing of velocity and vorticity in the components initially being zero.

Results can be summarized as follows. The boundary layer is most receptive to
axial free-stream vortices with low and in particular with zero frequency, developing
non-modal instability in the form of long streaks with strong streamwise disturbance
velocity. It has been found here that the effect of leading-edge bluntness is insignificant
in the presence of axial vortices – in line with asymptotic results by Goldstein & Leib
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(1993) and Wundrow & Goldstein (2001). This is in contrast to the boundary-layer
response to vertical free-stream vorticity. This type of perturbation is also able to
excite non-modal instability, with amplitudes clearly exceeding that of the forcing.
The key of the underlying receptivity mechanism is the conversion of wall-normal
into streamwise vorticity through stretching and tilting of vertical vorticity at the
leading edge, proposed before by Goldstein et al. (1992) and Goldstein & Wundrow
(1998). This process is clearly stronger on the plate with blunt leading edge and
for zero- and low-frequency vertical vorticities, as also predicted by Goldstein &
Wundrow (1998). It is also found that leading-edge effects enhance receptivity to
smaller spanwise scales. Free-stream modes with high frequency penetrate at the
leading edge into the boundary layer to form non-modal disturbances with short
streamwise scale. These disturbances suffer from rapid downstream decay in the
shear region and do not attain amplitudes comparable to those of the low-frequency
streaks.

The present findings on receptivity to streamwise and vertical free-stream vorticity
are relevant to bypass transition due to free-stream turbulence. In flat-plate
wind-tunnel experiments (e.g. Kendall 1985, 1998; Matsubara & Alfredsson 2001)
streamwise elongated structures (Klebanoff modes) similar to the streaks found
here have been identified as the prevalent feature of this transition scenario. Bypass
transition has also been analysed numerically in Blasius flow (e.g. Brandt, Schlatter &
Henningson 2004) and in flow around leading edges (Nagarajan, Lele & Ferziger
2007; Xiong & Lele 2007). The streaky structures observed in the experiments
could be reproduced in these simulations; it was further shown that an increase
of the integral turbulent length scale results in an upstream shift of the transition
location. Indeed, the boundary layer is shown here to be most receptive to zero- and
low-frequency vortical disturbances, a model for the long-wavelength components of
natural free-stream turbulence.

T-S instability with rather low amplitudes is observed at high frequency. We have
performed two-dimensional simulations with spanwise vortices in the free stream
to compute branch-I receptivity coefficients for T-S waves. The efficiency of the
receptivity mechanism to vortical modes has been found to be about 15 % of that
to free-stream sound reported in the literature. Leading-edge bluntness significantly
enhances receptivity for T-S instability, especially at higher frequencies. The T-S waves
obtain their maximum amplitude rather far downstream and the level of disturbance
remains small. In the present cases the T-S mechanism cannot compete with the non-
modal low-frequency instability. We conclude that receptivity of leading-edge flow to
high-frequency low-amplitude vortical free-stream modes is negligible in comparison
to that to zero- or low-frequency disturbances.

It is interesting to note that bluntness effects are different when the leading-
edge shape is parabolic instead of elliptic. While rarely used in wind-tunnel testing,
parabolic cylinders have been popular in theoretical and numerical studies, as they are
a good model of the leading-edge region of a thin airfoil and amenable to a convenient
representation in parabolic coordinates. This configuration has streamline-shaped
walls and therefore a favourable pressure gradient everywhere. Asymptotic results by
Hammerton & Kerschen (1996, 1997) and numerical findings from Haddad & Corke
(1998) reveal that an increase in nose radius decreases receptivity to sound, which is
attributed to the damping effect of the increasing pressure drop on the T-S modes. The
present results and those reported in the literature indicate the opposite behaviour
for vortical and acoustic receptivities at elliptic leading edges: in this case an increase
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in nose radius (bluntness) intensifies the region of adverse pressure gradient, which
has a destabilizing influence on the evolution of T-S waves.

In summary, three mechanisms for receptivity to free-stream vorticity are relevant:
axial vortices excite non-modal boundary-layer instabilities due to the lift-up
mechanism; vertical vortices are subject to vortex stretching and tilting, creating
streamwise vorticity followed by the lift-up mechanism; spanwise vortices trigger T-S
instability through wavelength reduction of the upstream boundary-layer disturbance
due to non-parallel effects at the leading edge.
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