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We present a new Immersed Boundary Method (IBM) for the interface resolved simulation of spherical
droplet evaporation in gas flow. The method is based on the direct numerical simulation of the coupled
momentum, energy and species transport in the gas phase, while the exchange of these quantities with
the liquid phase is handled through global mass, energy and momentum balances for each droplet. This
approach, applicable in the limit of small spherical droplets, allows for accurate and efficient phase cou-
pling without direct solution of the liquid phase fields, thus saving computational cost. We provide val-
idation results, showing that all the relevant physical phenomena and their interactions are correctly
captured, both for laminar and turbulent gas flow. Test cases include fixed rate and free evaporation of
a static droplet, displacement of a droplet by Stefan flow, and evaporation of a hydrocarbon droplet in
homogeneous isotropic turbulence. The latter case is validated against experimental data, showing the
feasibility of the method towards the treatment of conditions representative of real life spray fuel
applications.

� 2019 Elsevier Ltd. All rights reserved.
1. Introduction

Evaporating sprays occur frequently in nature (e.g. falling rain,
fog, breathing in living organisms) and are a key feature of many
engineering applications, such as aerosols, wet scrubbers, water
curtains, spray dryers and most importantly combustion systems.
Regarding the latter, the evaporation dynamics of the spray dro-
plets are of crucial importance in most burner designs. For example
spray evaporation affects significantly the performance of lean pre-
vaporized premixed (LPP) burners in gas turbines, in terms of effi-
ciency and pollutant emissions [1].

The evaporation of multiple droplets is a multicomponent mul-
tiphase flow with strong interaction of mass, momentum and heat
transport. The ability to understand and accurately describe the
complex interplay of these phenomena is of prime importance.
Traditional methods for the numerical simulation of such flows
treat the spray as a collection of material points [2,3], relying on
models for the exchange of physical quantities between continu-
ous and dispersed phase. This approach is prevalent even in recent
studies [4–7], due to computational efficiency, but the models
leave out the more complex coupling of physical phenomena.
Furthermore, model parameters are known to have a significant
impact on the simulation results. Interface resolved numerical
simulations, on the other hand, are ideally able to capture all the
relevant phenomena with little to no modelling apart from basic
assumptions.

Interface resolved numerical methods for multiphase flow fall
into two main categories, depending on the treatment of the mov-
ing boundary: interface tracking methods and interface capturing
methods. In interface tracking methods, the interface is explicitly
described by the computational mesh, either in a Eulerian-
Eulerian framework by a moving mesh that conforms to the inter-
face [8,9], or in a Eulerian-Lagrangian framework by a separate
lagrangian mesh that tracks the interface on top of the underlying
Eulerian mesh [10,11]. These methods provide great accuracy in
the description of the interface shape and curvature, but lack
robustness in cases of large interface deformation. In interface cap-
turing methods, the interface is represented by a scalar field which
is transported in the same way as the physical variables. Examples
are the Volume of Fluid method (VOF) [12,13] and the Level Set
method [14,15]. While the interface capturing approach allows
for treatment of phenomena where the interface undergoes severe
deformation and even topological change (e.g. phase breakup and
coalescence), details of the interface shape such as curvature need
to be artificially reconstructed, making these methods less suitable
for problems where such details are important, with possible
errors in mass conservation between the fluid phases.

The Lattice Boltzmann method (LBM) has been recently used to
simulate multiphase flows with phase change [16,17]. It employs
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Table 1
Characteristic non-dimensional parameters.

Parameter Definition Description

Re bU �bL�
m̂

Reynolds number

Pr m̂
â

Prandtl number

Sc m̂bD Schmidt number

/q q̂l

q̂
Liquid to gas density ratio

/cp ĉpl
ĉp

Liquid to gas specific heat ratio

/a âl

â
Liquid to gas heat diffusivity ratio

/cp;vap ĉp;vapour
ĉp

Vapour to gas specific heat ratio

/Dcp ĉp;vapour � ĉp;inert
ĉp

Differential heat capacity in the gas mixture

Ste ĉplbT �

k̂l

Stefan number

2 G. Lupo et al. / International Journal of Heat and Mass Transfer 143 (2019) 118563
mesoscopic kinetic equations for fluid pseudoparticles embedded
in a regular lattice, instead of macroscopic transport equations dis-
cretized on a computational grid. This framework is particularly
convenient for the description of the phase boundary as a diffuse
interface [18,19].

All methods discussed above describe the flow fields in all fluid
phases, as well as the interface deformation. For flows where the
two fluid phases can be characterized as a continuous phase and
a dispersed phase, the latter consisting of a large number of indi-
vidual droplets (i.e. evaporating sprays), the computational cost
of the methods described above soon becomes unaffordable, as
the interfacial area approximately grows with the cubic root of
the droplet number. On the other hand, in many instances the
details of the interface deformation and flow inside the dispersed
phase are not relevant (e.g. spray droplets with small Weber num-
ber). Taking advantage of this, we propose an efficient Immersed
Boundary Method (IBM) tailored for the simulation of spherical
droplet evaporation, which can be extended to tackle other multi-
phase flows with phase change. IBMs are a class of Eulerian-
Lagrangian interface tracking methods [20,21], whose most attrac-
tive feature is the use of a simple Cartesian mesh for the flow dis-
cretization. This allows to handle complicated boundary
geometries in an efficient and straightforward way, and lends itself
naturally to continuous-dispersed multiphase flows. In this field,
the method originally proposed by Uhlmann [22] and improved
by Breugem [23] has been particularly successful in direct numer-
ical simulation of particle laden flows [24–26], and has been
extended by Ardekani et al. [27] to treat heat transfer. In this paper
we develop it further to include species mass transfer together
with phase change. The focus is on capturing the relevant features
of multiphase flows with phase change at an interface resolved
level, without direct solution of the fields inside the dispersed
phase, and eschewing the description of the interface deformation
by a priori assumption of the interface shape. The benefits of this
approach are robustness and low computational cost, without loss
of accuracy in the description of the phase change dynamics.

After laying out the mathematical formulation of the problem
and discussing its assumptions in Section 2, we present the numer-
ical method in Section 3. Section 4 is dedicated to the results of
four test cases that provide the verification and validation for the
method.
1 The Rayleigh number is defined as Ra ¼ Dql gr̂
3
s0

alll
.

2 The Weber number is defined as We ¼ 2ql jbUl�bUg jr̂s0
rl

.

2. Mathematical formulation

We focus on the vaporization of small liquid droplets in a gas
flow. The nondimensional parameters that characterize the system
are summarized in Table 1. In addition to these, one or more
dimensional parameters are introduced by the vapour-liquid equi-
librium relation, which also requires the molecular weights of the
vapour and inert gas components (Mw;vapour and Mw;inert) and the

prescription of the total thermodynamic pressure bPtot .

2.1. Assumptions

We first clarify the method assumptions, and discuss their
validity and range of applicability.

(A1) All physical and transport properties are constant.
(A2) The flow is incompressible.
(A3) Gravity is neglected.
(A4) Droplets remain spherical.
(A5) The fluid motion inside the droplets is neglected.
(A6) Temperature is uniform on the droplet surface.
(A7) The gas phase is ideal.
(A8) The inert gas is insoluble in the liquid phase.
(A9) Thermodynamic equilibrium prevails at the droplet surface.

(A10) The surface tension effect on vapour pressure (Kelvin effect)
is neglected.

(A11) The viscous dissipation term is neglected.

(A12) Soret and Dufour effects are neglected.

The Assumption A1 of constant properties is justified in the case
of relatively small temperature excursions, as for the validation
cases presented in the current paper. It is however easily relaxed
should the need arise. The dependence of the properties on compo-
sition should not be underestimated, especially with regard to the
liquid phase, since it becomes notably significant in multicompo-
nent evaporation, as shown in Hubbard et al. [28], Kneer et al.
[29], Lupo and Duwig [30].

The incompressibility Assumption A2 effectively decouples the
mechanical and thermodynamic pressure, leaving the latter as a
degree of freedom of the system. While compressibility effects
on the flow itself are generally negligible in the range of conditions
where most spray applications operate (i.e. low Mach number),
mass transport is driven by thermodynamic partial pressure gradi-
ents in the gas, as opposed to momentum transport which in an
incompressible framework is associated with gradients of mechan-
ical pressure. Compressibility effects on phase change are espe-
cially relevant in case of flash evaporation, which Assumption A2
thus excludes from the scope of our method.

Effects of gravity are out of the scope of the present work
(Assumption A3); for applications where they are relevant they
can be easily introduced in our current framework as a body force
acting on the dispersed phase [31], and as a buoyancy term in the
continuous phase via Boussinesq approximation. Buoyancy inside
the dispersed liquid phase is neglected. For hydrocarbon fuel spray
evaporation the Rayleigh number1 is of the order of Ra � 5� 10�2,
thus buoyancy driven internal circulation is unimportant. The effect
can be relevant in multicomponent droplet vaporization at very high
temperatures [32].

Assumption A4 relies on the fact that droplets are small enough
to resist deformation and breakup by inertia and shear. Deforma-
tion is not substantial as long as We � 1, while the critical Weber
number2 for breakup is usually reported as We ¼ 12[33]. After sec-
ondary breakup, typical Weber numbers for fuel spray combustion
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are in the range 0:1 < We < 16[34]. While seemingly wide, the
simultaneous evaporation reduces the Weber number continuously,
effectively competing with deformation and breakup. It is then
important to evaluate the respective time scales. In typical combus-
tion engine and gas turbine applications the evaporation time scale
is of the order of t̂ev � 1� 10�3 s, while the breakup time scale3 is
in the range 1� 10�4 s < t̂b < 1� 10�3 s[34]. This indicates that a
wide range of scenarios is indeed characteristic for the spray dro-
plets during evaporation and combustion. However, the evaporation
dynamics are governed by the available liquid-gas interface; hence
evaporation is not significantly altered provided that the shape
deformation does not heavily modify the specific surface area of
the droplet, as will be demonstrated in Section 4.4.

Assumptions A5 and A6 require that heat transport inside the
droplet is fast compared to the rate at which the droplet receives
heat from the surrounding gas, i.e. the Biot number4 is small. This
is estimated as 0:1 < Bi < 1:5 for fuel droplets up to 1 mm of diam-
eter, see the 1D evaporation model in Lupo and Duwig [30].

The ideal gas Assumption A7 has no bearing on the fluid
dynamics, as the flow is incompressible, but prescribes unity
fugacity coefficients in the vapour-liquid equilibrium. This is
acceptable at low gas pressures. For evaporation of droplets in a
high pressure environment the assumption might not be valid
[35], and fugacity models must be introduced in the vapour-
liquid equilibrium.

At the relatively high temperatures we consider in our study,
the solubility of nitrogen or air in water or fuel liquids is very
low, so A8 is a fair approximation.

The Kelvin effect A10 was found to be negligible for the present
study: vapour pressure is only enhanced by around 0:2% for a
ds0 ¼ 1 m fuel droplet.

Viscous heating is also insignificant in our framework (A11), as
the gas environment is already hot: the Brinkman number5 is of
order Br � 10�7.

Lastly, neglecting thermophoresis (A12) is acceptable as the
Soret coefficient is of the order ST ¼ DSoret

D � 10�5 � 10�3K�1[36],
and the highest temperature differences we consider are of the
order DT � 102 K. The reciprocal phenomenon, that is heat flux
due to a composition gradient (Dufour effect), is expected to be
comparable, considering that DDufour ¼ DSoret by Onsager reciprocal
relations [36], and that Le � 1 in most applications.

2.2. Gas phase

The equations describing the gas phase (momentum, heat and
species transport), in their nondimensional form, read:

r � u ¼ 0;ð1aÞ
@u
@t

¼ �u � ru�rpþ 1
Re

r2u:ð1bÞ

@T
@t

¼ �u � rT þ 1
RePr

r2T þ /Dcp

ReSc
rT � rY: ð2Þ

@Y
@t

¼ �u � rY þ 1
ReSc

r2Y : ð3Þ
3 The breakup time scale in absence of viscous damping is approximately

t̂b � 10 r̂s0

jbUl�bUg j

ffiffiffiffiffiffi
/q

p
. Viscous effects dominate when the Ohnesorge number

Oh ¼ llffiffiffiffiffiffiffiffiffiffiffiffiffi
2qlrl r̂s0

p is large, but in fuel spray applications typically Oh < 0:1.

4 The Biot number is defined as Bi ¼ _̂q

2pr̂s0kl bT1�bT s

� �.
5 The Brinkman number is defined as Br ¼ ljbUl�bUg j2

k bT1�bT s

� �.
The Assumption A4 of droplet sphericity means that no surface
tension term is added to the RHS of Eq. (1) directly. Instead, the
IBM force field, active in the vicinity of the interface, accounts indi-
rectly for the surface tension force that preserves the spherical
shape. Numerically, this is advantageous as large surface tension
forces, arising in droplets with low capillary numbers, introduce
an additional stability constraint to the time integration scheme.

The last term on the RHS of Eq. (2) is the net enthalpy flux
resulting from the different heat capacities that the vapour and
inert gas carry as they diffuse into each other (see Appendix A
for a derivation). It has be shown to be of importance in the predic-
tion of evaporation rates of spherical droplets in a stagnant gas
environment [30].

2.3. Liquid phase

In our framework we are not interested in solving the flow
inside the dispersed phase, but only consider the global mass,
momentum and energy exchange between the dispersed and con-
tinuous phase. In the limit of small Biot numbers, an infinite con-
ductivity assumption in the liquid phase is justified, so that at

each instant a droplet has uniform temperature (bT l ¼ bT s). The heat
balance for the droplet is then:

qlcpl
dbT s

dt̂
¼ �

3 _̂qþ _̂mK
� �
4pr̂3s

; ð4Þ

where _̂qþ _̂mK
� �

is the sensible heat entering the droplet (i.e. total

minus latent). The simplification may be not valid when the Biot
number is of order unity or larger. However, this is usually the case
for big droplets, for which the evaporation time scale is slow and
the heat conduction in the liquid can be solved analytically (Eq.
(B.9) in Appendix B). The liquid temperature profile can then be
averaged to give:

T̂ l t̂
� � ¼ bT s t̂

� �þX1
n¼1

6

npð Þ2
bT 0 � bT s t̂

� �� �
e�ak

2
n t̂ð Þt̂ : ð5Þ

Substitution into Eq. (4) gives a new equation for the evolution
of the surface temperature, which is used to predict more accu-
rately the thermodynamic equilibrium at the surface when the Biot
number is of order unity, preserving computational efficiency.

In their nondimensional form, the global balances for each dro-
plet are therefore the mass balance (droplet radius equation):

drs
dt

¼ � _m
4pr2s/q

; ð6Þ

and the energy balance (droplet temperature equation) rewritten
as:

dTs

dt
¼

6
RePr/a T0 � Tsð Þ 1

r2s
� 2

r3s

drs
dt t

� �X1
n¼1

e�
1

RePr
np
rsð Þ2/at �

3 _q
/cp

þ _m
Ste

� �
4pr3s /q

1�
X1
n¼1

6
npð Þ2 e

� 1
RePr

np
rsð Þ2/at

: ð7Þ

In the presence of strong convective currents, the liquid circula-
tion can significantly enhance the heat transfer in the liquid [37].
This effect can be taken into account by increasing the effective liq-
uid heat diffusivity, multiplying the parameter /a by a factor v, as
defined in Eq. (39) of [2].

2.4. Phase coupling, boundary conditions and vapour-liquid
equilibrium

The coupling between the liquid and gas phase is realized
through the boundary conditions on the droplet surface on the
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gas side and the prescription of the nondimensional heat and mass
transfer rates _q and _m.

The gas-liquid interface of an evaporating droplet is a disconti-
nuity across which mass, momentum and energy are conserved.
The quantities on the two sides of the interface are related by
the Rankine-Hugoniot conditions [38]. Mass conservation gives:

u ¼ uc � /q � 1
� �drs

dt
n; for jx� xpj ¼ rs: ð8Þ

This is the boundary condition on velocity on the gas side,
where xp is the interface position, and n is the outward pointing
unit vector normal to the droplet surface. Calculation of n is made
trivial by the assumption of droplet sphericity, as it’s determined
entirely by the position xc of the droplet centroid:

n ¼ xp � xc

jxp � xcj : ð9Þ

Similarly, since the droplet moves rigidly, and we are not con-
cerned with the fluid motion in the liquid, the liquid phase velocity
uc is the velocity of the droplet centroid, which is calculated by
lagrangian tracking of each droplet. The Rankine-Hugoniot condi-
tion on momentum would involve the balance between surface
tension, pressure, viscous stress and phase change momentum,
but it is made redundant by Assumption A4, as the momentum
exchange between the gas and the liquid phase is limited to the
droplet rigid motion. The same assumption, together with the
incompressibility Assumption A2, removes the need for the
Rankine-Hugoniot condition on energy, as the energy coupling of
the phases is fully determined via continuity of the temperature
and thermodynamic equilibrium.

The nondimensional heat and mass transfer rates are specified
by integrating the fluxes over the droplet surface S tð Þ:

_m ¼
Z
S

� 1
ReSc

rY þ uY
� �

� ndS: ð10Þ

_q ¼
Z
S

� 1
RePr

rT
� �

� ndS: ð11Þ

where their sign is relative to n, allowing the set of governing equa-
tions to be consistent for both evaporation and condensation.

The boundary condition for temperature is obtained by impos-
ing continuity across the liquid and gas phase:

T ¼ Ts; for jx� xpj ¼ rs: ð12Þ
The boundary condition for the vapour mass fraction comes

from the hypothesis of thermodynamic equilibrium, which relates
the gas molar composition to the liquid surface temperature:

eY s ¼
bPsat
vapour

bT s

� �
bPtot

;

Ys ¼ eY sMw;vapour

1�eY s

� �
Mw;inertþeY sMw;vapour

;

8>>><>>>: for jx� xpj ¼ rs: ð13Þ

The expression for the vapour pressure bPsat
vapour

bT� �
can be cho-

sen according to the nature of the liquid that is vaporizing.
Depending on this choice, one or more additional parameters are
introduced in the problem, hence we retain dimensional quantities
for the vapour-liquid equilibrium. The total thermodynamic pres-

sure bPtot also needs to be specified. Many evaporation models
assume that the total pressure at the droplet surface is equal to

the inert gas pressure and is constant [3]: bPtot ¼ bPinert , i.e. the evap-
oration is isobaric. However, as the droplet temperature tends to
the boiling point at the prevailing pressure, i.e.bPsat
vapour

bTs

� �
! bPinert and Ys ! 1, the evaporation rate calculated by
Eq. (10) becomes singular. This shortcoming can be circumvented
by assuming that the evaporation is isochoric, which leads tobPtot ¼ bPsat

vapour
bTs

� �
þ bPinert , and is used in the present work. However

we must remark that the isochoric assumption is in contrast with
the incompressibility assumption for the fluid flow, and therefore
is only acceptable for moderate values of the vapour pressure. In
fact, flash vaporization and boiling, which occur in very high tem-
perature environments, can be treated as isobaric by replacing Eq.
(10) with:

_m ¼ _q
Ste
/cp

: ð14Þ

This is known as kinetic vaporization regime [39], as the driving
force for the phase change is the surface temperature gradient,
rather than the vapour concentration gradient of Eq. (10) (diffu-
sional vaporization regime). Although the present work focuses on
evaporation proper (i.e. diffusional), the kinetic formulation is easily
implemented in our framework and can be used to treat flash vapor-
ization cases, or combined with the diffusional formulation for
mixed evaporation/boiling problems like the Leidenfrost effect [40].

2.5. Lagrangian droplet tracking

Each droplet moves rigidly in the continuous phase according to
the (nondimensional) Newton-Euler Lagrangian equations:

duc

dt
¼ 3

4p/qr3s

Z
S

�pIþ 1
Re

ruþruT
� �� �

� ndS ð15Þ

dxc

dt
¼ 15

8p/qr5s

Z
S

rsnð Þ � �pIþ 1
Re

ruþruT
� �� �

� ndS ð16Þ

whereuc andxc are the linear andangular velocityof thedroplet cen-
troid. The right hand sides of Eqs. (15) and (16) represent the hydro-
dynamic force and torque exerted on the droplet by the surrounding
fluid. These are fully resolved, so that hydrodynamic-mediatedmod-
ulations of momentum, heat and mass transfer in the continuous
phase are captured directly. The droplet radius rs in Eqs. (15) and
(16) is not constant as droplets change in size due to phase change.

3. Numerical method

The present Immersed Boundary Method (IBM) is based on the
one developed by Breugem [23] for solving particle laden turbulent
flows. Its key concept is to solve the continuous phase on a fixed
Cartesian staggered uniform (Dx ¼ Dy ¼ Dz) grid (Eulerian Mesh),
while a separate grid is attached to and moves with the surface
of the dispersed phase (Lagrangian Mesh) (Fig. 1a).

A flowchart of the algorithm used to advance the solution from
time step n to time step nþ 1 is shown in Figs. 2 and 3. Time inte-
gration is performed by a three-step Runge-Kutta scheme (itera-
tions denoted by the index q in Fig. 2). The Runge-Kutta
coefficients are a1 ¼ 32

60 ;b1 ¼ 0;a2 ¼ 25
60 ;b2 ¼� 17

60 ;a3 ¼ 45
60 ;b3 ¼� 25

60.
Spatial discretization on the Eulerian Mesh is performed with a
second order central differencing scheme. A pressure correction-
scheme is used to solve the Navier-Stokes equation, as shown in
Eqs. (17a) and (17r) to (17t). The term rhsu in Eq. (17a) represents
the right hand side of Eq. (1) excluding the pressure gradient. The
terms rhsT; rhsY; rhsrs ; rhsTs , rhsuc and rhsxc in Eqs. (17b), (17c),
(17w), (17d), (17x) and (17y) represent the right hand sides of
Eqs. (2), (3), (6), (7), (15) and (16) respectively.

The Eulerian Mesh does not conform to the continuous-
dispersed interface (the droplet surface), so the boundary condi-
tions on the interface cannot be imposed directly. Instead, they
are mimicked by equivalent force fields (fu; f T and f Y in Eqs.



Fig. 1. Illustration of the Eulerian and Lagrangian Mesh used to solve the continuous and dispersed phase. (a) Distribution of lagrangian grid points over the interface. (b) The
Eulerian cells belonging to the continuous phase and the dispersed phase are marked in white and blue respectively. Lagrangian help points used to compute surface
gradients are marked in red. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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(17l), (17m), (17n)) added to the right-hand side of each continu-
ous phase transport equation after discretization (this approach
is known as discrete forcing immersed boundary [21]). These
forces must be active only in the immediate vicinity of the
immersed boundary, therefore they are calculated on the points
Xl of the Lagrangian Mesh (as Fu; FT and FY in Eqs. (17i), (17j),
(17k)) and then spread to the neighbouring cells of the Eulerian
Mesh by means of the regularized Dirac delta function dd proposed
by Roma et al. [41]. The same function dd is used to interpolate the
Eulerian fields onto the lagrangian interface points. The velocity
boundary condition u Xlð Þ is evaluated from Eq. (8). The computa-
tion of the discrete forces on the boundary is performed iteratively
(Eqs. (17f)–(17q), with iterations denoted by the index s) in order
to better enforce the desired boundary condition. The number of
iterations is set to Ns ¼ 3.

We point out that the volume of the lagrangian cell DVl is not
constant, since the dispersed phase is changing size due to the
phase change. For droplet evaporation/condensation:

DVl ¼
4
3p rs þ Dx

2

� �3 � rs � Dx
2

� �3h i
Nl

; ð18Þ

where rs is the droplet radius and Nl is the number of lagrangian
points on the droplet surface.

The distinctive feature of the evaporation problem lies in the
fact that the continuous-dispersed interface acts as a velocity inlet
(see Eq. (8)), injecting mass in the continuous phase domain. In the
IBM framework the continuous-dispersed interface is an array of
points immersed in the continuous phase (Fig. 1b). Therefore the
computational domain of the continuous phase is not simply con-
nected, and the velocity inlet from the interface is implemented as
a mass source. The source is generated by a positive velocity diver-
gence sU in a suitable portion of the volume enclosed by the inter-
face, which is directly added to the right hand side of the Poisson
equation for the pressure correction ~p (Eq. (17r)). The amplitude
of the mass source must be equal to the evaporation rate (Eq.
(10)) divided by the chosen source volume. In order to obtain a
smooth velocity field across the interface, the source term is dis-
tributed inside the droplet volume as to produce a velocity diver-
gence that goes smoothly to zero for r ! rs:

sijk;U ¼
�3 drs

dt
/q
rs

1þcos p
rijk
rs

� �� �
1� 6

p2

� � ; for rijk 6 rs;

0; for rijk > rs;

8><>: ð19Þ

where rijk ¼ jxijk � Xcj.
Calculation of the terms rhsrs and rhsTs in Eqs. (17w) and (17d)

involves the evaluation of the mass and heat transfer rates _m and _q
by Eqs. (10) and (11). To this end the normal components of the
temperature and vapour mass fraction gradient at the interface
are needed. We therefore introduce an additional layer of lagran-
gian help points located on a spherical shell of radius
rs
rs0

rs þ Dxð Þ
h i

, as shown in Fig. 1b. Each help point is used together

with the corresponding lagrangian point on the interface for a first
order approximation of the normal gradient:

rT � n½ 	x¼Xl

 Th

l � Ts

Dx
: ð20Þ

rY � n½ 	x¼Xl

 Yh

l � Ys

Dx
: ð21Þ

The values of the temperature Th
l and vapour mass fraction Yh

l

on the lagrangian help point are calculated by interpolation from
the neighbouring eulerian cells using the aforementioned dd func-
tion (as is Eqs. (17g) and (17h)).

As done for mass in Eq. (19), source terms of energy and species,
originating from the vaporizing mass, are distributed inside the
droplet volume, and added to Eqs. (17b) and (17c):



Fig. 2. Flowchart of the numerical scheme for advancing the flow solution from step n to step nþ 1.
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sT ¼ sU 1� /cp;vap

� �
T; ð22Þ
sY ¼ sU : ð23Þ
Calculation of rhsuc and rhsxc in Eqs. (17x) and (17y) involves

the evaluation of the hydrodynamic force and torque exerted by
the continuous fluid on the dispersed phase, as explained in detail
by Breugem [23].
4. Verification and validation

Four test cases were chosen in order to verify and validate the
method in a progressive fashion, by successively increasing the
physical complexity. In the first case we prescribe the evaporation
rate of a static droplet, calculating the Stefan flow around it in
order to verify the correct coupling between phase change and
gas momentum transport. The evaporation rate is freely driven



Fig. 3. Detailed flowchart of the immersed boundary scheme of Fig. 2.

Fig. 4. Non dimensional velocity profiles generated by a droplet evaporating at
constant radius regression speed. Profiles along the principal axes of the Cartesian
mesh and along the cube diagonal of the computational box are shown.
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by temperature and composition gradients in the second case, thus
verifying the correct coupling between thermodynamics, phase
change, and gas heat, species and momentum transport. In the
third case, we allow the droplet to be displaced by the Stefan veloc-
ity, in order to verify the correct momentum exchange between the
two phases. Finally, the fourth case reproduces the evaporation of a
hydrocarbon droplet in homogeneous isotropic turbulence, verify-
ing the method under turbulent flow conditions. Comparison with
experimental data provides validation for conditions that are rep-
resentative of real life spray fuel applications. The parameters used
are summarized in Table 2. In the first three cases the computa-
tional domain is a cube with Lx ¼ Ly ¼ Lz ¼ 8 rs0, discretized with
Table 2
Parameters for test cases 1, 2, 3 and 4.

Case Re Pr Sc /q

1 1 – – 815:6
2 1 0:7899 1:6326 692:2

3 1 0:387 0:726 10

4 (heptane) (4a) 570 0:7516 1:75 515:4
(4b) 504:6
(4c) 577:3
(4d) 579:8

4 (decane) (4a) 570 0:7248 2:6544 632:3
(4b) 504:6
(4c) 577:3
(4d) 579:8

Case bT1 K½ 	 bT l0 K½ 	
1 – –
2 741 342:85
3 1073 353
4 (heptane) 298:15 285:56
4 (decane) 298:15 297:73
and Eulerian Mesh of (128� 128� 128) cells. In the fourth case
the computational domain is a cube of size
Lx ¼ Ly ¼ Lz ¼ 21:32 rs0, and Eulerian Mesh of (384� 384� 384)
cells. The initial droplet diameter is resolved by 32 Eulerian cells
for cases 1–3, by 36 Eulerian cells for case 4.
4.1. Case 1. Evaporation of a static droplet at a fixed rate

The droplet is fixed at the centre of the domain and vaporizes at
a fixed rate, by imposing a constant radius regression speed
drs
dt ¼ �c; energy and species transport are turned off. In this case

c ¼ 10�4. The analytical velocity field in the gas phase is purely
radial and decays with the radius squared:

ur r; tð Þ ¼ �c 1� /q

� � rs tð Þ
r

� �2

: ð24Þ

This is verified in Fig. 4. The discrepancy between the profiles
calculated near the outer boundary is due to the uniform boundary
conditions on the limits of the cubic computational box, which
break the spherical symmetry. However, as the evolution of the
droplet depends on the heat and mass flux at the interface, the
exact outer boundary condition is not important as long as it does
not affect the ability to correctly predict the gradients at the
interface.
/cp /Dcp /a Ste

6 – – – –
1:758 0:98 2:82� 10�3 1:98

2 0 3:826� 10�3 1:04

2:03 0:5872 4:8� 10�3 1:8529

8 2:1214 0:566 1:9� 10�3 1:8447

Mw;inert g=mol½ 	 Mw;vapour g=mol½ 	 bPinert Pa½ 	
28 18 –
28 100 101325
28 18 101325
28 100 101325
28 142 101325



Fig. 5. Evolution of the droplet mass (left panel) and non dimensional vapour flowrate (right panel) for a droplet evaporating at constant radius regression speed.

6 The error is calculated relative to the Richardson extrapolation based on the three
finest grids.
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The analytical expressions for the vapour flowrate at the surface
and the droplet mass evolution are:

_m ¼ �4p rs0 � ctð Þ2c 1� /q

� �
: ð25Þ

M tð Þ ¼ 4
3
p/q rs0 � ctð Þ3: ð26Þ

These are compared in Fig. 5 with the droplet mass evolution
and the vapour flowrate through the surface of an arbitrary envel-
ope surrounding the droplet from the numerical simulation. The
data show that the error for the vapour flowrate and the droplet
mass is within 0.1%.

4.2. Case 2. Free evaporation of a static droplet

Using the same setup as in the previous case, we allow the
evaporation rate of the droplet to be determined by the energy
and mass transport. The parameters chosen for the problem corre-
spond to n-heptane evaporating in a nitrogen environment, hence
an extended Antoine correlation for n-heptane was used as vapour
pressure relation [42].

This problem has an asymptotic solution when the heat and
species transport in the gas reach steady state, namely:

ur r; tð Þ ¼ � ln 1þ BMð Þ
ReSc

1� /q

/q

 !
rs
r2

; ð27Þ

Y r; tð Þ ¼ 1� 1� Ysð Þg rð Þ; ð28Þ

T r; tð Þ ¼ Ts þ T1 � Tsð Þ F g rð Þð Þ
BT

; ð29Þ

BM ¼ Ys � Y1
1� Ys

; ð30Þ

BT ¼ F g 1ð Þð Þ; ð31Þ

g rð Þ ¼ 1þ BMð Þ1�rs=r; ð32Þ

F gð Þ ¼ 1
Le

Z g

1
n 1=Leð Þ�1 exp

/Dcp

Le
1� Ysð Þ n� 1ð Þ

� �
dn: ð33Þ

Fig. 6, demonstrates that the numerical method is able to cap-
ture the coupling of the three transport mechanisms and correctly
predict the asymptotic velocity, temperature and species mass
fraction fields. The mass fraction profile shows a slight deviation
from the asymptotic profile, which can be explained by the fact
that the Lewis number is around Le 
 2. This means that the spe-
cies concentration field needs approximately twice the time to
reach its asymptotic value than the temperature field.
4.3. Case 3. Migration of a near-wall droplet by vaporization

Next, we consider the case of a droplet that evaporates in an ini-
tially quiescent environment and is positioned near a wall. This
configuration is inspired by the case tested by Tanguy et al. [15],
who use a Level Set method in a 2D axisymmetric configuration
to tackle the problem. The Clausius-Clapeyron relation for water
was used as vapour-liquid equilibrium. The vapour ejected by
the droplet towards the wall originates an asymmetric pressure
gradient that has the effect of a net thrust, pushing the droplet
away from the wall (along the y direction in our case). This is illus-
trated by the snapshots of the velocity field at four subsequent
times in Fig. 7.

A grid convergence study with the global mass conservation as
the target parameter was also performed. Five Eulerian grids were
analysed: Lx ¼ 64;96;128;144;256ð ÞDx, which correspond to
16;24;32;36;64ð Þ points per initial droplet diameter. We expect
the convergence to be first order as a result of the approximation
of gradients at the surface (Eq. (21)). This is verified in Fig. 8b.
Fig. 8a shows that for a grid of moderate refinement, corresponding
to 32 points per initial droplet diameter, the error in mass is
around 3:8%6 after the droplet has lost half of its mass.

4.4. Case 4. Evaporation of a hydrocarbon droplet in homogeneous
isotropic turbulence

Turbulent transport enhances the evaporation rate by two main
mechanisms: displacing more efficiently the vapour away from the
droplet surface, and decreasing the thickness of the vapour mass
fraction boundary layer at the droplet surface, thus increasing
the evaporation driving force [2]. Birouk et al. [43] and Birouk
and Gökalp [44] carried out an extensive experimental investiga-
tion of the evaporation of hydrocarbon droplets in homogeneous
isotropic turbulence with zero mean flow. In their setup, the
desired turbulent field is obtained in a cubic chamber with eight
fans mounted on the cube corners, pointing towards the centre
of the chamber. The droplet (1.5 mm initial diameter) is suspended
at the centre of the chamber with a quartz fiber (0.2 mm in diam-
eter). Here we validate our numerical method for turbulent evap-
oration by reproducing some of the experimental results for n-
heptane and n-decane.

Birouk and Gökalp [44] report the statistics (root mean square
of the velocity fluctuation, integral, Taylor and Kolmogorov scales)
of the turbulence in the evaporation chamber, which is modulated
by varying the speed of the eight fans. In order to reproduce as
close as possible the same conditions, we employ a cubic box with
periodic boundary conditions for pressure and velocity, and force
the turbulence in Fourier space with the scheme proposed by



Fig. 6. Asymptotic profiles generated by a static n-heptane droplet evaporating in
nitrogen. Velocity magnitude (top panel), non dimensional temperature (middle
panel) and n-heptane mass fraction (bottom panel).
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Eswaran and Pope [45]. We vary the amplitude of the turbulent
forcing to match the turbulent statistics for four experimental data
sets, which correspond to fan speeds of 2700, 2270, 1800,
1450 rpm, and are referred to in the following as cases 4a, 4b, 4c
and 4d respectively. The droplet position is fixed at the centre of
the computational box. Dirichlet boundary conditions of constant
ambient temperature and zero vapour mass fraction are imposed
on the outer boundaries in order to provide a continuous source
of heat and sink of vapour. The droplet temperature is initialized
at the wet bulb temperature of the evaporating species, in equilib-
rium with ambient temperature at atmospheric pressure, assum-
ing that the surrounding gas is nitrogen. Fig. 9 illustrates the
computational configuration and a snapshot of the vapour mass
fraction and velocity fields.
The quality criteria for the numerical method are established by
the ability to reproduce accurately the experimental values for the
turbulent statistics (we choose here the turbulent kinetic energy K
and the Kolmogorov scale g) and for the droplet evaporation rate,

defined as the rate of change of the droplet square diameter
d d2sð Þ
dt .

Table 3 shows, for cases 4a, 4b, 4c and 4d, the comparison between
the turbulence statistics and the asymptotic evaporation rate from
the experiments and the simulation results, reporting the relative
error. The turbulent forcing employed is shown to adequately sim-
ulate the experimental conditions. The experimental evaporation
rate is calculated from the time variation of the equivalent droplet
diameter, which in turn is deduced from the projected surface area
of the droplet provided by the experimental image acquisition tool
[43,44]. It is evident that droplet deformation can introduce con-
siderable uncertainty in the measurement of the evaporation rate.
Birouk and Fabbro [46] show in their Fig. 6b that, for a very similar
experiment, the shape distortion caused by the interaction of the
turbulent velocity field with the droplet supporting fiber can be
significant. Despite these limitations, the discrepancy between
experiment and simulation for the evaporation rate, as reported
in Table 3, is almost always lower than 10%. This provides a solid
validation for the numerical method, and also justifies the spheric-
ity Assumption A4 even under conditions where the shape defor-
mation is not negligible, but the specific surface area does not
change much, as already stated in Section 2.1. We also note that
the error in the evaporation rate is higher for decane than for hep-
tane, due to the lower volatility of decane, which also leads to a
much longer evaporation time.

In Fig. 10 we display the evolution of the normalized droplet
surface and of the surface evaporation rate for the n-heptane and
n-decane, case 4a. We note that, for the same turbulence intensity,
the n-heptane evaporation rate fluctuation is much stronger, due
to the higher volatility of the substance.

Finally, we report in Table 4 the average Nusselt and Sherwood
numbers, calculated directly from the heat and mass transfer rates.
The values fall in the typical range encountered in spray combus-
tion applications.
5. Conclusions and outlook

We have presented an Immersed Boundary Method for incom-
pressible flows with a dispersed phase undergoing phase change.
We have shown that the method is able to capture the relevant
interplay of mass, momentum and energy transport in the contin-
uous phase and their exchange with the dispersed phase, allowing
correct predictions of the global evolution of the system. The
method is able to do so without direct solution of the fields inside
the dispersed phase, and assuming a priori the interface shape,
thus neglecting its deformation. Thanks to these features the
method is characterized by higher robustness and lower computa-
tional cost compared to other methods that rely on the full solution
of the multiphase system (e.g. Volume of Fluid, Level Set, Front
Tracking). This is particularly attractive for simulations of applica-
tions (e.g. vaporizing sprays) with a dispersed phase whose charac-
teristic size is relatively small, so that on the one hand the details
of the transport inside the dispersed phase are negligible, and on
the other hand a fully resolved calculation of the heat, mass and
momentum exchange with the continuous phase and their trans-
port therein is necessary to correctly reproduce the nonlinear phy-
sics. An example of such a case is the first direct numerical
simulation, performed by the authors, of a turbulent channel flow
with more than 14000 evaporating droplets [47], relying on the
method described in the present paper. As shown in [47], the mod-
ulation of the continuous phase turbulence by the droplets, and the
associated droplet migration, strongly affect the evaporation



Fig. 7. Velocity fields in the XY plane (at Z ¼ 0:5Lz) at four subsequent times. For clarity velocity vectors are not in scale.

Fig. 8. Grid convergence study. (a) Mass conservation error over time for various grid resolutions, as a function of the percentage reduction of droplet mass. The blue and
black dashed lines represent 25% and 50% mass reduction respectively. (b) Order of accuracy for two points in time corresponding to 25% and 50% decrease in droplet mass.
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dynamics. As Lagrangian Particle Tracking with modelling of the
hydrodynamic forces and phase change related to the dispersed
phase is currently the state of art for the numerical simulation of
spray evaporation, we believe that the present DNS/IBM method
is able to provide relevant physical insight with the aim of improv-
ing existing LPT models. Future development of the present
method will focus on the treatment of multispecies phase change
and complex thermodynamics (non-ideal liquid and gas mixtures).
At the same time, there is still considerable room for improvement
in developing suitable IBM strategies for cases such as very large
liquid-gas density ratios, flows at very high Reynolds number,
and extremely fast phase change rates, all instances where the
quality of the solution is known to deteriorate.
Improvement of the parallel efficiency is also an open challenge
for multiphase IBM solvers [48]. The coupled Lagrangian-Eulerian
description of the fluid-fluid interface involves the crossing of mul-
tiple subdomains by the moving lagrangian grid. This complicates
considerably the communication between tasks, in the presence of
phase change that is handled via global phase mass and energy bal-
ances, like in our method. Therefore more work is desirable
towards better parallel efficiency.
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Fig. 9. Evaporation of a droplet in homogeneous isotropic turbulence, case 4. The contour of vapour mass fraction equal to 0.2 is shown around the evaporating droplet.
Velocity vectors of the turbulent flow field are shown on a plane. The eight fans are shown as a reference to the experimental setup of Birouk et al. [43] and Birouk and Gökalp
[44], but are not included in the numerical model.

Table 3
Comparison between the present work and the experiments of Birouk et al. [43] and Birouk and Gökalp [44]. Values obtained in the present work are indicated in italics next to
the experimental values, and the relative error is indicated in parentheses.

Case 4a 4b 4c 4d

K [m2/s2] 1.45 1.50 (+3.5%) 0.85 0.79 (�6.7%) 0.58 0.59 (+1.7%) 0.36 0.37 (+2.3%)
g [mm] 0.08 0.076 (�5%) 0.10 0.096 (�4%) 0.11 0.108 (�1.8%) 0.13 0.128 (�1.5%)
d d2sð Þ
dt heptane 10�2 mm2=s

h i 5.22 5.23 (+0.2%) 4.81 4.66 (�3.1%) 4.35 4.68 (+7.6%) 3.94 4.20 (+6.6%)

d d2sð Þ
dt decane 10�2 mm2=s

h i 0.39 0.35 (�10.3%) 0.34 0.31 (�8.8%) 0.28 0.30 (+7.1%) 0.24 0.28 (+16.7%)

Fig. 10. Evolution of the normalized droplet surface area (a) and evaporation rate (b). Experimental data from [43,44]. Dashed lines represent the least squares regression of
the experimental data points.

Table 4
Nusselt and Sherwood numbers for droplet evaporation in homogeneous isotropic
turbulence.

Case 4a 4b 4c 4d

Nuheptane 17:6 9:3 8:9 6:5
Nudecane 17:4 14:8 9:6 7:1
Shheptane 20:9 15:5 10:6 7:7
Shdecane 21:4 14:6 10:5 7:5
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Appendix A. Derivation of the energy transport equation for a
multicomponent fluid

The equations in the following appendices are dimensional: for
convenience of exposition we therefore remove the ‘‘^” symbol
used until now to denote dimensional quantities.

The energy equation in a multicomponent incompressible sys-
tem, neglecting viscous heating, is (see Bird et al. [49]):

q
Dh
Dt

¼ �r � q; ðA:1Þ
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where D
Dt is the material derivative, h ¼ H

M is the enthalpy per unit
mass of the system, q is the diffusive heat flux.

The specific enthalpy h is an intensive property and therefore
depends on the local temperature and composition of the system
(pressure dependence is ruled out by the incompressibility
assumption). Composition is uniquely determined by a set of
N � 1ð Þ independent mass fractions, where N is the number of
the system components. Thus:

q
Dh
Dt

¼ q
@h
@T

� �
Yi

DT
Dt

þ q
XN�1

j¼1

@h
@Yj

� �
T;Yi–j

DYj

Dt
: ðA:2Þ

Since H ¼ hM ¼ h
PN

j¼1Mj, the variation of the total enthalpy
with the mass of each component is:

@H
@Mk

� �
Mi–k

¼ hþ
XN�1

j¼1

@h
@Yj

� �
T;Yi–j

djk � Yj
� �

; for k– N; ðA:3aÞ

@H
@Mk

� �
Mi–k

¼ hþ
XN�1

j¼1

@h
@Yj

� �
T;Yi–j

�Yj
� �

; for k ¼ N: ðA:3bÞ

Subtracting Eq. (A.3b) from Eq. (A.3a) we get:

@h
@Yk–N

� �
T;Yi–k

¼ @H
@Mk–N

� �
Mi–k

� @H
@MN

� �
Mi–N

: ðA:4Þ

Now the partial molar enthalpy of species k is defined as
~hk ¼ @H

@nk

� �
T;ni–k

, where nk is the number of moles of k in the system.

Therefore H ¼PN
j¼1

~hjnj, and the partial mass enthalpy is:

@H
@Mk

� �
Mi–k

¼
~hk

Mw;k
: ðA:5Þ

The variation of the specific mass enthalpy with temperature is
obviously the specific mass heat capacity:

@h
@T

� �
Yi

¼ cp: ðA:6Þ

Substituting Eq. (A.5) into Eq. (A.4) and using the latter,
together with Eq. (A.6), in Eq. (A.2), gives:

q
Dh
Dt

¼ qcp
DT
Dt

þ q
XN�1

j¼1

~hj

Mw;j
�

~hN

Mw;N

 !
DYj

Dt
: ðA:7Þ

Using the transport equation for the mass fraction of k:

q
DYk

Dt
¼ �r � jk; ðA:8Þ

where jk is the diffusive flux of species k, and the fact thatPN
j¼1Yj ¼ 1 so that

PN�1
j¼1 jj ¼ �jN , Eq. (A.7) can be rewritten as:

q
Dh
Dt

¼ qcp
DT
Dt

�
XN
j¼1

~hj

Mw;j

 !
r � jj: ðA:9Þ

In the absence of Dufour effect, the diffusive heat flux is the sum
of heat conduction and enthalpy transport due to species diffusion:

q ¼ �krT þ
XN
j¼1

~hj

Mw;j

 !
jj: ðA:10Þ

Using Eqs. (A.9) and (A.10), Eq. (A.1) can be rewritten as:

qcp
DT
Dt

¼ kr2T �
XN
j¼1

r~hj

Mw;j

 !
� jj: ðA:11Þ
By the assumption of ideal gas mixture, there is no excess heat
of mixing, and the total enthalpy of the system is the sum of the
pure enthalpies of its components:

H ¼
XN
j¼1

nj
~hj ¼

XN
j¼1

Hj;pure T;nj
� � ¼XN

j¼1

nj~cp;j T � Tref

� �
: ðA:12Þ

Finally, we use Eq. (A.12) and Fick’s law for jk in Eq. (A.11), to
obtain

qcp
DT
Dt

¼ kr2T þ q
XN
j¼1

cp;jDj;mixrT � rYj; ðA:13Þ

where Dk;mix is the binary diffusivity of component k into the
mixture.

Appendix B. Heating/cooling of a sphere

Consider the heating/cooling of a sphere through the surface
boundary condition.

With the assumption of constant heat diffusivity a, the problem
is described by the spherical heat equation with initial and bound-
ary conditions:

1
a

@T
@t ¼ 1

r2
@
@r r2 @T

@r

� �
;

@T
@r

		
r¼0 ¼ 0;

T r ¼ rs; tð Þ ¼ Ts tð Þ;
T r; t ¼ 0ð Þ ¼ T0 rð Þ:

ðB:1Þ

In order to find an analytical solution, let us assume that the
boundary condition changes slowly, so that we can define
h r; tð Þ ¼ T tð Þ � Ts tð Þ, and drop the unsteady term dTs

dt . The resulting
homogeneous initial value problem is:

1
a

@h
@t ¼ 1

r2
@
@r r2 @h

@r

� �
;

@h
@r

		
r¼0 ¼ 0;

h r ¼ rs; tð Þ ¼ 0;
h r; t ¼ 0ð Þ ¼ h0 rð Þ;

ðB:2Þ

which we can solve by separation of variables. The substitution
h r; tð Þ ¼ / rð Þw tð Þ gives two ODEs:

1
w
dw
dt

¼ �ak2; ðB:3Þ

1
/

1
r2

d
dr

r2
d/
dr

� �
¼ �k2: ðB:4Þ

The constant �k2
� �

is negative because the temperature must
asymptotically relax to the boundary value Ts. The solution to Eq.
(B.3) is:

w ¼ Ce�ak
2t: ðB:5Þ

Eq. (B.4) can be rewritten as:

d2

dr2
r/ð Þ þ k2 r/ð Þ ¼ 0; ðB:6Þ

which is a linear second order ODE with constant coefficients and
solution:

/ ¼ C1
sin krð Þ

r
þ C2

cos krð Þ
r

: ðB:7Þ

Since the solution must be finite at r ¼ 0;C2 ¼ 0 (the simmetry
condition at the centre d/

dr

		
r¼0 ¼ 0 is then identically satisfied).

By applying the boundary condition at the surface we find that
(remembering that k– 0):
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k ¼ kn ¼ np
rs

; for n ¼ 1;2; . . . ðB:8Þ

Therefore the general solution to Problem (B.2) is:

h r; tð Þ ¼
X1
n¼1

An

r
sin knrð Þe�ak2nt: ðB:9Þ

To find the coefficients An we apply the initial condition:

h0 rð Þ ¼
X1
n¼1

An

r
sin knrð Þ; ðB:10Þ

i.e. the initial condition is represented by a sine series whose coef-
ficients are:

An ¼ 2
rs

Z rs

0
rh0 rð Þ sin knrð Þdr: ðB:11Þ

If the initial condition is uniform h0 rð Þ ¼ h0, then:

An ¼ �2h0rs
�1ð Þn
np : ðB:12Þ
Appendix C. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at https://doi.org/10.1016/j.ijheatmasstransfer.
2019.118563.
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