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Subcritical transition to turbulence requires finite-amplitude perturbations. Using a
nonlinear optimisation technique in a periodic computational domain, we identify the
perturbations of plane Couette flow transitioning with least initial kinetic energy for
Re ≤ 3000. We suggest a new scaling law Ec = O(Re−2.7) for the energy threshold vs.
the Reynolds number, in quantitative agreement with experimental estimates for pipe
flow. The route to turbulence associated with such spatially localised perturbations
is analysed in detail for Re = 1500. Several known mechanisms are found to occur
one after the other: Orr mechanism, oblique wave interaction, lift-up, streak bending,
streak breakdown, and spanwise spreading. The phenomenon of streak breakdown is
analysed in terms of leading finite-time Lyapunov exponents of the associated edge
trajectory. C© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4817328]

I. INTRODUCTION

It is well-established that most canonical wall-bounded shear flows can undergo transition to
turbulence even in the absence of linear instability of the corresponding base flow. Either the base
flow is linearly stable for all values of the Reynolds number Re, as is the case for the Hagen-Poiseuille
flow (the flow inside a circular pipe driven by a pressure gradient) and plane Couette flow (the flow
between two parallel plates moving in opposite directions), or it is linearly unstable for values of Re
large compared to those where turbulence can be observed experimentally, as in the case of plane
Poiseuille flow or boundary layer flows.1, 2 Transition to turbulence can be ensured by permanently
modifying the system, hence turning the stable base flow into an unstable one. This can be achieved
in practice by continuously forcing the flow or by randomly disturbing it on a long-time scale;
for instance by placing finite-size obstacles, by continuous blowing or suction at the walls, or by
using sufficiently rough surfaces. In this study, we will solely focus on situations where transition
is triggered by imposing a velocity disturbance at a time t = 0, mainly because of the convenient,
general, and well-posed mathematical framework associated with this initial value problem. In
the “subcritical” regime, only some perturbations of sufficiently high initial energy can lead to
turbulence. The first question that naturally arises is, for a given flow: what kind of perturbation can
lead to transition with least initial energy? If transition is considered as undesirable (because of the
increased wall friction), such a perturbation will be regarded as the most “dangerous” perturbation. If
instead persisting turbulence is desired (for instance to achieve efficient mixing), such a perturbation
would correspond to the energetically most “economical” way of inducing disorder in the system.
In both cases, this “minimal perturbation” can be regarded as optimal. A second challenge arising is
to identify the physical mechanisms by which it induces transition.

Together with the initial condition imposed at t = 0 and the boundary conditions, the mathemat-
ical system of equations governing the evolution of the velocity field is equivalent to an autonomous

a)Electronic mail: duguet@limsi.fr
b)Electronic mail: antonios@mech.kth.se
c)Electronic mail: luca@mech.kth.se
d)Electronic mail: henning@mech.kth.se

1070-6631/2013/25(8)/084103/23/$30.00 C©2013 AIP Publishing LLC25, 084103-1

http://dx.doi.org/10.1063/1.4817328
http://dx.doi.org/10.1063/1.4817328
mailto: duguet@limsi.fr
mailto: antonios@mech.kth.se
mailto: luca@mech.kth.se
mailto: henning@mech.kth.se
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4817328&domain=pdf&date_stamp=2013-08-06


084103-2 Duguet et al. Phys. Fluids 25, 084103 (2013)

dynamical system of the form ẋ = F(x) in an infinite-dimensional phase space with a metric (in
general understood as the total kinetic energy of a disturbance to the base flow) (see Fig. 1). The
stable laminar flow, the only linearly stable fixed point O of the system, is in competition with
a turbulent state T with strongly chaotic dynamics, which we assume to be an attractor for the
parameter Re considered in our study. This competition implies that O has a basin of attraction
B(O) delimited by its boundary �. � is an invariant set such that phase-space trajectories starting
on � stay on it indefinitely.3 � is often referred to as “the edge,” while relative attractors sitting
on � are referred to as “edge states.” The problem of finding the minimal seed to turbulence is
then equivalent to identifying a point M located arbitrarily close to �, yet outside B(O), such that
the distance d(O, M) is minimal for the metric chosen.4 The trajectory starting from M would by
construction leave the neighbourhood of � and reach T . How do M and d(O, M) evolve with
increasing Re? More specifically, if we use as a metric the kinetic energy of perturbations, can we
identify an exponent γ such that d(O, M) = Ec ∼ Re−γ for large Re?

Links between Reynolds number and transition to turbulence in wall-bounded shear flows
have a long history. Reynolds5 was probably first to point out the ratio of inertia to viscosity as
the main parameter in his investigation of circular pipe flow. Despite the fact that the equations
of motion are known, analytical derivation helps little in establishing thresholds. The most robust
analytical result is the existence of a so-called “Energy Reynolds number” ReE below which all
perturbations return monotonically (in the L2 norm) to the base flow. For plane Couette flow, ReE

≈ 20.7,6 which is well below the experimental values of ReG ≈ 320 − 370 at which turbulence
is observed in experiments.7, 8 Linearising the equations of motion around the base flow yields the
classical Orr-Sommerfeld equation (when dealing with spanwise-independent perturbations) and
the Orr-Sommerfeld-Squire system of equations for more generic three-dimensional perturbations.9

However, the case of plane Couette flow (as that of circular pipe flow) is peculiar since no solution of
the linearised system is found to grow exponentially in time, a result that holds for all values of Re.10

In other words, the critical value ReL for linear instability is here ReL = ∞. Real transition occurs
strictly between ReE and ReL. A first step towards untangling this apparent contradiction is to realise
that the linearised operator L is non-normal, i.e., LL* �= L*L. Still using the L2 norm, non-normality
permits transient algebraic growth of some perturbations for Re > ReE even in the linear regime,11–13

while in the case LL* = L*L we recover ReL = ReE.14 An important consequence of the non-
normality of L is that initially small perturbations can be amplified up to a level where nonlinearity
can no longer be neglected. Another fact of importance is that, according to the Reynolds-Orr
equation governing the evolution of the kinetic energy of a perturbation, only the linear terms
of the Navier-Stokes equations contribute to the instantaneous change of the kinetic energy E(t):
because the nonlinear terms are energy-conserving, they can only contribute to energy transfer
between various wavenumbers but do not produce energy themselves.15 Following the success of
the linearised approach, a vast number of methods have been developed to compute linearly optimal
modes, those with an energy gain G(T) = E(T)/E0 maximal for a given time T. Two-dimensional
(i.e., spanwise-independent) optimal perturbations were identified in plane Couette flow as spanwise
vortices leaning against the shear.16 The only mechanism for energy growth identified here is the Orr
mechanism,17 where the shear essentially tilts the vortices into the direction of the flow, inducing mild
transient growth of the energy while the total vorticity decays monotonically. Three-dimensional
optimal modes are a much more efficient mechanism to extract energy from the base flow. The
associated velocity field corresponds to exactly two-dimensional streamwise vortices (SV). The
energy-extracting mechanism here is the lift-up mechanism,15, 18–21 where the vortices bring fast
fluid from the boundaries to the bulk of the flow, where streamwise velocity is lower: the excess of
streamwise velocity creates high-speed “streaks”, i.e., fast lanes within the flow, while slow fluid
advected towards the boundaries creates low-speed streaks. The gain in kinetic energy G scales like
Re2 and is thus strong at high values of Re.15 The popularity of this linear mechanism is linked to
the experimental evidence for both high and low-speed streaks in the near-wall region of all wall
flows, with a mean spanwise spacing of 100h+ reasonably well reproduced by optimal modes.22

Closer inspection of the growth of three-dimensional optimal modes also revealed the occurrence
of the Orr mechanism.23 A computationally powerful method to identify linearly optimal modes is
to consider a Lagrangian L(q, q∗, q0, q∗

0), where q is a state-space vector containing all physical
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variables of interest, q0 is its value at initial time t = 0, q∗ is the vector adjoint to q with respect
to L. L is defined as the sum of an objective function to be maximised (typically the energy gain
G(T), where T is an additional parameter) and constraints defined using Lagrange multipliers.13 An
optimal vector q0 is found iteratively by power iterations of the operator et Let L∗

. Note that in parallel
shear flows, the linearly optimal modes are streamwise-independent and cannot induce transition by
themselves in a nonlinear setting: either noise or streamwise dependent “sub-optimal” modes have
to be superimposed. Suppose now that optimal modes can be represented in the streamwise and
spanwise directions using two fundamental wave numbers α and β, respectively, and denote a = αkx

and b = βkz integer multiples of α and β. An important class of sub-optimal modes corresponds
to the subspaces spanned by (a, b) and (a, −b), with a, b �= 0. Two wave vectors defined by (a, b)
and (a, −b) can interact nonlinearly and exchange energy to feed the mode (0, 2b), itself contained
in the subspace of streamwise-independent modes, known to have the largest energy gain. This
is the so-called Oblique Wave scenario.24 Transition thresholds have been computed for both the
streamwise vortices scenario (with the addition of numerical noise) and for the OW scenario in an
almost-minimal periodic domain of plane Couette flow. The energy thresholds for the associated
perturbations have been first reported25, 26 to scale Re−2, and later Re−2.5, considerably lower than
the theoretical bound25 γ = 21/2. These thresholds were later again refined using better numerical
precision to Ec = 4Re−2, the OW scenario needing a decade less in energy than the SV scenario
to induce transition.27 Note that we have here defined γ for the energy of perturbations rather than
for the corresponding amplitude Ac considered by other authors. The same exponent γ = 2 was
suggested analytically.28 Waleffe and Wang, anticipating the concept of edge state,29 also suggested30

γ = 2. According to Waleffe’s scenario, after transient growth by a gain G = O(Re2) the flow should
equilibrate near a finite-amplitude state31 that only asymptotically does not depend on Re. Other
estimates for the energy threshold necessary for transition can be found in studies of circular pipe
flow: a scaling Ec = O(Re−2) was found experimentally by injecting fluid over a brief period of
time.32 It was confirmed both experimentally33 and numerically34 in pipe flow as well as in plane
channel flow.35 A steeper exponent γ ≈ 2.8 was also identified in pipe flow by applying “push-pull”
perturbations conserving the flow-rate,36, 37 a scenario confirmed later numerically.34

Nonlinear optimisation methods were developed only recently due to the large computational and
storage cost associated with them.38 It was pointed out that finite-amplitude perturbations maximising
the energy gain after a finite time departed strongly from the linearly optimal modes associated to
infinitely small initial energies.38 The identification of “minimal seeds” was carried out in Blasius
boundary layers39, 40 using an analogous objective function and again in pipe flow.41 All those studies
demonstrate that minimal seeds are spatially localised, delocalisation with time being an additional
means for the perturbation of gaining kinetic energy. Monokrousos et al. (hereafter referred to as
M1142) considered a different objective function, the time-integrated dissipation rate, rather than
the usual energy gain G(t). The original motivation stems out from a heuristic principle according
to which wall-bounded turbulent flows (with time-invariant boundary conditions) correspond to
statistically steady states maximising the total viscous dissipation under the constraint of a given
mean velocity profile.43 The outcome of the nonlinear optimisation in M11 is an initially spatially
localised perturbation for each energy value ε0 considered. Varying ε0 allowed M11 to identify, for a
given value of Re, the energy level below which the functional considered could no longer reach large
values typical of turbulent episodes. Clearly, this critical energy should correspond to Ec provided
the optimisation method returns the global optimum. It has been recently suggested, considering the
same system of plane Couette flow, that optimising the energy gain G does not significantly alter
the shape and energy of the corresponding minimal seed provided the optimisation is initiated for
values of ε0 < Ec.44 In what follows, we extend the approach initiated in M11 and consider varying
Re, and we identify new nonlinearly optimised transition thresholds.

The goal of this study is to demonstrate the applicability of this numerical approach for the
example of plane Couette flow in a moderate-size periodic domain. Once minimal perturbations are
found and described, the optimal route to the turbulent state is described with an emphasis on the
various phases of the process. A recent study has focused similarly on the transition mechanisms
at low Re = 400 for large initial amplitudes.45 Here we focus on the evolution from a minimal
perturbation obtained at a large value of Re = 1500. As we shall see, along this special route,
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several individual simple mechanisms can be identified, known from previous investigations under
restrictive hypotheses such as linearity, two-dimensionality, or time-independence. This represents
an opportunity to compare a transition mechanism in its globality to its separate building blocks,
and to evaluate as well as discuss the validity of former approaches. Section II contains definitions,
governing equations, and numerical techniques employed in this study. Section III introduces the
optimisation procedure approach briefly exposed in M11 and focuses on the variation of minimal
thresholds with Re . The description in Sec. IV unfolds the various mechanisms at play on the
optimal trajectory. Section V contains a discussion of the results in relation with the recent literature
on the topic.

A. Numerical method

Plane Couette flow (pCf) is the incompressible flow of a Newtonian fluid of kinematic viscosity ν,
sheared between two infinite walls separated by a gap 2h and moving with velocities ±U. Throughout
this study, only non-dimensional variables will be used, where U is the unit for velocities, h is the
unit for distances, and density is unity. The Reynolds number is classically defined as Re := Uh

ν
. We

denote by x, y, and z the streamwise, wall-normal, and spanwise coordinates, respectively, and ex

is the streamwise unit vector. For the case of plane Couette flow, the base flow writes U = yex and
is associated with a homogeneous pressure field. The dynamics of a velocity-pressure perturbation
(u, p) to the base flow U is ruled here by the perturbative nonlinear Navier-Stokes equations for the
velocity field u = (ux , uy, uz) and the pressure field p:

∂u
∂t

+ (U · ∇)u + (u · ∇)U + (u · ∇)u

+∇ p − 1

Re
∇2u = 0, (1)

∇ · u = 0, (2)

which can be written in the form

∂t u − N(u) + ∇ p = 0. (3)

Perturbations in velocity are subject to the boundary conditions u(y = ±1) = 0, while U
(y = ±1) = ±1.

Equations (1) and (2) are solved using direct numerical simulation in velocity-vorticity
formulation46 and the pressure term needs not be evaluated. The wall-normal velocity and the
wall-normal vorticity are decomposed into Ny Chebyshev polynomials in the y direction, Nx Fourier
modes in the x (streamwise) direction, and Nz Fourier modes in the z (spanwise) directions. The flow
is advanced in time using an explicit fourth-order Runge-Kutta integrator with fixed timestep. The
adjoint Navier-Stokes (introduced later) are integrated backwards in time using the same algorithm.

The flow is simulated inside a domain of size 	 = [0: Lx] × [ − 1: 1] × [ − Lz/2: Lz/2] with
periodic boundary conditions in x and z, see the sketch in Fig. 2. As in former studies,26, 27, 42 we
choose here Lx = 4π and Lz = 2π . Accurate numerical resolution is used here, with (Nx, Ny, Nz)
= (128, 73, 64) for Re = 750 and 1500, (160, 81, 96) for Re = 2000, and (192, 81, 128) for
Re = 3000.

We define the energy of perturbations to the base flow by

E = 1

4Lx Lz

∫
	

∑
i

|ui |2dxdydz, (4)

the viscous dissipation by

D = 1 + 1

Re

1

2Lx Lz

∫
	

∂ui

∂x j

∂ui

∂x j
dxdydz, (5)
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FIG. 1. Schematic view of the phase-space associated to the flow. O is the (stable) laminar state. � represents the laminar-
turbulent boundary. The “edge state” S is the (unstable) asymptotical state on �. M is the minimal perturbation able to trigger
transition to the turbulent state, i.e., the point on � closest to O in energy norm.

and the input energy by the wall shear by

I = 1 + 1

2Lx Lz

∫ x=Lx

x=0

∫ z=Lz

z=0

(
∂ux

∂y
|y=−1 + ∂ux

∂y
|y=1

)
dxdz. (6)

The Reynolds-Orr equation writes in this case

d E

dt
= I − D. (7)

II. NONLINEAR OPTIMISATION PROCEDURE

The Lagrangian approach is used here where an objective function J is chosen on physical
grounds and constraints are specified in the form of Lagrange multipliers. We are looking for
stationary points of the Lagrange functional L, where optimality is fulfilled with respect to the
various design variables. The direct variables in the optimisation are contained in a large vector ũ
containing the perturbation velocity field u(x, t) and the pressure field p(x, t), and is considered in
a suitable space of functions defined on 	 × [0: T]. In order to keep notations compact, we will use
the following metrics:

< ·, · >	= 1

2Lx Lz

∫ x=Lx

x=0

∫ z=Lz

z=0

∫ y=1

y=−1
(·, ·)dxdydz, (8)

� ·, · 	=
∫ T

0
< ·, · >	 dt. (9)

Obvious dynamical constraints are:
(i) ∂t u − N(u) − ∇ p = 0
(ii) ∇ · u = 0

both to be satisfied at each point in 	 and each time t ∈ ]0: T[.

Let us define formally functionals acting on the space of velocity/pressure fields and corre-
sponding to the initial energy

ε : ũ → E = 1

2
< u(t = 0), u(t = 0) >	 (10)
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and to the total time-averaged dissipation

J : ũ → 1

T

∫ T

0
D(t)dt, (11)

where D(t) is the viscous dissipation defined in Eq. (5).

Note that time-integration of Eq. (7) between t = 0 and T yields

E(T ) − E(0)

T
= 1

T

∫ T

0
Idt − J ,

which provides a link between our objective function J and the energy gain G(T) considered by
previous authors:

J =
(

1

T

∫ T

0
Idt

)
− E(0)

T
(G − 1). (12)

The term containing (G − 1) in Eq. (12) becomes negligible for large T since G is always bounded in
a nonlinear context. The main advantage of using the present objective function J over G is that it is
not an instantaneous quantity defined at a single time. It contains instead an average contribution of
positive D(t) at all times, and saturates for large T in a monotonous way. In contrast to G(t), it neither
undergoes rapid variations nor pronounced overshoots when approaching the edge (see Sec. V B in
Ref. 27) or the turbulent regime. Also, maximising J amounts to maximising the area between 0
and D(t) > 0 in the interval [0: T]. This implies for ε0 > Ec that the algorithm seeks the trajectory
reaching high dissipation in the fastest way.

We will impose the additional constraint on u(x, t):
(iii) the energy of the perturbation at t = 0 is set to ε0, i.e.,

ε(ũ) = ε0. (13)

The scalar Lagrangian functional L is introduced in the form

L(X) = J (ũ)− � v, ∂t u − N(u) + ∇ p 	
− � q,∇ · u 	 −λ(ε(ũ) − ε0), (14)

where X = (ũ, v, q, λ) is a compact variable containing ũ, as well as all Lagrange multipliers (or
adjoint variables): the adjoint velocity field v(x, t), the adjoint pressure field q(x, t), and a scalar
coefficient λ. By construction, derivation of the Lagrangian with respect to the dual variables v, q,
and λ yields, respectively

∂vL = −(∂t u − N (u) + ∇ p), (15)

∂qL = −∇ · u, (16)

∂λL = −(ε(ũ) − ε0). (17)

The state u maximising J under all constraints is solution of ∂XL = 0. We thus also need to
evaluate ∂ũL. We use integration by parts to evaluate

∂uJ = − 1

T Re
∇2u. (18)

For the term including the time-derivative ∂t u, we again use integration by parts

� v, ∂t u 	= [< v, u >	]T
0 − � ∂tv, u 	 . (19)

Evaluating derivatives of L with respect to “columns” ũ(t) for a given t ∈ ]0: T[, we note that
∂uL = 0 and ∂pL = 0 imply respectively:44

∂v

∂t
+ N†(v, u) − ∇q − 1

T Re
∇2u = 0, (20)
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∇ · v = 0, (21)

where

N†(v, u) = ∂x j u jvi − v j∂xi u j − ∂x j U jvi

−v j∂xi U j + 1

Re
∂2

x j
vi (22)

is a quadratic form with respect to both u and v. Because it also depends on u, the fields u(x, t)
need be stored at all times for the later time-integration of Eq. (20). As for the direct pressure term
in Eq. (1), the dual pressure term −∇q in Eq. (20) need not be evaluated since this equation will be
time-stepped in the velocity-vorticity formulation.

This is valid for all times t except at t = 0 and t = T where the velocity fields u0 = u(x, t = 0)
and uT = u(x, t = T ) appear explicitly out of spatial integrals in Eqs. (14) and (19):

∂u0L = −λu0 + v(x, t = 0), (23)

∂uT L = −v(x, t = T ). (24)

Equating the expression in Eq. (24) to zero would lead to the compatibility conditions

u0 = 1

λ
v(x, t = 0), (25)

v(x, t = T ) = 0. (26)

Starting from a velocity field u(k)
0 , k ≥ 0 which constitutes an initial guess for the optimal

corresponding to an imposed value of ε0, we use the classical forward-backwards iterative method
to obtain the next guess u(k+1)

0 . Starting from the initial condition u(t = 0) = u(k)
0 , Eq. (3) is integrated

from t = 0 to t = T. At t = T, the compatibility condition in Eq. (26) is used to initialise v(t = T ).
Equation (20) is then integrated backwards in time until t = 0 (only backwards integration is possible
because of the negative diffusion in Eq. (22)). If the algorithm has converged, all derivatives in ∂XL
vanish. Far enough from convergence, this is true except for ∂u0Lwhich will progressively be brought
to zero using a relaxation technique

u(k+1)
0 = σ u(k)

0 + (1 − σ )(∂u0L)(k), (27)

where σ = 0.95 is used and (∂u0L)(k) is evaluated as a function of u(k)
0 and v

(k)
0 using Eq. (25). When

reinitialising k by k + 1, the normalisation constraint in Eq. (13) is eventually used to fix the value
of the multiplier λ. The main computational difficulty of the algorithm concerns the heavy storage
of the snapshots of u during forward time-stepping, later used to compute the forcing terms for
backwards time-stepping the dual evolution in Eq. (20). Note the lighter storage alternative by the
method of “checkpointing”.41

The algorithm is initialised by a field u(k=0)
0 corresponding to random divergence-free noise

for values of ε0 far above the expected threshold, and by linear optimals47 for small ε0. When
approaching ε0 = Ec from above, the result of one optimisation is used as input for the next one,
until ε0 is low enough for relaminarisation (hence low values of the objective function J ) to be
inevitable.

For small ε0 convergence towards the linear optimal state is as expected fast.38, 41, 44 On the
contrary, for too large values of ε0, the algorithm wanders around without converging. Being
interested in threshold values for ε0, we actually take this as an advantage because the algorithm
avoids stagnating near local minima of J potentially located in B(O), and hence does identify
turbulent episodes. Satisfactory convergence was obtained for ε0 � Ec, judging from several norms
(such as J , energies or ||u||∞) and from the shape of the final state which is independent of both
k and T (provided T ≥ 300, see M11). We did not investigate convergence properties further, the
most important outcome of this optimisation being the identification of at least one episode of
high dissipation as long as ε0 > Ec. We note that the exact value ε0 = Ec, by construction, would
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FIG. 2. Geometry and notations for plane Couette flow.

correspond to the state M being exactly on � (see Fig. 1). The associated trajectory hence cannot
trigger turbulence in a finite time, whereas any arbitrarily small and well-oriented deviation from M
can. This constitutes a singular limit for the optimisation procedure: the integration time T diverges
as ε0 approaches the exact value of Ec from above. Fortunately, in practice a two-digit accuracy for
Ec is within reach with T ≤ 400.

III. RESULTS

A. Nonlinear transition threshold

By varying the initial energy ε0 for a given value of Re, and listing whether turbulent (high
values of the dissipation) episodes are encountered either as end-results or as transient visits during
the optimisation procedure, it is possible to find the energy level Ec below which no transition to
turbulence can occur. The accuracy of the procedure is limited by the number of values of ε0 swept
through, which if large can lead to enormous computational costs. Nevertheless, a two-digit accuracy
on Ec is within reach. Here we are interested in the scaling of Ec with respect to increasing values of
Re, and we have hence repeated the estimation of Ec for four values of Re = 750, 1500, 2000, and
3000, ensuring that the numerical resolution was well adapted to each case. The minimal threshold
energy Ec = f(Re) is shown in Fig. 3. A clear power-law scaling Ec = O(Re−γ ) emerges with
γ ≈ 2.7, which is valid over the range Re ∈ [750: 3000]. It is steeper than all estimates given so far,
where γ was closer to 2 (or equivalently Ac = O(Re−1) in amplitude). Not only the exponent but
also the total energy is also lower than in former studies, meaning that the minimal perturbations
found here have lower energy than all previously found perturbations. For comparison, the threshold
curve obtained for oblique waves, associated with the exponent γ = 2 and computed in the same
computational box,27 is also shown in Fig. 3.

B. Optimal initial conditions

We show the various minimal perturbations identified for Re = 750, 1500, 2000, and 3000
in Fig. 4. Here we use the same plotting scheme as M11 for better comparison, i.e., we plot iso-
contours of the streamwise velocity perturbation ux corresponding to 0.65 times the maximum.
Despite small discrepancies due to the difficulty of landing exactly on �, it is striking that all the
perturbations identified here belong to a unique class of minimal perturbations, characterised by
a staggered pattern of alternatively positive and negative velocities, inside a three-dimensionally
localised region. All perturbations are oriented in a direction pointing against the shear, suggesting
that the Orr mechanism will be at play at early times, as will be verified later. There is a trend
towards stricter localisation as Re increases, suggesting some sort of self-similarity. However, this
is here difficult to confirm quantitatively and would probably, even if physically plausible, be
affected by the periodic boundary conditions. It is also interesting to compare to the minimal field
identified in Ref. 27 (Fig. 5) using a small projection basis: only the localisation properties seem to
differ. We can thus reasonably expect analogies between the route to turbulence associated to either
perturbation.
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FIG. 3. Energy threshold Ec vs. Re for Re = 750, 1500, 2000, and 3000. Stars represent the largest tested value of E0 below
which transition never occurs, while crosses represent the smallest tested value of E0 for which transition occurs at least
once. The fit 125Re−2.7 (pink) is compared to the fit 4Re−2 (black) obtained for the Oblique Wave scenario for the same
computational box (data from Ref. 27).

FIG. 4. Nonlinear optimal conditions for Re = 750, 1500, 2000, and 3000. Iso-contours of the streamwise velocity pertur-
bation u′ corresponding to ±0.65max ux. Blue arrows represent the base flow Ux = y.
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FIG. 5. Spectral distribution of kinetic energy log e(kx, kz) normalised by its maximum, for the minimal seed for
Re = 1500 at t = 0, t = 10, t = 100, and t = 180 (from left to right and from top to bottom). The iso-contours corre-
spond to E/max(E) = 10−1, 10−5, and 10−10.

IV. OPTIMAL PATH TO TURBULENCE FOR Re = 1500

A. Spectral portrait

We choose here to focus on the temporal evolution from the minimal seed identified for
Re = 1500. We begin by analysing the spectral energy distribution of Fourier modes corresponding
to the minimal seed. We define the spectral distribution of kinetic energy e(kx, kz) by

e(kx , kz) =
∫ y=1

y=−1

(|ûx |2| + |û y|2 + |ûz|2
)

(αkx ,βkz ) dy, (28)

where (α, β) is the fundamental wavevector (2π /Lx, 2π /Lz). Figure 5 shows the spectrum corre-
sponding to the minimal seed at t = 0 (top left panel), as well as its temporal evolution at later
times t = 10, 100, and 180 (where the flow is turbulent). At t = 0, the most energetic modes are of
the type (kx, kz) = (0, n) but their immediate followers are (1, ±1), (2, ±1), (3, ±1), (4, ±1), and
(1, ±2), i.e., oblique modes. Little energy is also contained in the kx = 0 modes and it increases with
|kz|, consistently with the spanwise localisation, while very little energy is contained in the kz = 0
subspace. This clearly indicates that oblique modes dominate the spectrum of the initial condition,
and that the oblique wave scenario, involving transfer of energy towards the kx = 0 axis, is expected
to dominate the modal interactions for t > 0. This is verified at t = 100 where most of the energy is
concentrated in a stripe around kx = 0, including to a lesser extent modes with kx = 1, 2, that involve
all wave numbers kz ≤ 20. This is interpreted as nonlinear transfer of energy from all kx �= 0 modes
towards the dominant structures that are almost streamwise-independent.24
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Figure 6 shows the energy gain G vs. time, i.e., the kinetic energy normalised by its initial value.
Also shown are the energy gains per velocity component Gx, Gy, and Gz, defined by

Gx (t) = 1

2

u2
rms(t)

E(0)
, G y(t) = 1

2

v2
rms(t)

E(0)
, Gz(t) = 1

2

w2
rms(t)

E(0)
, (29)

where for simplicity, we define urms =< ux ex , ux ex >	, vrms =< uy ey, uy ey >	, and wrms

=< uz ez, uz ez >	, with ei the unit vector in the direction i = x, y, z. Those gains are defined
such that G = Gx + Gy + Gz. Figure 6 shows a clear uninterrupted growth of the kinetic energy
until t ≈ 200, followed by a stabilisation of the average gain around G ≈ 2.10+5, indicating that
the statistically steady turbulent regime has been reached. As expected, the turbulent regime shows
irregular fluctuations of the energy. Comparison of the various components building the gain makes
it clear that although not initially significant, the contribution of the streamwise velocity component
Gx dominates from t ≥ 10 onwards. The gains Gy and Gz, despite growing in magnitude from
t ≈ 30 − 40 onwards, are not important until a dramatic increase occurs near t ≈ 150, followed
slightly later by a faster increase of Gx. Note that the approach to the average turbulent equilibrium
is characterised by a strong overshoot of both Gy and Gz that is less pronounced for Gx. All these
phases of the energy growth correspond to various instability mechanisms to which the rest of this
paper is devoted.

In order to highlight the various instability phenomena occurring on the corresponding path
towards the turbulent state, we chose to mainly focus on the evolution of the velocity field in
physical space. Three planes turn out to give an insightful representation of the dynamical evolution
of the flow. We use here the following notations: pz represents a plane with z = cst (here taken as
z = −1.57), px a plane with x = cst (here x = 0), and py a plane with y = cst (here y = −0.5). As
will become clear in the following, pz is best associated to the description of the Orr mechanism,
px to the lift-up effect, and py to streak breakdown. It is noteworthy how those three stages of the
transition seem to occur one after the other rather than all combined together. How much this is a
feature of the transition induced by the minimal seed only remains to be verified.

B. Orr mechanism

The linear Orr mechanism,17 also termed Reynolds stress mechanism,20 expresses the tilting of
spanwise vorticity by the mean flow. It is most easily understood by assuming two-dimensionality
(here, spanwise invariance) and small perturbation amplitude. The equation for the vorticity per-
turbation ωz is obtained by taking the z-component of the curl of the linearised version of Eq. (1):

(∂t + U (y)∂x − Re−1∇2)ωz = uyU ′′, (30)

where for plane Couette flow U(y) = y and U′′ = 0. Equation (30) is linear in ωz and constitutes
the main mechanism for energy growth for the two-dimensional linear optimal modes. A common
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FIG. 7. Left: Spanwise vorticity ωz in the plane pz : z = − π
2 at times t = 1, 10, 20, and 30. Right: Angle θ computed

using the second eigenvalue of the Hessian tensor of ωz at the minimum of ωz |pz vs. time. Comparison with theoretical
two-dimensional angle θ2D(t) for a Kelvin wave solution.

interpretation is that any initial patch of perturbation spanwise vorticity is sheared and hence tilted
into the direction of the shear,48 until viscosity acts against further stretching. This non-normal
mechanism is responsible for initial energy growth in two dimensions. Using the notation r = (x, y),
Eq. (30) admits a Kelvin mode solution

ωz(t) = A(t)ei k(t)·r ,

where

d A

dt
= −|k|2

Re
A

and

k(t) = (kx (t∗), ky(t∗) − kx (t∗)(t − t∗)),

where t* is some arbitrary time. We deduce that the angle θ2D(t) between the vorticity sheet and the
streamwise direction should vary such as

θ2D(t) = arctan
|kx (t∗)|

|ky(t∗) − kx (t∗)(t − t∗)| . (31)

Choosing t* such that ky(t*) = 0 (when the sheet is flipped into the direction of the shear) is
convenient and yields

θ2D(t) = π

2
− arctan (t − t∗), (32)

which is independent of kx. We demonstrate here that the early development of the minimal distur-
bance computed for Re = 1500 corresponds to the Orr mechanism. Figure 7 (left) focuses on the
plane pz (i.e., z = −1.57) and shows that the spanwise vorticity is progressively tilted in the direction
of the background shear, more evidently for t ∈ [10 : 30]. For each time t, we have identified the
minimum value ωz(x, y) over pz. The Hessian matrix of ωz(x, y) is approximated by finite differences,
then its smallest eigenvalue and the associated eigenvector V = (Vx , Vy) are extracted. An angle θ (t)
is defined here by θ = arctan Vy/Vx , and is interpreted as the tilting angle of the spanwise vorticity
disturbance by the spanwise shear in the plane z = cst.

After an initial reorientation phase, θ (t) decreases monotonically to zero as θ2D(t) does in
Eq. (32). A value of t* is chosen when flipping of the sheet occurs with respect to the wall-normal
axis, i.e., t ≈ 5.3, which allows to set the missing parameter in Eq. (32). The angle θ and its theoretical
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FIG. 8. Cross-sections of the velocity field in the plane px: x = 0, for times t = 30, 60, 90, 120, 150, and 180. Contours:
iso-levels of Ux + ux; arrows: (uy, uz) vectors.

counterpart θ2D are shown vs. time in Fig. 7 (right). The qualitative match is good for t 	 t*. The
quantitative match is less satisfying, as expected: the true disturbance is actually three-dimensional
and involves many oblique modes with β �= 0. Nonlinear interaction of all these modes is expected
to affect the evolution of the angle θ . Besides, it is expected that the formation of wiggling streaks
documented next prevents θ (t) from approaching zero as it would in the two-dimensional case.

C. Lift-up mechanism

We consider here the velocity field associated to the full velocity field (base flow + perturbation)
in the plane px: x = 0 (the choice for x = 0 is arbitrary). The iso-contours of the streamwise
velocity are reported in Fig. 8 along with the cross-flow vectors in the same plane. Flat equidistant
iso-contours at t = 0 correspond to U + ux = y, i.e., the initial departure from the base flow has no
streamwise component, whereas modulations in z indicate alternance of low-speed and high-speed
streaks. From Fig. 8, it is striking that a localised waviness of the iso-contours starts to manifest
itself from t = 30 on around z ≈ 2. This undulation is connected to the existence of an unsteady
vortex in the plane px.

The mechanism for the emergence of the streaks is best understood when considering the two-
dimensional (streamwise-independent) version of Eq. (1). Projection in the streamwise direction
yields (

∂t + uy∂y + uz∂z − Re−1
(
∂2

y + ∂2
z

))
(Ux + ux ) = 0. (33)

Equation (33) represents the linear advection of the total streamwise velocity (Ux + ux) by the cross-
stream flow (uy, uz). The linearity of Eq. (33) with respect to ux results here from the assumption
of x-invariance only, not from any assumption that ux should be small. If additionally the cross-
stream components uy and uz are assumed to be small quantities, their linear evolution decouples
from Eq. (33) and they undergo slow viscous decay on a time scale O(Re). Before diffusion terms
become important, Eq. (33) behaves as a transport equation, so that advection manifests itself in
the plane px by a local displacement of the iso-contours of Ux + ux from their initial position with
instantaneous cross-stream velocity (uy, uz). This distortion produces local amplification of ux up to
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a magnitude O(Re) times that of the transverse flow. The perturbation energy is rapidly dominated by
the streamwise component ux while the cross-stream components decay viscously, and the transient
energy gain is at most O(Re2).15 Once the cross-stream gradients of ux become too steep as an effect
of distortion, diffusion terms take over. All three components of the perturbation eventually decay
to zero with decay rate O(Re−1), if no forcing or no nonlinear feedback is present and maintains
them to a finite-amplitude level.31 This linear mechanism describes the linear dynamics of three-
dimensional linear optimal modes, where the transverse motion (uy, uz) is associated precisely to an
x-independent streamwise vortex.20

In our nonlinear simulation in turn, it was already clear from Fig. 6 that the streamwise velocity
component ux dominates the energy growth from t ≈ 15 on, suggesting that streamwise streaks
develop rapidly through the lift-up mechanism. The wall-normal displacement of the iso-contours
of Ux + ux from their corresponding laminar position increases with time until t ≈ 150, confirming
that the streaks are continuously growing in magnitude. The mechanism discussed in the preceding
paragraph is evident here, with the exception that the flow is far from being x-independent, as
attested by the unsteadiness of the cross-stream vortex. As pointed out recently,49 the emergence of
x-dependent streaks (or in other words bent streaks characterised by kx �= 0) can be traced back to
an initial excess of spanwise velocity uz with respect to the linearly optimal kx = 0 scenario. This
is indeed the case here as can be seen from Fig. 6, where initially Gz(t = 0) is larger than both
Gx(t = 0) and Gy(t = 0). Initial conditions with an excess of initial wrms can shortcut the linearly
optimal scenario by inducing a bent streamwise vortex (i.e., with kx �= 0), that later develops streaks
via lift-up. However, these streaks are now bent and the initial energy needed to reach them can
be lower than the initial energy required to make the flow transition using nearly-x-independent
streamwise vortices.49 This phenomenon is most likely at play here given the bent structure of the
streaks displayed in Fig. 10 in the py plane. However, as we will now show, the streaky field is not
only x-dependent, but also shows asymmetry with respect to the mid-plane y = 0.

Shortly before t = 150, a strong ejection occurs towards negative values of y, indicating an
instability of the streak. Turbulence develops locally first, before spreading in z. The instability
process can be more clearly unfolded using Fig. 9, which displays the minimum ymin and maxi-
mum ymax of the y-coordinate over the u = 0 iso-surface with respect to time. For laminar flow,
ymin = ymax = 0 whereas ymin < 0 < ymax in the presence of streaks. Figure 9 shows that both ymin

and ymax slowly increase with time from t ≈ 30 on, i.e., after the Orr mechanism has occurred.
The growth of ymax is monotonous while the decrease of ymin occurs faster and features temporal
oscillations of period tS ≈ 20 − 25h/U. The sudden breakdown is visible for ymin at t = 140, while
ymax shows a dramatic increase only from t ≈ 160 on. We deduce from Fig. 9 that the low-speed
streak in the lower-half of the domain has gone unstable first, after supporting growing oscillations
(already visible via the oscillations of the cross-flow vortex in Fig. 8). The asymmetry in y suggests
that a kx �= 0 perturbation has travelled along a straight streak with absolute phase velocity Lx/tS
≈ 0.5 − 0.6U. This finite-amplitude undulation is convected towards decreasing x by the negative
mean velocity corresponding to values of y < 0, until it undergoes a dramatic instability. The fact
that the breakdown of that bent streak occurs first for negative y motivates the choice for the plane
py with y = −0.5.

D. Streak breakdown

Figure 10 shows the velocity field in the y = −0.5 plane. As previously suggested, a spanwisely
localised zone is easily located, containing a high-speed streak and a low-speed streak side by side,
with a weak undulation in x of wavelength exactly Lx. The iso-contours of v in that plane closely
follow those of u until t ≈ 140. At t ≈ 142, the iso-contours of v display a shorter-wavelength mode
at the junction between the low-speed streak and the high-speed streak.50 It is characterised by two
small zones of down-welling and up-welling motion (respectively negative and positive values of
v) of streamwise extent ≈1. Once this disturbance appears, the streak pattern is strongly affected,
justifying the name “streak breakdown,” though formally regions of high and low streamwise
velocity can still be defined. The later evolution of that disturbance follows a two-step process: until
t ≈ 160, more and more up/down-welling zones appear at the former location of the streak and
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FIG. 9. Wall-normal positions of the maxima and minima of the iso-surface Ux + ux = 0 vs. time.

disorder progressively spreads in the x direction. In a second phase, starting at ≈165, disorder
(“turbulence”) starts to spread in the spanwise direction until the whole computational domain is
filled by unsteady motion.

E. Edge trajectory and streak breakdown

The instability of streaks and its relation to transition to turbulence has been discussed in many
studies. However, almost all former studies are based on linear stability analysis of a base flow that
remains to be properly defined. For instance, it was often assumed that streaks saturate at a steady
amplitude after the linear transient growth stage.51 While this approximation provides one with a
simple steady base flow to linearise around, it is clear that in general no such steady base flow
exists. Besides, the linear instability of the flow around this saturated base flow was often examined
under the additional implicit assumption that the underlying mechanism is inviscid.51, 52 These
studies lead to a qualitatively correct classification of the various symmetries of the streak instability
modes, consistent with experimental observations. The search for linear optimal perturbations was
generalised by seeking secondary optimal perturbations that are able to extract energy from an
unsteady base flow,53 where the unsteady base flow considered corresponds to the transiently growing
streaks excited by linearly optimal modes. The dynamics associated to linearly optimal modes is
physically relevant only for very low initial amplitudes and is not necessarily concerned with
transition itself.

In the present study, the edge trajectory t(M) starting from the minimal perturbation M is a much
better suited candidate as an unsteady base flow. We recall that an edge trajectory is a trajectory
evolving on the invariant separatrix �, that asymptotically reaches a relative attractor called edge
state. The minimal perturbation M is never found exactly but approximated in practice by a state
M′ with energy ε0 slightly larger than Ec. As shown in Fig. 10, the transitioning trajectory t(M′)
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FIG. 10. Velocity field in the plane py: y = −0.5. uy: colours, (ux, uz): arrows. Iso-contours of uy normalised by their
maximum, where max uy = 0.0055 (t = 80), 0.0117 (t = 110), 0.052 (t = 138), 0.1023 (t = 142), 0.2329 (t = 146), 0.3333
(t = 160), 0.3273 (t = 176), and 0.5473 (t = 184).

starting from M′ shadows the trajectory t(M) for a finite time just before streak breakdown occurs
(at t ≈ 142 in the case of Fig. 10). A better approximation M′ of M (i.e., with ε0 even closer to
Ec) would shadow the edge trajectory t(M) for a longer time, and subsequently streak breakdown
would occur at a later time. For arbitrary high accuracy in the procedure used to approximate M, the
departure from the neighbourhood of the reference edge trajectory (i.e., “streak breakdown”) can
occur at any time. The instability to be quantified, independently of the accuracy of the procedure, is
hence the local rate of divergence of trajectories initially infinitesimally close to this edge trajectory,
measured for all initial times over the reference trajectory.

Natural tools for such an investigation are the finite-time Lyapunov exponents54 and the as-
sociated finite-time Lyapunov perturbations. These exponents λT measure the exponential rate at
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which two neighbouring phase-space trajectories diverge one from another in a time T, while the
associated perturbations describe the principal directions associated with this divergence. For any
state u in B(O), limt→+∞ |u(t) + δu(t)| = 0 for any small perturbation δu, and hence λT

max = 0 for
sufficiently large T. In turn, for u ∈ �, it is by definition possible to find infinitesimal perturbations to
u leading to either of the two attractors, hence λT

max �= 0. Crossing � from below thus marks the onset
of positive Lyapunov exponents. While the determination of the full Lyapunov spectrum of a given
phase-space trajectory is a heavy task in high dimension, estimating the leading Lyapunov exponent
and the associated Lyapunov perturbation with a finite time horizon, and as a function of the initial
time, is more tractable.29 Moreover, when studying wall-bounded shear flows in the Re → ∞ limit,
the determination of the largest Lyapunov exponent is counterintuitively simpler than for finite Re,
since one unstable Lyapunov exponent must dominate over all others. It can be justified as follows:
the chaotic dynamics on � can be regarded as a sequence of transient approaches to the neigh-
bourhood of some unstable states belonging to �, each with two unstable eigenvalues or more.55

From previous studies,56, 57 we know that the associated unstable eigenvalues λi, i = 1, 2, . . . are
always such that λi = O(Re−αi ), with 0 < α1 < α2 ≤ . . . . When Re becomes large, | λ2

λ1
| → 0. The

perturbation associated with λ1 would thus rapidly dominate the divergence of nearby trajectories
and this trend gets more pronounced with increasing Re. This justifies a priori the assumption made
earlier. Note in passing that the condition | λ2

λ1
| � 1 has been suggested58 as a condition for � to be

non-fractal, so that � can indeed safely be regarded as a smooth manifold only for high enough Re.
Note that in the extreme case where the edge state is a simple state (steady state, travelling wave,
or a periodic orbit) with only one unstable eigenvalue λ1, the largest Lyapunov exponent λmax on �

must coincide with λ1.
We describe now how the leading finite-time Lyapunov exponent is estimated numerically. The

edge trajectory uedge(t) associated with M (or rather its numerical approximation) is determined using
a classical bisection. At any given time t0 along this edge trajectory, we apply a small perturbation
δu(t0) so that the trajectory starting from uedge(t0) + δu(t0) reaches the turbulent attractor in a finite
time. If the real part of the Lyapunov spectrum is dominated at each time by one single exponent
λ, it is expected that δu(t) becomes rapidly aligned with the associated Lyapunov vector. At a finite
time T 	 1, we can thus define an approximation to the leading finite-time Lyapunov exponent by

λT (t0) = 1

T
ln

( |δu(t0 + T )|
|δu(t0)|

)
. (34)

In order to make sure that the perturbation δu(t0) makes the flow transition rather than relaminarise,
we use the initial condition u(t0) = (1 + ε) uedge(t0), with small ε > 0 (typically 10−3). The perturbed
trajectory turns out to be a by-product of the bisection algorithm used to determine uedge.

The procedure is shown in Fig. 11. The nonlinear optimal trajectory t(M′) described earlier, the
associated edge trajectory t(M) and the evolution of several small perturbations to t(M) are shown
vs. time using the quantity wrms . Figure 12 shows the value of λT(t0) vs. initial time t0. Clearly,
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FIG. 12. Finite-time Lyapunov exponent λT(t0) as function of t0 and T along the edge trajectory.

λT(t0) varies with the initial time t0, especially for short time-horizons T ≤ 20. Such time horizons
are shorter than the typical time scale O(100) over which the base flow varies. It is thus justified to
regard the exponential growth of δu(t) as an instantaneous instability of the flow field u(t0). λT(t0)
experiences a strong increase (about 10 times in magnitude) for t0 ≈ 250 − 350, before it relaxes
again, and then experiences a second strong increase for t0 ≈ 450 − 600. One can wonder which
physical property of the instantaneous field u(t0) is responsible for the variations in the growth rates
λT(t0). A recent study49 has suggested that streak breakdown could be caused not only by a large
streak amplitude (measured by urms), but also by its bending if urms is low enough. Streak bending
was shown49 to be well quantified by the instantaneous value of wrms . Figure 13 shows the value
of λT(t0) for T = 10 vs. instantaneous values of both urms(t0) and wrms(t0). It is clear from Fig. 13
that the states on the edge trajectory associated with the largest growth rates correspond to extreme
values of either wrms(t0) (for t0 ≈ 300) or urms(t0) (for t0 ≈ 500). A one-to-one correlation between
λT(t0) and some other well-defined quantity does not emerge clearly from the data. We confirm
that the growth rate of disturbances leaving the edge trajectory depends non-trivially on both the
instantaneous streak amplitude and the bending of the streaks.

Three-dimensional representations of the reference edge trajectory (iso-levels of ux), with the
Lyapunov perturbations (iso-levels of uy) superimposed, are displayed in Fig. 14 for relatively short
time horizons T ≤ 20. The edge trajectory consists for all times t0 of an isolated high-speed streak
sandwiched between two uneven low-speed streaks, localised in z with a very weak undulation
travelling towards negative x. They look similar to the states observed along the nonlinear route for
30 < t < 140 (see Fig. 10), except that the streaks are no longer of finite length, excluding now an
instability due to streak collision.50 All perturbations identified for 200 ≤ t0 ≤ 1200 and T ≤ 20 are
mainly localised in the neighbourhood of the streaks, in the high-shear region between the low-speed
and high-speed streaks. This is most evident for the perturbation shown in Fig. 14 (top right) for
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FIG. 13. Thin line (red): Finite-time Lyapunov exponent λT(t0) as a function of urms(t0) and wrms (t0) for T = 10 and
t ≤ 1000. Thick line (black): Projection of the edge trajectory in the plane (urms , wrms ).

t0 = 500. This particular perturbation corresponds to the largest value of λT(t0) identified from
Fig. 12 near t0 ≈ 500, i.e., when the streaks are most unstable. The short-time Lyapunov perturbation
consists then of alternated perturbations with a clear sinuous structure and a dominant kx = 3 mode.
At other times t0 characterised by lower λT(t0), the Lyapunov perturbations seem supported by lower
kx modes, e.g., kx = 1 at t0 = 200 and 1200, and kx = 2 at t0 = 700. Note that the preferred instability
mode at t0 = 700 has a varicose structure rather than a sinuous one. The sinuous or varicose nature
of such instabilities points towards an inviscid instability due to the spanwise shear,59 sinuous modes
having been identified as the preferred instability mode of both tubular and bent streaks in previous
studies on linear streak instabilities.

F. Spreading mechanism

As visualised in Fig. 10, the transition from an ordered flow, containing one single localised
low-speed streak (near t ≈ 100), to the fully turbulent flow maximising the dissipation rate occurs as a
two-step process: (i) streak breakdown resulting in a localised streak with wild local fluctuations and
(ii) rapid spanwise spreading of the turbulent flow. The Lyapunov perturbations described in Fig. 14
are predominantly localised in the region between the streaks and not at the border between streaks
and laminar flow. This excludes the hypothesis that the motion of the front is directly related to the
instability modes of the edge state, and thus justifies a two-step process. Unlike streak breakdown,
analysis of spanwise spreading in terms of Lyapunov instabilities is one step harder because the flow
is already in a locally turbulent regime and the number of positive Lyapunov exponents is now much
larger than for edge-restricted trajectories. While an asymptotic estimate spanwise front velocity
of 0.08 can be found using a modelling strategy60 for large Re, a detailed statistical analysis61

is needed for a correct estimation of spanwise front velocities in such a streamwisely minimal
domain. The computational box used here is too narrow for a detailed study of the contamination
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FIG. 14. Wall-normal velocity isosurface |uy| = Cymax uy of the Lyapunov perturbation (pink: uy > 0, green: vy < 0).
Streamwise perturbation velocity isosurface |ux| = Cxmax ux of the edge trajectory (yellow: ux > 0, blue: ux < 0). From left
to right, top to bottom: (a) t0 = 200, T = 10; (b) t0 = 500, T = 6; (c) t0 = 700, T = 18; and (d) t0 = 1200, T = 10. Same
isometric view as Fig. 4. Cx = 0.55 except for t0 = 200: Cx = 0.3 and t0 = 1200: Cx = 0.9, Cy = 0.4 except for t0 = 1200
where Cy = 0.7.

process of laminar by turbulent flow. The important lesson is that front velocities (i) involve complex
streak bursting events near the laminar-turbulent interfaces and (ii) should be seen as stochastic
quantities that are not available by simple linearisation around a laminar unperturbed base flow. For
both streamwisely and spanwisely localised turbulent spots, we refer to previous numerical62 and
experimental work7, 8 performed for Re ≤ 1000.

V. CONCLUSIONS

A nonlinear optimisation procedure,42 where the objective function is the time-averaged viscous
dissipation, has been used to determine a critical scaling Ec = O(Re−γ ) for minimal disturbances
to plane Couette flow. We have identified an exponent γ ≈ 2.7, significantly larger than previous
estimates for plane Couette flow. The main difference compared to previous minimal candidates
is here the spanwise localisation of the flow before streak breakdown occurs. There is little doubt
that allowing for a longer computation domain would also reveal more pronounced streamwise
localisation and probably yield a refined value for γ . Yet this remains extremely costly today
given the lengths needed to observe localisation of edge states,63, 64 that most likely vary such as
Lx ∼ O(Re). The exponent γ identified here is close to that identified experimentally in cylindrical
pipe flow using constant mass flux injectors.37 The route from the minimal perturbation identified
for Re = 1500 towards the turbulent attractor has been investigated in detail. A two-dimensional
(
√

Eu,
√

Ecf ) phase space projection of this transitioning trajectory, along with the corresponding
edge trajectory, is shown in Fig. 15, where Eu = 1

2 u2
rms and Ecf = 1

2 (v2
rms + w2

rms). It is interesting
to compare Fig. 15 to the introductory sketch in Fig. 1 to appreciate the validity of the speculated
picture.
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We focused more specifically on the dynamics along the transitioning trajectory in physical
space. Interestingly, the description provided here reviews all the mechanisms identified indepen-
dently from each other and they seem to proceed nearly one after another, which facilitates greatly
the analysis: (1) Orr mechanism (tilting of vorticity by the ambient shear), (2) nonlinear modal
interactions of oblique modes favouring the emergence of bent streaks, (3) lift-up mechanism (ad-
vection of streamwise velocity by the cross-stream flow) leading to a spanwisely localised streak,
(4) streak breakdown, and (5) stochastic spanwise spreading. Interestingly, while the whole phe-
nomenon of transition, and obviously turbulence itself, are fully nonlinear mechanisms, this optimal
route to turbulence can be decomposed formally into a sequence of separate mechanisms. Most of
the mechanisms producing energy growth are describable using classical linearisation approaches:
Orr and lift-up mechanisms are essentially linear advection mechanisms. Oblique wave interaction
is essentially nonlinear but occurs at constant energy, since nonlinear terms are energy-conserving.
Streak breakdown has been here revisited as a linear instability mechanism of a generically unsteady
edge trajectory. It is linked to an inflectional instability due to the shear between low and high-speed
streaks, favouring either sinuous or sometimes also varicose modes. This study also indicates that
the instability growth rate and the bending of the streaks can be positively correlated. This obser-
vation has important implications for flow control: any external action aiming at keeping the wall
shear stress low (at least at the level of edge states) should damp the instability of streaks. Hence a
powerful strategy is to act against their bending, i.e., to favor streak elongation. The efficiency of
streak elongation for control strategies is attested by many examples, such as applying a streamwise
magnetic field (in the case of electrically conducting fluids) or adding a small amount of polymers
in the flow. A less bent streak on the edge is by definition still unstable, but on a slower time scale.
The efficiency of the control strategy will thus be improved if it can produce elongation over a time
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scale τ such that τ � 1/λτ (t0). Only the final stage of transition, namely the spatial spreading of
turbulence, is possibly unrelated to any linear mechanisms, where at this point one enters the territory
of spatio-temporal intermittency.61 We strongly hope that all these observations will be useful for
better modelling of transition to turbulence in all subcritical flows as well as for designing realistic
control strategies.
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