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We study the modal and non-modal linear instability of inertia-dominated channel
flow of viscoelastic fluids modelled by the Oldroyd-B and FENE-P closures. The
effects of polymer viscosity and relaxation time are considered for both fluids, with
the additional parameter of the maximum possible extension for the FENE-P. We find
that the parameter explaining the effect of the polymer on the instability is the ratio
between the polymer relaxation time and the characteristic instability time scale (the
frequency of a modal wave and the time over which the disturbance grows in the
non-modal case). Destabilization of both modal and non-modal instability is observed
when the polymer relaxation time is shorter than the instability time scale, whereas
the flow is more stable in the opposite case. Analysis of the kinetic energy budget
reveals that in both regimes the production of perturbation kinetic energy due to the
work of the Reynolds stress against the mean shear is responsible for the observed
effects where polymers act to alter the correlation between the streamwise and wall-
normal velocity fluctuations. In the subcritical regime, the non-modal amplification
of streamwise elongated structures is still the most dangerous disturbance-growth
mechanism in the flow and this is slightly enhanced by the presence of polymers.
However, viscoelastic effects are found to have a stabilizing effect on the amplification
of oblique modes.
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1. Introduction
The effect of elasticity on the instability and transition of both inertialess and

inertial flows of viscoelastic fluids is not well understood. Except for the few studies
mentioned below, most of the previous stability analysis considered inertialess flow
configurations. In the inertial regime, the focus has been on the turbulent flow of a
viscoelastic solution to understand turbulent drag reduction: see the early discovery
by Toms (1949) and the review by White & Mungal (2008). Here, we focus on
inertial flows, and in particular the linear instability behaviour of polymeric inertial

† Email address for correspondence: luca@mech.kth.se
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channel flow. We investigate how the modal and non-modal amplification of initial
perturbations of different spatial scales are affected by the polymer additives.

1.1. Hydrodynamic stability of elastic-dominated inertialess flows
Over the past decades, there has been a growing interest in the study of instabilities
in viscoelastic fluids due to their significant fundamental and practical implications.
While transition in Newtonian fluids is governed by the fluid inertia, non-Newtonian
inertialess flows might experience instabilities due to the action of elasticity, so-called
elastic instabilities: see the review by Shaqfeh (1996) and the introduction in Larson
(2000). These instabilities can lead to elastic turbulence, a flow regime characterized
by broad range of spatial and temporal scales even at vanishing Re (Groisman &
Steinberg 2001). From a practical point of view, the knowledge and control of elastic
instabilities can be used to increase the efficiency of several industrial processes such
as extrusion, coating and film blowing as well as mixing in microfluidic devices
(Larson 1992).

Elastic instabilities have been observed in several configurations displaying curvature
of the flow streamlines. In curvilinear flows, the stretched polymer molecules exert
an extra pressure toward the centre of the curvature. Laminar flow becomes linearly
unstable when these extra forces overcome viscous friction (Morozov & Saarloos
2005). Larson, Shaqfeh & Muller (1990) studied the viscoelastic instability of the
Oldroyd-B inertialess Taylor–Couette flow. For high Deborah numbers (the Deborah
number is the ratio between the polymer relaxation time and the flow time scale),
the interaction between the velocity fluctuations and the first normal stress difference
results in the appearance of toroidal waves. Groisman & Steinberg (2004) conducted
an experiment on elastic-dominated flows with weakly curved streamlines, i.e. swirling
flow, Taylor–Couette flow and Dean flow. The appearance of random fluctuations was
shown to characterize the elastic turbulence. Arratia et al. (2006) documented the
viscoelastic effects on the stability of the flow in a microchannel junction. These
authors found elastic instabilities in the form of symmetry breaking and large velocity
fluctuations. The appearance of elastic turbulence is related to large elastic stresses
by Burghelea, Segre & Steinberg (2006), who considered the flow between two
disks. Interestingly, Berti et al. (2008) studied numerically the Kolmogorov flow of
Oldroyd-B fluids and observed two-dimensional elastic instabilities at low inertia and
for sufficiently high Weissenberg numbers (the Weissenberg number defined as the
product of the polymer relaxation time and the shear rate) also in a flow without
curved streamlines.

Elastic instabilities have also been studied in parallel wall-bounded shear flow:
Sureshkumar et al. (1999) investigated both the linear and nonlinear stability of
creeping viscoelastic Couette flow. The non-normal viscoelastic dynamics lead to
the transient amplification of the perturbation energy and finite amplitude instability
as observed for inertial Newtonian flows. The Poiseuille flow of upper convected
Maxwell (UCM) fluids exhibits a nonlinear instability due to the action of normal
viscoelastic stresses (see Meulenbroek et al. 2004). Employing a weakly nonlinear
analysis, these authors found the threshold amplitude of the velocity fluctuations
beyond which the instability arises. Transient growth analysis of inertialess Couette
and Poiseuille flow of viscoelastic Oldroyd-B fluids was studied by Jovanović &
Kumar (2010). The contribution of both velocity and polymer stress fluctuations,
especially the streamwise components, are responsible for the large amplification
of the energy. The wall-normal fluctuation of the polymer stress generates the
largest transient growth, and the streamwise component is the most sensitive to the
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elasticity. More recently, Jovanović & Kumar (2011) performed a stochastic analysis
of disturbances in an elastic-dominated channel flow. Employing the Oldroyd-B
constitutive model, they found a large velocity fluctuation variance also in the case
of weak inertia. The stretching of the polymer molecules results in a lift-up of the
disturbances similar to that in inertia-dominated Newtonian flows.

1.2. Hydrodynamic stability of viscoelastic-inertial flows
Although the hydrodynamics of viscoelastic fluids are strongly affected by the balance
between inertia and elastic forces in the flow, the effect of elasticity on the stability
of inertial flows has not been completely established, especially the non-modal flow
behaviour. Among early investigations, we note the work by Porteous & Denn (1972)
and Ho & Denn (1977) on the viscoelastic Poiseuille flow and by Renardy & Renardy
(1986) on Couette flow. In those studies the main focus was on the choice of the
constitutive model and modal stability to infinitesimal disturbances.

Inertial effects destabilize the purely elastic Dean and Taylor–Couette flows (Joo
& Shaqfeh 1992). The opposite behaviour is reported in the work by Sureshkumar
& Beris (1995), who show the large destabilizing effects of elasticity in Poiseuille
flow of upper convected Maxwell fluids. Blonce (1997) employed a linear analysis
to study the viscoelastic effects on the stability of Poiseuille flow of Giesekus fluids.
A destabilization is induced by the elasticity in the inertial regime, i.e. Re = O(103).
A more complete analysis of the effect of elasticity on the critical Reynolds number
of Poiseuille flow is reported by Sadanandan & Sureshkumar (2002). The viscoelastic
shear and normal stress perturbations exhibit opposite behaviours at the Reynolds-
elasticity neutral conditions. For higher Deborah numbers, the dissipative effect of the
viscoelastic shear stress becomes dominant and the critical Reynolds number increases,
as is further documented and explained in the current work by considering the budget
of the perturbation kinetic energy. The time-evolution of two-dimensional disturbances
of finite amplitude in viscoelastic Poiseuille and Couette flow is investigated by Atalik
& Keunings (2002), using a nonlinear analysis. It is shown that the elasticity induces
first destabilization and then stabilization of the periodic regime which is established
beyond the critical point. The critical Reynolds number decreases when the ratio
between the polymer viscosity and the total viscosity increases.

For the Newtonian, Couette and Poiseuille flows, it is well known that the linear
stability analysis cannot predict the transition observed in the experiments. The
non-normality of the linearized operator results in the transient amplification of
the disturbances and promotes subcritical transition (see e.g. Trefethen et al. 1993;
Schmid & Henningson 2001). Therefore, the analysis of the non-modal disturbance
amplification in the viscoelastic channel flow is important to the understanding of
the early stage of transition to turbulence and its modifications with respect to the
Newtonian case. The energy density in a channel flow of Oldroyd-B fluid was
studied by Hoda, Jovanović & Kumar (2008). It was observed that increasing the
ratio between the viscosity of the solvent and the total viscosity decreases the energy
amplification. The opposite behaviour was observed when increasing the Reynolds and
elasticity numbers. A viscoelastic channel flow may become unstable in the weakly
inertial regime due to the large amplification of elastic energy. More recently, these
authors extended their work to the frequency response analysis of Oldroyd-B channel
flow (Hoda, Jovanovic & Kumar 2009). This componentwise input–output analysis
suggests that the exchange of energy between the polymer stress component, τxy,
and the wall-normal gradient of the streamwise velocity, ∂yu, contributes most to the
energy amplification of streamwise elongated disturbances.
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In most of the stability analysis of viscoelastic flows, the upper convected Maxwell
(UCM) and the Oldroyd-B constitutive models have been employed. The choice of
the constitutive model affects the results of the stability analysis. For example the
Oldroyd-B model presents more stabilization than the UCM model in Poiseuille flow,
when the solvent viscosity is taken into account (Sureshkumar & Beris 1995). In the
present work we investigate the modal and non-modal stability of both FENE-P and
Oldroyd-B fluids in channel flow. FENE-P includes an upper bound for the extension
of polymer molecules and can more reliably represent dilute polymer solutions where
significant drag reduction in the turbulent regime is observed (De Angelis, Casciola &
Piva 2002; Dubief et al. 2004). A complete study is presented in order to illustrate
the effects of the different rheological parameters on the flow stability. The results are
verified and examined by means of an energy budget analysis. The only linear stability
analyses of the FENE-P fluids have been performed in Arora & Khomami (2005)
and very recently in Lieu, Jovanovic & Kumar (2013) on the inertialess regime of
Couette flow. The focus of the present work is on the stability analysis of the FENE-P
Poiseuille flow in the inertia-dominated regime, Re> 2000.

This paper is organized as follows. We present the problem formulation and the
governing equations in § 2. The numerical model and its validation are reported in § 3.
We show the results of modal and non-modal analysis in §§ 4 and 5 respectively, and
provide a summary of the main conclusions in § 6.

2. Problem formulation
2.1. Governing equations

In our analysis, we use the Oldroyd-B and FENE-P models for viscoelastic fluids. The
first model has been adopted by several authors for linear stability studies whereas
only the studies of Arora & Khomami (2005) and Lieu et al. (2013) are devoted
to the stability analysis of FENE-P fluids. The Oldroyd-B model does not impose
a restriction on the extensibility of the polymer molecules and allows an unphysical
infinite length. The finitely extensible nonlinear elastic (FENE) model imposes a finite
extension of the polymer, but entails a statistical closure for the restoring force,
for example the Peterlin closure (FENE-P). In these models, the polymer chain is
represented as an elastic dumbbell with the two beads at each end connected with
an entropic spring. The conformation tensor C̄∗ij = 〈R̄∗i R̄∗j 〉, where R̄ is the end-to-end
vector of each molecule, describes the dynamics of the polymers. Here, the superscript
star ∗ represents dimensional quantities and the angular brackets denote the average
over thermal noise. The conformation tensor is symmetric with six independent
components in three dimensions and its trace, tr(C̄), is a measure of the squared
polymer elongation, which is proportional to the elastic energy stored in the molecule.
The polymeric stress tensor is proportional to the deviation of the conformation tensor
from its equilibrium state; in the Oldroyd-B model (Bird et al. 1987),

τ̄ ∗p =
µpH

λkBT
(C̄∗ − C̄∗eq). (2.1)

In this definition, H is the spring constant of the elastic dumbbell, kB is the Boltzmann
constant and T is the temperature, λ is the relaxation time of the polymer molecules
and µp is the additional fluid viscosity due to the polymer. Non-dimensionalizing C̄∗

by kBT/H and τ̄ ∗p by µpUc/Lc (Uc is the flow characteristic velocity and Lc is the flow
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characteristic length), we obtain

τ̄ p = C̄ − I

W
(Oldroyd-B model). (2.2)

Similarly, for the FENE-P model we obtain

τ̄ p = f C̄ − I

W
(FENE-P model), (2.3)

where f is the Peterlin function and W is the Weissenberg number defined as the ratio
between the polymer relaxation time and the flow convective time scale:

W ≡ λUc

Lc
. (2.4)

In the FENE-P model, the maximum extensibility of the polymer is denoted by L,
and is typically much larger than the size of the polymer molecules in the coiled
non-stretched state. The Peterlin function

f ≡ 1

1− C̄kk

L2

(2.5)

confines the polymer extensibility to be less than the maximum extensibility L, and
C̄kk = C̄11 + C̄22 + C̄33 is the trace of the base-state conformation tensor. Note that the
dimensionless equilibrium state, C̄∗eq, is the coiled state corresponding to the identity
matrix.

The non-dimensional constitutive equations for the evolution of the conformation
tensor in the Oldroyd-B and FENE-P models read

∂C̄

∂t
+ ū ·∇C̄ − C̄ · (∇ū)− (∇ū)T · C̄ =−τ̄ p, (2.6)

where τ̄ p is related to the conformation tensor by (2.2) and (2.3). The left-hand
side of this evolution equation is the upper convective time derivative acting on
the conformation tensor. Therefore, (2.6) expresses the balance between the transport
and stretching of the polymer molecules by the flow ū and the relaxation with
characteristic time λ.

The polymeric stress introduced above reacts back on the flow. The continuity and
Navier–Stokes equations for an incompressible fluid read

∇ · ū= 0, (2.7)
∂ū
∂t
+ ū ·∇ū=−∇p̄+ β

Re
∇2ū+ 1− β

Re
∇ · τ̄ p. (2.8)

In the equations above we use the channel centreline velocity as the characteristic flow
speed Uc, the channel half-width as the length scale Lc, the time scale t = Lc/Uc and
the reference pressure ρU2

c . The parameter β is the viscosity ratio, defined as the ratio
between the solvent viscosity µs and the total viscosity µ = µs + µp. The Reynolds
number is defined as Re= ρUcLc/µ.

In order to perform the linear stability analysis, we decompose the flow velocities,
pressure and the components of the polymer conformation tensor and stress into base
state and infinitesimal perturbations, ū = U + u, p̄ = P + p, C̄ = C + c, τ̄ = T + τ ,
where capital letters indicate the base state and small letters denote the fluctuating
components.
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FIGURE 1. (Colour online) Base flow configuration for channel flow of the Oldroyd-B
(dashed red line) and FENE-P (solid blue line) fluids at W = 15, β = 0.5,L = 60,Re = 5000.
(a) Streamwise velocity. (b) C̄11 and (c) C̄12 components of the conformation tensor.

2.2. Base flow
We study plane channel flow where x, y, z represent the streamwise, wall-normal and
spanwise directions, and ū= (ū, v̄, w̄) are the corresponding velocity components.

For the Oldroyd-B model, the base flow velocity coincides with the Poiseuille
parabolic solution U = 1 − y2. An explicit expression can be derived for the
conformation tensor from the equations above in the case of a steady parallel base
flow U = U(y)

C =

2W2U′2 + 1 WU′ 0
WU′ 1 0

0 0 1

 , (2.9)

where U′ is the wall-normal derivative of the base flow velocity. The stress tensor is
readily obtained from (2.2).

2.2.1. Channel flow of FENE-P fluids
Unlike Oldroyd-B, the base flow velocity and the conformation tensor are both

modified in the FENE-P model (see figure 1). The polymer molecules experience a
larger stretching in the Oldroyd-B fluids than in FENE-P counterpart for the same
rheological parameters.

An analytical solution for channel flow is presented in Cruz, Pinho & Oliveira
(2005) and summarized below. For a two-dimensional flow (the subscript p in the
elastic stress tensor will be omitted in the following),

T23 = T13 = T22 = T33 = 0, (2.10)
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and

T11 = 2C12U′, T12 = 2C22U′. (2.11)

From the definition of the polymer stress, C12/C22 = WT12 and T11 = 2WT2
12. Writing

C22 in terms of T12, and combining (2.11) with the x-component of the Navier–Stokes
equations (2.8), we obtain

T3
12 +

L2

2W2

(
1+ 3

L2
+ 1− β

β

)
T12 − L2

2
dp

dx

Re

β

1
W2

y= 0. (2.12)

Once T12 (and hence T11) is evaluated, the other components of the conformation
tensor can be calculated as

Cij = (WTij + δij)

(
1− Ckk

L2

)
. (2.13)

The streamwise velocity is obtained by substituting T12 into the momentum
equation (2.8) and integrating along the y-direction,

U(y)=−Re

2β
dp

dx
(1− y2)− 1− β

β

3
8C
(F+G−|y−1 + F−G+|y−1), (2.14)

where

F+ = (Cy+
√

C2y2 + A3)
1/3
, F− = (Cy−

√
C2y2 + A3)

1/3
, (2.15)

G+ = 3Cy+
√

C2y2 + A3, G− = 3Cy−
√

C2y2 + A3, (2.16)

and

A= L2

6W2

(
3
L2
+ 1
β

)
, C = L2

4
dp

dx

Re

β

1
W2
. (2.17)

2.3. Linear stability problem

Since the flow is homogeneous in the streamwise and spanwise directions, we assume
wave-like perturbations of the form

φ(x, y, z, t)= φ̃(y, t)eiαx+iγ z. (2.18)

The symbol tilde ˜ represents the complex wall-normal shape function, α is the real-
valued streamwise wavenumber, γ is the real-valued spanwise wavenumber, and ω is
the complex circular frequency of the perturbation.

Linearization is applied both to the Navier–Stokes equations (2.8) and to the
evolution equation for the polymer conformation tensor (2.6). Using the decomposition
above, the linearized equations for the flow of an Oldroyd-B fluid is

∂u
∂t
+ U ·∇u+ u ·∇U =−∇p+ β

Re
∇2u+ 1− β

Re W
∇ · c, (2.19)

whereas adopting the FENE-P closure yields

∂u
∂t
+ U ·∇u+ u ·∇U =−∇p+ β

Re
∇2u+ 1− β

Re W
∇ · (f c + f ′C). (2.20)
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In the linearized equation, the quadratic terms are neglected and f ′ is defined by the
first term in the Taylor series of the Peterlin function, f = f (Ckk):

f ′ = ∂f

∂C11

∣∣∣∣
B

c11 + ∂f

∂C22

∣∣∣∣
B

c22 + ∂f

∂C33

∣∣∣∣
B

c33, (2.21)

where the subscript B refers to the base flow quantities. By eliminating the
pressure term from the momentum equation (2.19), we can obtain the classical
Orr–Sommerfeld (O–S) and Squire (Sq) system for the wall-normal velocity and
vorticity η ≡ ∂u/∂z − ∂w/∂x modified for polymeric Oldroyd-B fluids (and similarly
for the FENE-P model):

∂

∂t
∇2v =

[
−U

∂

∂x
∇2 + U′′

∂

∂x
+ β

Re
∇4

]
v

+ 1− β
ReW

[
∂

∂xj
∇2cjy − ∂3cjx

∂xj∂x∂y
− ∂2cjy

∂xj∂y2
− ∂2cjz

∂xj∂x∂z

]
, (2.22)

∂

∂t
η =−U

∂

∂x
η − U′

∂v

∂z
+ β

Re
∇2η + 1− β

ReW

(
∂2cxj

∂xj∂z
− ∂2czj

∂xj∂x

)
. (2.23)

Here Einstein summation is implied when using the repeated index j. The boundary
conditions for the wall-normal velocity and normal vorticity are v = ∂/∂yv = η = 0.
No boundary condition is necessary for the conformation tensor or the polymer stress
tensor since (2.24) and (2.25) are of hyperbolic nature and there is no y-derivative
for c.

The linearized constitutive equations for the conformation tensor are derived in the
same way:

∂c
∂t
+ u ·∇C + U ·∇c − c ·∇U − C ·∇u− (∇U)T · c − (∇u)T ·C =− c

W
, (2.24)

and
∂c

∂t
+ u ·∇C + U ·∇c − c ·∇U − C ·∇u

− (∇U)T · c − (∇u)T ·C =− f ′C + f c

W
, (2.25)

for Oldroyd-B and FENE-P respectively, with the same left-hand side. The FENE-P
model reduces to the Oldroyd-B model at large L, and indeed (2.25) reduces to (2.24)
as L→∞, f = 1 and f ′ = 0.

For clarity, we let φ̃ = (ṽ, η̃, c̃11, c̃22, c̃33, c̃12, c̃13, c̃23)
T denote the eight-component

vector containing the unknown fluid velocities and polymer state, and rewrite the
linearized system, (2.22), (2.23) and (2.24) or (2.25), for the evolution of small
disturbances in a compact form as

∂

∂t
Aφ̃ = Bφ̃. (2.26)

The full expressions of matrices A and B are given in the Appendix.

2.3.1. Modal and non-modal stability analysis
For a modal stability analysis we assume an exponential behaviour in time,

φ(x, y, z, t)= φ̃(y, t)eiαx+iγ z = φ̂(y)e−iωteiαx+iγ z, (2.27)
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and obtain the generalized eigenvalue problem

−iωAφ̂ = Bφ̂. (2.28)

It is, however, well known that modal analysis fails to predict transition in the case
of wall-bounded shear flows. These flows become turbulent at subcritical Reynolds
numbers, below the threshold for the occurrence of exponential instability, if any. Non-
modal analysis is therefore necessary to investigate the potential for transient energy
growth of specific disturbances (e.g. Farrell 1988; Reddy, Schmid & Henningson
1993). This is most readily done by casting the stability problem as an initial value
problem, i.e.

∂

∂t
φ̃ = Lφ̃, (2.29)

where L is the linearized operator obtained by A−1B, where A−1 is the inverse of the
matrix A (see the Appendix).

In our analysis, we consider the flow behaviour in the case where an initial
disturbance is added to the fluid velocity only, and we measure the response in
terms of flow kinetic energy,

E(t)= 1
2

∫
Ω

φ∗Mφ dV, (2.30)

where M is the energy weight matrix. Input and output matrices are introduced such
that the initial condition is φ = Binφin and the output energy is defined only for
φout = Coutφ. The matrix Bin forces the perturbation of the polymer stress to be zero,
whereas the matrix Cout ensures that only the final energy of the fluid velocity is
considered. They are defined as in Klinkenberg, De Lange & Brandt (2011):

Bin =



1 0
0 1
0 0
0 0
0 0
0 0
0 0
0 0


, Cout =

(
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0

)
. (2.31)

The evolution operator from φin to φout becomes T = CoutetLBin and the input and
output energy matrices are decomposed as Min = FinF ∗in and Mout = FoutF ∗out using
the Cholesky decomposition. The optimal energy growth in L2-norm with given
input–output is

G(t)=max
φ0

‖φout(t)‖Eout

‖φin(0)‖Ein

=max
φ0

‖Tφin(0)‖Eout

‖φin(0)‖Ein

=max
φ0

‖FoutTφin(0)‖2

‖Finφin(0)‖2

=max
φ0

‖FoutTF−1
in Finφin(0)‖2

‖Finφin(0)‖2
= ‖FoutTF−1

in ‖2 = ‖FoutCoutetLBinF−1
in ‖2. (2.32)

As discussed by Doering, Eckhardt & Schumacher (2006), the natural energy of
the fluid and the polymer does not correspond to a proper functional norm on
perturbations that can be directly used for a non-modal analysis. Using input and
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output operators we consider here only the fluid kinetic energy as a measure of
the disturbance, as this seems more relevant to transition. More importantly, we
introduce a perturbation in the fluid velocity only at the initial time. In other words,
the momentum equations are forced by a Dirac delta in time, whereas the polymer
stretching is not perturbed directly but only indirectly at t = 0+ via the fluid. This
approach is adopted as more natural way to perturb the flow, closest to what can be
achieved in an experiment.

2.3.2. Energy analysis
The kinetic energy budget provides another approach to analysing the instability

mechanisms in polymeric flows (see e.g. Hoda et al. 2008, 2009). The hydrodynamic
perturbation kinetic energy is obtained by multiplying the linearized equation (2.19) by
the complex conjugate of the perturbation velocity:

u∗i
∂ui

∂t
=−u∗i Uj

∂ui

∂xj
− u∗i

∂p

∂xi
+ u∗i

β

Re

∂2ui

∂2xj
+ u∗i

1− β
Re

∂τij

∂xj
− u∗i uj

∂Ui

∂xj
. (2.33)

Taking the complex conjugate of the above equation and adding the two equations, we
obtain

∂(e)

∂t
=− β

Re

∂u∗i
∂xj

∂ui

∂xj
− 1− β

2Re

(
τij
∂u∗i
∂xj
+ τ ∗ij

∂ui

∂xj

)
− 1

2

(
u∗i uj

∂Ui

∂xj
+ uiu

∗
j

∂Ui

∂xj

)
+ ∂

∂xj

[
−1

2
uiu
∗
i Uj − 1

2
(uip

∗ + u∗i p)δij

+ β

2Re

(
u∗i
∂ui

∂xj
+ ui

∂u∗i
∂xj

)
+ 1− β

2Re
(u∗i τij + uiτ

∗
ij )

]
, (2.34)

where e(y, t) = u∗i ui/2 is the perturbation energy density. The terms in the square
brackets are transport terms which only redistribute the energy inside the domain.
Thus, if the boundary conditions are homogeneous or periodic, these transport terms
do not contribute to the net variation of the energy density. Integrating the above
equation in space, we obtain∫ 1

−1

∂(e)

∂t
dy=−

∫ 1

−1

1
2
(u∗i uj + uiu

∗
j )
∂Ui
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dy

−
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2Re
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)
dy−

∫ 1

−1

β

Re

∂u∗i
∂xj

∂ui

∂xj
dy. (2.35)

The first term on the right-hand side indicates the production of the Reynolds
stresses against the shear of the base flow and it is responsible for the instability
in Newtonian fluids. This will be denoted Pr in the following and reduces to
−(1/Ω) ∫

Ω
((u∗1u2 + u1u∗2)/2)(∂U/∂x2) dV for a parallel base flow. The second term,

denoted PD, indicates the rate of work of the polymeric stresses, in other words the
energy exchanged in the interaction between the polymer fluctuating stress field and
the fluctuating flow field. The last term on the right-hand side represents viscous
dissipation and it is strictly negative. This will be denoted VD, with subscripts
if necessary. For example, VD11 refers to −(1/Ω) ∫

Ω
(β/Re)(∂u∗1/∂x1)(∂u1/∂x1) dV

(similarly for the other terms).
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Finally, note that for normal modes, the normalized time variation of the energy
density Re can be written as

Re =
1
Ω

∫
Ω

∂(e)

∂t
dV

1
Ω

∫
Ω

e dV
= 2ωi, (2.36)

where ωi is the imaginary part of the eigenvalue whose eigenfunction is used to
evaluate the production and dissipation terms. This expression can be used as an
a posteriori check of the results.

3. Numerical methods and validation
To solve the equations introduced above, we use a spectral collocation method based

on Chebyshev modes. The original Chebyshev polynomials have been modified to
directly account for boundary conditions by adding the prefactor (Weideman & Reddy
2000; Canuto et al. 2007)

L+j (y)=
(

1− y2

1− y2
j

)2

Lj(y) (3.1)

and

L+j (y)=
(

1− y2

1− y2
j

)
Lj(y) (3.2)

for the Orr–Sommerfeld and Squire problems respectively.
As mentioned before, we wish to solve a linear system, A(∂/∂t)φ = Bφ, where φ is

(v, η, c11, c22, c33, c12, c13, c23)
T. The matrices A and B are of size (8N+12)×(8N+12)

in three dimensions, where v and η are approximated by N modes whereas each
component of the conformation tensor cij is approximated by N + 2 modes. Left-
multiplying by A−1 and using the assumption of exponential behaviour in time, we
obtain ωφ̂(y) = iA−1Bφ̂(y), where ω is the eigenvalue and φ̂(y) is the eigenfunction.
The non-modal analysis is performed by computing the singular value decomposition
of the matrix exponential exp(tA−1B). The parameter space to be investigated is
defined by (α, γ,W,Re, β,L).

3.1. Validation
The implementation of the Oldroyd-B fluid is validated against the results by
Sureshkumar & Beris (1995). In table 1 we compare the results from this previous
work and the present implementation for Poiseuille flow of the Oldroyd-B fluid at
Re = 3960, β = 0.5, W = 3.96, α = 1.15, γ = 0. The critical eigenvalue is in good
agreement when using 129 Chebyshev modes in our implementation.

The implementation of the FENE-P model is expected to generate the same
eigenspectrum as the Oldroyd-B model when L� 1 and the other parameters the same.
This is verified for Re = 3960, β = 0.5, W = 3.96, α = 1.15, γ = 0 and L = 10 000.
The number of modes used in the discretization is 101 for v and η and 103 for each
component of cij. As we could not find results in the literature for the FENE-P flow
at high Reynolds numbers, we verify the current implementation by comparison to the
energy budget (see (2.36) and results below.)
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Present implementation Sureshkumar & Beris
(1995)

Critical
eigenvalues

0.34089441+1.9888×10−7i 0.34089442+1.9696×10−7i

TABLE 1. Validation of the Oldroyd-B implementation against the results in Sureshkumar
& Beris (1995). Least stable mode for Re= 3960, β = 0.5,W = 3.96, α = 1.15, γ = 0.

For the majority of the results, we used 131 grid points for the flow variables and
133 for each component of the polymer conformation tensor. Table 2 demonstrates that
the results are resolution-independent.

4. Modal stability of viscoelastic channel flow
When evaluating neutral stability curves, we focus only on two-dimensional

disturbances and compare the results of a FENE-P fluid to Newtonian and Oldroyd-B
fluids. As shown by Bistagnino et al. (2007), Squire’s theorem can be extended to
Oldroyd-B fluids and it is therefore sufficient to consider two-dimensional waves to
determine the critical Reynolds number. However, owing to the coupling induced by
the FENE function, a similar extension might not be possible for FENE-P fluids.
Hence, we analysed three-dimensional modes for different values of γ and α and
found that the two-dimensional waves appear to be the first to become unstable also
with the FENE-P closure.

Neutral curves of FENE-P fluid in the (α,Re) plane are depicted in figure 2(a) for
different values of the Weissenberg number, W, and for β = 0.9, L = 60 and γ = 0.
For large W, the strong elastic effect stabilizes the flow. Interestingly, at smaller W
(W ≈ 1), the flow appears to be less stable (note that the Reynolds number is defined
using the total fluid viscosity). The non-monotonic behaviour of the critical Reynolds
number in polymeric flows has been previously observed in the studies by Sadanandan
& Sureshkumar (2002), Stone et al. (2004) and Roy et al. (2006). We will discuss this
in detail in connection with figure 3 and when performing an energy budget analysis.
Figure 2(b) shows the effect of the viscosity ratio β on the neutral stability curve
at W = 10,L = 60, γ = 0. Decreasing β (increasing the polymer concentration), the
critical Reynolds number increases, i.e. at this relatively large W, stronger elasticity
stabilizes the flow. For values of β < 0.5 (not shown here), the results of the modal
analysis are found to be almost independent of β and the critical Reynolds number is
approximately 8300, and it occurs for a streamwise wavenumber slightly larger than
for the Newtonian counterpart, α ≈ 1.05.

The critical Reynolds number is shown versus the non-dimensional relaxation time
Wωr in figure 3 for different values of β and for the two models, FENE-P and
Oldroyd-B. The frequency ωr is the real part of the least stable eigenvalue (the
frequency of the disturbance) at the critical condition, so that Wωr is the polymer
relaxation time over the period of the marginally stable wave. The critical values of Re
are obtained by searching for a minimum in the (α,Re) plane for each case, so that
α is in general different for each point in figure 3. In all cases, the critical Reynolds
number first decreases and reaches its minimum at Wωr ≈ 1 before increasing. Higher
critical Re indicates a more stable flow when the polymer relaxation times becomes
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Modes Oldroyd-B FENE-P (L= 60)

32 0.341234084409063− 0.000323777796261i 0.343564949051865− 0.002229595239572i
65 0.340894448265977+ 0.000000297308649i 0.343253495595805− 0.001933245318672i

131 0.340894410778315+ 0.000000198881448i 0.343253443294946− 0.001933260576780i
258 0.340894410782048+ 0.000000198877210i 0.343253443295637− 0.001933260579580i

TABLE 2. Resolution check at Re= 3960, β = 0.5,W = 3.96, α = 1.15, γ = 0 for Oldroyd-B and for FENE-P fluid with L= 60.
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FIGURE 2. (Colour online) (a) Neutral curves at β = 0.9,L = 60, γ = 0 and W = 0
(Newtonian, ©), W = 1 (×), W = 5 (�), W = 10 (+). (b) Neutral curves at W = 10,L =
60, γ = 0 and β = 1 (Newtonian,©), β = 0.9 (×), β = 0.8 (�), β = 0.7 (+).
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FIGURE 3. (a) Neutral curves versus Wωr and Re for L= 60, γ = 0, and β = 0.5 (−−4−−),
β = 0.7 (−−O−−), β = 0.9 (−−�−−) for Oldroyd-B model, and β = 0.5 (−N−), β = 0.7
(−H−), β = 0.9 (−�−) for FENE-P model. (b) Neutral curves versus (Re − 5772)/(1 − β)
for L= 60, γ = 0; symbols as in (a).

longer than the instability time scale. One can also note from the figure that at large W
the flow modelled by the FENE-P closure is more stable for lower β.

Interestingly, at lower Wωr, the curves for different β values collapse into a single
curve once we plot the marginal condition versus the abscissa (Re − 5772)/(1 − β),
as shown in figure 3(b). This implies that the deviations from the Newtonian critical
limit (Re = 5772) are proportional to the polymer viscosity (Re/(1 − β) = ρUcLc/µp).
Energy analysis will help shed some light onto this effect as well as onto the
stabilization observed at high Wωr.

We summarize in figure 4 the variation of the critical Reynolds number versus
W and β. The black line is the iso-level corresponding to the critical Re for the
Newtonian case, Re= 5772. With decreasing β, the destabilization effect at small W is
more apparent. The highest critical Re is expected to be found in the top left corner,
where the elasticity is strongest.

The effect of L is displayed in figure 5 for the viscosity ratio β = 0.9. The
Oldroyd-B model can be seen as the limit of the FENE-P results when L→∞,
and indeed the result of the Oldroyd-B model appears as the limit of the series
of results for the FENE-P model with increasing L. The smaller L suppresses the
maximum possible extension of the polymer molecules. The data clearly indicate that
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FIGURE 4. (Colour online) Critical Reynolds number in the (β,W) plane for a FENE-P fluid
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FIGURE 5. (Colour online) Neutral curves at β = 0.9, γ = 0, and L= 60 (©, blue), L= 120
(�, red), L= 240 (×, green) in FENE-P model; Oldroyd-B model (+, black).

fluids characterized by a smaller value of the maximum extensibility L are always
the most stable. By examining the base flow conformation tensor C̄kk, we see that
the strongest stabilization is observed when the polymers are already significantly
stretched (∼60 % of the maximum). This is in agreement with the observations
of maximum stabilization at large W discussed earlier, when the trace of the
conformation tensor also reaches values larger than 0.5 L2.

4.1. Energy analysis

Table 3 reports the energy budget at β = 0.7,Re = 5300,L = 60, α = 1.02, γ = 0,
where W = 0 corresponds to the Newtonian flow. The results have all been normalized
by the integral of the perturbation energy density. The total time variation of energy



264 M. Zhang, I. Lashgari, T. A. Zaki and L. Brandt

Terms (×10−4) W = 0 W = 0.5 W = 2.5 W = 10

PD11 0 −4.306 −9.058 178.058
PD12 0 −41.351 −38.207 −177.607
PD21 0 0.488 0.078 −1.281
PD22 0 −1.720 −1.946 −2.234
VD11 −2.824 −1.977 −1.978 −1.999
VD12 −145.152 −101.974 −104.951 −138.212
VD21 −1.102 −0.771 −0.770 −0.749
VD22 −2.824 −1.977 −1.978 −1.999
PD 0 −46.890 −49.132 −3.065
VD −151.902 −106.699 −109.678 −142.959
Pr 134.230 147.678 173.622 42.885
Total −17.672 −5.911 14.811 −103.139
2ωi −17.672 −5.911 14.811 −103.139

TABLE 3. Energy budget for modal instability of viscoelastic Poiseuille flow for different
values of the Weissenberg number. β = 0.7, Re = 5300, L = 60, α = 1.02, γ = 0. W = 0
corresponds to Newtonian flow. Note that the data in the table have been divided by 10−4.

Terms (×10−4) L= 60 L= 120 L= 500

PD11 3.416 3.621 3.745
PD12 −16.412 −16.978 −17.202
PD21 −0.260 −0.286 −0.296
PD22 −0.669 −0.689 −0.696
VD11 −2.408 −2.408 −2.408
VD12 −131.730 −131.746 −131.779
VD21 −0.936 −0.937 −0.937
VD22 −2.408 −2.408 −2.408
PD −13.925 −14.333 −14.449
VD −137.482 −137.498 −137.530
Pr 140.032 147.161 149.969
Total −11.375 −4.670 −2.010
2ωi −11.375 −4.670 −2.010

TABLE 4. Energy budget for modal instability of viscoelastic Poiseuille flow for different
values of the maximum length L β = 0.9, W = 6, Re = 5600, α = 1.02, γ = 0. Note that
the data in the table have been divided by 10−4 .

density is the sum of PD, VD and Pr, and this corresponds to 2ωi (see (2.36)), where
ωi is the imaginary part of the least stable eigenvalue, as confirmed in the table.

The total dissipation, which is the sum of the viscous dissipation and the negative
rate of polymer work, is almost constant for different W. When the rate of polymer
work decreases, the viscous dissipation increases and vice versa. At low W, the critical
Reynolds number decreases where this enhanced instability of the flow is dictated by
an increase in the production due to the uv Reynolds stress against the base flow shear.
In the same way, at large W, the flow is stabilized because the same production term is
now decreasing.

The energy budget when changing the maximum admissible polymer extension L is
presented in table 4 for β = 0.9,W = 6,Re = 5600, α = 1.02, γ = 0. The data reveal
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between streamwise and wall-normal components of the least stable eigenmode: Newtonian,
(−, black), W = 2.5 (- -, green), W = 6 (. . ., red), W = 10 (-·-·-, blue).

that the total production against the mean shear, Pr, increases with increasing L while
the negative terms, PD and VD are almost independent of L. This explains why larger
values of the extensibility L lead to a more unstable flow, as shown in figure 5.

The cosine of the phase difference between the streamwise and wall-normal
components of the eigenfunction is shown in figure 6. This phase difference, induced
by the viscosity, is known to be responsible for the positive production term Pr
leading to the viscous instability in channel flow of Newtonian fluids (Huerre & Rossi
1998). This phase difference explains why inviscid flows without an inflection point
are unstable in the presence of viscosity: a 90◦ phase difference, as in neutrally stable
inviscid flows, would give zero production. The phase difference (and therefore the
production against the mean shear) is generated in a region near the wall, the critical
layer, whereas it is almost zero in the bulk of the flow. Increasing W creates a large
region of negative production just above the critical layer while also increasing the
peak of positive production. When the former effect is stronger, Wωr & 1, the total
production is less and the flow is more stable (see figure 2a).

In summary, the results of modal stability demonstrate that the production of
disturbance kinetic energy increases at Wωr . 1 when the polymer relaxation time is
shorter than the instability time scale, and therefore polymer molecules do not stretch
significantly more than in the base configuration. In this range, the total dissipation
is almost constant and equal to the Newtonian value for the same total viscosity: the
polymers are almost inelastic and the polymer work rate is proportional to viscous
dissipation (see also Zhu, Lauga & Brandt 2011). The destabilization is therefore
explained by an increasing viscous production (|uv| cos(θ1 − θ2)), as the polymer
viscosity alters the time delay between the streamwise and wall-normal velocity
perturbations. This observation is also consistent with the results in figure 3(b), where
the destabilization is shown to be proportional to the polymer viscosity. The most
unstable cases, or the lowest critical Reynolds numbers, are found when Wωr ≈ 1,
before the perturbation kinetic energy production decreases for Wωr & 1 when the
polymer has time to stretch further with respect to the base flow configuration. The
critical Reynolds number then increases and we observe a significant stabilization,
again proportional to the polymer viscosity for the FENE-P fluid (cf. figure 3b).
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FIGURE 7. (Colour online) Overall amplification Gmax versus the spanwise wavenumber γ of
disturbances with α = 0 for viscoelastic flow (+; L = 60, β = 0.9,Re = 6000,W = 10) and
Newtonian flow (©).

5. Non-modal stability
The non-modal linear stability analysis of non-Newtonian–Poiseuille flow has not

been explored extensively until recently. Doering et al. (2006) reported the non-modal
amplification of the perturbations in Oldroyd-B fluids at low Reynolds and high
Weissenberg numbers, and concluded that while a base flow may be linearly stable,
the extra degrees of freedom in the polymers may allow for exact solutions displaying
non-normal transient growth. Hoda et al. (2008, 2009) analysed the energy density
of the Oldroyd-B Poiseuille flow. These authors found significant energy amplification
also under the action of elasticity. In this section we aim to investigate the transient
disturbance growth in Poiseuille flow modelled by the FENE-P closure as well as
Oldroyd-B and Newtonian fluids for comparison in the inertial regime. As mentioned
in § 2, only the fluid velocity perturbation is considered in this study, and the response
only concerns the fluid kinetic energy. Note that when showing results for different
fluids, we assume that flows are driven by the same pressure gradient.

In figure 7 we display the overall maximum growth Gmax , the maximum over all
possible final times, for different γ and L = 60, β = 0.9, W = 10, Re = 6000, α = 0,
together with the results for Newtonian flow. The case with streamwise wavenumber
α = 0 is of particular interest because this combination (α = 0, γ = 2) gives the global
maximum in the wavenumber space for Newtonian fluids (Schmid & Henningson
2001); and for viscoelastic fluids as shown here. To simplify the presentation of the
results and the corresponding analysis, we therefore consider disturbances for a fixed
spanwise wavenumber γ = 2, and vary the streamwise wavelength and the rheological
parameters.

Note that we obtain the optimal growth and initial condition from the singular
value decomposition of the matrix L. The initial condition is the left singular
vector corresponding to the largest singular value of the matrix. The optimal
initial condition and response are reported in figure 8 for a viscoelastic fluid with
L = 60, β = 0.9,W = 10,Re = 6000, α = 0, γ = 2. The figure demonstrates that the
lift-up mechanism is still at work in viscoelastic fluids, as in the Newtonian case.
The optimal initial condition consists of counter-rotating streamwise vortices, in
particular one vortex across the channel cross-section, whereas the final response is
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FIGURE 9. Transient growth versus the Weissenberg number, W, for viscoelastic fluid with
L = 60, β = 0.9,Re = 4000, γ = 2 and different values of the streamwise wavenumber:
α = 0 (©), α = 0.05 (�), α = 0.1 (+), α = 0.5 (×), α = 1.02 (�), α = 2 (4), α = 3 (O),
α = 4 (?).

characterized by a large streamwise perturbation velocity, with positive and negative
regions alternating in the spanwise direction, the so-called streamwise streaks, arranged
in a staggered array in the wall-normal direction. The elastic stress at the time of
maximum energy amplification is displayed in figure 8(c). The τ11 component has
increased dramatically when compared to the other stress components.

Figure 9(a) shows how viscoelasticity affects the transient growth for L = 60, β =
0.9,Re = 4000, γ = 2 when varying the streamwise wavenumber of the perturbation.
The data are normalized with respect to the Newtonian value of Gmax(W = 0) for each
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W = 0 W = 0.5 W = 1 W = 1.5 W = 5 W = 10 W = 15

α = 0 3135.42 3138.45 3142.11 3138.50 3183.18 3263.52 3345.28
α = 1.02 406.65 407.33 407.48 407.33 401.86 391.24 384.31
α = 2 137.12 137.16 136.96 137.16 133.32 127.66 123.65
α = 4 26.26 26.18 26.05 26.18 24.72 22.94 21.62

TABLE 5. Optimal growth Gmax for different values of the Weissenberg number and of the
streamwise wavenumber α. L = 60, β = 0.9, Re = 4000, γ = 2. The data are displayed in
figure 9.

α. Note that the optimal transient growth decreases when increasing the streamwise
wavenumber (first column in table 5).

For small α, Gmax increases monotonically when increasing W. This increase,
although somewhat limited to a few per cent, was also documented by Hoda et al.
(2008). Increasing α, the maximum amplification, Gmax , increases slightly for W . 1
where the elastic effect of polymer molecules is still weak, and then decreases when
W is increased further. Polymers with large enough W therefore have a stabilizing
effect on oblique travelling modes. When λ is small, the polymer molecules react very
rapidly to the wave propagating in the flow without manifesting their elasticity. On the
other hand, when λ is large, the polymer molecules stay stretched for a longer period
and the level of interaction with the fluid increases. The perturbation energy will be
absorbed by these polymers with large W (stored as elastic energy), leading to a more
stable flow.

We display the same data in figure 9(b), where the polymer relaxation time is scaled
by the time Tmax corresponding to the largest possible amplification. Here, we find
that all curves pertaining to disturbances with finite values of α > 0.1 collapse onto a
single curve. For travelling disturbances, as for the case of modal stability, we see that
stabilization occurs when the polymer relaxation time is of the order of, or longer than,
the time scale of the instability.

The influence of the viscosity ratio β on the optimal disturbance growth is presented
in figure 10. For disturbances with α = 0, small β yields larger transient growth while
for α = 1.02 and α = 2 we observe a reduction of the transient growth. In the figure,
we display the variation of the optimal growth with respect to the Newtonian case
versus the polymer viscosity: the variation is almost linear with β, especially at lower
α, i.e. proportional to the polymer viscosity.

The optimal growth for fluids characterized by different values of the maximum
extensibility L is displayed in figure 11 for α = 0, α = 1.02 and α = 2. Results are
normalized with respect to the growth in the corresponding Newtonian flow. The
normalized transient growth decreases with L and asymptotically approaches the result
for Oldroyd-B fluid. This marginal variation with L can probably be explained by
the particular initial condition used, with no perturbation in the polymer conformation
tensor. In more elastic flows, large L, polymers need more time to stretch initially, and
this delays the disturbance growth. Note finally that the main features of the transient
growth, such as the time of maximum amplification, are not affected by the polymer
extensibility and viscosity ratio.

The dependence of the transient growth on the Reynolds number Re is also
investigated. Note that Re in the polymer solution is based on the total viscosity
and therefore describes the property of the entire solution. In Newtonian flows, the
maximum transient growth is proportional to Re2 (Schmid & Henningson 2001).
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This is confirmed for viscoelastic fluids in figure 12(a), where the optimal growth
is depicted in logarithmic scale for disturbances with α = 0. Here one can also note
that Gmax is larger in the polymer solution. For oblique modes with α = 1.02 (see
figure 12b), the global maximum amplification is linearly proportional to Re, as for
Newtonian fluids. In this case, Gmax is instead larger for Newtonian fluids. In addition,
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FIGURE 12. (Colour online) Global maximum of non-modal amplification Gmax versus the
Reynolds number Re for β = 0.9,L = 60,W = 10, γ = 2. (a) α = 0: viscoelastic flow (- -,
blue), Newtonian flow (–, red), Re2/104 (-.-., green). (b) α = 1.02: viscoelastic flow (- -, blue),
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we report that the time of maximum growth is a linear function of Re, also in
agreement with the findings for Newtonian fluids.

5.1. Energy analysis
The energy budget is examined in order to gain more insight into the effect of
polymers on the non-modal amplification of streaks and oblique disturbances. The
latter, although characterized by lower linear amplification, are fundamental for the
final stages of breakdown to turbulence as well as for transition initiated by localized
disturbances or by nonlinear interactions of weak disturbances, for example in oblique
transition scenarios (Berlin, Lundbladh & Henningson 1994), which is found to be the
most efficient in canonical shear flows (Duguet, Brandt & Larsson 2010).

We consider the flow kinetic energy in physical space (Butler & Farrell 1992) and
write an evolution equation for ε,

ε̇ = 1
Ω

∫ 1

−1

∫ a

0

∫ b

0

∂

∂t

(
u2 + v2 + w2

2

)
dV

= 1
Ω

∫ 1

−1

∫ a

0

∫ b

0
−uv

dU

dy
− β

Re

∂ui

∂xj

∂ui

∂xj
− 1− β

Re
τij
∂ui

∂xj
dz dx dy, (5.1)

where Ω = 2ab, a = 2π/α and b = 2π/γ . The interaction of the flow disturbances
with the mean flow-shear and the polymer stress are captured by the terms
−uv(dU/dy) and −((1− β)/Re)τij(∂ui/∂xj), respectively.

The oblique wave (α = 2, γ = 2) and the streamwise invariant wave (α = 0, γ = 2)
are investigated for Re= 2000, β = 0.5 and W = {0, 1, 12}. The results for the oblique
disturbance in a Newtonian fluid are shown in figure 13(a). According to Farrell &
Ioannou (1993), the Orr mechanism and vortex tilting are simultaneously present for
an intermediate ratio of spanwise to streamwise wavenumber in Newtonian flow. For
viscoelastic flow with small Weissenberg number (W = 1), the results are shown in
figure 13(b), where D denotes the sum of the PD and VD in viscoelastic flow and
VD(N) is the viscous dissipation in Newtonian flow (where the PD term is zero).
Comparing the results for Newtonian fluid with the case W = 1 we see that D is close
to VD(N) and the production terms are quantitatively similar, indicating that at small
W, the polymer molecules behave like the fluid and the elastic effect is negligible.
However, with increasing W, the elastic effect becomes relevant and the results in
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FIGURE 13. (Colour online) Time evolution of the different terms in the energy budget of the
optimal disturbance for channel flow at Re= 2000, β = 0.5, α = 2, γ = 2. (a) Newtonian: PD
(©), VD (+), Pr (O), total (−) (b) W = 1: PD (©), VD (+), Pr (O), total (−), PD+ VD (4),
VD (Newtonian) (×). (c) W = 12: PD (©), VD (+), Pr (O), total (−), Pr (Newtonian) (�),
total (Newtonian) (- - -).

figure 13(c) show that the production is decreasing in viscoelastic fluids, as observed
for modal stability in § 4. Although the rate of polymer work becomes positive at
later times, t > 15, this effect is balanced by an increased viscous dissipation. In
summary, the decreased production against mean shear explains the observed reduction
in transient growth. From a physical point of view, the mechanism seems similar to
that observed for exponentially growing Tollmien–Schlichting waves.

For streamwise independent disturbances, the time evolution of the kinetic energy
budget is shown in figure 14(a) for Newtonian fluid, and in figure 14(b,c) for
polymeric fluids with W = 1 and W = 12. The results for the lowest W = 1 in
figure 14(b) are again similar to those for the Newtonian flow if we consider the sum
of PD and VD (D in the figure) in non-Newtonian flow versus the viscous dissipation
VD in Newtonian flow. The values of the production against the mean shear are also
similar. In the case of large polymer relaxation times, W = 12 (see figure 14c), the
production against the mean shear increases and this explains the weak increase of the
streak amplification found previously, e.g. figure 9.

6. Discussion and conclusions
We have examined the linear stability of inertia-dominated channel flow of a

viscoelastic fluid modelled by the Oldroyd-B and FENE-P models. We performed both
modal and non-modal analyses and examined the kinetic energy budget to identify
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FIGURE 14. (Colour online) Time evolution of the different terms in the energy budget of the
optimal disturbance for channel flow at Re= 2000, β = 0.5, α = 0, γ = 2. (a) Newtonian: PD
(©), VD (+), Pr (O), total (−). (b) W = 1: PD (©), VD (+), Pr (O), PD + VD (4), total
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the effect of the polymer additives on the instability mechanisms. An extensive
parameter study was conducted by varying the polymer relaxation time, the polymer
concentration and the maximum extensibility of the polymer chains L for the FENE-P
closure.

The main finding has been that the effect of the polymer can be characterized by the
ratio between the relaxation time and the time scale over which the instability evolves;
this applies to the exponential growth of two-dimensional Tollmien–Schlichting-like
waves and to the non-modal amplification of streamwise elongated streaks and
oblique waves in the subcritical regime. For both types of disturbances, we recorded
destabilization for small values of this ratio, i.e. relatively short relaxation times, and
stabilization for large values. The maximum destabilization was observed for values of
the ratio between the polymer relaxation time and the instability time scale of order
unity.

Modal analysis
The non-monotonic behaviour of the critical Reynolds number as a function of
Weissenberg number W, already documented for Oldroyd-B fluids by Sadanandan
& Sureshkumar (2002), Stone et al. (2004) and Roy et al. (2006), is recovered here
for the FENE-P model as well. This is explained by considering the work of the



Linear stability analysis of channel flow of viscoelastic fluids 273

Reynolds stress against the base flow shear. At Wωr . 1 the polymer molecules can be
considered as inelastic and the total dissipation in the flow is not changed. However,
the polymer elasticity alters the phase shift between streamwise and wall-normal
velocity fluctuations, leading to an increased production of perturbation kinetic energy
and to a more unstable flow. Our results indicate that the destabilization observed
at short polymer relaxation times is proportional to the polymer viscosity. At larger
Wωr, the polymers have time to be stretched, the elastic effects are more relevant
and the flow becomes more stable, as shown by the reduction of the kinetic energy
production against the mean shear. We show how the increased/decreased production
of perturbation kinetic energy is related to the phase lag between the wall-normal and
streamwise velocity fluctuations, as observed previously for inelastic non-Newtonian
fluids (Nouar, Bottaro & Brancher 2007).

It is instructive to relate the effect of viscosity at the critical layer to previous results
pertaining to inelastic fluids with shear-dependent viscosity. Govindarajan, Lõvov &
Procaccia (2001) study the stability of channel flow with space-dependent viscosity at
the critical layer and find a large stabilization due to a reduced energy intake from
the mean flow to the fluctuations in the case of reduced viscosity, and the opposite for
larger viscosity in regions of higher shear. Ranganathan & Govindarajan (2005) and
Nouar et al. (2007) used the Carreau model and showed that shear-thinning fluids are
more stable. These authors explain their results by the base flow modifications induced
by a varying viscosity and by the effect on the Reynolds stresses near the critical
layer. Unlike these previous studies, we consider polymer additives on a fixed base
flow, namely the parabolic profile, and therefore examine only the effect of elasticity.
In all cases the production increases at the critical layer: this is associated with a local
increase of the viscosity as in shear-thickening fluids, and indeed the destabilization is
shown to scale with the polymer viscosity. For long relaxation times, however, we find
that the elastic effects manifest themselves with negative production above the critical
layer and in the centre of the channel. Eventually, this effect outweighs the increased
production at the critical layer and the flow becomes more stable.

Non-modal analysis
A similar trend is observed for the non-modal growth of perturbations in the
subcritical regime. Previous investigations considered the flow response to stochastic
excitations, focusing on the Oldroyd-B model and on streamwise independent
disturbances (see Hoda et al. 2008, 2009; Jovanović & Kumar 2010, 2011). Our
analyses examined both streamwise independent and oblique disturbances. The
transient growth of streamwise independent modes, or streaks, is still the dominant
instability. The associated energy growth is found to increase monotonically when W
increases. For finite α, the maximum amplification Gmax slightly increases at W 6 1,
and decreases with increasing W. In the latter case, the data for Gmax are also found
to collapse when they are presented versus W/Tmax , where Tmax is the time at which
the maximum growth is observed. Again we observe destabilization if the disturbance
amplifies on a time scale longer than the polymer relaxation time and a stabilization
when the disturbance growth is characterized by a time scale shorter than the polymer
relaxation.

The energy analysis reveals that the increase of the transient growth of streamwise
invariant disturbances (vanishing α) is due to an increased production against the mean
shear at early times. Similarly, the initial decrease of production of the disturbance
energy is responsible for the reduced growth observed for larger values of α (see
figure 9). This suggests that a similar argument can explain both modal and non-modal
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amplification. The importance of oblique modes in the laminar–turbulence transition
should not be underestimated: these are the dominant modes excited by a localized
disturbance. In addition, as shown in Klinkenberg et al. (2013) for particle-laden flows,
damping of oblique modes can have a two-fold effect on transition: (i) it can delay
transition and require a larger initial disturbance amplitude to cause breakdown as
oblique modes are weaker and, as a result, the interactions transferring energy to
the streamwise independent streaky modes are also attenuated; (ii) it can delay the
transition time, since less energy is available to disrupt the streamwise independent
streaks resulting from the optimal non-modal amplification in subcritical conditions.

The effects summarized above are enhanced for lower values of the viscosity
ratio β, larger polymer viscosity, and the variations of the modal and non-modal
disturbance amplification are found to vary linearly with the polymer viscosity.
Increasing elastic effects by increasing the maximum extensibility of the polymer
molecules, L, destabilizes exponential instabilities, while it has a marginal effect on the
non-modal amplification.

The present results apply to the initial disturbance evolution in transitional wall-
bounded shear flows of viscoelastic fluids. To speculate on the consequences for the
full transition process, it is worthwhile drawing an analogy to the case of particle-
laden flows (Klinkenberg et al. 2011, 2013). At relatively high volume fractions, these
flows present both drag reduction in the turbulent regime and attenuation of oblique
modes in the linear regime (while nothing dramatic happens to the non-modal growth
of streaks). Moreover, the turbulent regime of both polymer and particle solutions is
characterized by intervals of ‘hibernating’ (low-activity) turbulence characterized by
weak streamwise vortices and nearly non-existent streamwise variations (Xi & Graham
2010; Zhao, Andersson & Gillissen 2010). In the case of particle suspensions these
two aspects appear to be related and associated with a certain transition delay (increase
of the threshold energy for transition). We therefore suggest extending the present
work in the nonlinear regime by investigating the full transition process and the link
between the linear response and the transition to turbulence, as our results seem to
indicate an analogy with the case of rigid particles.

Appendix. Matrices of the linear stability problem
In this appendix we provide the full equations describing the linear stability of the

Oldroyd-B and FENE-P fluid in the wall-normal velocity and wall-normal vorticity
formulation

∂

∂t
Aφ̃ = Bφ̃, (A 1)

where the vector φ̃ = (ṽ, η̃, c̃11, c̃22, c̃33, c̃12, c̃13, c̃23)
T. The matrix A is the same for

both viscoelastic models,
(

A11 0
0 I6

)
. A11, of dimensions 2 × 2, pertains to the fluid

velocity and vorticity, and is identical to that derived for the O–S and Sq equations:(
∆ 0
0 I

)
, (A 2)

where ∆= D2 − k2, with D the derivative with respect to the wall-normal direction and
the wavenumber k2 = α2 + γ 2. The unity matrix I6 here has dimension 6 × 6 and is
related to the six components of the conformation tensor.
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The matrix B can be written as
(

B11 B12
B21 B22

)
. B11 is the same as in the single phase

O–S and Sq equations, and is given by β

Re
∆2 − iαU∆+ iαU′′ 0

−iβU′
β

Re
∆− iαU

 . (A 3)

B21 expresses the effect of the disturbance velocity field on the polymer stretching:

B21 = 1
k2



2(−α2C11D+ iαC12D2)− k2DC11 2(αγC11 − iγC12D)

2k2(iαC12 + C22D)− k2DC22 0

−2γ 2C33D− k2DC33 −2αγC33

k2(iαC11 + C12D)− k2DC12

+ iαC22D2 − α2C12D
αγC12 − iγC22D

−αγC11D+ iγC12D2 − αγC33D −α2C11 + iαC12D+ γ 2C33

iγC22D2 − αγC12D+ ik2γC33 −α2C12 + iαC22D


, (A 4)

where DCij = dCij/dy and we have exploited the symmetry of the conformation tensor.
The remaining blocks depend on the particular model used for the viscoelastic

properties of the fluid. B12 represents the polymeric stresses in the momentum
equation, and for the Oldroyd-B model is given by

B12 = 1− β
WRe

(
α2D −k2D γ 2D −iα(D2 + k2) 2αγD −iγ (D2 + k2)

−αγ 0 αγ iγD α2 − γ 2 −iαD

)
. (A 5)

For the same model, the polymer relaxation, transport and stretching by the base flow
is expressed by

B22 =



Kob 0 0 2U′ 0 0
0 Kob 0 0 0 0
0 0 Kob 0 0 0
0 U′ 0 Kob 0 0
0 0 0 0 Kob U′

0 0 0 0 0 Kob


. (A 6)

U′ indicates the first derivative of the base flow U along the wall-normal direction y
and Kob =−iαU − 1/W.

For the FENE-P model,

B12 =
(
vc11 vc22 vc33 vc12 vc13 vc23

ηc11 ηc22 ηc33 ηc12 ηc13 ηc23

)
, (A 7)

and we adopt the following notation:

C′11 =
dC11

dy
, C′22 =

dC22

dy
, C′33 =

dC33

dy
, (A 8a)



276 M. Zhang, I. Lashgari, T. A. Zaki and L. Brandt

C′′11 =
d2C11

dy2
, C′′22 =

d2C22

dy2
, C′′33 =

d2C33

dy2
, (A 8b)

f ′1 =
∂f

∂C11

∣∣∣∣
B

= f ′2 =
∂f

∂C22

∣∣∣∣
B

= f ′3 =
∂f

∂C33

∣∣∣∣
B

= L2

(L2 − Ckk)
2 , (A 9a)

f ′y = f ′1C′11 + f ′2C′22 + f ′3C′33, (A 9b)

f ′′1y =
∂2f

∂C11∂y
= f ′′2y =

∂2f

∂C22∂y
= f ′′3y =

∂2f

∂C33∂y
= 2L2

(L2 − Ckk)
3 (C

′
11 + C′22 + C′33), (A 9c)

f ′′′1yy =
∂3f

∂C11∂y2
= f ′′′2yy =

∂3f

∂C22∂y2
= f ′′′3yy =

∂3f

∂C33∂y2
,

= 6L2

(L2 − Ckk)
4 (C

′
11 + C′22 + C′33)

2 + 2L2

(L2 − Ckk)
3 (C

′′
11 + C′′22 + C′′33). (A 9d)

The different terms in B12 can then be written as follows, where for greater clarity we
use the symbol ∗ to denote multiplication:

vc11 = 1− β
ReW

[−k2(f ′1 ∗ C21 ∗ iα + f ′′1y ∗ C22 + f ′1 ∗ C22 ∗ D+ f ′1 ∗ C23 ∗ iγ + f ′1 ∗ C′22)

− iα(f ′′1y ∗ C11 ∗ iα + f ′1 ∗ C11 ∗ iα ∗ D+ f ′1 ∗ C′11 ∗ iα + f ′′′1yy ∗ C12

+ f ′′1y ∗ C12 ∗ D+ f ′′1y ∗ C′12 + f ′′1y ∗ C12 ∗ D+ f ′1 ∗ C12 ∗ D2 + f ′1 ∗ C′12 ∗ D
+ f ′′1y ∗ C13 ∗ iγ + f ′1 ∗ C13 ∗ iγ ∗ D+ f ′1 ∗ C′13 ∗ iγ + f ′′1y ∗ C′12 + f ′1 ∗ C′12 ∗ D
+ f ′1 ∗ C′′12 + f ′y ∗ iα + f ∗ iα ∗ D)− iγ (f ′′1y ∗ C31 ∗ iα + f ′1 ∗ C31 ∗ iα ∗ D
+ f ′1 ∗ C′31 ∗ iα + f ′′′1yy ∗ C32 + f ′′1y ∗ C32 ∗ D+ f ′′1y ∗ C′32 + f ′′1y ∗ C32 ∗ D
+ f ′1 ∗ C32 ∗ D2 + f ′1 ∗ C′32 ∗ D+ f ′′1y ∗ C33 ∗ iγ + f ′1 ∗ C33 ∗ iγ ∗ D
+ f ′1 ∗ C′33 ∗ iγ + f ′′1y ∗ C′32 + f ′1 ∗ C′32 ∗ D+ f ′1 ∗ C′′32)], (A 10)

vc22 = 1− β
ReW

[−k2(f ′2 ∗ C21 ∗ iα + f ′′2y ∗ C22 + f ′2 ∗ C22 ∗ D+ f ′2 ∗ C23 ∗ iγ + f ′2 ∗ C′22

+ f ′y + f ∗ D)− iα(f ′′2y ∗ C11 ∗ iα + f ′2 ∗ C11 ∗ iα ∗ D+ f ′2 ∗ C′11 ∗ iα
+ f ′′′2yy ∗ C12 + f ′′2y ∗ C12 ∗ D+ f ′′2y ∗ C′12 + f ′′2y ∗ C12 ∗ D+ f ′2 ∗ C12 ∗ D2

+ f ′2 ∗ C′12 ∗ D+ f ′′2y ∗ C13 ∗ iγ + f ′2 ∗ C13 ∗ iγ ∗ D+ f ′2 ∗ C′13 ∗ iγ
+ f ′′2y ∗ C′12 + f ′2 ∗ C′12 ∗ D+ f ′2 ∗ C′′12)− iγ (f ′′2y ∗ C31 ∗ iα + f ′2 ∗ C31 ∗ iα ∗ D
+ f ′2 ∗ C′31 ∗ iα + f ′′′2yy ∗ C32 + f ′′2y ∗ C32 ∗ D+ f ′′2y ∗ C′32 + f ′′2y ∗ C32 ∗ D
+ f ′2 ∗ C32 ∗ D2 + f ′2 ∗ C′32 ∗ D+ f ′′2y ∗ C33 ∗ iγ + f ′2 ∗ C33 ∗ iγ ∗ D
+ f ′2 ∗ C′33 ∗ iγ + f ′′2y ∗ C′32 + f ′2 ∗ C′32 ∗ D+ f ′2 ∗ C′′32)], (A 11)

vc33 = 1− β
ReW

[−k2(f ′3 ∗ C21 ∗ iα + f ′′3y ∗ C22 + f ′3 ∗ C22 ∗ D+ f ′3 ∗ C23 ∗ iγ + f ′3 ∗ C′22)

− iα(f ′′3y ∗ C11 ∗ iα + f ′3 ∗ C11 ∗ iα ∗ D+ f ′3 ∗ C′11 ∗ iα + f ′′′3yy ∗ C12 + f ′′3y ∗ C12 ∗ D
+ f ′′3y ∗ C′12 + f ′′3y ∗ C12 ∗ D+ f ′3 ∗ C12 ∗ D2 + f ′3 ∗ C′12 ∗ D+ f ′′3y ∗ C13 ∗ iγ
+ f ′3 ∗ C13 ∗ iγ ∗ D+ f ′3 ∗ C′13 ∗ iγ + f ′′3y ∗ C′12 + f ′3 ∗ C′12 ∗ D+ f ′3 ∗ C′′12)

− iγ (f ′′3y ∗ C31 ∗ iα + f ′3 ∗ C31 ∗ iα ∗ D+ f ′3 ∗ C′31 ∗ iα + f ′′′3yy ∗ C32 + f ′′3y ∗ C32 ∗ D
+ f ′′3y ∗ C′32 + f ′′3y ∗ C32 ∗ D+ f ′3 ∗ C32 ∗ D2 + f ′3 ∗ C′32 ∗ D+ f ′′3y ∗ C33 ∗ iγ
+ f ′3 ∗ C33 ∗ iγ ∗ D+ f ′3 ∗ C′33 ∗ iγ + f ′′3y ∗ C′32 + f ′3 ∗ C′32 ∗ D
+ f ′3 ∗ C′′32 + f ′y ∗ iγ + f ∗ iγ ∗ D)], (A 12)
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vc12 = 1− β
ReW

[−k2 ∗ f ∗ iα − iα(f ′′1y ∗ C′11 + f ′1 ∗ C′′11 + f ′1 ∗ C′11 ∗ D+ f ′′2y ∗ C′22

+ f ′2 ∗ C′′22 + f ′2 ∗ C′22 ∗ D+ f ′′3y ∗ C′33 + f ′3 ∗ C′′33 + f ′3 ∗ C′33 ∗ D
+ f ′y ∗ D+ f ∗ D2)], (A 13)

vc13 = 1− β
ReW

[−iα(f ′y ∗ iγ + f ∗ iγ ∗ D)− iγ (f ′y ∗ iα + f ∗ iα ∗ D)], (A 14)

vc23 = 1− β
ReW

[−k2 ∗ f ∗ iγ − iγ (f ′′1y ∗ C′11 + f ′1 ∗ C′′11 + f ′1 ∗ C′11 ∗ D+ f ′′2y ∗ C′22

+ f ′2 ∗ C′′22 + f ′2 ∗ C′22 ∗ D+ f ′′3y ∗ C′33 + f ′3 ∗ C′′33

+ f ′3 ∗ C′33 ∗ D+ f ′y ∗ D+ f ∗ D2)], (A 15)

ηc11 = 1− β
ReW

[iγ (f ′1 ∗ C11 ∗ iα + f ′′1y ∗ C12 + f ′1 ∗ C12 ∗ D

+ f ′1 ∗ C13 ∗ iγ + f ′1 ∗ C′12 + f ∗ iα)− iα(f ′1 ∗ C31 ∗ iα + f ′′1y ∗ C32

+ f ′1 ∗ C32 ∗ D+ f ′1 ∗ C33 ∗ iγ + f ′1 ∗ C′32)], (A 16)

ηc22 = 1− β
ReW

[iγ (f ′2 ∗ C11 ∗ iα + f ′′2y ∗ C12 + f ′2 ∗ C12 ∗ D

+ f ′2 ∗ C13 ∗ iγ + f ′2 ∗ C′12)− iα(f ′2 ∗ C31 ∗ iα + f ′′2y ∗ C32

+ f ′2 ∗ C32 ∗ D+ f ′2 ∗ C33 ∗ iγ + f ′2 ∗ C′32)], (A 17)

ηc33 = 1− β
ReW

[iγ (f ′3 ∗ C11 ∗ iα + f ′′3y ∗ C12 + f ′3 ∗ C12 ∗ D+ f ′3 ∗ C13 ∗ iγ

+ f ′3 ∗ C′12)− iα(f ′3 ∗ C31 ∗ iα + f ′′3y ∗ C32 + f ′3 ∗ C32 ∗ D
+ f ′3 ∗ C33 ∗ iγ + f ′3 ∗ C′32 + f ∗ iγ )], (A 18)

ηc12 = 1− β
ReW

[iγ (f ′y + f ∗ D)], (A 19)

ηc13 = 1− β
ReW

[iγ ∗ f ∗ iγ − iα ∗ f ∗ iα], (A 20)

ηc23 = 1− β
ReW

[−iα(f ′y + f ∗ D)]. (A 21)

Finally,

B22 =



Kfp + J1 ∗ C11 J2 ∗ C11 J3 ∗ C11 2U′ 0 0
J1 ∗ C22 Kfp + J2 ∗ C22 J3 ∗ C22 0 0 0
J1 ∗ C33 J2 ∗ C33 Kfp + J3 ∗ C33 0 0 0
J1 ∗ C12 U′ + J2 ∗ C12 J3 ∗ C12 Kfp 0 0
J1 ∗ C13 J2 ∗ C13 J3 ∗ C13 0 Kfp U′

J1 ∗ C23 J2 ∗ C23 J3 ∗ C23 0 0 Kfp


, (A 22)

where Ji =−f ′i /W and Kfp =−iαU − f /W.

R E F E R E N C E S

ARORA, K. & KHOMAMI, B. 2005 The influence of finite extensibility on the eigenspectrum of
dilute polymeric solutions. J. Non-Newtonian Fluid Mech. 129, 56–60.

ARRATIA, P. E., THOMAS, C. C., DIORIO, J. & GOLLUB, J. P. 2006 Elastic instabilities of
polymer solutions in cross-channel flow. Phys. Rev. Lett. 96, 144502.



278 M. Zhang, I. Lashgari, T. A. Zaki and L. Brandt

ATALIK, K. & KEUNINGS, R. 2002 Non-linear temporal stability analysis of viscoelastic plane
channel flows using a fully-spectral method. J. Non-Newtonian Fluid Mech. 102, 209–319.

BERLIN, S., LUNDBLADH, A. & HENNINGSON, D. S. 1994 Spatial simulations of oblique transition.
Phys. Fluids 6, 1949–1951.

BERTI, S., BISTAGNINO, A., BOFFETTA, G., CELANI, A. & MUSACCHIO, S. 2008 Two-
dimensional elastic turbulence. Phys. Rev. E 77, 055306.

BIRD, R., CURTISS, C., ARMSTRONG, R. & HASSAGER, O. 1987 Dynamics of Polymer Liquids.
Vol. 2. Kinetic Theory. Wiley.

BISTAGNINO, A., BOFFETTA, G., CELANI, A., MAZZINO, A., PULIAFITO, A. & VERGASSOLA, M.
2007 Nonlinear dynamics of the viscoelastic Kolmogorov flows. J. Fluid Mech. 590, 61–80.

BLONCE, L. 1997 Linear stability of Giesekus fluids in Poiseuille flow. Mech. Res. Commun. 24,
223–228.

BURGHELEA, T., SEGRE, E. & STEINBERG, V. 2006 Role of elastic stress in statistical and scaling
properties of elastic turbulence. Phys. Rev. Lett. 96, 214502.

BUTLER, K. M. & FARRELL, B. F. 1992 Three-dimensional optimal perturbations in viscous shear
flow. Phys. Fluids A 4 (8), 1637–1650.

CANUTO, C. G., HUSSAINI, M. Y., QUARTERONI, A. & ZANG, T. A. 2007 Spectral Methods:
Evolution of Complex Geometries and Applications to Fluid Mechanics. Springer.

CRUZ, D., PINHO, F. & OLIVEIRA, P. 2005 Analytical solutions for fully developed laminar flow of
some viscoelastic liquids with a Newtonian solvent contribution. J. Non-Newtonian Fluid
Mech. 132, 28–35.

DE ANGELIS, E., CASCIOLA, C. M. & PIVA, R. 2002 DNS of wall turbulence: dilute polymers and
self-sustaining mechanisms. Comput. Fluids 31, 495–507.

DOERING, C. R., ECKHARDT, B. & SCHUMACHER, J. 2006 Failure of energy stability in
Oldroyd-B fluids at arbitrarily low Reynolds numbers. J. Non-Newtonian Fluid Mech. 135,
92–96.

DUBIEF, Y., WHITE, C. M., TERRAPON, V. E., SHAQFEH, E. S. G., MOIN, P. & LELE, S. K.
2004 On the coherent drag-reducing and turbulence-enhancing behaviour of polymers in wall
flows. J. Fluid Mech. 514, 271–280.

DUGUET, Y., BRANDT, L. & LARSSON, B. R. J. 2010 Towards minimal perturbations in
transitional plane Couette flow. Phys. Rev. E 82, 026316.

FARRELL, B. F. 1988 Optimal excitation of perturbations in viscous shear flow. Phys. Fluids 31 (8),
2093–2102.

FARRELL, B. F. & IOANNOU, P. J. 1993 Optimal excitation of three-dimensional constant shear flow.
Physics 5 (6), 1390–1400.
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JOVANOVIĆ, M. R. & KUMAR, S. 2011 Nonmodal amplification of stochastic disturbances in
strongly elastic channel flows. J. Non-Newtonian Fluid Mech. 166 (14/15), 755–778.



Linear stability analysis of channel flow of viscoelastic fluids 279

KLINKENBERG, J., DE LANGE, H. C. & BRANDT, L. 2011 Modal and non-modal stability of
particle-laden channel flow. Phys. Fluids 23 (6)064110.

KLINKENBERG, J., SARDINA, G., LANGE, H. C. D. & BRANDT, L. 2013 Numerical study of
laminar–turbulent transition in particle-laden channel flow. Phys. Rev. E 86, 043011.

LARSON, R. G. 1992 Instabilities in viscoelastic flows. Rheol. Acta 31 (3), 213–263.
LARSON, R. G. 2000 Turbulence without inertia. Nature 405, 27–28.
LARSON, R. G., SHAQFEH, E. S. G. & MULLER, S. J. 1990 A purely viscoelastic instability in

Taylor–Couette flow. J. Fluid Mech. 218, 573–600.
LIEU, B. K., JOVANOVIC, M. R. & KUMAR, S. 2013 Worst-case amplification of disturbances in

inertialess Couette flow of viscoelastic fluids. J. Fluid Mech. 723, 232–263.
MEULENBROEK, B., STORM, C., MOROZOV, A. N. & SAARLOOS, W. 2004 Weakly nonlinear

subcritical instability of visco-elastic Poiseuille flow. J. Non-Newtonian Fluid Mech. 116,
235–268.

MOROZOV, A. N. & SAARLOOS, W. 2005 Subcritical finite-amplitude solutions for plane Couette
flow of viscoelastic fluids. Phys. Rev. Lett. 95, 024501.

NOUAR, C., BOTTARO, A. & BRANCHER, J. P. 2007 Delaying transition to turbulence in channel
flow: revisiting the stability of shear-thinning fluids. J. Fluid Mech. 592, 177–194.

PORTEOUS, K. C. & DENN, M. M. 1972 Linear stability of plane Poiseuille flow of viscoelastic
liquids. Trans. Soc. Rheol. 16 (2), 295–308.

RANGANATHAN, B. T. & GOVINDARAJAN, R. 2005 Stabilization and destabilization of channel flow
by location of viscosity-stratified fluid layer. Phys. Fluids 13 (1).

REDDY, S. C., SCHMID, P. J. & HENNINGSON, D. S. 1993 Pseudospectra of the Orr–Sommerfeld
operator. SIAM J. Appl. Maths 53 (1), 15–47.

RENARDY, M. & RENARDY, Y. 1986 Linear stability of plane Couette flow of an upper convected
Maxwell fluid. J. Non-Newtonian Fluid Mech. 22, 23–33.

ROY, A., MOROZOV, A., SAARLOOS, W. V. & LARSON, R. G. 2006 Mechanism of polymer drag
reduction using a low-dimensional model. Phys. Rev. Lett. 97, 234501.

SADANANDAN, B. & SURESHKUMAR, R. 2002 Viscoelastic effects on the stability of wall-bounded
shear flows. Phys. Fluids 14 (1), 41–48.

SCHMID, P. J. & HENNINGSON, D. S. 2001 Stability and Transition in Shear Flows. Springer.
SHAQFEH, E. S. G. 1996 Purely elastic instabilities in viscometric flows. Annu. Rev. Fluid Mech. 28,

129–185.
STONE, P. A., ROY, A., LARSON, R. G., WALEFFE, F. & GRAHAM, M. D. 2004 Polymer drag

reduction in exact coherent structures of plane shear flow. J. Phys. Fluids 16 (9), 3470–3482.
SURESHKUMAR, R. & BERIS, A. N. 1995 Linear stability analysis of viscoelastic Poiseuille flow

using an Arnoldi-based orthogonalization algorithm. J. Non-Newtonian Fluid Mech. 56 (2),
151–182.

SURESHKUMAR, R., SMITH, M. D., ARMSTRONG, R. C. & BROWN, R. A. 1999 Linear
stability and dynamics of viscoelastic flows using time-dependent numerical simulations.
J. Non-Newtonian Fluid Mech. 82, 57–104.

TOMS, B. A. 1949 Some observations of the flow of linear polymer solution through straight tubes
at large Reynolds numbers. In Proceedings of the First International Congress on Rheology
(North-Holland, Amsterdam, 1949), vol. 2, pp. 135–141.

TREFETHEN, N., TREFETHEN, A. E., REDDY, S. C. & DRISCOLL, T. A. 1993 Hydrodynamic
stability without eigenvalues. Science 261, 578–584.

WEIDEMAN, J. A. & REDDY, S. C. 2000 A MATLAB differentiation matrix suite. ACM Trans.
Math. Softw. 26, 465–519.

WHITE, C. M. & MUNGAL, M. G. 2008 Mechanics and prediction of turbulent drag reduction with
polymer additives. Annu. Rev. Fluid Mech. 40, 235–256.

XI, L. & GRAHAM, M. D. 2010 Turbulent drag reduction and multistage transitions in viscoelastic
minimal flow units. J. Fluid Mech. 647, 421–452.

ZHAO, L. H., ANDERSSON, H. I. & GILLISSEN, J. J. J. 2010 Turbulence modulation and drag
reduction by spherical particles. Phys. Fluids 22, 081702.

ZHU, L., LAUGA, E. & BRANDT, L. 2011 Self-propulsion in viscoelastic fluids: pushers vs. pullers.
Phys. Fluids 24, 051902.


	Linear stability analysis of channel flow of viscoelastic Oldroyd-B and FENE-P fluids
	Introduction
	Hydrodynamic stability of elastic-dominated inertialess flows
	Hydrodynamic stability of viscoelastic-inertial flows

	Problem formulation
	Governing equations
	Base flow
	Channel flow of FENE-P fluids

	Linear stability problem
	Modal and non-modal stability analysis
	Energy analysis


	Numerical methods and validation
	Validation

	Modal stability of viscoelastic channel flow
	Energy analysis

	Non-modal stability
	Energy analysis

	Discussion and conclusions
	Appendix. Matrices of the linear stability problem
	References


	ikona: 
	249: 
	250: 
	251: 
	252: 
	254: 
	257: 
	258: 
	259: 
	260: 
	262: 
	263: 
	264: 
	265: 
	266: 
	267: 
	268: 
	269: 
	270: 
	271: 
	272: 
	273: 
	274: 

	animtiph: 
	1: 
	2: 
	3: 
	4: 
	5: 
	6: 
	7: 
	8: 
	9: 
	10: 
	11: 
	12: 
	13: 
	14: 
	15: 
	16: 
	17: 
	18: 
	19: 
	20: 
	21: 
	22: 
	23: 
	24: 
	25: 
	26: 
	27: 
	28: 
	29: 
	30: 
	31: 
	32: 
	33: 
	34: 
	35: 
	36: 
	37: 
	38: 
	39: 
	40: 
	41: 
	42: 
	43: 
	44: 
	45: 
	46: 
	47: 
	48: 
	49: 
	50: 
	51: 
	52: 
	53: 
	54: 
	55: 
	56: 
	57: 
	58: 
	59: 
	60: 
	61: 
	62: 
	63: 
	64: 
	65: 
	66: 
	67: 
	68: 
	69: 
	70: 
	71: 
	72: 
	73: 
	74: 

	TooltipField: 


