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Summary

In this paper, a three-dimensional numerical solver is developed for suspen-
sions of rigid and soft particles and droplets in viscoelastic and elastoviscoplas-
tic (EVP) fluids. The presented algorithm is designed to allow for the first
time three-dimensional simulations of inertial and turbulent EVP fluids with
a large number particles and droplets. This is achieved by combining fast
and highly scalable methods such as an FFT-based pressure solver, with the
evolution equation for non-Newtonian (including EVP) stresses. In this flexi-
ble computational framework, the fluid can be modeled by either Oldroyd-B,
neo-Hookean, FENE-P, or Saramito EVP models, and the additional equations
for the non-Newtonian stresses are fully coupled with the flow. The rigid par-
ticles are discretized on a moving Lagrangian grid, whereas the flow equations
are solved on a fixed Eulerian grid. The solid particles are represented by an
immersed boundary method with a computationally efficient direct forcing
method, allowing simulations of a large numbers of particles. The immersed
boundary force is computed at the particle surface and then included in the
momentum equations as a body force. The droplets and soft particles on the
other hand are simulated in a fully Eulerian framework, the former with a
level-set method to capture the moving interface and the latter with an indicator
function. The solver is first validated for various benchmark single-phase and
two-phase EVP flow problems through comparison with data from the litera-
ture. Finally, we present new results on the dynamics of a buoyancy-driven drop
in an EVP fluid.
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1 INTRODUCTION

Elastoviscoplastic (EVP) fluids can be found in geophysical applications, such as mudslides and the tectonic dynamic of
the Earth. The EVP fluids are also found in industrial applications such as mining operations, the conversion of biomass
into fuel, and the petroleum industry, to name a few. Biological and smart materials can be EVP, making the EVP fluid
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flows relevant for problems in physiology, biolocomotion, tissue engineering, and beyond. In most of these applications,
we are dealing with multiphase flows.1-7 Therefore, there is a compelling need to study multiphase flows of EVP fluids
and predict their flow dynamics in various situations, including three-dimensional and inertial flows. The EVP materials
exhibit simultaneously elastic, viscous, and plastic properties. At low strains, the material exhibits elastic deformation,
whereas, at sufficiently high strains, the material experiences irreversible deformation and starts to flow. Even conven-
tional yield-stress test fluids (such as Carbopol solutions and liquid foams) are shown to exhibit simultaneously elastic,
viscous and yield stress behavior. Hence, in order to accurately predict the behavior of such materials, it is essential to
model them as an EVP fluid rather than an ideal yield-stress fluid (eg, using the Bingham or the Herschel-Bulkley models).

There are different types of models that have been proposed for EVP fluids. For instance, Saramito8 proposed a tenso-
rial constitutive law under the Eulerian framework, which is based on the combination of the Bingham viscoplastic9,10

and the Oldroyd viscoelastic models11 in a way that satisfies the second law of thermodynamics. This model predicts a
Kelvin-Voigt viscoelastic solid (an ideal Hookean solid) response before yielding when the von Mises criterion is not satis-
fied. Once the strain energy exceeds a threshold value that is specified by the von Mises criterion, the material yields and
the stress field is given by the nonlinear viscoelastic constitutive law. This model was later improved by the same author12

to account for the shear-thinning behavior of the shear viscosity and for the smoothness of the plasticity criterion. More-
over, this model is capable of predicting the first normal stress difference along with the yield stress behavior in simple
shear flows as a result of combining viscoelasticity and viscoplasticity.

The prediction of an ideal Hookean solid of Saramito's models8,12 for the EVP material before yielding causes the model
to always predict a zero phase difference between the strain oscillation and the material shear stress, which in turn con-
tributes to vanishing viscous harmonics. This results in an erroneous prediction of zero loss modulus (G′′), which is in
disagreement with the large amplitude oscillatory shear experiments for identifying and characterizing the properties of
the EVP materials.13,14 It was shown by Dimitriou et al15 that, for a Carbopol gel (an EVP material), in the limits of small
deformation amplitudes, the loss modulus (G′′) is always nonzero and indeed is smaller than the storage modulus (G′) by
an order of magnitude. The isotropic kinematic hardening idea was then suggested by Dimitriou et al15 and Dimitriou and
McKinley16 to tackle this problem and to specify the parameters of the models correctly. Based on this concept, the mate-
rial yield stress builds up and evolves in time together with the flow field, where the steady state yield stress is determined
via the back stress modulus (a new material parameter) and the deformation of microstructure (a hidden internal dimen-
sionless evolution variable). By this method, the energy is allowed to be dissipated, and thus, at small strain amplitudes, it
predicts a nonvanishing loss modulus. Recently, a comprehensive isotropic kinematic hardening constitutive framework
has been developed to model the thixotropic behavior present in some practical EVP materials such as waxy crude oils.17

de Souza Mendes18 proposed another constitutive equation for EVP fluids. The basic idea of this model is to modify the
classical version of the Oldroyd-B equation, where the constant parameters, ie, the relaxation time (𝜆1), the retardation
time (𝜆2), and the viscosity (𝜂), are replaced with functions of the deformation rate. This model reduces to the classical
Oldroyd-B equation in the limit of zero shear rate for the unyielded material. Bénito et al19 presented another minimal,
fully tensorial and rheological constitutive equation for EVP fluids. This model predicts the material behavior as a vis-
coelastic solid, capable of deforming substantially before yielding, and predicts a viscoelastic fluid after yielding. Moreover,
based on the second law of thermodynamics, this model has a positive dissipation. Recently, Fraggedakis et al20 performed
a systematic comparison of these recently proposed EVP fluid models. The models were tested in simple viscometric flows
and against available experimental data.

A significant number of numerical studies have analyzed purely viscoelastic and purely viscoplastic fluids, but a very
limited number accounted for EVP fluids in which neither elastic nor plastic effects are negligible. The main reason is that
numerical simulations of EVP fluid flows are not a straightforward task due to the inherent nonlinearity of the govern-
ing equations. Nevertheless, numerical simulations can provide quantitative information, which is extremely difficult to
access by experiments in EVP fluids (for example, velocity fields and stress fields separated into different contributions),
and also detail understanding of the physics of the interaction between particles and droplets in EVP fluids.

Numerical simulations have already helped to reveal elastic effects in liquid foams and Carbopol. First, Dollet and
Graner21 performed experimental measurements for the flow of liquid foam around a circular obstacle, where they
observed an overshoot of the velocity (the so-called negative wake) behind the obstacle. Then, Cheddadi et al22 simulated
the flow of an EVP fluid around a circular obstacle by employing Saramito's EVP model.8 The numerical simulation using
the EVP model captured the negative wake. A purely viscoplastic flow model (Bingham model) on the other hand always
predicted fore-aft symmetry and the lack of a negative wake, in contrast with the aforementioned experimental observa-
tions. The numerical simulations could hence prove that the negative wake was an elastic effect. Recently, the loss of the
fore-aft symmetry and the formation of the negative wake around a single particle sedimenting in a Carbopol solution
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was captured by transient numerical calculations by Fraggedakis et al23 by adopting the EVP tensorial constitutive law
of Saramito.8 This was in a quantitative agreement with the experimental observations by Holenberg et al for the flow of
Carbopol gel.24 The elastic effects on viscoplastic fluid flows have also been addressed in numerical simulations of the EVP
fluids through an axisymmetric expansion-contraction geometry25 by using the finite element method. It was observed
that elasticity alters the shape and the position of the yield surface remarkably, and elasticity needs to be included to reach
qualitative agreement with experimental observations for the flow of Carbopol aqueous solutions.26 Computations in the
same geometry have also been performed by implementing the hybrid finite element-finite volume subcell scheme and
combining a regularization approach with the EVP model of Saramito.8 Furthermore, the Saramito model has been used
to simulate the flow of liquid foam in a Taylor-Couette cell.27,28 By adopting the EVP constitutive equation proposed by
de Souza Mendes,18 the flow pattern of EVP fluids in a cavity was investigated numerically, and it was demonstrated that
the elasticity strongly affects the material yield surfaces.29 Recently, De Vita et al30 numerically investigated the EVP flow
through porous media by adopting Saramito's model.

The motivation behind this work is to develop an efficient and scalable tool to deal with suspensions of particles and
droplets in EVP fluids. In this work, we model an EVP fluid via the constitutive law proposed by Saramito,8 which provided
excellent results in previous numerical studies of, eg, Carbopol used in many experiments.

Multiphase viscoelastic (EV) fluid flows have been studied much more than EVP flows, and indeed some of the results
in literature will be used to validate our numerical implementation. To give a few examples of such studies, we list 2D
and 3D direct numerical simulations of the dynamics of a rigid single particle,31-35 two particles,36-39 multiple particles,40-43

as well as droplets in viscoelastic two-phase flow systems in which one or both phases could be viscoelastic,44-46 including
the case of soft particles modeled as a neo-Hookean solid (ie, a deformable particle is assumed to be a viscoelastic fluid
with an infinite relaxation time).47,48

In the case of a pure visco-plastic (VP) suspending fluid, there is an abundance of computational studies of single and
multiple particles.49-53 Full 3D suspension flows for VP fluids are time consuming, and thus limited to a few benchmark
calculations and lower mesh resolutions.54,55 However, 2D suspension flows are feasible.56 The key computational chal-
lenge is to resolve the structure of the unyielded regions, where the stress is below the yield stress, and to locate the yield
surfaces that separate unyielded from yielded regions. Two basic methods are used, ie, regularization and the augmented
Lagrangian approach.57 Regularization tends to be faster but may still require significant more resources than a New-
tonian flow. Augmented Lagrangian approaches, although slower, properly resolve the stress fields. This is relevant for
resolving important physical features of suspensions of particles in VP fluids, eg, the fact that buoyant particles can be
held rigidly in suspension,49,58,59 the limited influence of multiple particles on each other,60 and the finite arrest time (see
the works of Maleki et al61 and Saramito62 for more details). To overcome these limitations, researchers have addressed
yield stress suspensions from a continuum modeling closure perspective, deriving bulk suspension properties that agree
with rheological experiments.63-67

The present manuscript is organized as follows. In the next section, the governing equations and the EVP constitutive
models for multiphase EVP flows in complex geometries are briefly described. In Section 3, the numerical methodology
is presented. In Section 4, the numerical method is validated for various single-phase and two-phase EVP benchmark
problems and employed for buoyancy-driven EVP two-phase systems. In this work, we adopt two different IBM schemes
to simulate EVP suspension flows, which are modifications and improvements of the original IBM scheme proposed
by Peskin.68 They are explained in Section 3 in more details. Finally, some conclusions are drawn in Section 5.

2 MATHEMATICAL FORMULATION

The dynamics of an incompressible flow of two immiscible fluids is governed by the Navier-Stokes equations, written in
the nondimensional form as follows:

∇ · u = 0, (1a)

𝜌

(
𝜕u
𝜕t

+ u · ∇u
)
= −∇p + ∇ · 𝜇s(∇u + ∇uT) + ∇ · 𝝉 + 𝜌g + f , (1b)

where u = u (x, t) is the velocity field, p = p (x, t) is the pressure field, 𝝉 = 𝝉 (x, t) is an extra stress tensor (defined in the
following), and g is a unit vector aligned with gravity or buoyancy. The term f is a body force that is used to numerically
impose the boundary conditions at the solid boundaries (particle-laden flow) and at the fluid-fluid interfaces (bubbly
flow), as described in Sections 3.2 and 3.3. Finally, 𝜌 and 𝜇s are the density and the solvent viscosity of the fluid.
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TABLE 1 Specification of the parameters B,  , and a used in Equation 2
for different models

Model B  a

Neo-Hookean 𝝉∕G 0 0
Oldroyd-B 𝝉𝜆∕𝜇p + I 1 1
Saramito 𝝉𝜆∕𝜇p + I max(0, 1 − 𝜏𝑦∕|𝝉d|) 
FENE-P (𝝉𝜆∕𝜇p + aI)∕ L2∕(L2 − trace(B)) L2∕(L2 − 3)

In the present study, the viscoelastic and EVP effects in the flow are reproduced by the extra stress tensor 𝝉 . All the flow
models (ie, the Neo-Hookean, viscoelastic Oldroyd-B, FENE-P, and EVP Saramito model) can be expressed with a generic
transport equation as (

𝜕B
𝜕t

+ u · ∇B − B · ∇u − ∇uT · B
)
= a

𝜆
I − 

𝜆
B, (2)

where 𝜆 and 𝜇p are the relaxation time and polymeric viscosity, respectively. The definition of B,  , and a used in
Equation 2 are specified in Table 1 for the different models considered in the present study. In the Neo-Hookean material,
G is the shear elastic modulus; this model is analogous to considering the material as a viscoelastic fluid with an infinite
relaxation time 𝜆 → ∞. In the Saramito model, 𝝉d is the deviatoric stress tensor and its magnitude is defined as

|𝝉d| = √
1
2
𝜏d

i𝑗𝜏
d
i𝑗 . (3)

In the FENE-P model, L is the extensibility parameter defined as the ratio of the length of a fully extended polymer
dumbbell to its equilibrium length. From a numerical point of view, therefore, the challenges associated to the solution
of Equation 2 are similar, independently of the material model considered.

3 NUMERICAL METHOD

In this section, we outline the flow solver which has been previously developed for particle-laden flows,69-72 for bubbly
flows73 and for viscoelastic flows.74 The grid is a staggered uniform Cartesian grid in which the velocity nodes are located
at the cell faces, whereas the material properties, the pressure, and the extra stresses are all located at the cell centers. The
flow equations are solved using a projection method. The spatial derivatives are approximated using second-order central
differences, except for the advection terms in Equations (2), (5), and (8), where the fifth-order WENO or HOUC schemes
are applied.

3.1 Non-Newtonian fluid flow
In a non-Newtonian flow, the transport equation for the extra stress tensor (Equation 2) presents specific challenges.
Advection terms such as u · ∇B need a special consideration due to the lack of diffusion terms in the equations.
The most common approach is to introduce upwinding for the advection terms. However, that approach adds artificial
dissipation that can cause the configuration tensor B to lose its positive definiteness, which eventually results in a numer-
ical breakdown.75,76 Min et al77 tested different spatial discretizations for a polymeric FENE-P fluid and showed that a
third-order compact upwind scheme has a better performance. Dubief et al78 have also favored this scheme among the
others. In both of these studies, a local artificial diffusion is added where tensor B experiences a loss of positive definite-
ness (det(Bij) < 0). This discretization scheme works well, but is computationally expensive, because it requires to solve
a set of linear equations for each component of the configuration tensor in each direction to calculate the derivatives.
In this study, we have substituted the compact upwind with an explicit fifth-order WENO scheme,79 a considerably less
expensive method that matches the performance of the compact scheme as the test case later illustrates; the method has
been recently used successfully by Rosti and Brandt for an elastic material.74

Next, we demonstrate the performance of our method in simulating a non-Newtonian fluid flow. A two-dimensional
vortex pair interacting with a wall is simulated in a FENE-P fluid, similarly to Min et al.77 In this flow, Re and Wi are
defined as Re = 𝜌Γ0∕(𝜇s + 𝜇p) = 1800 and Wi = 𝜆Γ0∕𝛿2 = 5, where Γ0 is the initial circulation of the vortex and 𝛿 is
the initial distance between the vortex pair center and the wall. The initial radius of each vortex is 0.145 and the distance
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between the two centers is set to two radii. The solvent to total viscosity ratio 𝛽 = 𝜇s∕(𝜇s + 𝜇p) is 0.9 and the FENE-P
extensibility parameter L2 is 400. Simulations are performed in a domain of size 2𝛿 × 2𝜋𝛿, with 64 grid cells per 𝛿. Periodic
boundary conditions are employed in the x-direction, and no-slip/no penetration boundary conditions are employed in
the y direction. A time sequence of the vorticity contours is shown in Figure 1, where the result for a Newtonian flow is
also given as a reference. It can be observed that the secondary vortices are significantly attenuated in the polymeric flow.

A local artificial diffusion is added to the polymer Equations (2) in two instances, ie, if the tensor B experiences a loss
of positive definiteness (det(Bij) < 0) and if the trace of the tensor B reaches 95% of its maximum (which is L2). It is
worth pointing out that, in the case shown here, artificial diffusion was added in only a fraction of 0.1% of the grid points.
Contours of Bxx, Bxy, Byy and the trace of tensor B, normalized with L2, are given in Figure 2 at t = 15𝛿2∕Γ0. Adding the
artificial diffusion to only a small fraction of grid points preserves the sharp spatial gradients of the tensor B, as shown
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FIGURE 1 Time sequence of vorticity contours for a two-dimensional vortex pair interacting with a wall at t = 1, 3, 6, 10, and 15𝛿2∕Γ0 for
a Newtonian fluid (a-e) and a viscoelastic fluid ( f -j). Contour levels are from -15 to 15 with negative values indicated by red dashed lines



526 IZBASSAROV ET AL.

(A) (B)

(C) (D)

FIGURE 2 Contours of Bxx (a), Bxy (b), Byy (c) and of the trace of the tensor B, normalized with L2 (d) at t = 15𝛿2∕Γ0

in this figure. The required amount of artificial diffusion needs to be tuned for each individual simulation as it changes
with the relevant parameters of the polymeric flow, eg, simulating the same test case here with L2 = 100 removes any
need for local artificial diffusion.

3.2 Bubbly flow
Fluid-fluid interfaces are captured by the interface-correction level-set method,73 and the surface tension force is described
by the continuum surface force model. The second-order Adams-Bashforth scheme (AB2) is used for the integration of
governing equations of an EVP bubbly flow. Note that the AB2 scheme is used to facilitate the implementation of the fast
pressure-correction method developed by Dong and Shen80 and Dodd and Ferrante.81

3.2.1 Level-set method
In two-fluid systems, an interface between the phases can be resolved using a fully Eulerian method. The body force f due
to surface tension, see Equations (1), is expressed as follows:

f = 𝜎𝜅𝛿(𝜙)n, (4)

where 𝛿 is a regularized delta function and 𝜎 is the surface tension.
In this paper, we have adopted a mass-conserving, interface-correction level-set method to capture an interface by a

continuous level-set function. The level-set function 𝜙(x, t) approximates the signed distance from the interface. Hence,
𝜙 = 0 denotes the interface, 𝜙 > 0 denotes fluid 1, and 𝜙 < 0 fluid 2. The interface is convected with the local velocity
field, ie,

𝜕𝜙

𝜕t
+ u · ∇𝜙 = 0. (5)

To calculate the body force in Equation 4, the unit normal vector, ie, n, and the local mean curvature, ie, 𝜅, can be
simply computed as

n = ∇𝜙|∇𝜙| , (6)

𝜅 = −∇ · n. (7)
With time, if simply advected, the level set field will no longer equal a signed distance to the interface. It is essen-

tial that the signed distance property is preserved near the interface because of the normal and curvature computation.
We therefore redistance the level set field every 10-20 time steps by solving the Hamilton-Jacobi (reinitialization) equation

𝜕𝜙

𝜕 + S(𝜙0)(|∇𝜙| − 1) = 0, (8)
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where 𝜙0 is the level set field before redistancing,  is pseudo-time, and S(𝜙0) is the mollified sign function.73 One can
observe that, if a steady state is reached, then the zero level set contour (interface location) is unaltered, whereas the
level set field has returned to a signed distance function. In practice, this equation is iterated only for a few steps
toward steady state. The level set advection Equation 5 and reinitialization Equation 8 are solved using a three-stage
total-variation-diminishing third-order Runge-Kutta scheme.82

The density, the solvent and the polymeric viscosities, and the relaxation time vary across the fluid interface and are
expressed in a mixture form as

𝜌 = 𝜌1H(𝜙) + 𝜌2 (1 − H(𝜙)) , 𝜆 = 𝜆1H(𝜙) + 𝜆2 (1 − H(𝜙)) , (9)
𝜇s = 𝜇s,1H(𝜙) + 𝜇s,2 (1 − H(𝜙)) , 𝜇p = 𝜇p,1H(𝜙) + 𝜇p,2 (1 − H(𝜙)) ,

where the subscripts 1 and 2 denote the properties of the bulk and suspended fluids, respectively; and H(𝜙) is the
regularized Heaviside function defined such that it is zero inside the bubbles and unity outside.

A complete description of the level set methodology can be found in the works of Sussman et al83 and Ge et al,73 and
the references therein.

3.2.2 Time integration: Adams-Bashforth scheme
To advance the solution from time level n to n + 1, we proceed as follows. First, we advance the level set function and
update the density and viscosity fields accordingly. Second, we advance the extra stress tensor and the velocity field in
time with the second-order Adams-Bashforth scheme as

Bn+1 = Bn + Δt
(3

2
RTab

n − 1
2

RTab
n−1

)
, (10)

u∗ = un + Δt
(3

2
RUab

n − 1
2

RUab
n−1

)
, (11)

where we have defined the right-hand sides of the Equations (2) RTab
n and of Equation (1b) as RUab

n, with

RTab
n =

[1
𝜆
(aI − B) −

(
u · ∇B − B · ∇u − ∇uT · B

)]n
, (12)

RUab
n = − ∇ · (uu)n + g + 1

𝜌n+1

(
∇ ·

[
𝜇n+1

s (∇un + (∇un)T)
]
+ ∇ · 𝝉n + 𝜎𝜅n+1𝛿(𝜙n+1)nn+1) . (13)

To enforce a divergence-free velocity field, ie, Equation (1a), we proceed by solving the Poisson equation for the
pressure,84 ie,

∇ ·
(

1
𝜌n+1 ∇pn+1

)
= 1

Δt
∇ · u∗, (14)

and finally, the velocity at the next time level is corrected as

un+1 = u∗ − Δt
𝜌n+1 ∇pn+1. (15)

In the droplet-laden flow, the pressure Poisson equation is solved in both phases, with unequal densities. Per default,
the left-hand side of the Poisson equation has variable coefficients. In order to utilize an efficient FFT-based pressure
solver with constant coefficients,73 we use the following splitting of the pressure term80:

1
𝜌n+1 ∇pn+1 →

1
𝜌0

∇pn+1 +
(

1
𝜌n+1 − 1

𝜌0

)
∇
(
2pn − pn−1) , (16)

where 𝜌0 is the density of the lower density phase (a constant). With this splitting, and after multiplying by 𝜌0, the Poisson
equation (Equation 14) becomes

∇ · ∇pn+1 = ∇ ·
[(

1 − 𝜌0

𝜌n+1

)
∇
(
2pn − pn−1)] + 𝜌0

Δt
∇ · u∗, (17)

and the velocity correction (Equation 15) transforms to

un+1 = u∗ − Δt
[

1
𝜌0

∇pn+1 +
(

1
𝜌k

− 1
𝜌0

)
∇
(
2pn − pn−1)] . (18)
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3.3 Particle-laden flow
The governing equations of EVP particle-laden flow are integrated in time with a third order Runge-Kutta (RK3) scheme.
The RK3 scheme is third-order accurate, low storage, and improves the numerical stability of the code, allowing for
larger time steps. Both rigid and deformable particles are considered here. The rigid particles are included using the IBM
that allows us to solve the Navier-Stokes equations on a Cartesian grid despite the presence of particles or complex wall
geometries and has become a popular tool in recent years. The IBM consists of an extra force, added to the right-hand
side of the momentum equations, see Equations (1), to mimic boundary conditions, creating virtual boundaries inside the
numerical domain. This extra force acts in the vicinity of a solid surface to impose indirectly the no-slip/no-penetration
(ns/np) boundary condition.

In the case of deformable particles, we use the method described in the works of Rosti and Brandt.74,85,86 The solid
is an incompressible viscous hyperelastic material undergoing only the isochoric motion, where the hyperelastic con-
tribution is modeled as a neo-Hookean material, thus satisfying the incompressible Mooney-Rivlin law. To numerically
solve the fluid-structure interaction problem, we adopt the so called one-continuum formulation,87 where only one set
of equations is solved over the whole domain. Thus, at each point of the domain, the fluid and solid phases are distin-
guished by the local solid volume fraction 𝜙s, which is equal to 0 in the fluid, 1 in the solid, and between 0 and 1 in the
interface cells. The set of equations can be closed in a purely Eulerian manner by introducing a transport equation for
the volume fraction 𝜙s (the equation is formally the same used in the level-set method, ie, Equation (5)). The instanta-
neous local value of the elastic force is found by solving Equation (2), which represents the upper convected derivative
of the left Cauchy-Green deformation tensor. The right-hand side of Equation (2) is identically zero for a hyperelastic
material.88

3.3.1 Time integration: Runge-Kutta scheme
When using the third-order Runge-Kutta scheme, the extra stress tensor and the unprojected field are computed by
defining RTrk𝟑

k and RUrk𝟑
k as

RTrk𝟑
k = 𝜁k

[1
𝜆
(aI − B) −

(
u · ∇B − B · ∇u − ∇uT · B

)]k−1

+ 𝜉k
[1
𝜆
(aI − B) −

(
u · ∇B − B · ∇u − ∇uT · B

)]k−2
,

(19)

RUrk𝟑
k = − 𝜁k∇ · (uu)k−1 − 𝜉k∇ · (uu)k−2 − 2𝛼

k

𝜌
∇pk−1 + 𝛼k

𝜌

(
∇ ·

[
𝜇s(∇u + (∇u)T)

]
+ ∇ · 𝝉

)k

+ 𝛼k

𝜌

(
∇ ·

[
𝜇s(∇u + (∇u)T)

]
+ ∇ · 𝝉

)k−1
,

(20)

which are the right-hand sides of the Equations (2) and (1b). Integrating in time yields

Bk = Bk−1 + ΔtRTrk𝟑
k, (21)

u∗ = uk−1 + ΔtRUrk𝟑
k. (22)

In the previous equations, Δt is the overall time step from tn to tn + 1, the superscript ∗ is used for the predicted velocity,
whereas the superscript k denotes the Runge-Kutta substep, with k = 0 and k = 3 corresponding to times n and n + 1.

The pressure equation that enforces the solenoidal condition on the velocity field is solved via a fast Poisson solver

∇ · ∇𝜓k = 𝜌

2𝛼kΔt
∇ · u∗, (23)

and, finally, the pressure and velocity are corrected according to

pk = pk−1 + 𝜓k, (24a)

uk = u∗ − 2𝛼k Δt
𝜌
∇𝜓k, (24b)
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where 𝜓 is the projection variable; and 𝛼, 𝜁 , and 𝜉 are the integration constants, whose values are

𝛼1 = 4
15

𝛼2 = 1
15

𝛼3 = 1
6

𝜁1 = 8
15

𝜁2 = 5
12

𝜁3 = 3
4

𝜉1 = 0 𝜉2 = −17
60

𝜉3 = − 5
12

.

(25)

3.3.2 Immersed boundary method
The IBM force f cannot be formulated by means of a universal equation and therefore IBMs differ in the way f is computed.
The method applied in this solver was first developed by Peskin68 and numerous modifications and improvements have
been suggested since (for a review, see the work of Mittal and Iaccarino89). In this study, we use two different IBM schemes,
ie, the volume penalization IBM90,91 to generate obstacles and complex geometries and the discrete forcing method for
moving particles70,72,92 to fully resolve particle suspensions in EVP flows.
Volume penalization IBM.
Kajishima et al90 and Breugem et al91 proposed the volume penalization IBM, where the IBM force f is calculated from
the first prediction velocity u∗ that is obtained by integrating Equation (1) in time without considering the IBM force and
the pressure correction. The IBM force f and the second prediction velocity u∗∗ are then calculated as follows:

fi𝑗k = 𝜌𝛼i𝑗k
(us − u∗)i𝑗k

Δt
, (26a)

u∗∗
i𝑗k = u∗

i𝑗k + Δt fi𝑗k∕𝜌, (26b)

where 𝛼ijk is the solid volume fraction in the grid cell with index (i, j, k), varying between 0 (entirely located in the fluid
phase) and 1 (entirely located in the solid area); and us is the solid interface velocity within this grid cell. Figure 3 indicates
the solid volume fractions (highlighted area) for grid cells around u(i, j) and v(i − 1, j − 1). Solid boundary in this figure
is shown by red dashed line. For nonmoving boundaries, us is 0 and Equation (26) reduces to

u∗∗
i𝑗k =

(
1 − 𝛼i𝑗k

)
u∗

i𝑗k . (27)

The second prediction velocity u∗∗ is then used to update the velocities and the pressure following a classical pressure
correction scheme.92

The volume penalization IBM is computationally very efficient because the solid volume fractions around the velocity
points can be calculated at the beginning of the simulation using an accurate method, or they can even be extracted
directly from a physical sample by magnetic resonance imaging or X-ray computed tomography.91

Discrete forcing method for moving particles.
Following the IBM framework, we impose the ns/np condition at the particle surfaces (Figure 4) by adding an extra force
f on the right-hand side of the fluid momentum Equations (1). Uhlmann93 developed a computationally efficient IBM

FIGURE 3 Solid volume fractions (highlighted area) for grid cells around u(i, j) and v(i−1, j−1). Solid boundary is shown by red dashed line
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FIGURE 4 Uniform distribution of Lagrangian points over the surface of an spheroidal particle with an aspect ratio (polar over equatorial
radius) 1∕3 [Colour figure can be viewed at wileyonlinelibrary.com]

to fully resolve particle-laden flows. Breugem92 introduced improvements to this method, making it second-order accurate
in space by applying a multidirect forcing scheme94 to better approximate the ns/np boundary condition on the surface
of the particles and by introducing a slight retraction of the grid points on the surface toward the interior. The numerical
stability of this method for particle over fluid density ratio near unity was also improved by accounting the inertia of the
fluid contained within the particles.95 Ardekani et al72 extended the original method to simulate suspension of spheroidal
particles with lubrication and contact models for the short-range particle-particle (particle-wall) interactions.

In this study, we apply the same scheme to fully resolve simulations of particle suspensions in EVP flows. We apply the
IBM force on the predicted velocities u∗, which have been obtained as in the single-phase situation. The second prediction
velocity u∗∗ is then obtained after the application of the IBM force, and u∗∗ substitutes u∗ in the pressure correction
scheme, given in the previous section. The formulation to calculate the second prediction velocity is given here as follows:

U∗
l =

∑
i𝑗k

u∗
i𝑗k𝛿d

(
xi𝑗k − Xk−1

l

)
ΔxΔ𝑦Δz , (28a)

F k−1∕2
l = 𝜌𝑓

U
(
Xk−1

l

)
− U∗

l

Δt
, (28b)

f k−1∕2
i𝑗k =

∑
l

Fk−1∕2
l 𝛿d

(
xi𝑗k − Xk−1

l

)
ΔVl , (28c)

u∗∗ = u∗ + Δt f k−1∕2∕𝜌𝑓 , (28d)

where capital letters indicate the variable at a Lagrangian point with index l. In Equation (28a), we interpolate the first
prediction velocity u∗ from the Eulerian grid to the Lagrangian points on the surface of the particle, ie, U∗

l , using the
regularized Dirac delta function 𝛿d of Roma et al.96 This approximated delta function essentially replaces the sharp inter-
face with a thin porous shell of width 3Δx; it preserves the total force and torque on the particle in the interpolation,
provided that the Eulerian grid is uniform. The IBM force at each Lagrangian point, ie, Fk−1∕2

l , is proportional to the dif-
ference between the interpolated predicted velocity and the local velocity of the surface of the particle (for rigid particles,
Up + 𝝎p × r, calculated as shown in the paragraph later). In Equation (28c), the IBM forces obtained at the Lagrangian
points are interpolated back to the Eulerian grid by the same regularized Dirac delta function. In Equation (28d), the IBM
forces in the Eulerian grid (f k−1∕2

i𝑗k ) are added to the first prediction velocity to obtain the second prediction velocity u∗∗.
Given the smooth delta function and resolutions typically used, the Eulerian forces obtained from two neighboring

Lagrangian points overlap. The multidirect forcing scheme proposed by Luo et al94 is therefore employed to iteratively
determine the IBM forces such that the no-slip boundary conditions, ie, U∗∗ ≈ U, are collectively imposed at the
Lagrangian grid points. The new second prediction velocity u∗∗ is then obtained by solving the equations earlier itera-
tively (typically 3 iterations is enough) using the new u∗∗ as u∗ at the beginning of the next iteration with Equation 28b
substituted by the following:

Fk−1∕2
l = Fk−1∕2

l + 𝜌𝑓
U
(
Xk−1

l

)
− U∗∗

l

Δt
. (29)

The second prediction velocity u∗∗ is then used to update the velocities and the pressure following the procedure
described in the previous section.

http://wileyonlinelibrary.com
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Taking into account the inertia of the fictitious fluid phase inside the particle volumes, Breugem92 showed that equations
for particle motion can be rewritten as follows:

𝜌pVp
dUp

dt
≈ −

NL∑
l=1

FlΔVl + 𝜌𝑓
d
dt

(
∫Vp

udV

)
+
(
𝜌p − 𝜌𝑓

)
Vpg + Fc, (30)

d
(
Ip𝝎p

)
dt

≈ −
NL∑
l=1

(rl × Fl) ΔVl + 𝜌𝑓
d
dt

(
∫Vp

(r × u) dV

)
+ Tc , (31)

where Up and 𝝎p are the particle translational and the angular velocity; 𝜌p, Vp, and Ip are the mass density, volume, and
moment-of-inertia tensor of a particle; and r is the position vector with respect to the center of the particle. The first terms
on the right-hand side of these equations are the summation of IBM forces and torques that act on each Lagrangian point.
The second terms account for the translational and angular acceleration of the fluid trapped inside the particle shell.
The force term −𝜌fVpg accounts for the hydrostatic pressure with g as the gravitational acceleration, and Fc and Tc are
the force and torque resulting from particle-particle (particle-wall) collisions (see the work of Ardekani et al72 for more
details). These equations are integrated in time using the Runge-Kutta scheme, as explained in the previous section.

4 VALIDATION

4.1 Single-phase flow
4.1.1 Poiseuille flow of a viscoelastic fluid
The first test case deals with the start-up Poiseuille flow of an Oldroyd-B and FENE-P fluid (Bi = 0) in a planar channel.
The geometry is a two-dimensional channel bounded by two parallel walls separated by a distance h = Ly, where y
denotes the wall-normal direction and x is the streamwise direction. The fluid is initially at rest and set into motion by
applying a sudden constant pressure gradient in the streamwise direction. No-slip boundary conditions are applied at the
walls. As our method solves the three-dimensional Navier-Stokes equations, we impose periodic boundary conditions in
the streamwise and spanwise directions to emulate the two-dimensional geometry. The following dimensionless variables
are introduced:

Y = 𝑦

h
; 𝜏∗ = 𝜏h

u0(𝜇s + 𝜇p)
; T =

t(𝜇s + 𝜇p)
𝜌h2 ; V = u

u0
; 𝛽 = 𝜇s

𝜇s + 𝜇p
; Re = 𝜌u0h

𝜇s + 𝜇p
; Wi = 𝜆u0

h
, (32)

where 𝜏∗ is a nondimensional stress, T is a nondimensional time, and the velocity scale is u0 = −h2dp∕dx∕8(𝜇s + 𝜇p).
The uniform grid has the grid size Δy = h∕180. The time-evolution of the centerline velocity and the wall shear stress
is shown for the Oldroyd-B fluid case in Figure 5. The velocity and the stress components show oscillating behavior with
overshoots and undershoots before settling down to their fully developed values. The steady state profiles for velocity and
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FIGURE 5 Start-up Poiseuille flow for an Oldroyd-B fluid. A, Time evolution of the centerline streamwise velocity component; B, 𝜏∗x𝑦 stress
at channel wall. The symbols represent our numerical results, whereas the solid lines are the analytical solution derived by Waters and
King97 (Re = 0.125, Wi = 0.125, and 𝛽 = 0.1) [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 6 Poiseuille flow of an Oldroyd-B fluid. A, Steady state streamwise velocity component profile; B, 𝜏∗xx (black color) and 𝜏∗x𝑦 (red
color) stress profiles. The symbols represent our numerical results, whereas the solid lines are the analytical solution derived by Waters and
King97 (Re = 0.125, Wi = 0.125, and 𝛽 = 0.1)
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FIGURE 7 Poiseuille flow of a FENE-P fluid. A, Steady state streamwise velocity component profile; B, Bxx (black color) and Bxy (red color)
profiles. The symbols represent our numerical results, whereas the solid lines are the analytical solution (Re = 300, Wi = 25, and 𝛽 = 0.9)

stress components are shown in Figures 6 and 7 for the Oldroyd-B and FENE-P fluids, respectively. As can be seen from
these figures, there is an excellent agreement between our numerical and existing analytical results.

4.1.2 Temporally evolving mixing layer of a viscoelastic fluid
The FENE-P model implementation has been validated by simulating a viscoelastic temporally evolving mixing layer flow
and by comparing our results with those provided by Min et al.77 We consider the initial velocity field u = 0.5(tanh 𝑦)
and trigger the roll-up of the shear layer with a small 2D perturbation. The characteristic velocity and length scales are
Δu = umax − umin and 𝛿 = Δu∕(du∕dy)max, respectively. The Reynolds number is fixed at Re = 𝜌𝛿Δu∕𝜇s = 50 and the
Weissenberg number at Wi = 𝜆Δu∕𝛿 = 25; moreover, the extensibility L2 is set to 100, and the solvent viscosity ratio tp
𝛽 = 0.9. The dimensionless time is defined as T = tΔu∕𝛿. The 2D numerical domain has the size 30𝛿 × 100𝛿, discretized
by 128 × 384 grid points. Note that the flow configuration and domain are the same used by Min et al.77 Figures 8(A-C)
show the instantaneous vorticity contours for the Newtonian flow, where we can observe that the initial perturbation
grows in time and generates two vortices (panel a - T ≈ 20), which subsequently roll up (panel b - T ≈ 60) and eventually
merge into one large vortex (panel c - T ≈ 100); the polymeric flow shows a similar behavior. The quantitative validation
is shown in the bottom panel, where we plot the time history of Bxx in the center of the domain. The symbols represent
the literature results, whereas the red line indicates our numerical data. We find a good agreement of the conformation
tensor component time history over the whole vortex merging process.
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FIGURE 8 (A-C) Instantaneous contours of the absolute value of vorticity at time T ≈ 20, 60, and 100. The color scale from black to white
ranges from 0.05 to 0.4 in (A), from 0.05 to 0.3 in (B), and from 0.05 to 0.25 in (C). (D) is the time evolution of the Bxx component of the
polymer conformation tensor. The red line displays our numerical results, whereas the symbols display the results of Min et al77

(Re = 50,Wi = 25, 𝛽 = 0.9,L2 = 100)

4.1.3 Shear flow of an EVP fluid
Next, the method is validated for EVP single-phase flows. For this purpose, two test cases are considered. The first case
is a simple shear flow. Initially, the fluid is at rest and set into motion by a constant shear rate �̇�0. This test case has a

constant dimensionless velocity gradient ∇u =
[

0 1
0 0

]
, the Weissenberg number Wi = 𝜆�̇�0 = 1, the Bingham number

Bi = 𝜏0∕𝜇0�̇�0 = 1, and the viscosity ratio 𝛽 = 1∕9. The time evolution of the stresses is shown in Figure 9A. The stress
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FIGURE 9 Simple and oscillating shear flow. A, the evolution of 𝜏xx (red) and 𝜏xy (blue) for simple shear flow; B, the evolution of the shear
EVP stress for an oscillating shear flow at Bi = 0 (red) and 300 (blue). The solid lines represent the analytical solution by Saramito,8 whereas
the symbols are our numerical results (simple shear flow: Bi = 1, Wi = 1, and 𝛽 = 1∕9. Oscillating shear flow: Wi = 0.1 and 𝛽 = 0)
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components increase as long as the yield criterion is not satisfied; once the criterion is fulfilled (T ≈ 1), the energy starts
to dissipate as a result of viscous effects, which is clearly seen in the figure as the slope of the time evolution of the stresses
decreases significantly.

The second test case considers the periodic shear flow of an EVP fluid. An oscillatory flow is applied by imposing the
shear strain 𝛾0sin(𝜔t), where 𝛾0 is the strain amplitude and 𝜔 is the angular frequency of the oscillation. The Weissenberg
number is defined as Wi = 𝜆𝜔 and the Bingham number as Bi = 𝜏y∕(𝜌𝛾0𝜔) in this case. Computations are performed for
two different Bingham numbers, ie, Bi = 0 and 300. Note that these two values are extreme cases for which the material
behaves like a viscoelastic fluid (Bi = 0) and like an elastic solid (Bi = 300). The viscoelastic case can be reached at large
strain amplitudes 𝛾0 → ∞, whereas the elastic solid behavior is obtained when the amplitude is small 𝛾0 → 0. The other
dimensionless parameters of the problem are kept constant at Wi = 0.1 and 𝛽 = 0. The evolution of the shear stress
component 𝜏xy is displayed in Figure 9B for Bi = 0 and 300. As can be seen in these figures, there is a good agreement
between our simulation and the analytical solutions, thus indicating an accurate solution of the EVP model equations.

4.2 Multiphase flow in complex fluids
4.2.1 Sedimentation of a spherical particle in an EVP fluid
After validating the numerical method for simple viscometric flows, the method is now applied to study the sedimentation
of a spherical particle in a channel filled with an EVP fluid. This problem exhibits different viscometric flows simultane-
ously, ie, biaxial stretching upstream of the particle, shear flow on the sides, and uniaxial extensional flow downstream of
it. The Saramito model is employed here to facilitate the comparison of the present results with the numerical results by
Fraggedakis et al23 and with the experimental data by Holenberg et al.24 A single spherical particle of radius R is centered
in a domain of size (Lx × Ly × Lz) = (12R × 20R × 12R); a grid of 144 × 240 × 144 points is used to discretize the compu-
tational domain. Periodic boundary conditions are imposed in the x (spanwise) and y (gravity) directions, whereas a free
slip/no penetration condition is enforced in the z direction. The particle starts moving due to the gravity in an otherwise
quiescent ambient EVP fluid. Following the work of Fraggedakis et al,23 the nondimensional parameters are defined as
follows:

Ar =
Δ𝜌2gR3

𝜇s + 𝜇p
; Wi =

𝜆Δ𝜌gR
𝜇s + 𝜇p

; Bn =
𝜏𝑦

Δ𝜌gR
; 𝜌◦ = 𝜌s

𝜌𝑓
, (33)

where Ar, Wi, Bn, and 𝜌◦ represent the Archimedes number, the Weissenberg number, the Bingham number, and the
density ratio, respectively. In Equations 33, the density difference is defined as Δ𝜌 = 𝜌f (𝜌◦ − 1) = 𝜌s − 𝜌f, where 𝜌s and
𝜌f are the solid and the fluid densities, respectively. The present results are compared with the computational simulations
by Fraggedakis et al23 and the experimental results by Holenberg et al.24 The simulation is performed for Ar = 0.03,
Wi = 1.04, Bn = 0.089, 𝜌◦ = 1.38, and 𝛽 = 0.01. Note that the “rough heavy sphere” case is considered in the present
study, referring to the no-slip boundary condition on the particle. First, a quantitative comparison is conducted based on
the steady state settling speed of the particle in the EVP fluid. The terminal velocity predicted by the present study, the
one in the numerical simulation in the work of Fraggedakis et al,23 and the one observed experimentally24 are reported in
Table 2. As can be seen from the table, the present results could capture the terminal velocity accurately, and indeed the
result of the present study deviates from that in other published studies by less than 4%. Next, we present a qualitative
comparison of the velocity fields around the spherical particle. The steady state velocity contours normalized with the
particle terminal velocity are displayed in Figure 10. Direct comparisons with the experimental data of Holenberg et al24

are also included for the yield surface represented by the white markers around the sphere, where the circular and square
marks indicate two different experimental series. Holenberg et al24 determined the yielded region by means of PIV and
PTV techniques, ie, they defined the yielded region where the velocity magnitude exceeded 10% of the settling velocity.

TABLE 2 Comparison of the
settling velocity of a sphere in
elastoviscoplastic fluid

V (mm s−1)

Present work 0.356
Fraggedakis et al23 0.364
Holenberg et al24 0.37
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FIGURE 10 Sphere settling in elastoviscoplastic fluid. Velocity magnitude, scaled with the terminal velocity of the settling sphere. The
different symbols represent different experimental series for the solid-fluid boundary defined by Holenberg et al24 (Ar = 0.03, Wi = 1.04,
Bn = 0.089, 𝜌◦ = 1.38, and 𝛽 = 0.01) [Colour figure can be viewed at wileyonlinelibrary.com]

To facilitate the direct comparison with the experimental data, the velocity contours shown in Figure 10 are constructed as
follows. The distance between the consecutive contour lines is the same and equals to 10% of the terminal velocity, starting
from 10% to 90% of the velocity. Generally, we are in good agreement with the experimental marks24 and simulation results
shown in Figure 9 in the work of Fraggedakis et al,24 the current methodology could capture the expected loss of the
fore-aft symmetry. On the other hand, a slight discrepancy between the present results and those by the aforementioned
work23 can be attributed to a different computational box and a lower resolution. Indeed, in the present study, a full
three-dimensional flow is employed, whereas Fraggedakis et al23 considered an axisymmetric configuration. Moreover,
local grid refinement is used in the work of Fraggedakis et al.23 Their very fine grid in the vicinity of the sphere may
result in an improved resolution of the yielded region. Another reason could be the employment of different boundary
conditions in the far-field boundary; the open-boundary condition is used by Fraggedakis et al,23 whereas a periodic
boundary condition is employed in the present work.

4.2.2 Deformable dilute suspension in a shear flow
Steady deformation of a neo-Hookean elastic particle in a shear flow.
In this test case, we simulate the flow in a plane Couette geometry. We use a Cartesian uniform mesh in a rectangular
box of size 16R × 10R × 16R, with 16 grid points per particle radius R. Periodic boundary conditions are imposed in the
streamwise (x) and spanwise (z) directions, and the no-slip condition at the walls ( y = −h and y = h), which move in
two opposite directions with a constant streamwise velocity ±U = h�̇� . The Reynolds number Re = 𝜌�̇�R2∕𝜇 is fixed at 0.1
and the Capillary number Ca = 𝜇�̇�∕G varied one order of magnitude between 0.05 and 0.5. After the transients die out,
the sphere deforms to approximately an ellipsoid, and we therefore characterize these shapes by the Taylor parameter (D)
and the angle 𝜃. The Taylor deformation parameter is defined as D = (L − B)∕(L + B), where L and B are the major
and minor axis of the equivalent ellipsoid in the middle plane, and 𝜃 is the inclination angle with the respect to the
streamwise direction. The steady state values of D and 𝜃 are reported in Figure 11 for different Ca and compared with
those by Villone et al.47 Similarly to the case of a viscoelastic droplet in a Newtonian medium, deformation as well as the
tendency to align with the flow increase with Ca, ie, with the deformability. A very good agreement is found between our
numerical results and those in the literature. Further validation and details of our implementation can be found in other
works.74,85,86

Three-dimensional viscoelastic droplet.
Verhulst et al98 and Cardinaels et al99 considered fully three-dimensional shear-driven droplets in which either the droplet
or the surrounding fluid is viscoelastic. The Oldroyd-B model is employed in the present study to facilitate a direct com-
parison with the results of the work of Verhulst et al98 and Cardinaels et al.99 The spherical droplet of radius R is at the
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FIGURE 11 Steady deformation of a neo-Hookean elastic particle in a Newtonian fluid for 0.05 ≤ Ca ≤ 0.5. A, Taylor parameter D;
B, inclination angle 𝜃 vs. Ca. Red line: numerical results from the work of Villone et al47; blue circles: our numerical simulation (Re = 0.1)

center of the computational domain. Opposite velocities, ie, V and −V, are enforced on the two walls located at z = 0 and
z = H to obtain the shear rate �̇� = 2V∕H. Periodic boundary conditions are imposed in the x (spanwise) and y (stream-
wise) directions and no-slip conditions at the two walls. Following the works of Verhulst et al98 and Cardinaels et al,99

the nondimensional parameters are defined as follows. The Reynolds number Re = 𝜌1�̇�R2∕𝜇1, the capillary number
Ca = R�̇�𝜇1∕𝜎, the Weissenberg number Wi = 𝜆�̇� , the viscosity ratio k𝜇 = 𝜇2∕𝜇1, the density ratio k𝜌 = 𝜌2∕𝜌1, and
the confinement ratio 𝜒 = 2R∕H. Alternatively, two Deborah numbers can be defined as De1 = (1 − 𝛽)Wi∕Ca and
De2 = (1 − 𝛽)Wi∕(k𝜇Ca). The results are presented in terms of the Deborah number and dimensionless capilary time
t�̇�∕Ca. The droplet deformation in the y − z plane is measured by the Taylor deformation parameter introduced earlier.
Following the work of Ramanujan and Pozrikidis,100 the inertia tensor of the drop is used to find the equivalent ellipsoid.

First, we consider the startup dynamics of an Oldroyd-B droplet in a Newtonian medium (VN). The viscoelastic spheri-
cal droplet is centered in a computational domain of size Lx = H,Ly = 2H,Lz = H, which is discretized with a resolution
of Δx = Δy = Δz = H∕192. The simulations are performed at Re = 0.05,De2 = 1.54, 𝛽 = 0.68, k𝜌 = 1, k𝜇 = 1.5, and
𝜒 = 0.25. The time evolutions of the Taylor parameter and the angle of inclination for a viscoelastic droplet in a Newto-
nian fluid at Ca = 0.14 and 0.32 are depicted in Figure 12A together with the numerical results by Verhulst et al.98 As
expected, the drop deformation and alignment with the flow increase with Ca. In addition, the time evolution of both the
Taylor parameter and the inclination angle are in good agreement with the results reported in the work of Verhulst et al.98

Next, the dynamics of a Newtonian droplet in an Oldroyd-B fluid (NV) is studied. The resolution is fixed at Δx = Δy =
Δz = H∕64 and the computational domain is Lx = 2H,Ly = 4H,Lz = H. The computations were performed for
Re = 0.1,De1 = 1,Ca = 0.2, 𝛽 = 0.68, k𝜌 = 1, and k𝜇 = 1.5. The time evolution of the drop deformation parameter
and its orientation angle are shown in Figure 12B for two different confinement ratios, ie, 𝜒 = 0.46 and 𝜒 = 0.76.
As can be seen in the figure, the confinement ratio increases both the drop deformation and the drop orientation angle.
The comparison between the present results and those by Cardinaels et al99 shows good agreement.

4.2.3 Buoyancy-driven droplet in viscoelastic and EVP media
Finally, the method is validated for buoyancy-driven (rising) droplets. We start from a Newtonian droplet rising in a
Newtonian and viscoelastic fluid. The Oldroyd-B model is used in the present work to facilitate direct comparison with
the results by Prieto,101 Zainali et al,102 and Vahabi and Sadeghy.103 The fully Newtonian case is a classical benchmark
(see, eg, the work of Hysing et al104). The domain is rectangular with the width Lx = 1 and the height Ly = 2. A spherical
droplet with a radius R is initially placed at the centerline of the channel at a distance of Ly∕4 from the lower part of the
channel. The no-slip boundary conditions are applied at the horizontal walls. It should be noted that Prieto101 used the
free-slip boundary conditions on the vertical walls, whereas Zainali et al102 and Vahabi and Sadeghy103 imposed the no-slip
boundary conditions. The nondimensional parameters pertaining to this problem are defined as the Reynolds number
Re = 𝜌1UgL∕𝜇1, the Eötvös number Eo = 𝜌1U2

g L∕𝜎, the Weissenberg number Wi = 𝜆Ug∕L, the Bingham number
Bi = 𝜏y∕𝜌gL, the viscosity ratio k𝜇 = 𝜇2∕𝜇1, the density ratio k𝜌 = 𝜌2∕𝜌1, and the confinement ratio 𝜒 = 2R∕Lx.
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FIGURE 12 Drop deformation under simple shear flow for viscoelastic droplet in Newtonian medium (VN) and for a Newtonian droplet
in a viscoelastic medium (NV). The solid lines represent our results, whereas the symbols are those in the works of Verhulst et al98 and
Cardinaels et al99 for the VN (A and C) and NV (B and D) systems, respectively. Panels (A) and (B) show the temporal evolution of the
deformation D, and (C) and (D) the history of the angle 𝜃. For the VN case, Ca = 0.14 (blue) and 0.32 (red) and for the NV case, 𝜒 = 0.46
(blue) and 𝜒 = 0.76 (red) (VN case: Re = 0.05,De2 = 1.54, 𝛽 = 0.68, k𝜌 = 1, k𝜇 = 1.5, and 𝜒 = 0.25; NV case:
Re = 0.1,De1 = 1,Ca = 0.2, 𝛽 = 0.68, k𝜌 = 1, and k𝜇 = 1.5)
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FIGURE 13 Buoyancy-driven viscoelastic two-phase system: Newtonian case (blue color) and Newtonian droplet in viscoelastic medium
(red color). A, the terminal velocity versus the nondimensional time; B, its respective steady state shape. The symbols represent the present
results, whereas the solid lines are those by Prieto.101 Our results are obtained using a 128 × 256 grid (N case: Re = 35,Eo = 10,Bi = 0,
k𝜌 = 0.1, k𝜇 = 0.1, and 𝜒 = 0.5; NV case: Re = 35,Eo = 10,Wi = 1,Bi = 0, 𝛽 = 0.5, k𝜌 = 0.1, k𝜇 = 0.1, and 𝜒 = 0.5)
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The reference length scale is L = 2R, the velocity scale is Ug =
√

gL, where g is the gravitational constant, and the time
scale is L∕Ug.

First, we show a comparison of rising droplets to the computational study of Prieto101 in two cases. (NV) denotes a
Newtonian droplet in a viscoelastic medium (Wi = 1, 𝛽 = 0.5), and (N) denotes a Newtonian droplet in a Newtonian
medium (Wi = 0, 𝛽 = 1). The other parameters are Re = 35,Eo = 10,Bi = 0, k𝜌 = 0.1, k𝜇 = 0.1, and 𝜒 = 0.5.
Figure 13 shows the evolution of the terminal velocity and the steady state shape for a fully Newtonian (N) case and for
a Newtonian drop in a viscoelastic medium (NV), both of which are in good agreement with the literature results. Note
that, in the study of Prieto,101 the microscopic Hooke model was used rather than the Oldroyd-B model considered in the
present work; despite of that, very similar results are obtained.

Next, we compare our results in the NV case against the results by Zainali et al102 and Vahabi and Sadeghy.103 Following
these authors, the values of the nondimensional parameters are Re = 1.419,Eo = 35.28,Wi = 8.083,Bi = 0, 𝛽 =
0.07, k𝜌 = 0.1, k𝜇 = 0.1, and 𝜒 = 0.3. The droplet interface shapes that we obtained at t = 0.13 s together with the
ones by Zainali et al102 and Vahabi and Sadeghy103 are depicted in Figure 14. It can be seen in the figure that the present
result is consistent with the one reported by Vahabi and Sadeghy103; on the contrary, Zainali et al102 have not observed the
cusped trailing edge, which is however a common feature for the case of Newtonian droplet in viscoelastic medium at
high polymer concentrations.44,101,105-107

Finally, some sample simulations are presented for a Newtonian droplet moving in an EVP fluid. The physical prop-
erties pertinent to the problem are the same as in the work of Zainali et al102 and Vahabi and Sadeghy103 except for a
nonzero Bingham number; indeed, the Bingham number is varied between Bi = 0 and 0.1. Figure 15 shows shapshots
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FIGURE 14 Shape of a Newtonian droplet rising in an Oldroyd-B fluid at t = 0.13 s. The present results (◦) are compared with the results
of Zainali et al102 (×) and the results of Vahabi and Sadeghy103 (▿). (Re = 1.419, Eo = 35.28, Wi = 8.083, Bi = 0, 𝛽 = 0.07, k𝜌 = 0.1,
k𝜇 = 0.1, 𝜒 = 0.3, with 120 × 240 grid points)

FIGURE 15 Streamlines for the Newtonian droplet rising in an elastoviscoplastic fluid and its respective shape at t = 0.13 s.
Computations are performed for the Newtonian case (N) and EVP fluids with Bi = 0, 0.01 and 0.1. The blue line denotes the solid-fluid
boundary defined via contour  = 0.5. (Re = 1.419,Eo = 35.28,Wi = 8.083, 𝛽 = 0.07, k𝜌 = 0.1, k𝜇 = 0.1, 𝜒 = 0.3, and Grid: 120 × 240)
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at t = 0.13 s of the streamlines inside the computational domain for the fully Newtonian case (N) and for the EVP fluid
with Bi = 0, 0.01 and 0.1. In the figure, blue line denotes the solid-fluid boundary defined via the isoline  = 0.5, where
 is defined in Table 1. Note that all the non-Newtonian cases display a negative wake, and therefore they have four closed
streamline zones instead of two zones for the Newtonian droplet. When increasing the Bingham number Bi, the extent of
the yielded region decreases and the solid-fluid boundary approaches the droplet. At Bi = 0.01, the fluid region occupies
most of the domain, but there is a solid region above and below the droplet, as well as two small ellipsoidal regions on
both sides of the droplet. Finally, for Bi = 0.1, the solid region occupies almost the whole domain, except for two narrow
“caps” at the trailing and leading edges of the droplet.

5 CONCLUSION

An efficient solver has been presented for the three-dimensional direct numerical simulations of viscoelastic and EVP
multiphase flows, expected to allow large-scale simulations also in inertial and turbulent regimes. The solver is general
and applicable to non-Newtonian fluids with a dispersed phase, which is either rigid or deformable (drops, bubbles, and
elastic particles). The fluid phases can be chosen to be simple EVP fluids following the model of Saramito.8 The method
can be later adapted to more complex EVP models.

To obtain a stable and accurate solution of the transport equations for the stresses (EVP, elastic, or viscoelastic), we
use a fifth-order upwinded WENO scheme for the advection term in the stress model equations. This is found to be very
robust and considerably less expensive than the third-order compact upwind scheme suggested in the literature. To avoid
numerical breakdown at moderate Weissenberg numbers, a local artificial diffusion can be added. We find that a local
diffusion is preferable to the global diffusion, which can lead to inaccurate solutions by significantly smearing out the
gradients.

The interface between the continuous and dispersed phases is tracked using different approaches for different systems.
For the case of deformable viscoelastic particles, we adopt an indicator function based on the local volume fraction. For
droplets, we utilize a mass-conserving level set method recently developed by this group, including an accurate compu-
tation of the surface tension force based on the local curvature, and a highly efficient and scalable FFT-based pressure
solver for density-contrasted flows. The overall solution approach proposed here is independent of the specific interface
tracking method. The advantage of these methods is that they are fully Eulerian, efficient, accurate, and portable from
the existing available implementations. For rigid particles, on the other hand, the interface is tracked using an IBM. In
this case, the carrier phase is solved on a fixed Eulerian grid, whereas the interface is represented by a Lagrangian grid
following the particle. When comparing to the conventional body fitted grid, the IBM is more simple and versatile for
moving rigid bodies.

The method is first validated for single-phase EVP flows, including the start up flow in planar channel, temporally
evolving mixing layer and simple and oscillating shear flows. Then, it is applied to the sedimentation of a spherical particle
in an EVP fluid, a viscoelastic drop under shear flow and a buoyancy-driven viscoelastic droplet. In all the cases mentioned
earlier, the results obtained with our code are found to be in good agreement with previous results found in the literature.
Finally, sample results are presented for a Newtonian droplet rising in an EVP fluid. This, and the behavior of rigid particle
suspensions in EVP fluids, will be interesting topics for future investigations.

The present methodology can also handle multibody issues. For solid particles, we have a soft-sphere collision model108

and lubrication corrections72 for short-range particle-particle and particle-wall interactions. In particular, when the gap
width between two particles (or particles and wall) reduces to zero, a soft sphere collision model is activated to calculate
the normal and tangential collision force. We will extend the work on collision models to non-Newtonian fluids in the
future. In the level-set method, coalescence takes place automatically. However, in some cases, this phenomenon needs to
be prevented. In our previous work,73 a hydrodynamic model was derived for the interaction forces induced by depletion
of surfactant micelles. As a future study, this model could be extended to take into account other effects of surfactants,
such as diffusion at the interface and in the bulk fluid.
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